In the field of software engineering, intention mining is an interesting but challenging task, where the goal is to have a good understanding of user generated texts so as to capture their requirements that are useful for software maintenance and evolution. Recently, BERT and its variants have achieved state-of-the-art performance among various natural language processing tasks such as machine translation, machine reading comprehension and natural language inference. However, few studies try to investigate the efficacy of pre-trained language models in the task. In this paper, we present a new baseline with fine-tuned BERT model. Our method achieves state-of-the-art results on three benchmark data sets, outscoring baselines by a substantial margin. We also further investigate the efficacy of the pre-trained BERT model with shallower network depths through a simple strategy for layer selection.

Automated Intention Mining with Comparatively Fine-tuning BERT

Mercaldo F.;Santone A.;
2021-01-01

Abstract

In the field of software engineering, intention mining is an interesting but challenging task, where the goal is to have a good understanding of user generated texts so as to capture their requirements that are useful for software maintenance and evolution. Recently, BERT and its variants have achieved state-of-the-art performance among various natural language processing tasks such as machine translation, machine reading comprehension and natural language inference. However, few studies try to investigate the efficacy of pre-trained language models in the task. In this paper, we present a new baseline with fine-tuned BERT model. Our method achieves state-of-the-art results on three benchmark data sets, outscoring baselines by a substantial margin. We also further investigate the efficacy of the pre-trained BERT model with shallower network depths through a simple strategy for layer selection.
9781450387354
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11695/107362
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact