A novel parametric regression model is proposed to fit incidence data typically collected during epidemics. The proposal is motivated by real-time monitoring and short-term forecasting of the main epidemiological indicators within the first outbreak of COVID-19 in Italy. Accurate short-term predictions, including the potential effect of exogenous or external variables are provided; this ensures to accurately predict important characteristics of the epidemic (e.g., peak time and height), allowing for a better allocation of health resources over time. Parameters estimation is carried out in a maximum likelihood framework. All computational details required to reproduce the approach and replicate the results are provided.

Nowcasting COVID-19 incidence indicators during the Italian first outbreak

Fabio Divino
Secondo
Membro del Collaboration Group
;
2020-01-01

Abstract

A novel parametric regression model is proposed to fit incidence data typically collected during epidemics. The proposal is motivated by real-time monitoring and short-term forecasting of the main epidemiological indicators within the first outbreak of COVID-19 in Italy. Accurate short-term predictions, including the potential effect of exogenous or external variables are provided; this ensures to accurately predict important characteristics of the epidemic (e.g., peak time and height), allowing for a better allocation of health resources over time. Parameters estimation is carried out in a maximum likelihood framework. All computational details required to reproduce the approach and replicate the results are provided.
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11695/100309
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact