The availability of intensive care beds during the Covid-19 epidemic is crucial to guarantee the best possible treatment to severely affected patients. In this work we show a simple strategy for short-term prediction of Covid-19 ICU beds, that has proved very effective during the Italian outbreak in February to May 2020. Our approach is based on an optimal ensemble of two simple methods: a generalized linear mixed regression model which pools information over different areas, and an area-specific non-stationary integer autoregressive methodology. Optimal weights are estimated using a leave-last-out rationale. The approach has been set up and validated during the epidemic in Italy. A report of its performance for predicting ICU occupancy at Regional level is included.

An ensemble approach to short-term forecast of COVID-19 intensive care occupancy in Italian Regions

Fabio Divino
Membro del Collaboration Group
;
2020-01-01

Abstract

The availability of intensive care beds during the Covid-19 epidemic is crucial to guarantee the best possible treatment to severely affected patients. In this work we show a simple strategy for short-term prediction of Covid-19 ICU beds, that has proved very effective during the Italian outbreak in February to May 2020. Our approach is based on an optimal ensemble of two simple methods: a generalized linear mixed regression model which pools information over different areas, and an area-specific non-stationary integer autoregressive methodology. Optimal weights are estimated using a leave-last-out rationale. The approach has been set up and validated during the epidemic in Italy. A report of its performance for predicting ICU occupancy at Regional level is included.
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11695/100310
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact