ﬁ
) MmO

Uy srINEYS

University of Molise

Department of Biosciences and Territory
S.5.D.: INF/o1

CROWDSOURCED DOCUMENTATION AND CODE SNIPPETS
SALVATORE GEREMIA

Ph.D. Program Coordinator Supervisor

Prof. Giovanni Fabbrocino Prof. Massimiliano Di Penta

April 2020

This research was done under the supervision of Prof. Massimiliano
Di Penta, with the financial support of the University of Molise, from
November 1st, 2016 to October 31th, 2019.

The final version of the thesis has been revised by Prof. Lerina Aver-
sano and Prof. Annibale Panichella.

The doctoral committee was composed by:
Prof. Andrea Di Sorbo University of Sannio, Italy
Prof. Carmine Gravino University of Salerno, Italy

Prof. Rocco Oliveto University of Molise, Italy

First release, January 2020. Revised in April 2020.

Salvatore Geremia: Crowdsourced Documentation and Code Snippets.
A thesis submitted for the degree of Doctor of Philosophy.

ABSTRACT

The desire of those who make software, as well as of those who use
it, is that it should be of quality. The software quality depends on a
multitude of factors including functionality, reliability, efficiency, and
maintainability, which somehow reflect the actions taken by the one
who implements the software: the developer. For example, if a devel-
oper chooses to use a code snippet developed by someone else or if
he leverages methods provided by an external library, he should ask
himself how this choice could affect the overall quality of the software.
For the same reason, a developer involved in software maintenance
should be very confident about the code understandability, he will be
working on.

In this thesis we investigate the characteristics of Stack Overflow
answers in order to identify what is the rational that leads a devel-
oper to choose a snippet to integrate into his software project. To
this end, we analyzed and compared the characteristics of the docu-
mentation and code snippets leveraged and non-leveraged by devel-
opers on GitHub. The analysis showed the factors that best discrim-
inate between leveraged and non-leveraged answers are: the score,
the number of comments and the posting date of the answer. A spe-
cific analysis on documentation quality was carried out by examin-
ing a set of Application Program Interfaces (API). The objective was
to investigate the relationship between the first use of a low-quality
documentation API and the introduction of bugs in the code. This
hypothesis was confirmed by the results. A further analyzed point
concerns the understanding level perceived by the developer when
dealing with code snippets written by others. Specifically, we have
tried to understand whether naturalness calculated through a model
focused on the developer’s knowledge was a predictor for the devel-
oper’s understanding of code. The results showed code snippets that
are familiar, and so more natural for the developer, tend to mislead
him from the understanding of the code.

ii

ABSTRACT

I desiderio di chi realizza un software, cosi come quello di chi lo uti-
lizza, & che questo sia di qualita. La qualita del software dipende da
una miriade di fattori tra cui la funzionalita, I’affidabilita, 1’efficienza
e la manutenibilita, caratteristiche che in qualche modo riflettono le
azioni compiute da chi e responsabile della realizzazione del software:
lo sviluppatore. Ad esempio, nel caso in cui uno sviluppatore vo-
lesse includere all’interno del software un frammento di codice (code
snippet) implementato da terzi, oppure utilizzare le funzioni fornite
da una libreria esterna, dovrebbe domandarsi in che misura questa
scelta possa incidere sulla qualita complessiva del software. Per la
stessa ragione, uno sviluppatore incaricato di fare manutenzione su
un software dovrebbe essere certo di aver compreso il codice su cui
andra ad operare.

In questa tesi si indagano le caratteristiche delle risposte ai que-
siti postati su Stack Overflow al fine di individuare il razionale che
spinge uno sviluppatore a scegliere lo snippet da inserire all'interno
del proprio progetto software. A questo scopo, sono state analizzate e
comparate le caratteristiche della documentazione e dei code snippet
utilizzati (leveraged) e non utilizzati (non-leveraged) in progetti GitHub.
Dall’analisi € emerso che i fattori che riescono meglio a discriminare
le risposte leveraged da quelle non-leveraged sono: il punteggio, il nu-
mero di commenti e la data di pubblicazione della risposta. Un’analisi
specifica sulla qualita della documentazione e delle sue componenti
informative e stata effettuata esaminando un set di Application Pro-
gram Interface (API). L'obiettivo era quello di investigare la relazione
tra il primo utilizzo di API aventi una documentazione di bassa qual-
ita e I'introduzione di errori (bug) nel codice, ipotesi successivamente
confermata dai risultati ottenuti. Un’ulteriore aspetto analizzato ri-
guarda il livello di comprensione percepito dallo sviluppatore alle
prese con frammenti di codice scritto da altri. Nello specifico, si e cer-
cato di capire se la naturalezza calcolata attraverso un modello incen-
trato sulla conoscenza dello sviluppatore fosse un predittore per la
comprensibilita del codice da parte di quest’ultimo. I risultati hanno
mostrato come porzioni di codice che presentano caratteristiche famil-
iari, e per questa ragione percepite piti naturali, tendano a trarre in
inganno lo sviluppatore, fuorviandolo dalla comprensione del codice.

PUBLICATIONS

1. Simone Scalabrino, Salvatore Geremia, Remo Pareschi, Mar-
cello Bogetti, and Rocco Oliveto, (2018). Freelancing in the econ-
omy 4.0: How information technology can (really) help. In Social
Media for Knowledge Management Applications in Modern Organi-
zations (pp. 290-314). IGI Global.

2. Salvatore Geremia, and Damian A. Tamburri, (2018). Varying
defect prediction approaches during project evolution: A pre-
liminary investigation. In 2018 IEEE Workshop on Machine Learn-
ing Techniques for Software Quality Evaluation (MaLTeSQuE) (pp.
1-6). IEEE.

3. Salvatore Geremia, Gabriele Bavota, Rocco Oliveto, Michele
Lanza, and Massimiliano Di Penta, (2019). Characterizing Lever-
aged Stack Overflow Posts. In 2019 19th International Working
Conference on Source Code Analysis and Manipulation (SCAM) (pp.
141-151). IEEE.

vii

CONTENTS

1

INTRODUCTION

1.1

Origin of chapters and thesis contributions

CHARACTERIZING LEVERAGED STACK OVERFLOW POSTS

2.1
2.2

2.3

2.4
2.5

2.6

Introduction Lo Lo L
Study Design
2.2.1 Data Collection
2.2.2 Analysis Methodology
2.2.3 Replication Package
Results
2.3.1 To what extent are code snippets from “non-
leveraged” answers used in GitHub projects?
2.3.2 Which are the characteristics of SO answers that
have been leveraged by developers?
2.3.3 Which is the performance of a recommender
system in identifying posts that are likely to be
leveraged by developers?
Threats to Validity
Relatedwork
2.5.1 Reusing Code From the Internet
2.5.2 Prediction Tasks on Stack Overflow
2.5.3 Stack Overflow in Recommender Systems
Conclusion

A DEVELOPER-CENTRIC NATURALNESS MODEL FOR PRE-
DICTING CODE UNDERSTANDABILITY

3.1
3.2

3-3

3.4

35

3.6
3.7

Introduction oo
Background and Related Work
3.2.1 Measuring Code Understandability
3.2.2 Naturalnessof Code
Motivating study
3.3.1 Research Question and Design
3.3.2 Analysisof theresults
333 TakeAway
Empirical Study Design
3.4.1 Study Context and Data Collection
3.4.2 DataAnalysis
Empirical Study Results
3.5.1 Discussion and Implications
Threats to Validity
Conclusion Lo

ON THE RELATIONSHIP BETWEEN API QUALITY AND THE
SOFTWARE FAILURE PRONENESS

4.1

Introduction

16

19
24
25
25
26
27
28

ix

X

CONTENTS

4.2

43

4.4
4.5
4.6

Empirical Study Design
4.2.1 Research Questions
4.2.2 Analysis Methodology
Results
4.3.1 What are the elements composing the documen-

4.3.2 What is the quality of API documentation, and

ofitselements?
4.3.3 Does a low API documentation quality relate

with higher defect-proneness?
Threats to Validity
Related work
Conclusion

5 CONCLUSION

BIBLIOGRAPHY

LIST OF FIGURES

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Figure 6
Figure 7
Figure 8

Figure 9

Feature correlation dendrogram.
MCC achieved by the Random Forest.
Precision; achieved by the Random Forest.

Example of JDBC snippet.
Empirical investigation methodology: prelimi-
nary study and study on developer-centric nat-
uralness. L Lo L
Example of deceptive code.
Taxonomy of knowledge types.
Normal Q-Q Plots of overall API quality and
average API elements quality.
Boxplot of API quality.

22
23
30

65
66

Xi

LIST OF TABLES

Table 1
Table 2

Table 3

Table 4

Table 5
Table 6

Table 7
Table 8
Table 9
Table 10
Table 11
Table 12

Table 13

Xii

Factors considered in our study..
RQj: Effect size for statistically significant dif-
ferences. L L.
RQ: Paired analysis of features” distribution
on 104 discussions having both leveraged and
non-leveraged answers.
Prediction accuracy of the experimented clas-
sifiers in different configurations.
MDI of features used to predict post reference.
Results of the Kendall’s correlation between
understandability and naturalness.
Number of methods for investigated topics. . .
Effect of global and developer-centric natural-
ness, of topic knowledge, and of their interac-
tion using two-way permutation test..
Actual understandability and deceptiveness for
global and developer-centric naturalness. . . .
Comparison on the subset with Wilcoxon rank-
sum test for developer-centric naturalness.

Number of analyzed methods (#M) and total
number of methods (#T) for Maven categories.
Number of API documentation (#N) for differ-
ent overall documentation rates (API rate). . .
Documentation Element Types with number of
occurrences (#N) and quality statistics.

17

20

21
24

38
41
46
47
48
57

63

ACRONYMS

ABU
API
AU
AUC
BC

CD
CWCM
LOC
LM

FN

FP
GUI
JDBC
MCC
MDI
PBU
SO
TAU
TNPU
TN

TP

Actual Binary Understandability

Application Programming Interface

Actual Understandability

Area Under the Receiver Operating Characteristics curve
Binary Deceptiveness

Continuous Deceptiveness

Cognitive Weight Complexity Measure

Lines Of Code

Language Model

False Negative

False Positive

Graphical User Interface

Java DataBase Connectivity

Matthews Correlation Coefficient

Mean Decrease Impurity

Perceived Binary Understandability

Stack Overflow

Timed Actual Understandability

Time Needed for Perceived Understandability
True Negative

True Positive

xiii

INTRODUCTION

Since 1957, when the first high-level programming language (FOR-
TRAN) was released, the world of software programming has wit-
nessed the birth of over 8500 programming languages. For this reason
it is impossible to estimate the amount of code produced by develop-
ers over the last 60 years, just consider that only the Internet services
offered by Google exceed 2 billion lines of code'. Such an amount
of existing code has had a significant influence on the way software
is developed and has increasingly encouraged the reuse of existing
code posted on public repositories (e. ., GitHub) or on question and
answer websites (e. g., StackOverflow).

The goal of this thesis is to study the quality of crowdsourced
documentation and code snippets, with the aim of determining
its impact on software quality, and on development practice.

One of the most popular question and answer websites where you
can discuss programming is, undoubtedly, Stack Overflow. On av-
erage, a new answer is posted every five seconds. Because of the
amount of data, the main challenge for developers is choosing code
snippets to use within their code. However, and not surprisingly, not
every Stack Overflow post is useful from a developer’s perspective. In
this thesis, and particularly in Chapter 2, we investigate the character-
istics of code snippets and their documentation in order to identify
the reasons why a developer chooses to use that code within their
GitHub project. We refer to these posts as leveraged posts. We study
the characteristics of leveraged posts as opposed to the non-leveraged
ones, focusing on community aspects (e. g., the reputation of the user
who authored the post), the quality of the included code snippets
(e.g., complexity), and the quality of the post’s textual content (e. g.,
readability). Then, we use these features to build a prediction model
to automatically identify posts that are likely to be leveraged by de-
velopers. Results of the study indicate that post meta-data (e. g., the
number of comments received by the answer) is particularly useful
to predict whether it has been leveraged or not, whereas code read-
ability appears to be less useful. A classifier can classify leveraged
posts with a precision of 65% and recall of 49% and non-leveraged
ones with a precision of 95% and recall of 97%. This opens the road
towards an automatic identification of “high-quality content” in Stack
Overflow.

1 https://informationisbeautiful.net/visualizations/million-lines-of-code/

https://informationisbeautiful.net/visualizations/million-lines-of-code/

INTRODUCTION

Another issue related to the use (e. g., maintenance activities) of a
code snippet made by an external developer involves the understand-
ability of the code. A software developer who recognizes within a
snippet code a pattern seen or used in the past may perceive that code
as familiar (natural) and, consequently, understand it more easily. This
feature, if verified, would pave the way for the capability to predict
a developer’s code. In Chapter 3 we investigate the relationship be-
tween naturalness of code snippets and the degree of understandabil-
ity achieved by the developers. In support of this assumption we im-
plemented a developer-centric model for naturalness and we tested it
on 52 software developers with different experiences and knowledge.
Our results show that (i) generic naturalness models are not useful for
predicting understandability, and (ii) the lower the developer-centric
naturalness of a code artifact, the higher the probability that devel-
opers get deceived, i.e., they believe they understood the code while
they did not. Our results open the road towards the application of
the developer-centric naturalness in further studies and for building
recommender systems.

In addition to code examples, the web is full of public APIs (Ap-
plication Program Interface) that developers can integrate into their
software projects. The use of an AP]I, although it simplifies the devel-
opment process by considerably shortening its time, has some pitfalls.
The main one is the understanding of the API by the developer, in or-
der to be able to use it correctly, so the API documentation plays a
key role. A superficial, outdated, or generally low quality documenta-
tion may negatively affect the use of the API, leading the developer to
make more errors and consequently increases the possibility of intro-
ducing bugs. It is easy to assume that as the developer gets to know
the API by using it, the number of errors made decreases. For this rea-
son, Chapter 4 examines 800 documentation methods extracted from
Java APIs and used within GitHub projects, assesses their quality and
investigates the correlation between the quality of the documentation
and the introduction of bugs by the developer. In particular, the anal-
ysis focuses on bugs introduced at the time of the first use of a given
API. Six researchers were involved in the analysis of the documenta-
tion of the selected methods. Their task was to examine the content
of the documentation, identifying the types of knowledge present,
assigning to the various paragraphs a quality assessment and indi-
cating an overall assessment of the entire documentation. At the end
of the manual analysis phase we exploited the SZZ algorithm [68] to
investigate the correlation between the introduction of errors and the
documentation quality of the API methods used by the developer.

1.1 ORIGIN OF CHAPTERS AND THESIS CONTRIBUTIONS

1.1 ORIGIN OF CHAPTERS AND THESIS CONTRIBUTIONS

Although the research works illustrated in the thesis and organized
in different chapters are linked to a single research stream, each chap-
ter is self-contained. The choice to organize the content of the thesis
in this way derives from a twofold motivation, the first concerns the
possibility of reading the individual chapters making it easier to fully
understand them, the second is to reflect the exact correspondence be-
tween the chapters presented and the works published, under review,
and in preparation for submission.

Chapter 2 was published in the 19th International Working Con-
ference on Source Code Analysis and Manipulation (SCAM) in 2019
(see Publications).

Chapter 3 is currently under review for the Journal of Systems and
Software (JSS). The research work required the collaboration of two
PhD students, Valentina Piantadosi and myself, and four professors,
Simone Scalabrino, Rocco Oliveto, Gabriele Bavota and Massimiliano
Di Penta, involving three universities: University of Molise, Univer-
sity of Sannio and Universita della Svizzera italiana. More specifically,
my main contributions were (i) to build the Developer-Centric Natu-
ralness Models (see Section 3.4), (ii) to mine the methods from a set
of Java projects on GitHub, (iii) to develop the tool to calculate the
use of specific topics within the methods, (iv) to parameterize the use
of training data for the construction of the naturalness models. I also
contributed to the selection and validation of the questions used for
the survey and the analysis of the results.

Chapter 4 is in preparation for submission. This research work was
carried out during the six months spent as visiting student at the
Universita della Svizzera italiana. The chapter presents only a part of
the entire carried out research work, the one in which I am the first
author.

CHARACTERIZING LEVERAGED STACK
OVERFLOW POSTS

2.1 INTRODUCTION

Software developers often need to acquire new pieces of knowledge
to deal with the ever-increasing complexity of modern software sys-
tems. Thus, developers are engaged with a continuous information-
seeking process performed by interacting with teammates, by reading
different forms of documentation, and by consulting online resources
such as question and answer (Q&A) websites.

Q&A websites have become a prominent point of reference for soft-
ware developers [74], also due to the vast availability of the infor-
mation they provide. Stack Overflow (SO), the most popular Q&A
website related to computer programming, counts, at the date of writ-
ing, over 16 Million questions and 25 Million answers'. Such a vast
amount of data represents a precious source of information that can
be automatically mined to provide support for software engineering
tasks.

Indeed, many researchers proposed recommender systems built on
top of the information mined from SO. These include, for example,
techniques recommending SO discussions relevant for a given task at
hand [17, 56], providing support for the automatic documentation of
source code [3, 72, 80], or recommendation of code elements [10, 72,
86].

One of the main challenges for these recommender systems is the
identification of SO posts of high-quality and that could be useful for
developers. Researchers have dealt with this challenge by integrating
heuristics aimed at discarding low-quality content. For example, Au-
toComment [80], a tool using information from SO posts to automat-
ically document source code, only uses information items from posts
that have been positively judged by the SO community. Although
heuristics can be in many cases appropriate to provide accurate rec-
ommendations, they do not consider the extent to which the recom-
mended posts reflect properties of posts that, in the past, have been
considered useful by developers. Thus, the following questions re-
main unanswered:

What is a useful SO post? Is it an answer that received many
up-votes, or coming from a well-reputed user? Do the properties
of snippets contained in the post matter?

1 https://stackoverflow.blog/2018/09/27/stack-overflow-is-10/

https://stackoverflow.blog/2018/09/27/stack-overflow-is-10/

CHARACTERIZING LEVERAGED STACK OVERFLOW POSTS

Given that many SO answers have inspired solutions in open-source
projects [6, 85], we conjecture that answers useful in the past for some-
body are likely to be useful in the future. Thus, we empirically inves-
tigate which are the characteristics of SO answers that have been pre-
viously “leveraged” by developers, and compare them with that of
“non-leveraged” answers. We assume an answer to have been lever-
aged if it has been mentioned (i. e., linked) at least once in the source
code of an open source project hosted on GitHub. Such a link might
indicate the willingness of a developer to (i) indicate the reuse of
the answer’s code snippets, (ii) document the rationale of an imple-
mentation choice, or (iii) simply refer to the answer as an interesting
source of information. Note that, while for a linked answer it is safe
to assume that it has been leveraged, a non-linked answer might
have been leveraged without being explicitly linked. For example,
the code snippet contained in the answer might have been copied
without putting a proper attribution in the source code about the
snippet’s provenance [5]. We discuss how this issue impacts our
findings in Section 2.3.1.

We use data from SOTorrent [7], an open database containing the
official SO data dump and including references from GitHub files to
SO posts. We analyze the last available release (2018-02-16) contain-
ing 42 Million SO posts and 6 Million post references from GitHub.
We filter out from this set the subset of data referring to SO answers
including at least one Java code snippets. This was done to (i) have a
homogeneous set of posts for which it is possible to compute commu-
nity aspects (e.g., the reputation of the user who authored the post),
quality of the included code snippets (e. g., complexity), and quality
of the post’s textual content (e. g., readability); (ii) check whether the
snippets of the answers classified as non-leveraged (i.e., not explic-
itly linked) have been reused in GitHub projects without a proper
attribution, thus threatening our classification of the answer as “non-
leveraged” (details in Section 2.2). Through this filtering, we obtained
19,342 posts, 3,214 of which leveraged at least once in projects hosted
in GitHub, and 16,128 that were not leveraged.

Using this dataset, we first statistically compare the distribution of
22 factors related to community aspects, quality of the code snippets,
and quality of the posts’ text, between leveraged and non-leveraged
posts. Then, we use such factors as independent variables to build
classifiers able to predict whether a post is likely to be leveraged or
not (dependent variable). We experiment with four different classi-
fiers (i.e., Bayesian Network, J48, Logistic Regression, and Random
Forest) in several configurations.

Results show that the Random Forest is the classifier obtaining the
best classification accuracy, with AUC=0.856 and Matthews Correla-
tion Coefficient (MCC)=0.528. More specifically, the classifier achieves
a precision of 65% and recall of 49% for leveraged posts, and a preci-

2.2 STUDY DESIGN

sion of 95% and recall of 97% for non-leveraged posts. While our model
is still far from providing a highly precise classification, the achieved
results pave the way to more research on the automatic identification
of “high-quality content” in SO.

2.2 STUDY DESIGN

The goal of this study is to investigate the characteristics of SO an-
swers that have been previously leveraged by developers, as opposed
to other answers (non-leveraged) for which there is no evidence of
their usefulness. The perspective is of researchers interested to under-
stand what makes a good SO answer, and possibly to exploit this
information to better recommend SO posts. The study context con-
sists of 19,342 answers posted on SO (3,214 leveraged and 16,128 non-
leveraged), all related to the Java programming language, and always
containing a source code snippet.

In our study we assume a SO answer to have been leveraged if it
has been linked at least once in the code of a GitHub project. How-
ever, a non-linked answer might have been leveraged without being
explicitly linked [5]. For this reason, we formulate the following pre-
liminary research question:

RQo: To what extent are code snippets from “non-leveraged”
answers used in GitHub projects?

We answer RQg by selecting a sample of SO answers classified as
non-leveraged in our dataset (through the process detailed later on
in the study design), with the goal of verifying how many of their
code snippets have been reused in Java GitHub projects without an
explicit reference. This will give an idea of how reliable is our clas-
sification of SO answers as leveraged and non-leveraged. As shown
in Section 2.3.1, only a small percentage of non-leveraged is misclassi-
fied, meaning that its code snippet has been used in a GitHub project
without a proper reference.

After this preliminary analysis, we investigate whether the value
distributions for various kinds of answer’s features, characterizing
both its content and its author, change between leveraged and non-
leveraged answers. Therefore, we ask our first research question:

RQ: Which are the characteristics of SO answers that have
been leveraged by developers?

We focus on three kinds of properties that can be objectively mea-
sured in SO answers and, thus, we compared them in leveraged and
non-leveraged answers: (i) community aspects including, the reputa-
tion of the user who posted the answer, whether the answer has been
marked as the “accepted answer” by the user who asked the ques-
tion, etc.; (ii) the quality of the code snippet included in the answer,

CHARACTERIZING LEVERAGED STACK OVERFLOW POSTS

Table 1: Factors considered in our study.

Factor Description

Community Factors

Is Accepted 1 if the answer is accepted, o otherwise

Answer Score Answer upvotes minus answer downvotes
Comment Count The number of answer’s comments

Creation Date The date when the answer was created

User Reputation A score summarizing the reputation of a user on SO
User Up Votes The number of upvotes received by a user

User Down Votes The number of downvotes received by a user

Snippet LOC The lines of code of the answer’s code snippet(s)
Snippet Complexity The cyclomatic complexity [41] of answer’s code snippet(s)
Snippet Readability The readability of the answer’s code snippet(s) [11]
Text Readability Factors

Words The number of words in the answer text

Sentences The number of sentences in the answer text

Characters The number of characters in the answer text

Syllables The number of syllables in the answer text

Complex Words The number of words composed of at least 3 syllables
ARI [67] 4.71.#Characters 4 5. HWords 2143

SMOG [40] 1.043 - \/#ComplexWords . % +3.1291
SMOG Index [40] \/ #ComplexWords - % +3

Flesch Kincaid [34] 0.39- (pierds) 118 (Byprabies) — 15,59
Flesch Reading Easy [23] 206.835—1.015 - (zgherds) — 846 (“381anies)
Coleman Liau [15] (5.89- (*Chgracters)) — (30- (SSgutences)) —15.8
Gunning Fog [26] 04- | (reendzss) +100- (FCompietiords) |

assessed using state-of-the-art quality metrics that can be measured
on a (possibly incomplete) code snippet (e. g., cyclomatic complexity,
readability); (iii) the quality of the answer’s textual content, mainly
assessed through metrics capturing its readability. The complete list
of features is described in detail below and reported in Table 1.

We use the knowledge acquired answering RQ7, and in particu-
lar we use the factors studied in RQ; as independent variables to
devise an approach based on a machine learning technique to pre-
dict whether a given SO answer will be leveraged or not (dependent
variable). Therefore, we pose our second research question:

RQ;,: Which is the performance of a recommender system in
identifying posts that are likely to be leveraged by developers?

In the context of RQ;, we also investigate how the prediction accu-
racy is influenced by (i) the choice of the machine learning algorithm,
(ii) the balancing of the training set, and (iii) the amount and tem-
poral recency of the posts used to build the training set. Finally, we

2.2 STUDY DESIGN

analyze the importance of each independent variable for prediction
purposes.

2.2.1 Data Collection

As the first step to answer our research questions, we collected SO an-
swers that have been leveraged or non-leveraged. We use SOTorrent, a
dataset provided by Baltes et al. [7] and containing the official SO data
dump “augmented” with information about links going from GitHub
files to SO posts. Thanks to SOTorrent, it is possible to know which
SO posts have been linked in open source projects hosted on GitHub.
In our study, we decided to focus only on SO answers since we mea-
sure on these posts a number of characteristics that are only available
for answers (e. ., whether an answer is the one marked as accepted by
the user who posted the question). Also, we decided to only consider
answers containing at least one Java code snippet. Again, this is done
since (i) among the post characteristics we study, we also consider
code quality aspects of the included snippets, i.e., complexity, read-
ability, and size, and (ii) the code snippet will be used in Section 2.4
to verify whether the code from non-leveraged answers have been
reused (without an explicit link to the answer), thus threatening our
the classification of posts as non-leveraged.

We used Google BigQuery? to select from the table Posts all an-
swers that are leveraged (i.e., linked in at least one Java file) and that
contain at least one code snippet:

SELECT * FROM [sotorrent-org:2018_12_09.Posts]
WHERE Id IN (
SELECT PostId
FROM [sotorrent-org:2018_12_09.PostReferenceGH]
WHERE FileExt = ".java")
AND PostTypeld = 2
AND Body LIKE "\%<pre\%<code>\%</code>\%</pre>\%"

This query returned 3,437 leveraged answers. Then, we select from
the table Posts the non-leveraged answers containing at least one Java
code snippet:

SELECT * FROM [sotorrent-org:2018_12 09.Posts]
WHERE Id NOT IN (
SELECT PostId
FROM [sotorrent-org:2018_12_09.PostReferenceGH])
AND PostTypeId = 2
AND Body LIKE
"\%<pre class=\"lang-java\%<code>\%</code>\%</pre>\%"

This query returned 18,592 non-leveraged answers.

2 https://cloud.google.com/bigquery/

https://cloud.google.com/bigquery/

10

CHARACTERIZING LEVERAGED STACK OVERFLOW POSTS

One important difference must be noticed between the two used
queries. In the query selecting the non-leveraged answers, we made
sure that the included code snippet was manually set to be a Java
snippet by the SO user posting the answer.

This can be seen from the class="lang-java" property used in
the query. This property is optional, and can be set by the SO user to
obtain a better formatting of the posted code snippet. By querying the
SOTorrent dataset, we noticed that only a minority of answers, even
among those reporting a Java snippet, used the class="1ang-java".

Since the number of non-leveraged answers is much greater than the
number of the leveraged answers, we decided to use this filtering when
collecting the non-leveraged, since, in any case, the number of returned
answers was high enough to run our study (18,592). This was not the
case for leveraged answers, with only a few dozens answers using the
class="lang-java" property. For this reason, we applied a “weaker”
filter to identify leveraged answers, simply ensuring that the answer
was linked in at least one Java file. However, through manual analy-
sis, we noticed that not all linked answers include a Java snippet. For
example, in some cases developers linked in a Java file a Stack Over-
flow answer containing a snippet written in C, just to indicate that
they reimplemented in Java the algorithm in the posted answer.

Since, as detailed later, our study infrastructure is tailored for Java,
we applied the following cleaning process on the 3,437 leveraged an-
swers. First, we considered as relevant for our study;, all the leveraged
answers satisfying at least one of three conditions:

1. It was posted in response to a question explicitly marked with
the “java” tag;

2. It was posted in response to a question containing the word
“java” in the title;

3. It contained a code snippet explicitly marked as a Java snippet,
as previously discussed for the non-leveraged answers.

This process resulted in 1,904 leveraged answers classified as rele-
vant for our study. Then, we excluded the 17 answers in which the in-
cluded snippet was explicitly marked as non-Java (e. g., class="1ang-
php"). Finally, the first author manually analyzed the remaining 1,516
answers (3,437 - 1,904 - 17 = 1,516), selecting for inclusion in our study
those that included a Java snippet. In the end, we considered as valid
3,228 leveraged answers out of the 3,437 initially obtained by querying
SOTorrent.

Finally, we excluded all answers posted after Jan, 1 2018 (note that
SOTorrent reported, in the analyzed database, posts up to Dec 2018).
This choice was dictated by the following observation: A very recent
post could be non-leveraged simply because no one “had enough time”

2.2 STUDY DESIGN

to leverage it, and not due to its characteristics3. For this reason, we
excluded almost one year of data from our study, to factor out, at
least in part, the “time” confounding factor. This left us with 19,342
posts, of which 3,214 leveraged and 16,128 non-leveraged.

For each of the selected answers, we extracted the following set of
characteristics, or factors, listed in Table 1:

e Community Factors. This category includes characteristics of
the answers that are related to their presence on a Q&A web-
site. We consider factors acting as proxies for the “quality” of
the answer (i.e., Is Accepted and Answer Score); factors assess-
ing the reputation of the user who posted the answer (i.e., User
Reputation, User Up Votes, and User Down Votes); and factors rep-
resenting metadata of the answer, meaning its Creation Date and
the number of comments it received (i. e., Comment Count).

¢ Code Quality Factors. We only consider in our study answers
including at least one Java code snippet. For a given answer,
we take the set of contained code snippets, and we concatenate
them together as a single snippet. Then, we measure its size, in
terms of Lines Of Code (Snippet LOC in Table 1), its complexity,
assessed with McCabe Cyclomatic Complexity [41], and its read-
ability, assessed with the metric proposed by Buse and Weimer
[11]. This metric combines a set of low-level code features (e. .,
identifiers length, number of loops, etc.) and has been shown
to be 80% effective in predicting developers’ readability judg-
ments. We used the implementation of such a metric provided
by the original authors#.

¢ Text Readability Factors. We use several state-of-the-art text
metrics to assess the readability of the text contained in the an-
swer. These metrics are built on top of some basic information
about the text to evaluate, such as the number of words and sen-
tences composing it, the number of used complex words (i.e.,
those composed of at least three syllables), etc. Starting from
this information, different text readability metrics have been
proposed. For example, the SMOG readability formula [40] esti-
mates the years of education a reader needs to understand the
given text. All text readability metrics used in our study have
been computed using an open-source API available on GitHub?>.

While the extracted data is sufficient to answer RQ; and RQ», the
analysis performed does not contemplate the extent to which answers

3 Note that the choice of the cutting point was made at the time the analysis started,
early January 2019.

4 http://tinyurl.com/kzw43n6

5 https://github.com/ipeirotis/ReadabilityMetrics

11

http://tinyurl.com/kzw43n6
https://github.com/ipeirotis/ReadabilityMetrics

12

CHARACTERIZING LEVERAGED STACK OVERFLOW POSTS

classified as non-leveraged have still been used, without proper ref-
erence, in GitHub projects, thus invalidating their classification as
“non-leveraged”. To deal with this issue, in RQy we selected a sample
of 500 answers classified as non-leveraged and verified whether their
code snippets have been used in GitHub projects. Note that out of
~ 16k non-leveraged snippets, a sample of 500 ensures a confidence
interval of & 4.3% for a confidence level of 95%. Since searching in the
whole GitHub is not doable in a reasonable amount of time, we ap-
plied the following process to reduce the “search space” (i. e., the files
on GitHub where to search for the snippets of interest). We used the
StORMed [55] island parser to extract from each of the 500 snippets
the data types they use. Then, we excluded the snippets only using
primitive types (e.g., int) and/or the data types already defined in
Java (e.g., String). The excluded snippets were replaced with others
randomly selected, to meet our goal of sampling 500 snippets for
this analysis. A manual analysis of all extracted types was performed
to remove noise identified through the island parser. For example, we
found snippets using YourType or foo as data type. Again, these were
excluded and replaced with other snippets.

Once completed the collection of the 500 snippets with the related
types, we used the GitHub search APIs® to search for source code files
including, in their text, the name of at least one of the types used by
the selected snippets. We only searched in Java files (language : java).
Since the GitHub APIs only report a maximum of 1,000 results per
request (in our case, 1,000 files containing a given type), for each type
t we sent several requests searching for Java files containing t and
having a size in bytes included in a specific range r. In particular, we
started with r = [o, ..., 2500] (i.e., all files with a size between o and
2.5 kB), storing all found files in a given folder. Then, we increased
r at steps of 2500 Bytes (i.e., the second search looked for files con-
taining t and having a size between 2.5 and 5 kB), until we reached
the maximum size supported by the GitHub APIs, in which only files
smaller than 384 kB are searchable. This process provided us with a
total of 230k files containing at least one of the searched types and
took approximately 20 days.

Finally, given S one of the 500 snippets, we used the Simian clone
detector” to identify type-2 clones between S and the set of files down-
loaded from GitHub using the same type(s) present in S. We chose
Simian due to the fact that it can easily be run on non-compilable
code. We set five as the minimum number of lines to be matched in
order to classify a snippet as cloned in a Java file.

6 https://developer.github.com/v3/search/
7 https://www.harukizaemon.com/simian/

https://developer.github.com/v3/search/
https://www.harukizaemon.com/simian/

2.2 STUDY DESIGN

2.2.2 Analysis Methodology

We answer RQy by reporting the percentage of analyzed non-leveraged
answers, for which we found a clone of their code snippet in GitHub
project (i. e., the percentage of misclassified non-leveraged answers).

We address RQ1 by statistically comparing the value distributions
of the factors described in Table 1 between leveraged and non-leveraged
posts. Especially, we use the Wilcoxon Rank Sum Test [79] assuming
a significance level « = 5%, and the Cliff’s delta (d) effect size [25].

We split the data into ten buckets based on the creation date of
the answers. In particular, the first bucket contains the 10% oldest an-
swers, while the tenth groups the 10% newest ones. Then, we show
how the differences vary when considering datasets having a differ-
ent size and different recency. We start by only considering the first
bucket (oldest 10%). Then, the first two (oldest 20%), and so on up to
90% at steps of 10%.

These datasets (i. e., first 10%, first 20%, etc.) are also the training
sets used in RQ; where we test the machine learning models on un-
seen data.

Thus, when performing statistics to address RQ;, we do not con-
sider the last bucket (most recent 10%). Since the analysis involves
multiple comparisons, we adjust p-values using the Benjamini and
Hochberg [9] procedure, which ranks p-values, keeping the largest
p-value unaltered, multiplying the second largest by the number of
p-values divided by the rank (i.e., two), and treating the remaining
ones similarly to the second.

One of the limits of our study is that there may be other factors,
beyond those captured by the considered features, that determined
whether or not a post has been leveraged. To mitigate this threat, we
identified posts having both leveraged and non-leveraged answers
(104 in total in our dataset). For such posts, we performed a paired
analysis within-post of the feature distribution, this time using a paired
test, i. e., the Wilcoxon Rank Sign Test [79], as well as using the paired
Clift’s delta effect size [25].

To answer RQ;, we build classifiers based on machine learning
techniques, using the factors in Table 1 as independent variables (i. e.,
features) and the categorical variable leveraged /non-leveraged as de-
pendent variable. Before applying the machine learners, we identify
groups of factors that correlate and, for each group, we only keep
the one that better correlates with the dependent variable. In detail,
we use the R varclus function of the Hmisc package, producing a hi-
erarchical clustering of features based on their correlation, in turn,
computed with a specified correlation measure (Spearman’s p rank
correlation). Then, we identify clusters by cutting the tree at a given
level of p? that we set at p2 = 0.64, which corresponds to a strong

13

14 CHARACTERIZING LEVERAGED STACK OVERFLOW POSTS

Spearman p?

1.0 0.8 0.6 0.4 0.2 0.0
L | | | | |

Sentences

Complex_words

Words

Characters
Syllables j

Accepted —
UserDownVotes r
UserReputation
UserUpVotes }
CommentCount ———

Score }
creationDate

Coleman.Liau

Flesch_reading_easy ———

SMOG

SMOG_index :}

Gunning.Fog ——

ARI

Flesch.Kincaid }

StructuralReadability ———

LOC

Complexity :}

Figure 1: Feature correlation dendrogram (the y-axis shows Spearman’s p?)

correlation [14] (i.e., p = 0.8). As a result of this analysis, we removed
the following features:

¢ User upvotes (correlates with user reputation);

¢ # Syllables, # Characters, # Complex Words (all correlate with
Words); and

¢ ARI, SMOG, SMOG Index, and Gunning Fog (all correlate with
Flesch-Kincaid).

Figure 1 reports the clustering dendrogram of features obtained
with the R varclus function (the y-axis represents the p?).

We used the ten data buckets previously created to train/test the
machine learning algorithms. We start using the first bucket as a train-

2.2 STUDY DESIGN

ing set for the models, and the remaining nine as a test set. This pro-
cess is iterated nine times, increasing each time the amount of data
(i.e.,, number of buckets) used for training by 10%. In any case, we
make sure that the answers used for training are older than the ones
used for testing. For example, in the second iteration, the first two
buckets (i.e., 20% oldest answers) are used for training and the re-
maining 80% of data for testing. In the last iteration, 9o% of data is
used for training and 10% for testing.

Such a process was preferred to a 10-fold cross-validation since
it avoids the use of “data from the future” when predicting the in-
stances in the test set. Indeed, without using the constraints that an-
swers in the training set must be older than the ones in the test set,
there is the risk of using, for example, answers from 2018 to predict
whether an answer from 2016 will be leveraged or not. This is clearly
not representative of a real usage scenario for the predictor; indeed,
when predicting whether a new answer will be leveraged, we can
only use data from the past to train the classifier. Also, using this ex-
perimental design allows to study the impact on the accuracy of the
classifier of (i) the amount of used training data, and (ii) the recency
of the data used for training.

We experimented four different machine learning techniques imple-
mented in Weka [27], namely Decision Trees (J48), Bayesian classifiers,
Random Forests, and Logistic Regression. We used such techniques
with their default configuration.

In our dataset we have many more non-leveraged than leveraged an-
swers. To take into account such a strong unbalancing, we experi-
mented each machine learning technique when (i) not balancing the
training sets; (ii) balancing the training sets by under-sampling the
majority class by means of the Weka implementation of the SpreadSub-
Sample filter; and (iii) balancing the training sets by generating artifi-
cial instances of the minority class using the Weka SMOTE filter.

We report Precision, Recall, Accuracy, Area Under the Receiver Op-
erating Characteristics curve (AUC), and Matthews Correlation Co-
efficient (MCC) [39]. Precision and Recall are reported for both pre-
diction categories: leveraged (Precision; and Recally) and non-leveraged
(Precision;;; and Recall,,;). We use MCC, since it is a measure used
in machine learning assessing the quality of a two-class classifier es-
pecially when the classes are unbalanced. It ranges between -1 and 1
(o means that the approach performs like a random classifier) and it
is defined as:

TP-TN—FP-FN

MCC =
V/(TP+FP)(FN + TN)(FP + TN)(TP + FN)

The MCC can be interpreted as follows: MCC < 0.2 indicates a low
correlation, 0.2 < MCC < 0.4 a fair, 0.4 < MCC < 0.6 a moderate,

15

16

CHARACTERIZING LEVERAGED STACK OVERFLOW POSTS

0.6 < MCC < 0.8 a strong, and MCC > 0.8 a very strong correla-
tion [14].

We also report information about the importance of the consid-
ered factors using the Mean Decrease Impurity (MDI) [37], which
measures the importance of variables on an ensemble of randomized
trees.

2.2.3 Replication Package

The data used in our study is publicly available®. In particular, we
provide (i) the subject answers together with the factors (see Table 1)
we measured on each of them; (ii) the created buckets, together with
the training (both the balanced and the unbalanced) and test sets as
arff files to be used in WEKA; and (iii) the detailed results for the
accuracy of each machine learning algorithm.

2.3 RESULTS

In this section we present and discuss results aimed at addressing the
research questions formulated in Section 2.2.

2.3.1 To what extent are code snippets from “non-leveraged” answers used
in GitHub projects?

We found that, out of the 500 snippets considered as non-leveraged,
only 30 (6%) have at least one detected clone in the considered GitHub
files. Thus, while we acknowledge a certain level of noise in our analy-
sis (i. e., misclassification of leveraged snippets as non-leveraged), we
believe that the findings reported in the following are unlikely to be
substantially influenced by such a noise.

2.3.2 Which are the characteristics of SO answers that have been leveraged
by developers?

Table 2 reports Cliff’s delta (d) effect size, together with its interpre-
tation (i.e., L = Large, M = Medium, S = Small, N = Negligible) for
the studied factors when using buckets of different size and recency,
as explained in Section 2.2. A positive effect size value indicates that
the value for a given factor (e. g., the Comment Count) is higher in the
group of leveraged SO answers, while the opposite holds for nega-
tive values. Empty cells in Table 2 represent combinations of factors/-
datasets for which the obtained p-value is not statistically significant.

By looking at Table 2, the first thing that leaps to the eyes is that re-
sults are consistent among the different buckets, with very minor vari-

8 https://github.com/leveraged-S0/leveraged-S0

https://github.com/leveraged-SO/leveraged-SO

17

2.3 RESULTS

W) v7— (W) op'—
(N) 00— (N) so—

(N) 10— (N) #0'—
(N) 00— (N) €0'—
(N) €0— (N) €0—
(N) s0— (N) 60—
(N) €0—

(N) ¥0— (N) $0—
(N) 60— (N) #0'—

(N) 00— (N) $0—
(N) 0+ (N) ¥0'+
S v+) v+
S+)+
- ©) 21—
(N) 60— (N) OL'—

(N) €0'—
(Dos+ (D os+
(De+ (Ds+

%06 %08

(W) 2¢—
(N) §0—

(N) +0—
(N) €0—
(N) €0'—
(N) G0 —

(N) co—
(N) #0'—

(N) #0'—
(N) €0+
(S) vz +
(S) 91+
(S) s1'—
(N) 60—

(D 15+
(D 78+

ou0L

W os— Msc— Wor— N sr— W Ssh— N6 —
(N so— (N so— (N+vo— (N vo— (N)zo— (N) 90—

(N) #0— (N +0"— (N) so— (N) 20—
(N) co— (N) 60— (N) 90—
(N) €0'— (N) so— (N) 90—

(N) o= (N)So— (N)yo— (N)D+O— (N) 90— (N) £0'—
(N) 0 — (N) v0'— (N) so— (N 20—

(N so— (N €0— (N)9o— (N So— (N)So— (N) 20—

(N) o= (N ¥O— (N)9o— (N)So— (N)So— (N) 20—
(N) +0—

(N go— (N o= (N)9o— (N)So— (N)so— (N) 20—

s+ Qe+ Q@i+ ©or+ G+ 961+
N v+ (Nz+ (Nor+ (N so+ (N) 20+
©9r— ©ar— MNrI— (\N60— (N) 20—
N)or— (N 11— (N or— (N) so—

(N) vO+ (N) 90"+
(mzs+ (Mes+ (Deg+ (Dys+ (Dvs+ (Ds+
Mg+ @M1+ (Dg+ (Dew+ (Dor+ (Dw+

9,09 9,05 o0t 9%,0€ 9%,0T A

de(] UoEAID)
3o, Suruunn

Ner uews[o))

Aseq Surpeay] yosar
Presuny| yosarg
xapu] DONS
DONS

RV

spiop xordwo)) #
SI[qRIIAS #
s1apeIey)) #
S9DUDIURG #

SPIOM #
Ayiqepeay joddrug
Ayxardwo)) joddrug
D07 1oddrug

S9JOA UMO(] IS}
s9j0A dn 198N
uonenday 1080
JUNOD) JUIWWOD)
100G ToMSuy

paydeddy sy

371G jasere(9,

oinjea

(981e7=T ‘WnIPON=IN

‘[rewis=g

IqI318aN=N) Se0UaIaHTp JuedyTUSIs AJ[ednsIye)s 10§ 9z1s 10954 : LOY T 3[qeL

18

CHARACTERIZING LEVERAGED STACK OVERFLOW POSTS

ations. For example, the Answer Score factor always exhibits a large,
positive effect size, suggesting that leveraged SO answers usually
have higher score values as compared to non-leveraged ones. Based
on the available data, this factor seems to be the most prominent one
in characterizing leveraged answers, followed by Comment Count.

Among the community factors, it is surprising to see that the Ac-
cepted Answer does not play a major role here. However, it is worth
noticing that not all SO questions have an accepted answer. Indeed,
as also extensively discussed in the Stack Exchange community?, not
all users take the time to mark as accepted one of the answers they
got in response to a question they posted on the website.

Most of the user-related factors (i. e., factors characterizing the user
who post the answer) exhibit negligible and not statistically signifi-
cant differences between leveraged and non-leveraged answers. The
only exception here is for the User Down Votes, that exhibit a small
effect size with the increase in the size of the dataset. It is important
to note the negative sign of the effect size, indicating that the number
of downvotes is higher in non-leveraged answers.

For what concerns the quality of the code snippet embedded in
the answer, the code readability does not seem to play a major role,
while snippets that are larger (Snippet LOC) and more complex (Snip-
pet Complexity), tend to be leveraged more, even though the effect size
is small. While this result might look surprising, it indicates that de-
velopers are more likely to leverage non-trivial code rather than very
simple small snippets. In other words, when developers look for in-
formation on SO and link a specific post in their source code, this
code is likely to be more complex than that in non-leveraged posts.

The readability of the text contained in the answer (see factors from
Words to Gunning Fog in Table 2) only exhibits negligible differences
between the two compared sets of posts, possibly due to the fact that
these metrics were not conceived to assess the readability of technical
documents, such as the one in SO discussions.

Finally, the post Creation Date exhibits a statistically significant dif-
ference and medium effect size. The negative values here indicate
something quite expected: Oldest posts are more likely to have been
leveraged by developers. This finding also justifies our temporal buck-
ets-based approach both in RQ; and, especially, in the training of the
classifier in RQ,. Indeed, since the “age” of a post plays a role in our
data, it is important to analyze how the accuracy of a classifier varies
when training it on older or newer data.

While the analysis of Table 2 provided us with good insights on the
characteristics of leveraged and non-leveraged answers, it is impor-
tant to highlight that it has been performed on SO answers belonging
to different discussions. In particular, for a given SO discussion, it is

https://meta.stackexchange.com/questions/119197/
problem-with-users-not-accepting-answers

https://meta.stackexchange.com/questions/119197/problem-with-users-not-accepting-answers
https://meta.stackexchange.com/questions/119197/problem-with-users-not-accepting-answers

2.3 RESULTS

possible that none of the answers we analyzed have been leveraged,
while for others it could happen that all the considered answers have
been linked in some open source project.

Despite this does not introduce any noise in our data, it does not
help in controlling for possible confounding factors. Indeed, it might
be possible that some answers belonging to a SO discussion are not
reused because their topic has a very narrow interest, rather than
because of the factors we considered, e. g., because it received few
comments or because it came from a user with a low reputation.

For these reasons, we replicated the previous analysis when only
considering the 104 SO discussions in our dataset having at least one
leveraged and one non-leveraged answer (i.e., paired analysis). We
consider the dataset composed by the 9go% of data, to avoid having a
too-small number of discussions to consider for this analysis. Table 3
reports the achieved results.

On this (much smaller) dataset, most of our main findings are con-
firmed, meaning the role played by Answer Score, Comment Count,
User Down Votes, Creation Date. Instead, we did not observe any signif-
icant difference for factors related to the quality of the code snippet.
However, this might be due to the small size of this dataset. The main
difference is that the User-related factors also play a significant role,
with a large effect size for User Reputation. Also, when focusing only
on the answers to a specific question, it seems that developers tend
to leverage more accepted answers.

Despite the slightly different results obtained in the unpaired and

in the paired scenario, both analyses showed the presence of statis-
tically significant differences in the distribution of some of the con-
sidered factors between leveraged and non-leveraged answers. This
suggests the possibility of automatically discriminate between these
two answers’ sets, as we investigate in RQ;.
RQ; summary: post-related features such as Answer Score, Comment
Count and post Creation Date exhibit significant and large/medium
differences between leveraged and non-leveraged posts. Snippets in
leveraged posts are longer and more complex than in non-leveraged
posts. Finally, readability metrics play a negligible role.

2.3.3 Which is the performance of a recommender system in identifying
posts that are likely to be leveraged by developers?

Table 4 reports the accuracy of the machine learning classifiers in the
different configurations we experimented. Table 4 reports the overall
results achieved across the nine buckets used for the training. This
means that for each run (i.e., the first run refers to the usage of 10%
for training, 9o0% for testing; the second 20%-80%; etc. up to 9o%-
10%), we counted the number of true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN). Then, we count

19

20

CHARACTERIZING LEVERAGED STACK OVERFLOW POSTS

Table 3: RQ: Paired analysis of features’ distribution on 104 discussions
having both leveraged and non-leveraged answers.

Feature p-value d Magnitude
Is Accepted < 0.01 0.36 medium
Answer Score < 0.01 0.73 large
Comment Count <0.01 076 large
User Reputation < 0.01 049 large
User Up Votes 0.01 0.26 small
User Down Votes < 0.01 0.30 small
Snippet LOC 044 —0.05 negligible
Snippet Complexity 039 0.10 negligible
Snippet Readability 0.14 0.12 negligible
Words 0.07 0.10 negligible
Sentences 0.07 0.14 negligible
Characters 0.07 0.09 negligible
Syllables 0.08 0.08 negligible
Complex words 0.14 0.06 negligible
ARI 0.27 —0.10 negligible
SMOG 0.14 —0.14 negligible
SMOG Index 0.14 —0.14 negligible
Flesch Kincaid 0.14 —0.13 negligible
Flesch Reading Easy 0.14 0.15 small
Coleman Liau 0.39 —0.07 negligible
Gunning Fog 0.14 —0.12 negligible
Creation Date <0.01 —0.65 large

the overall number of TP as the sum of the TP identified in all nine
runs and apply the same procedure also for TN, FP, FN. Based on
such numbers, we computed the statistics reported in Table 4.

The Random Forest consistently ensures slightly better performance
than the other algorithms, independently from the adopted balancing
strategy. The balancing of the training set does not help the Random
Forest in obtaining a better classification. Indeed, its performance is
quite stable, with the balancing (both under and oversampling) help-
ing the recall of the leveraged class while penalizing its precision. In
general, the performance achieved by the top configuration, while
being far from those of a perfect model, are satisfactory.

The AUC of 0.856 indicates that the model is much better than
a random classifier (AUC = o.5), and the MCC reports a moderate
correlation (0.528). Particularly relevant for the purpose of our study
is the precision achieved by the classifier when identifying leveraged

21

2.3 RESULTS

L8C0 T9L0 €060 9¢6'0 1260 1970 LvC0 X / onsido]
60€0 79L0 6060 G6°0 8160 S0 €0 / X onsIdo]
SLE0 ££20 9160 6160 G660 9.0 0S1°0 X X onsIS0T]
6L7°0 €€8°0 1760 €€6°0 €860 G990 SLEO X / uersoeq
67’0 9rL'0 1680 9660 760 yAS AV 7650 Ve X g¥(
8G'0 G680 8060 0660 6760 8060 0Lgo / X uersadeq
o0 8¥8°0 8160 6°0 8960 €890 RV X X uersoeq
S8Y'0 €vL0 9160 0660 8660 €660 0Ls0 X X gb(
v6'0 06£°0 9160 G860 9660 650 650 X / g¥(
9160 6980 1160 8660 8760 JASNY; 1650 Ve X }S2I0JWOpUEY]
9¢G'0 9980 660 S6°0 9960 G190 12S0 X / }sa10Jwopuey]
8CG'0 9980 860 6v6°0 €260 7G9°0 0610 X X }saI0JwopuEy|
DDIN DNV Ademddoy 1Huoriswarg 1Yesey luoisparg lfesey Surpdwes 13pun ZILOINS IOUIEdT SUIYDIEA

DDA Aq 19p10 Surpusdsap ur pajrodar are suoreIn3yuo)) ‘SUOHERINIIFUOD JUSISHIP Ul SISYISSE]D pajuswiadxa a3 Jo Ademdde uonorpai IOy ¥ s[qer

"(JUBOTJE0D) UOTIR[BIIOD) SMAIUNEBIA)

22

CHARACTERIZING LEVERAGED STACK OVERFLOW POSTS

1.0 Excluding from
] 1/1/2016
— [059
0.8 1= 0.506 7/1/2016
0.6 ‘\._HQ—O——Q—.\.ﬂ 1172017
o] 7/1/2017
o
= 0.4 1/1/2018
0.2
17171 1 T 1
01 02 03 04 05 06 07 08 09
% of training data in chronological order

Figure 2: RQ;: MCC achieved by the Random Forest with different datasets
and percentage of training data.

answers (Precision; = 0.654). This means that 65% of the answers
identified as leveraged by the classifier have been linked in at least one
open-source project on GitHub.

Once identified the best classifier/configuration, we further dig
into factors that affect its performance, starting from the amount and
recency of training data. As explained in Section 2.2, we excluded
from our study answers posted after Jan 1, 2018, to avoid recent posts.
Starting from this dataset (from now on referred to as D1g), we study
the impact of the recency of used data by creating other four datasets,
obtained excluding from D] the most recent answers at steps of six
months. Thus, the first dataset includes only answers posted until Jul
1, 2017 (D7), the second until Jan 1, 2017 (D1-), and so on, until D] .
This analysis aims at verifying our conjecture that older data are more
“reliable” to build our prediction model since “old” answers that have
never been leveraged are unlikely to be leveraged in the future, while
recent non-leveraged answers might not being exploited yet due to
their recency. To also study the impact of the training data on the ac-
curacy of the prediction model, we split also these four datasets into
ten buckets, as already described for the original D] dataset (i.e., the
first 10% contains the oldest answers).

Fig. 2 and 3 report the MCC and the Precision;, respectively, ob-
tained by the Random Forest (i) on the five different datasets, con-
taining SO answers characterized by different recency (see the five
lines having different colors), and (ii) when using different buckets
for training (i. e., oldest 10%, 20%, etc., see x-axis).

As conjectured, older data ensures better prediction accuracy. In-
deed, the green line, indicating the D} ¢ dataset, is on the top of
both graphs, thus showing a higher MCC/Precision; achieved by the
Random Forest in D], as compared to newer datasets. Second, the
amount of training data does not strongly influence the model’s ac-
curacy. The MCC goes down with the increase of the training set size.

2.3 RESULTS

1077 Rzoes ﬁfg'ﬂ Excluding from
7| [P=0:68 = 1/1/2016
087 71112016
0.6+ 1/1/2017
.g - 7/1/2017
9 0.4 1/1/2018
a]
0.2—
0.0—
I I I I I I I I |
01 02 03 04 05 06 07 08 09
% of training data in chronological order

Figure 3: RQ;: Precision; achieved by the Random Forest with different
datasets and percentage of training data.

However, this result can be explained by the interaction between the
“post recency” and the “training set size” factors. Indeed, due to our
experimental design, when we increase the training set size, we add
more recent answers to it (since the buckets are chronologically or-
dered). Thus, if we move from 10% to 90% of training data, we are
adding in the training set answers that are much more recent than
those contained in the first bucket (10%). As previously shown, the
Random Forest works better on older data. Thus, the possible boost
in accuracy given by the increase of the training dataset size is coun-
terbalanced by the increased recency of the training answers.

Finally, Table 5 reports the values of Mean Decrease in Impurity
(MDI) of features used to predict leveraged answers. The results refer
to the D] dataset: We computed the MDI values when using each of
the nine training sets (from 10% to 90% of data) and, then, computed
the average and the 95% confidence interval for each feature.

Table 5 confirms the major role played by features related to commu-

nity factors (i. e., Is Accepted, Comment Count, Answer Score, User Reputa-
tion, and User Down Votes). Following, are the features characterizing
the answer’s code snippet (i.e., LOC, Snippet Complexity, and Readabil-
ity), while less relevant for the prediction are factors related to the
readability of the answer’s text.
RQ; summary: The Random Forest is the classifier ensuring the best
accuracy, with an AUC of 0.86 and an MCC of o.53. The classification
accuracy is strongly influenced by the recency of the data, indicating
that the categorization of older answers as leveraged and non-leveraged
is more reliable than that of more recent answers. The community
factors are considered as the most important features to discriminate
between leveraged and non-leveraged answers.

23

24

CHARACTERIZING LEVERAGED STACK OVERFLOW POSTS

Table 5: RQ;: Mean Decrease Impurity (MDI) of features used to predict
post reference.

Feature MDI
Is Accepted 0.502 4 0.020
Comment Count 0.416 4+ 0.006
Answer Score 0.396 4+ 0.003
User Reputation 0.372 £ 0.004
LOC 0.356 £ 0.003
User Down Votes 0.351 4+ 0.002
Snippet Complexity — 0.323 £ 0.009
Snippet Readability ~ 0.322 + 0.005
Words 0.304 + 0.006
Sentences 0.296 4+ 0.005
Flesch Kincaid 0.284 + 0.005
Flesch Reading Easy 0.268 £ 0.003
Coleman Liau 0.260 + 0.007
Creation Date 0.243 4+ 0.006

2.4 THREATS TO VALIDITY

Construct validity. The most crucial threat is the way we determine
whether a Stack Overflow post has been leveraged. As explained in
Section 2.2, we rely on the dataset created by Baltes et al. [7], which
use post hyperlinks in the source code to determine that a post has
been leveraged. Possibly, a better approach, which we plan to use in
our future work, would be to complement Baltes et al.’s heuristic with
clone detection [85] which, however, would be very expensive from
a computational point of view due to the need for searching each of
the ~18k non-leveraged snippets in the whole GitHub. As explained in
Section 2.2, at least we give an estimation of the percentage of non-
leveraged snippets that are likely to be misclassified (6%). A second
threat to construct validity is that the resulting data may depend on
the accuracy of the text readability metrics, i.e., ARI, SMOG, SMOG
Index, Flesch Kincaid, Flesch Reading Easy, Coleman Liau, and Gun-
ning Fog.

Internal validity. We used default settings for the machine learning
algorithms, therefore it is possible that a better calibration could im-
prove their results. Nevertheless, this means that the achieved results
represent a lower bound of the classifications” performance. Although
we consider features characterizing SO posts from different perspec-
tives, it is entirely possible that the developers’ criteria for choosing
whether to leverage a post or not are based on factors we do not
capture. We have mitigated this threat by performing RQ1, a paired,

2.5 RELATED WORK

within-post, analysis of the considered features for 104 posts having
both leveraged and non-leveraged answers.

External validity. We are aware that our work is (i) limited to Java-
related posts (due to the need for using Java metrics extraction, in par-
ticular, readability metrics), and (ii) it relies on observable evidence of
post leverages as reported by Baltes et al. [7]. Further work is needed
to replicate the study on posts containing snippets written in other
languages.

2.5 RELATED WORK

We discuss the related literature about (i) reuse of code from the In-
ternet, (ii) empirical models built on top of SO data, and (iii) develop-
ment of recommender systems based on SO.

2.5.1 Reusing Code From the Internet

Xia et al. [83] showed that one of the common activities performed by
software developers while searching on the Web is to look for code
snippets to reuse. Based on their results, it is not surprising that many
researchers studied the reuse of code snippets across the Internet.

Sojer and Henkel [69] focused on the legal and economic risks of
code reuse from the Internet. They surveyed 869 professional develop-
ers to investigate whether the reuse of code snippets from the Internet
is a common practice in commercial software. Furthermore, the analy-
sis shows a growth in the importance of code reuse from the Internet
in recent years. For such reasons, work aimed at better characterizing
SO posts worthwhile of being reused — like the one proposed in our
work — is highly desirable.

Baltes and Diehl [6] presented a large-scale empirical study in-
vestigating the ratio of unattributed usages of SO code snippets on
GitHub. In particular, they analyzed the copy-paste and ad-hoc usage
of code snippets into public Java GitHub projects. The results of their
study show that half of the developers copying SO snippets do not
put proper attribution for the reused code, resulting in three-quarter
of reused code snippets that are not correctly attributed on GitHub
projects. Attribution and licensing issues are out of the scope of our
work, but, for example, licensing constraints are certainly a factor that
can constrain code reuse [76].

Yang et al. [84] analyzed more than 3 million SO code snippets
across four programming languages: C#, Java, JavaScript, and Python,
to study the usability of snippets contained in accepted answers. They
found that less than 4% of Java snippets are parsable and only 1%
are compilable. The situation is substantially different for Python, for
which they found 72% of code snippets to be parsable and 26% to
also be runnable. Unlike our study, Yang et al. were interested in un-

25

26

CHARACTERIZING LEVERAGED STACK OVERFLOW POSTS

derstanding whether code snippets can be easily reused, while we focus
on factors influencing the reuse of SO posts on GitHub.

Yang et al. [85] analyzed 1.9 Million Python code snippets posted on
SO and more than gook Python projects on Github to investigate if SO
code snippets are used in real projects. They performed three types
of analysis: a perfect match between the SO snippet and the GitHub
code, differences due to syntactic elements, and partial clones. They
found 1,566 copy-paste blocks, 9,044 blocks which vary for spaces,
tabs etc., and more than gos5k GitHub blocks that are partial clones
of SO snippets. Rather than using clone detection, we use references
inside source code (from Baltes et al. dataset [7]) to capture reuse, also
because as explained in the introduction we are interested to capture
reuse in a broad sense, not limited to snippet copy-paste. However, in
future, the SOTorrent dataset could be combined with clone detection
results.

Other works analyzed the reuse of SO code snippets in Android
apps [1, 2, 22], looking at their impact on the app’s code quality in
terms of reliability [1] and security[2, 22].

A specific study on snippets licensing and attribution was con-
ducted by Le An et al. [5]. By analyzing 399 Android apps, they found
266 snippets potentially reused from SO, 1,226 SO posts containing
examples from the apps, and a total of 1,279 licensing violations. Con-
sidering licensing is complementary to our purpose: once we deter-
mine whether a post has been leveraged, it might be necessary to
determine whether one could legally reuse its code or not.

2.5.2 Prediction Tasks on Stack Overflow

Related to our work are also approaches that try to predict/classify
properties on SO items (e. g., questions, answers).

Regarding the prediction of questions quality, Correa and Sureka
[18] proposed a model to detect questions that are likely to be deleted.

They used 47 features divided into four categories: question con-
tent (e. g., number of URLSs, code snippet length), syntactic style (e. g.,
number of words in title/body), user profile (e.g., number of pre-
vious questions/answers), and community-generated (e.g., average
question score, average number of accepted answers). To train the
model, they selected 235k deleted and non-deleted questions (470k in
total). Results show that the model is able to correctly classify both
types of questions with a 66% accuracy.

Xia et al. [82] proposed an approach to predict deleted questions
which combines two independent classifiers, one based on textual
features and the other built on the 47 features used by Correa and
Sureka [18]. Results show that combining multiple features can help
to better discriminate deleted from non-deleted questions.

2.5 RELATED WORK

Ponzanelli et al. [57] used machine learning and genetic algorithms
to identify poor-quality questions at their creation time. They used
three families of metrics as independent variables to assess the ques-
tions” quality: SO metrics (i. e., length of the question, the textual sim-
ilarity between title and body, number of tags), readability metrics,
and popularity metrics (i. e., badged answer and question count, and
badges-tags coverage). The “question quality” dependent variable is
considered to be good, if the question is not closed, not deleted, with
an accepted answer, and with a score between 1 and 6, very good, if
it is good, but with a greater score, bad, if it is not closed, not deleted,
and with a score below o, and very bad, if it is closed or deleted. Re-
sults show that the popularity of the author is more important than
textual features to determine the quality of a new question. In our
work, we also consider author- and post-related features and, indeed,
our results indicate that some of them are good predictors of reuse.

There have also been different works dealing with the prediction of
relevant tags for SO questions. Xia et al. [81] proposed TagCombine, a
framework able to analyze objects in software information sites and
provide tags recommendations. Saini and Tripathi [63] and Wang et al.
[77] also proposed approaches to predict SO question tags. We do
not consider how tags could influence reuse, but this is certainly a
direction for future work.

In summary, while several studies investigated the characteristics
of SO posts, to the best of our knowledge, our study is the first to in-
vestigate the possibility to predict SO posts that are likely to be lever-
aged in open source projects.

2.5.3 Stack Overflow in Recommender Systems

Among the various sources available on the Web, Q&A Websites and
in particular SO, have been exploited by many recommender systems
for software developers to identify pieces of information relevant for
a given task at hand. Examples of these systems include (but are
not limited to): techniques to identify code elements contained in SO
answers [60]; the automatic recommendation of SO discussions for
a given task run by the developer in the IDE [17, 56]; and support
for the automatic documentation of source code using information
mined from SO [3, 72, 80].

However, it is important to highlight that our study can disclose
empirical evidence about the possibility of automatically identify SO
posts that are “worth reusing”. Such information can be of paramount
importance for the development of better recommender systems able
to select relevant posts as humans would do.

27

28

CHARACTERIZING LEVERAGED STACK OVERFLOW POSTS

2.6 CONCLUSION

In this chapter we studied the characteristics of Stack Overflow (SO)
answers that have been leveraged by developers, who explicitly linked
such answers in their source code. Different characteristics of the
leveraged answers, including user-related, post-related, and snippet-
related characteristics, have been compared to those of non-leveraged
posts. Results of the comparison highlighted, through statistical anal-
ysis, significant differences between leveraged and non-leveraged an-
swers. In particular, the differences were large for what concerns
post-related and community-related factors, such as the quality of
the answer as perceived by the SO users (e. g., answer score), and the
engagement it created on the platform (e. g., comment count).

Starting from this result, we experimented with machine learning
algorithms, assessing their ability to automatically discriminate be-
tween leveraged and non-leveraged answers. We obtained encouraging
results (AUC = 0.856 and MCC = 0.528). This points to the possibil-
ity of integrating, in recommender systems, “filtering” mechanisms
able to identify “high-quality” content in the sea of data available on
Q&A websites. This present work is thus only a first step in that area,
paving the way for several research directions.

A more comprehensive study can be run by considering as lever-
aged posts not only those explicitly linked in source code files of
open source projects, but also those from which code snippets have
been reused [85]. This can help in enlarging the set of leveraged posts,
better studying their characteristics and, possibly, improving the per-
formance of the prediction models.

Related to this point is the possibility to factor into our models ad-
ditional predictor variables. For example, whether the code snippet
included in the answer is easy to reuse (e. g., can be parsed [84]). In-
deed, our models use a limited set of predictor variables that can be
easily expanded.

Finally, the long term goal is the integration of the prediction mod-
els able to discriminate high-quality content into one of the recom-
mender systems exploiting SO (e. g., [56]) to verify, through user stud-
ies, whether they contribute to recommend more relevant informa-
tion items.

A DEVELOPER-CENTRIC NATURALNESS MODEL
FOR PREDICTING CODE UNDERSTANDABILITY

3.1 INTRODUCTION

Developers often struggle reading and understanding code. Despite
the common beliefs, code writing only takes a minority of the devel-
opers’ time, while up to 70% is spent in code comprehension [43].
Being able to objectively measure how understandable source code is
would be the first step to recognize which parts of code need attention
and should be improved to ease code maintenance. Measuring code
understandability is, however, far from trivial, probably due to its
subjective nature (i. e., a code component can be understandable for a
given developer while being difficult to comprehend for another one).
Previous studies tried to address the problem of automatically mea-
suring code understandability [65, 66]. However, the achieved results
showed the strong limitations of state-of-the-art metrics, unable to
exhibit any meaningful correlation with code understandability. For
example, Scalabrino et al. [66] experimented with 121 code-related,
documentation-related, and developer-related metrics, showing that
none of them is able to capture code understandability as perceived
by developers.

Intuitively, if a developer knows the programming language con-
structs, APIs, and code templates used in a source code snippet, she
will be able to understand it more easily. In other words, it can be
said that the code is “predictable” for the developer. Previous work
studied the source code predictability, defining the concept of natu-
ralness of software [29]. Hindle et al. [29] using the adjective “natural”
indicate that “code, despite being written in an artificial language (like C
or Java) is a natural product of human effort” and that’s why “programs
that real people actually write are mostly simple and rather repetitive, and
thus they have usefully predictable statistical properties that can be captured
in statistical language models and leveraged for software engineering tasks”.
Software naturalness is captured through statistical language mod-
els, that have also been successfully used in the context of software-
related tasks, such as providing code recommendation [48, 59].

Language models need to be trained on a corpus of code artifacts:
given the size of the context k, the model infers the probability that
a given sequence of tokens (ti,..., tx) is followed by any other to-
ken from the corpus. For example, for k = 3 and given the context
e.g., (for,(,int), the probability that the next token is i may be rel-
atively high since such an identifier is very commonly used in for

29

30

A DEVELOPER-CENTRIC NATURALNESS MODEL

Figure 4: Example of JDBC snippet.

Class.forName (DB_DRIVER);

Connection c = DriverManager.getConnection(DB_CONNECTION, DB_USER,
DB_PASSWORD) ;

String query = "SELECT * FROM users";

PreparedStatement s = c.prepareStatement(query);

ResultSet r = s.executeQuery();

while (r.next()) {
System.out.println(r.getString("name"));

}

loops. Given a source code fragment, language models can be used
to compute its naturalness: the higher the quantity of “surprising”
(i.e., unlikely) tokens in the code, the lower its naturalness. Ray et
al. [58] showed that unnatural code is more likely to contain bugs
and, in this chapter, we argue that this might be due to the poor un-
derstandability of unnatural code (i.e., developers struggle to under-
stand unnatural code and, as a consequence, they tend to introduce
bugs while working on it). Thus, we conjecture that code natural-
ness can be a good proxy for code understandability, provided that
a strong assumption usually made to compute code naturalness is
dropped: language models have always been trained using a quite
large code corpus which supposedly represents what a typical devel-
oper of a given programming language is or is not likely to write.
While in most of the application contexts this is an acceptable as-
sumption (e. g., code suggestions), to capture code understandability
this assumption might be too strong. For example, code understand-
ing depends on the past knowledge and experience of developers [66]:
different developers may be more or less familiar with different snip-
pets. Consider the example in Figure 4: back-end developers could be
very familiar with such a pattern of API calls since they often deal
with similar code. On the other hand, front-end developers may find
the same snippet confusing since they are used to other types of APIs,
e.g., GUl-related ones.

In this chapter, we investigate the relationship between naturalness
and source code understandability by relying on a developer-centric
model of code naturalness. Given a developer and its experience in
some programming-related topics, we train a language model by only
considering a corpus of code snippets related to the topics she has
experience with. For example, if a developer is very proficient with
multi-threading programming, the corpus will contain many code
snippets using multi-threading. The number of code snippets in the
training corpus for a given topic (e. g., multi-threading), will be pro-
portional to the self-assessed experience of the developer on that

3.1 INTRODUCTION

topic. The developer-centric model aims at simulating the mental lan-
guage model of a specific developer.

Based on this idea, we conduct an empirical study in which we
aim at verifying if the naturalness computed with a developer-centric
model is a good predictor for any aspect of code understandability.
As a first step, we perform a preliminary empirical investigation to
motivate the need for a developer-centric model for naturalness. More
specifically, we investigate whether source code naturalness correlates
with its understandability. This study provided negative results, and
motivates the need for a deeper understanding of the naturalness, i.e.,
introducing the developer-centric model.

Therefore, we conduct a second study, involving 52 developers,
on the relationship between developer-centric naturalness and source
code understandability. The study consists of two phases. In the first
phase, we assessed the experience of such developers in eight Java-
related topics we identified (e. g., collections, reflection, threads, etc.).
We used such information to build a developer-centric language mod-
el for each of them and exploited this model to compute the develop-
er-centric naturalness for a number of code snippets. We selected, for
each developer, both natural and unnatural snippets and we asked the
same developers to read and understand these two sets of snippets
and to answer some verification questions aimed at assessing their ac-
tual understanding of the snippets. Using a design similar to the one
used in previous works on understandability measurement [65, 66],
we collected information about the (i) perceived comprehension (i.e.,
how much the developer believes to have understood each snippet),
(ii) actual comprehension (i. e., how much she was actually able to an-
swer verification questions about the snippet), and (iii) time needed
to understand the snippet. Finally, we compute the correlation be-
tween the developer-centric naturalness and different proxies of code
understandability. We also compare the developer-centric model with
a generic language model usually employed to compute code natural-
ness.

The overall methodology of our work, consisting of the first moti-
vating study and the second, two-phase study on developer-centric
naturalness, is depicted in Figure 5.

Our results show that code naturalness computed using a devel-
oper-centric model is significantly associated with a higher code de-
ceptiveness: when faced with unnatural code, developers more often
perceived that they understood the code (i. e., perceived understand-
ability) while, in reality, they did not (i.e., actual understandability).
Such a correlation does not hold for the generic language model. Our
results pave the way to (i) a possible usage of developer-centric natu-
ralness for the automatic assessment of code understandability; and
(ii) future applications of the developer-centric naturalness models
(e. g., developer-specific code completion models).

31

32

A DEVELOPER-CENTRIC NATURALNESS MODEL

Study participants

Snippets dataset with
understandability metrics

(Scalabrino et al., 2019) ﬁﬁﬁt

T
O

Code snippets
(classified onto topics)

Phase | Phase Il

i Negative result 3 AS§e_ssmg , — Understandability | -
: -| participants . :
: : Ny experiment :
: 1| expertises :

Correlation between
naturalness and source . naturalness
code understandability ~ : : |

Developer-centric

Naturalness model : Relationship between
(Ray et al., 2016) : p tric
: . and understandability

Preliminary study Study on developer-centric naturalness

Figure 5: Empirical investigation methodology: preliminary study and
study on developer-centric naturalness.

3.2 BACKGROUND AND RELATED WORK

In this section we introduce approaches and metrics proposed in the
literature to measure source code understandability. Also, we pro-
vide background notions about source code naturalness and discuss
studies aimed at correlating naturalness with other source code prop-
erties.

3.2.1 Measuring Code Understandability

Lin and Wu [36] proposed a model for evaluating code understand-
ability. The model uses Principal Component Analysis (PCA) and
fuzzy mathematics on a set of metrics (e. g., understandability of doc-
umentation, of components, of data, etc.) assumed to capture under-
standability aspects based on the analysis of the literature. The model
has not been evaluated.

Misra and Akman [44] presented the Cognitive Weight Complexity
Measure (CWCM) metric and compared it to existing cognitive com-
plexity metrics. The basic idea behind the CWCM is to weight the
difficulty in comprehending a given component based on the control
structures it contains. The evaluation of CWCM presented in Misra
and Akman [44] is purely theoretical, based on the number of prop-
erties proposed by Weyuker [78] that CWCM satisfies.

Thongmak and Muenchaisri [71] considered aspect-oriented soft-
ware dependence graphs to assess the understandability of aspect-
oriented software, while Srinivasulu, Sridhar, and Mohapatra [70]
estimated software understandability using an outlier detection ap-
proach. Specifically, they calculated seven metrics (e. g., comment ra-

3.2 BACKGROUND AND RELATED WORK

tio, number of components, Halstead Complexity) on nine projects,
and determined the rough entropy factor to identify the outliers. Con-
sidering the metric values, the identified outliers correspond to either
highly understandable or not understandable projects.

Capiluppi, Morisio, and Lago [12] also presented a metric to cap-
ture code understandability using as proxies (i) the number of files
in the system’s modules (i. e., directories), and (ii) the relative size of
the files. The metric has not been empirically evaluated.

The most recent work investigating code understandability is the
one by Scalabrino et al. [66]. The authors attempted to correlate 121
different metrics (e.g., cyclomatic complexity, lines of code, devel-
oper’s experience) to source code understandability. They conducted
a study with 63 participants who were asked to understand code
snippets, for a total of 444 evaluations. Then, they correlated the 121
metrics to three code understandability proxies: (i) the perceived un-
derstandability (i. e., whether the participant felt to have understood
a given code snippet), (i) the actual level of understanding (i.e., the
ability of the participant to answer questions about the snippet), and
(iii) the time spent by the participant in understanding a snippet.
Their results show that no metric is able to capture code understand-
ability.

Related to understandability are also the studies that tried to define
metrics for the readability of code [11, 64] which, however, is only one
of the aspects playing a role in code understandability and, as shown
by Scalabrino et al. [66], does not exhibit strong correlations with code
understandability.

To the best of our knowledge, this is the first work aimed at re-
lating naturalness with software understandability. On the one hand,
we show how a global naturalness model cannot be related to under-
standability. On the other hand, we build a developer-centric natu-
ralness model which, instead, exhibits a relationship with a specific
aspect of software understandability.

3.2.2 Naturalness of Code

Gabel and Su [24] studied the uniqueness of software by analyzing
the extent to which token-level n-grams are redundant in a corpus
of 6k open source projects. They found that source code is highly
repetitive, with over 50% of n-grams found in multiple projects for
low values of n.

On this same line of research, Hindle et al. [29] showed that source
code is “natural”, meaning that it is highly repetitive and predictable
as compared with traditional English text. When compared to natural
language, source code is even more repetitive due to the strong syntax
constraints imposed by programming languages. Successive studies

33

34

A DEVELOPER-CENTRIC NATURALNESS MODEL

confirmed this finding [45], and some of them highlighted that these
repetitions are stronger in specific areas of the source code [35, 73].

Based on these observations, many approaches modeled the source
code by using statistical language models with the goal of support-
ing software engineering tasks such as code completion [29, 47, 48,
59], code migration [46], rename refactoring [4, 35], enforcing stylistic
consistency of code [4], code review [28], deobfuscation [75], identifi-
cation of automatically generated code [20], mutation testing [31] and
defect prediction [58].

Our assumption is the code naturalness can also play a role in au-
tomatically assessing code understandability.

3.3 MOTIVATING STUDY

The goal of this study is to investigate the relationship between nat-
uralness and source code understandability. As explained in the in-
troduction, the purpose of this preliminary investigation is to un-
derstand whether the existing naturalness measures are sufficient
to capture source code understandability properties. The context of
our study consists of a dataset of 50 Java snippets previously used
by Scalabrino et al. [65, 66] to correlate understandability with 121
source code metrics. The level of understandability associated with
each snippet has been computed through a study performed with 63
developers. Details on the computed understandability proxies are
provided in the following.

3.3.1 Research Question and Design

This preliminary study aims at answering the following research ques-
tion:

To what extent is the naturalness of a given code snippet related to its
understandability?

We leverage the understandability proxies measured by Scalabrino
et al. [65, 66] and available in their dataset. They asked a pool of 63
study participants (developers and CS students) to understand eight
Java methods (randomly selected from a pool of 50 Java methods) in
a survey-based study run through a Web application. For each snip-
pet, participants were asked to comprehend it and, once done to click
on the button “I understood the method” or the button “I cannot un-
derstand the method”. This binary metric is defined as the perceived
understandability. In both cases, the Web application stored the time
spent, in seconds, by the developer for the method’s understanding
before clicking on one of the two buttons. If the participant clicked
on the button “I understood the method”, the method was then hid-
den and she was required to answer three verification questions on the

3.3 MOTIVATING STUDY

hidden method (see Scalabrino et al. [66] for more details). In this
way, the authors captured the actual understandability. Using this data,
Scalabrino et al. measured the following understandability proxies:

In

Perceived Binary Understandability (PBU). This binary metric
assumes o, if the participant answered “I cannot understand the
method”; otherwise, it assumes 1.

Actual Understandability (AU). This metric obtains o, if the par-
ticipant clicked on the button “I cannot understand the method";
otherwise, it was computed as the percentage of correct answers
on the three verification questions mentioned above.

Actual Binary Understandability (ABUyo,). This metric is de-
rived from AU and, with k = 50%, it assumes a binary value
used to classify snippets of code as understandable or not.
ABUsgy, is true when participants correctly answer at least two
of the three verification questions, and false otherwise.

Time Needed for Perceived Understandability (TNPU). This
metric measures, in seconds, the time needed by the partici-
pant to inspect the method and click on the “I understood the
method" button. This metric is not computed for methods that
are not understood by the participant.

Timed Actual Understandability (TAU). This is a measure of
the time needed to obtain the actual understandability. It gets a
value of o if the developer perceives that she did not understand
the snippet. Otherwise, it is computed as:

TNPU
max TNPU

where AU and TNPU are the variables previously defined. The
higher AU, the higher TAU, while the higher TNPU, the lower
TAU.

TAU = AU<1 —

Binary Deceptiveness (BDy9,). This is a binary categorical vari-
able derived from PBU and ABUye,, which is true if PBU is true
and ABUye, is false, and false otherwise. BDy9, indicates whether
a developer can be deceived by a method in terms of its un-
derstandability (i.e., she incorrectly thinks she understood the
method).

our study, we also add another deceptiveness metric, named

Continuous Deceptiveness (CD). With CD we indicate how much a
method deceived a developer trying to understand it, i.e., to what
extent the developer says that he understood the method (in terms
of perceived understandability) but in reality, this is not the case (i.e.,
the actual understandability is low). The Continuous Deceptiveness is
calculated as follows:

35

36

A DEVELOPER-CENTRIC NATURALNESS MODEL

PBU x (1 — AU)

where PBU is the perceived understandability, and AU is the percentage
of verification answers correctly answered by the participant. If a de-
veloper perceives that she did not understand the method, the CD is
zero, since for sure the snippet of code did not deceive the developer.
Otherwise, if a developer perceives that she understood a code snip-
pet, but this is not actually the case, then the deceptiveness increases
on the number of wrong answers (reaching a maximum of 1 for no
correct answers provided).

The naturalness is measured using the model proposed by Ray et al.
[58]. To train the model, we used 40 Java projects selected as follows.
Our goal was to train the model on code written by a high num-
ber of developers, with the assumption that such a model could be
more representative of the code naturalness as perceived by Java de-
velopers. We used Google BigQuery to extract contributors for each
GitHub project. Then, we extract the total number of contributors
and we order all projects in descending order of contributors. Unfor-
tunately, the dataset did not allow to automatically distinguish Java
projects from non-Java projects. Thus, starting from the project with
the maximum number of contributors, we verified manually whether
each project was indeed a Java project, and we ignored all non-Java
and forked projects. After that, we leveraged a greedy algorithm to
select the 40 Java projects covering the greatest number of unique
contributors (details are provided in Algorithm 1). Consequently, the
additional greedy algorithm returns 40 Java projects with a number of
unique contributors equal to 21,219 developers over a total of 673,675
unique developers of all GitHub projects, observing a confidence in-
terval lower than 0.87% computed for a significance level of 99%. The
total number of unique developers is an overestimation because this
number includes developers of potentially non-Java projects, and con-
sequently, also the confidence interval is an upper bound.

Algorithm 1 Project selection algorithm

Data: GitHub projects Pg ordered in descending order and develop-
ers D
Result: selected projects P
1: P < pj € Pg, where p has the maximum number of developers
2: D < Dy,
3 Pg < P —{p1}
4: while |P| <40 do
5: P < pi € Pg, where p; adds the maximum number of devel-
opers to D
6: D < DDy,
72 Pg < Pg—{pi}
end while

*®

3.3 MOTIVATING STUDY

Afterward, we perform a preprocessing on the source code of the se-
lected projects, to allow the computation of source code metrics and
naturalness. We used srcML' to parse the Java classes in each project
and extract the methods they contain. Then, for each method (i) we re-
move comments; (ii) we run an abstraction on strings, characters, and
numbers, assigning to each of them a specific token (e. g., all strings
were replaced with the token $$string$s); and (iii) we separate each
token (e. g., identifiers) with a space. As output, the tool returns:

¢ the un-tokenized code without comments in a file .java (or
original code);

¢ the tokenized code stored in lines as a file . java. lines;

* the tokenized code written in a single line for the training of the
language model (LM) in a file . java.tokens.

The .java.tokens files are used to train the LM and to obtain the
naturalness values for the 50 Java snippets used in our previous work
[65, 66]. Our model is integrated into the tool of Zhaopeng?, which
provides the entropy of a given code snippet (i.e., the unnaturalness).
Specifically, if the value of the entropy is positive, the method is un-
natural. Instead, if the value of the entropy is negative, the method is
natural.

After having obtained the entropy values, we correlate them with
the previously defined metrics of understandability [65, 66], using
the Kendall rank correlation coefficient (i. e., Kendall’s T) [33]. We fol-
lowed Cohen’s guidelines [14] to interpret the correlation coefficient.
It is assumed that there is no correlation when o < |1] < 0.1, small cor-
relation when o.1 < |t| < 0.3, medium correlation when 0.3 < [1] < 0.7,
and strong correlation when 0.7 < |1] < 1.

Also, we compare the values of CD and of AU between two groups:
natural and unnatural. The groups were obtained by splitting on the
mean of naturalness values (>~ 7.59). For the comparison, we use a
Mann-Withney test to check if the difference between natural snippets
and unnatural snippets is statistically significant. We reject the null
hypothesis if the p-value is lower than 0.05, and, in case of significance
difference, we also use Cliff’s delta [13] to assess the magnitude of
such a difference. We consider the difference negligible if 5| < 0.148,
small if 0.148 < [8| < 0.33, medium if 0.33 < 8] < 0.474, and large for

18] = 0.474 [25].

1 https://www.srcml.org/
2 https://bitbucket.org/tuzhaopeng/cachelm_for_code_suggestion

37

https://www.srcml.org/
https://bitbucket.org/tuzhaopeng/cachelm_for_code_suggestion

38

A DEVELOPER-CENTRIC NATURALNESS MODEL

Table 6: Results of the Kendall’s correlation between understandability and
naturalness.

Measure Correlation p-value

PBU 0.006 0.87
TNPU 0.017 0.65
AU ~0.020 0.58
TAU —0.027 0.43
ABUye, —0.021 0.60
BDyo, ~0.033 0.39

3.3.2 Analysis of the results

Table 6 reports the results in terms of Kendall’s T rank correlation. As
it is possible to notice, entropy does not correlate with any metric of
understandability.

Indeed, the obtained correlations are all very low and all values
are located in the range of the no correlation. Moreover, we did not
obtain any significant p-value for the computed correlations.

We then compare natural vs. unnatural code snippets based on the
CD and the AU. In the first case, there is no significant difference (p-
value = 0.79): both for natural and unnatural we have a median CD of
33.33%. In the same way, there is no significant difference (p-value =
0.75) in the AU between the natural (66.67% median) and unnatural
(33.33% median) groups.

3.3.3 Take Away

Based on the results of this preliminary study, we infer that nat-
uralness is not a good predictor of understandability. Indeed, the
achieved results show that understandability does not correlate with
the adopted measure of naturalness.

We conjecture that a possible reason for this result is the developer-
centric nature of code naturalness. For this reason, we attempted to
define a new model of naturalness that is built ad hoc for a given
developer, based on her knowledge. In the next section, we explain
such a naturalness model, and empirically investigate to what extent
it correlates to understandability.

3.4 EMPIRICAL STUDY DESIGN

The goal of our empirical study is to investigate the relationship be-
tween developer-centric naturalness and source code understandabil-

ity.

3.4 EMPIRICAL STUDY DESIGN

As found in the study described in Section 3.3, a global naturalness
model is not able to capture source code properties related to under-
standability. We conjecture that a naturalness model tailored to a spe-
cific developer can help in assessing code understandability. In other
words, a source code snippet is perceived as more natural if a devel-
oper has already seen/used similar code in the past which, in turn,
helps in the snippet understanding. For this reason, we want to in-
vestigate if a developer-centric naturalness model behaves differently,
and we design a study to answer the following research question:

How does the understandability vary for source code snippets exhibiting
different levels of developer-centric naturalness?

3.4.1 Study Context and Data Collection

The context of our study consists of Java code snippets (Objects) and
Java developers (Subjects). While Scalabrino et al. [66] provide a data-
set on code understandability with 444 human evaluations on 50 Java
snippets, this dataset is not suitable for our study. Indeed, in order
to compute developer-centric naturalness, we need to collect infor-
mation about the knowledge of the developers involved in the study,
to see whether they understand more easily code snippets that are
natural for them.

To this aim, we conduct a two-phase survey with a pool of Java
developers. In the first phase (P1) we collect information about the
knowledge of developers for a set of relevant topics concerning Java
development. In the second phase (P2) we use the information gath-
ered in P1 to (i) build a developer-centric naturalness model, and (ii)
select the snippets that each developer would have to understand in
the study.

P1: Topic Knowledge Assessment. We invited 52 developers to a
preliminary survey in which we assessed their knowledge about Java
topics. All developers have been reached through personal contacts
of some authors. In this study, we consider 8 popular Java topics,
namely: collections, files, graphical user interfaces (GUIs), database
connectivity (JDBC), reflection, servlet, sockets, and threads. The choice
is based on the topics covered in the programming courses at the
University of Molise, where all the participants studied. We report
in Section 3.5 some demographic information about the sample we
surveyed.

For each topic, we ask the developer to self-assess her own knowl-
edge. Each developer can either declare no knowledge or else a given
level of knowledge expressed on a five-point Likert scale [50] ranging
from 1 (very low) to 5 (very high). Then, unless the developer has
declared no knowledge, we ask five multiple-answer questions about

39

40

A DEVELOPER-CENTRIC NATURALNESS MODEL

the specific topic. Otherwise, we assumed that the developer actually
had no knowledge of the topic. We use the official tutorials provided
by Oracle3 to define the questions for each topic. For each developer,
we estimate the percentage of knowledge about each topic as the per-
centage of correct answers given to the five questions we asked. 50
developers completed our survey (~96%), but 15 did not take part in
the second phase of our study because they did not agree to continue.

Building the Developer-Centric Naturalness Models. We use the
data collected in the first phase to build, for each developer, a devel-
oper-centric naturalness model. To train the model, we need to collect
code snippets related to each topic. First, we select 100 Java projects
on GitHub having the highest number of stars and, for each project,
we extract, using the sRcML tool [16], all methods having at least 5
LOCs (i.e., we discarded trivial methods).

After that, we need to associate the extracted Java methods with
the eight topics considered in the study. To this aim, we first use
the import statements to associate each class to a possible topic. For
example, import java.sql.* or any specific import of that package
would be associated with database connectivity. The association was
realized through a manually built mapping between APIs and topics.
The mapping is available in our replication package*. This process
gives us classes possibly containing methods related to our topics of
interest. Note that in this stage, a class can be associated with multiple
topics (e. g., it has imports related to both the File and the GUI topics).

Then, for each method of the selected classes, we statically resolve
the type of their parameters and local variables as well as of the class’s
instance variables they use with the goal of associating each vari-
able to one of the eight topics. Java primitive types (i.e., byte, char,
short, int, long, float, double, boolean, and void) are discarded,
so as String variables because such a type occurs very frequently.
Variables belonging to other types are mapped, thanks to the import
statements, to the eight topics. For example, a variable of type File is
mapped to the File category thanks to the existing mapping between
its import java.io.File and the File category. If a variable cannot
be associated with any of the eight topics, it is included in a category
named “Other”.

Finally, we assign each method to the topic to which most of its
variables” usages are linked, given that the class containing it has also
been linked to that same topic thanks to the analysis of the import
statements. Methods assigned to the “Other” category are discarded.
Table 7 reports the number of resulting methods (in the following
also referred to as “snippets”) for each topic. Note that some topics
are more represented than others. Since, as explained in the following,
we used the snippets in these categories to train our developer-centric

3 https://docs.oracle.com/javase/tutorial/
4 https://git.io/JvI2A

https://docs.oracle.com/javase/tutorial/
https://git.io/JvI2A

3.4 EMPIRICAL STUDY DESIGN

Table 7: Number of methods for investigated topics.

Topic # methods
Collections 32,251
File 11,694
GUI 1,076
JDBC 2,061
Reflection 1,399
Servlet 1,343
Socket 2,225
Thread 3,914

naturalness model, we set a threshold maxs = 1,076 representing
the maximum number of snippets that can be considered from each
category when training the naturalness model. The value for max; is
given by the less represented topic (i. e., GUI).

Once each snippet has been associated with a topic, we can build a
developer-centric naturalness model N4 of each developer d based on
her knowledge about the eight topics, that we estimated in P1 thanks
to the survey. We assume that the developer’s estimated knowledge
can be a proxy for the number and types of code snippets such a
developer has seen/written in the past. For example, suppose that a
developer managed to correctly answer all our five questions about
the File topic, three out of five questions related to the GUI and J[DBC
topics, and she declared no knowledge for the other five topics. In
this case, the training set for the naturalness model consists of max;
randomly selected snippets from the File topic (i.e., 1,076 snippets),
0.6xmaxs (0.6 is given by 3/5 correctly answered questions) snip-
pets from the GUI topic (646), and 0.6xmax; snippets from the JDBC
topic (646). The composition of the training set aims at mirroring the
developer’s knowledge in the naturalness model: the higher the de-
veloper’s knowledge on topic Tj, the higher the number of Tj’s snip-
pets in the training (up to maxs). Note that, by construction, the train-
ing set size for different developers (models) can be different, and it
is larger for developers having high knowledge of several topics.

Snippet Selection for Understandability assessment. Once the de-
veloper-centric models have been created, it is possible, given a snip-
pet s; and a developer d, to estimate the level of naturalness of s for
d. For the purpose of our study, we want to relate such a level of
naturalness with the understandability d has of s.

To this aim, we selected from the methods in the systems previ-
ously used for training the developer-centric naturalness models, all
those sized 50+20 LOC and assigned to a topic different from “Other”.
This resulted in 5,028 selected methods. The choice of enforcing the

41

42

A DEVELOPER-CENTRIC NATURALNESS MODEL

size of the methods between 30 and 70 LOC (50420) was dictated by
the will of selecting methods that were not too easy nor too difficult
to understand.

From this population of snippets, we selected the snippets to as-
sign to each participant for the understandability task. In the snip-
pets” assignment, a number of constraints must be considered. First,
we wanted to limit the number of snippets assigned to each partic-
ipant to avoid tiring effects. We decided to target ~10 snippets per
participant. Second, we wanted each participant to work with code
snippets related to topics on which she was knowledgeable or not,
as well as on snippets assessed as natural/unnatural by the related
developer-centric naturalness model.

To this aim, for a given developer d, we first selected three topics
based on the results of P1: (i) the topic on which d had the highest
knowledge, (ii) the topic on which d had the lowest knowledge, and
(iii) the topic with the median knowledge. In case d had several top-
ics having the lowest (or highest) knowledge (e. ., several topics with
zero knowledge), a random one was selected among them. For each
topic t selected for d, we sorted all the snippets belonging to such a
topic based on the naturalness provided by the model N4. Then, our
goal was to select from each of these three topics the two snippets
having the highest naturalness and the two having the lowest natu-
ralness, for a total of 4 (snippets) x 3 (topics) = 12 snippets to under-
stand for each participant. However, considering that (i) each of the
35 participants had a different naturalness model, and (ii) for each
snippet we had to formulate three questions to measure their under-
standability (details follow), this was unpractical since required the
formulation of up to 1,260 questions — 35 (participants) x 12 (snip-
pets) x 3 (questions). To reduce such a manual effort, we selected the
top and the bottom 10% of snippets in each distribution related to a
topic t for each developer d. Then, we run an additional greedy algo-
rithm, described in Algorithm 2. This algorithm takes all candidate
sets Cq, where each Cg is related to a developer d. While the cardinal-
ity of C is greater than o, it selects the snippet that covers the largest
number of developers, called s. The selected snippet s is inserted in S.
Instead, in C are removed all candidate sets C4 related to developers
that have already two assigned snippets. In summary, the goal of the
algorithm was to select a minimum number of snippets that allowed
us to have, for each topic of each participant, the required number of
snippets (4 for each topic), two of which having a high naturalness
(top 10%) and two having a low naturalness (bottom 10%). In total,
we selected 65 snippets.

P2: Understandability Assessment. Once snippets have been se-
lected, we need to assess their understandability from the partici-
pants’ perspective. We use a Web application to collect the evaluations
of the participants. Such a Web application shows each snippet in iso-

3.4 EMPIRICAL STUDY DESIGN

Algorithm 2 Snippet selection algorithm

Data: candidate sets C4 for each developer d € D
Result: selected snippets S

S+

2: C+{CqVdeD}

3: while |C| > 0 do

4 Select s that maximizes [{Cq4 s.t. s € Ca}
5 S+ SUs
6
7

=

C+{Cqst|SNCql <2}
: end while

lation (i. e., each method on a different page) to participants. The Web
application allows the study participants to also browse the method-
s/classes invoked /used by each snippet. The participants were also
allowed to browse the Web to look for additional information. This
was done to simulate a typical understanding process performed by
developers, in which they obviously have access to the network.

We asked participants to carefully read and fully understand each
method. As a response, participants had to select one of two options:
“I have understood the method” or “I cannot understand the method”.
If the participants select the first option, they were required to answer
three verification questions about the method they just inspected. The
provided answers were stored for future analysis. In total, we have
collected 396 evaluations.

3.4.2 Data Analysis

To answer our research question, we focused on two proxies for code
understandability. The first one, AU (Actual Understandability), was
previously defined by Scalabrino et al. [66]. We measure AU as the
number of correct answers divided by the number of questions (3).
The second proxy we considered is the continuous version of BD (Bi-
nary Deceptiveness) [66]. Binary Deceptiveness is equal to 1 if the
snippet deceived the developer and made her answer “I understood
the method” while this was not the case (i. e., she answered correctly
to less than two questions), to o otherwise.

We also made the understandability proxy continuous, by introduc-
ing the CD (Continuous Deceptiveness), assessing the extent to which
a method deceived the participant. CD is defined as PBU x (1 —AU),
where PBU (Perceived Binary Understandability) is 1 if the developer
answered “I have understood the method” and o otherwise. Note that,
if a participant perceives that she did not understand the method, we
can be sure that the method did not deceive such a participant. Other-
wise, if the participant perceives that she has understood the method,

43

44

A DEVELOPER-CENTRIC NATURALNESS MODEL

then the higher the number of wrong answers, the higher the decep-
tiveness.

We use AU and CD as dependent variables and we analyze the effect
of the topic knowledge and the naturalness of the snippet as assessed
by the developer-centric model on them. In other words, we use a
binary knowledge metric on the main topic of the snippet and its
naturalness for the participant as independent variables. A developer is
considered expert (knowledge = 1) about the topic of a given snippet
if its knowledge was greater than or equal to 0.5, while it is non-expert
(knowledge = o) otherwise. In other words, we did not consider rel-
ative knowledge that we used to select the snippets, but rather the
absolute knowledge. Therefore, a participant could also be an expert
about all the snippets she evaluated, if she had at least 0.5 of knowl-
edge on all the topics. A snippet s is natural (naturalness = 1) for a
developer d if s comes from the top 10% of the candidate snippets
ordered by the developer-centric naturalness (Ng4(s)); s is unnatural
(naturalness = o) if it comes from the bottom 10%.

To analyze the effect of the independent variables on the dependent
ones, we run two types of statistical analyses. After performing a nor-
mality test (using the Shapiro-Wilk test), we found that our dataset
does not follow a normal distribution. For this reason, we need to
use non-parametric tests. First, we use the permutation test [49] to
analyze the effect of knowledge and naturalness on, in turn, AU and
CD. We also take into account the interaction between the indepen-
dent variables. The permutation test is a non-parametric alternative
to the n-way Analysis of Variance (ANOVA), and in our case can
be used to analyze the effect of multiple independent variables on a
dependent variable, as well as the effect of their interaction.

We also run an alternative analysis to further confirm our findings
and to understand the magnitude of the difference. Specifically, we
divide the evaluations collected into four groups, based on the vari-
ables knowledge and naturalness previously defined:

1. expert-natural (knowledge = 1, naturalness = 1);

2. expert—unnatural (knowledge = 1, naturalness = 0);

3. non-expert—natural (knowledge = o, naturalness = 1); and
4. non-expert-unnatural (knowledge = o, naturalness = o).

We rely on the Wilcoxon rank-sum test [79] to check differences
in AU and CD among the groups. The null hypothesis is that there
is no significant difference in terms of AU and CD between pairs of
groups. We do not compare groups containing evaluations with dif-
ferent values of both knowledge and naturalness (e. g., expert—natural
with non-expert—unnatural), since this would not allow us to under-
stand the cause of the difference. We reject the null hypothesis if the
p-value is lower than o0.05. We adjust the p-values using the Holm

3.5 EMPIRICAL STUDY RESULTS

method for multiple comparisons [30]. This method ranks n p-values
in increasing order of value and multiplies the first one by n, the sec-
ond by n-1, and so on. We also compute the effect size to quantify
the magnitude of the significant differences we find. To this end, we
report Cliff’s delta [13], since it is suitable for non-parametric data.
Cliff’s d ranges in the interval [-1,1] and is negligible for |d| < 0.148,
small for 0.148 < |d| < 0.33, medium for 0.33 < |d| < 0.474, and large
for |d| > 0.474.

3.5 EMPIRICAL STUDY RESULTS

Before focusing on the results, we report demographic information
about the study participants, i.e., occupation, programming experi-
ence (years), and Java experience (years). Note that we only report
such information for those who participated in both Pz and P2. All
the participants are students: 22 (62.86%) are Bachelor students, 11
(31.43%) are Master students and 2 (6.71%) are Ph.D. students. On
average, the participants have ~3.6 years of programming experience
and ~2.5 years of Java programming experience. 14 of them (40%)
have more than 4 years of programming experience, and none of them
has less than 3 years of programming experience.

As a first analysis, we perform a permutation test aimed at de-
termining the effect of naturalness (developer-centric and global) on
the understandability, and its interaction with the developers’ topic
knowledge. The results are reported in Table 8. Specifically, the table
reports the results of the permutation test, i. e., p-values for the effect
of naturalness, of topic knowledge, and their interaction on AU and
CD. The results are computed considering both the developer-centric
naturalness (top) and global naturalness (bottom).

On the one hand, results show that, as expected, the topic knowl-
edge of a developer has a statistically significant effect on the actual
understandability (AU). It is, indeed, reasonable to think that the
higher the level of knowledge on a topic, the higher the actual level of
understanding that a developer can achieve. On the other hand, the
permutation test shows that the deceptiveness (CD) is not affected by
the topic knowledge. That is, such knowledge does not help develop-
ers in realizing which snippets they did not actually understand, and
therefore to say it explicitly.

Comparing results in terms of the two dependent variables (i.e.,
developer-centric vs. global naturalness), results indicate that, while
the global naturalness does not have a significant effect on AU nor on
CD, the developer-centric naturalness has a significant effect on the
CD. For both the analyses related to global and developer-centric nat-
uralness, there is no significant interaction with the topic knowledge.

Table 9 reports the comparison of the mean AU and CD between
natural and unnatural snippets according to the global naturalness

45

A DEVELOPER-CENTRIC NATURALNESS MODEL

46

Table 8: Effect of global and developer-centric naturalness, of topic knowledge, and of their interaction using two-way permutation test.

Topic knowledge and developer-centric naturalness.

Metric Variable D.f. R Sum Sq. R Mean Sq. Iter. p-value
Developer-centric naturalness 1 0.455 0.455 500,000 0.035
CD Topic knowledge 1 0.005 0.005 274,939 0.784
Interaction 1 0.031 0.031 500,000 0.574
Developer-centric naturalness 1 0.144 0.144 500, 000 0.306
AU Topic knowledge 1 1.383 1.383 500,000 0.002
Interaction 1 0.054 0.054 500,000 0.528
Topic knowledge and global naturalness.
Metric Variable D.f. R Sum Sq. R Mean Sq. Iter. p-value
Global naturalness 1 0.046 0.046 51 1.000
CD Topic knowledge 1 0.005 0.005 51 1.000
Interaction 1 0.176 0.176 500,000 0.185
Global naturalness 1 0.140 0.140 500,000 0.314
AU Topic knowledge 1 1.522 1.522 500,000 0.001
Interaction 1 0.036 0.036 500,000 0.601

47

3.5 EMPIRICAL STUDY RESULTS

(radysau) 4100~ 0670 %E€E0 WLTET %000 %0070 | %€€0 %6C0C %000 %000 an
(erady8au) 0700~ €140 %290 %L60€ %0070 %000 | %290 %LL6T %000 %000 nv
€90 U]\l UueIpa]N IO 90 U\l URIpIIN I SINSEIN
P S anpea-d
[ernjeuun [eanyeN
ssaufeinjeN [eqo[o
(eradysau) (110~ 8700 %890 %lV'ST %000 %0070 | %€E0 %SEQL %000 %000 an
(erq8y8au) 6£0°0 80670 %L9°0 %C98C %0070 %000 | %290 %SLTE %000 %000 nv
€00 U]\l ueIpa]N I e} U\l URIpdIN IQ 9INSELIIN
P SO anyea-d
[einjeuun [eanyeN

ssaupernjeN drjuad-radofaaaq

*}$9) WINg yuey UOX0d[IA) a3 Sursn uostredwod e :ssaufernjeu djuad-1adofassp pue [eqo[3 103 ssauaandedsp pue Ajfiqepueisiopun [enpy :6 S[qer.

48

A DEVELOPER-CENTRIC NATURALNESS MODEL

Table 10: Comparison on the subset with Wilcoxon rank-sum test for
developer-centric naturalness.

High knowledge vs. Low knowledge

Unnatural code for the evaluator ‘ Natural code for the evaluator

Measure | p-value Cliff’s d | p-value Cliff’s d
AU 0.003 —0.221 (small) 0.111 —0.121 (negligible)
CD 0.487 —0.052 (negligible) 0.568 0.040 (negligible)
Natural vs. Unnatural
High knowledge evaluators ‘ Low knowledge evaluators
Measure | p-value Cliff’s d | p-value Cliff’s d
AU 0.897 —0.009 (negligible) 0.241 —0.091 (negligible)
CD 0.019 0.159 (small) 0.455 0.057 (negligible)

and the developer-centric naturalness respectively, along with the p-
values of the Wilcoxon Rank Sum test and the Cliff’s delta effect size.
The test confirms that, as previously found, the difference of AU be-
tween the groups is not statistically significant, and the effect size neg-
ligible. Instead, we observed that, when using the developer-centric
model to compare natural and unnatural code, the latter has a sig-
nificantly higher deceptiveness (p-value ~ 0.028). When developers
evaluate unnatural code, they are more prone to say that they under-
stood the code when this was not true. On average, the difference in
deceptiveness is ~7.1%. However, the magnitude of such a difference
is negligible, even if the Cliff’s delta is close to the 0.148 threshold for
being “small”. Finally, the Wilcoxon Rank Sum test also confirms that,
when considering the global naturalness, the deceptiveness does not
exhibit statistically significant differences between natural and unnat-
ural source code.

The fact that unnatural code deceives developers could seem coun-
ter-intuitive: conceptually when developers read a snippet that is un-
familiar to them, they should be more prone to admit that they did
not understand it. In such a case, the deceptiveness would be zero.

To deeper investigate such a phenomenon, we perform the same
analysis keeping into account knowledge and developer-centric natural-
ness together. We report such a comparison in Table 10. The difference
in terms of AU between knowledgeable and non-knowledgeable is large,
especially for unnatural code (Cliff’s d =~ -0.22). At the same time, the
difference in terms of CD is particularly large between natural and
unnatural code for developers with high topic knowledge (Cliff’s d ~
0.16).

RQ summary: Developer-centric naturalness significantly affects the
deceptiveness of a snippet, above all for developers with high knowl-
edge about the main topic of the snippet.

3.5 EMPIRICAL STUDY RESULTS

3.5.1 Discussion and Implications

The results show that naturalness (either global or developer-centric)
does not directly affect the ability of developers to correctly answer
questions about the code snippets. As expected, knowledge is a much
more important factor to this end: a developer who knows well JDBC
will more likely understand code that uses the JDBC APlIs. Developer-
centric naturalness, instead, significantly affects the deceptiveness of
a snippet: developers are more prone to think that they understood a
snippet whey they actually did not if the snippet is unnatural. We do
not observe the same effect if we take into account global naturalness.
This indicates that, differently from global naturalness, developer-
centric naturalness can help to capture deceptiveness, which is an
important understandability aspect. We also observed that this result
is particularly evident for developers with high knowledge about the
topic of the snippet. This result provides a possible explanation to the
findings by Ray et al. [58]: unnatural code is likely to contain more
defects because developers are deceived by it. In other words, devel-
opers may read unnatural code, decide that they understood it and
start modifying it. If, however, they do not properly understood it as
they believe, the consequence can be the introduction of bugs.

Figure 6 shows an example of a code snippet about servlets (some
parts were removed for space and formatting reasons). An evalua-
tor with high knowledge about Java servlets (0.8) said that she un-
derstood such a snippet. However, she achieved a AU of o (i.e., she
answered incorrectly to all the questions).

The obtained results, and above all the introduction of the devel-
oper-centric naturalness and its observed effects, can have noticeable
implications for software engineering researchers, especially those de-
veloping recommending systems for software developers and, in gen-
eral, tool support for software development.

For example, tools for code reviewer assignment or for issue triag-
ing could take into account the developer-centric naturalness for the
code a developer should review or modify and take this into account
when performing the assignment of a reviewing or change task. Also,
code reviewers or developers could be warned by a recommender to
better pay attention in their task when an automated tool recognizes
that the code could be highly deceptive for her. Moreover, the capabil-
ity to estimate deceptiveness could open the road to developing better
just-in-time defect prediction approaches [32, 42, 53], because high de-
ceptiveness (on developer-centric unnatural code) could increase the
likelihood to introduce a bug.

Last, but not least, the results of our study open the road for deeper
analyses of the origin of deceptiveness when understanding source
code. In other words, it is worthwhile to investigate what the intrin-
sic characteristics of a source code snippet (e. ., the combination of

49

50 A DEVELOPER-CENTRIC NATURALNESS MODEL

Figure 6: Example of deceptive code.

public RequestDispatcher getRequestDispatcher(String path) {
final String newRequestUri = path;
[...]
for (final ServletDefinition servletDefinition
servletDefinitions) {
if (servletDefinition.shouldServe(path)) {
return new RequestDispatcher() {
@Override
public void forward(ServletRequest servletRequest,
ServletResponse servletResponse) throws ServletException,
IOException {
Preconditions.checkState(
IservletResponse.isCommitted(),
"Response has been committed--you can"
+ "only call forward before committing"
+ "the response");

// clear buffer before forwarding
servletResponse.resetBuffer();

ServletRequest requestToProcess;
if (servletRequest instanceof HttpServletRequest)
{
requestToProcess = wrapRequest (
(HttpServletRequest) servletRequest,
newRequestUri
);
} else {
// This should never happen, but instead of
// throwing an exception we will allow a happy
// case pass thru for maximum tolerance to
// legacy (/internal) code.
requestToProcess = servletRequest;

//otherwise, can’t process
return null;

36 THREATS TO VALIDITY

source code patterns/idioms, choice of identifiers, API usages) that
provoke high deceptiveness are.

Ultimately, once the phenomenon has been better understood, this
will also impact educators, which could better teach students (i) how
to write source code in such a way to minimize deceptiveness for
somebody else who has to review or change it; and (ii) how to bet-
ter review source code when its characteristics exhibit, for a given
developer, symptoms of high deceptiveness.

36 THREATS TO VALIDITY

Threats to construct validity concern the relation between theory and
observation. In this case, they are mainly due to the process adopted
to build our developer-centric model. A better approach would have
been to use the source code previously written by the participants as
a training set. Unfortunately, we did not have access to such code for
all the developers. We approximated such a code-base by training the
model using code snippets from open-source projects, as detailed in
Section 3.4.

Another possible threat is due to the questions we asked to evalu-
ate the developers” understanding — i.e., they could be too easy or
difficult. To mitigate this problem, in the first phase (P1), we defined
the questions based on the Oracle tutorials. Specifically, we defined
questions that covered all the subtopics of each topic. For example,
concerning the topic collections, we considered questions on all data
structure (e. g., ArrayList and HashMap). As for the second phase (P2),
three of the authors wrote the questions (each question was written
by one of them). Each question was double-checked by all the other
authors: they could give feedback about the clarity of the question
(e.g., when the found an ambiguous question), the soundness of the
possible answers (e. g., more than a correct answers) and the difficulty
(e. ., the question is too easy or one of the answers is tricky).

Threats to internal validity concern factors internal to our study
that we ignored and that could have influenced the investigated rela-
tions. We observed that developer-centric naturalness has an effect on
understandability. However, it is possible that other factors, such as
the experience, was an indirect cause of such a result. To mitigate this
threat, we considered the topic knowledge in our model (Section 3.5),
and we observed no significant effect of such a factor alone on code
understandability. Also, another possible threat could be that the par-
ticipants previously worked on the code they had to understand. To
mitigate this threat, we checked that none of the participants was a
contributor to such projects.

Threats to conclusion validity concern the relationship between
theory and outcome and are essentially due to the appropriate usage
of statistical procedures in order to take our conclusions. As also ex-

51

52

A DEVELOPER-CENTRIC NATURALNESS MODEL

plained in Section 3.4, due to the nature of the analyzed data (not
following a normal distribution), we rely on non-parametric statistics
(Wilcoxon Rank Sum test, Cliff’s delta effect size, Permutation test,
and Kendall’s T correlation). Moreover, when multiple comparisons
are performed, we properly adjust p-values using Holm’s correction.

Threats to external validity concern the generalizability of our re-
sults. Our study is focused on the Java programming language. Our
results could be not generalizable to other languages. Besides, we
involved in our study a total of 35 developers using convenience sam-
pling: the results may be limited to such a sample. Replications of
such a study may be necessary to ensure the generalizability of the
results. To foster the replicability of our study, we publicly release a
replication package with our scripts and data.

3.7 CONCLUSION

Code understandability is important for maintenance-related activi-
ties. However, no state of the art metric is able to predict such an
aspect [65]. On the other hand, previous work showed that unnatural
code is more defect-prone [58]: this is an indication of the fact that
there could be a relationship between understandability and natural-
ness. In this chapter, we investigated this relationship. We first con-
ducted a study in which we show that a global naturalness model is
not able to predict code understandability. Then, we defined a novel
developer-centric model, which is based only on code about topics
on which the developer has experience.

To check the existence of such a relationship, we conducted an em-
pirical study with 52 Java developers, in which we asked them to
understand both natural and unnatural snippets. Our results show
that developer-centric naturalness is significantly associated with a
higher deceptiveness of the source code: unnatural code makes devel-
opers believe that they understood the snippet (perceived understand-
ability, i. e., the one declared by them), while they do not (actual under-
standability, i. e., the number of correct answers to the questions). The
Dunning-Kruger effect [21] may play a role in this: developers with
small expertise in a topic may misjudge their ability to understand
code regarding such a topic.

Our results allow us to provide a possible explanation for the in-
troduction of some bugs: when developers are faced with unnatural
code, they are wrongly overconfident (which is shown by the results
of our study); as a result, there is a higher risk that they introduce
bugs (which was shown by Ray et al. [58]). This opens the road to-
wards further studies aimed at better understand the reasons for de-
ceptiveness during code comprehension, as well as to the application
of the developer-centric naturalness in recommender systems aimed

3.7 CONCLUSION 53

at supporting a number of software engineering tasks, such as code
review, change request triaging, or defect prediction.

ON THE RELATIONSHIP BETWEEN API QUALITY
AND THE SOFTWARE FAILURE PRONENESS

4.1 INTRODUCTION

For a developer, the understanding of Application Programming In-
terfaces (APIs) is essential for their proper use. The best way to learn
how it works and how to use an APl is going through the documenta-
tion. The documentation of an API can be seen as a technical manual
that contains all the information needed to work with the API. In or-
der to be understood by API users, the documentation must be easy
to read, it must be clear and it must contain the right balance between
background information, useful to understand the context, and that
which is tightly needed. Documentation with a shallow description
of the function’s behavior, lacking an exhaustive explanation of the
parameters and/or the return values, or with no practical code ex-
amples of API usage can negatively affect developers, discouraging
them from integrating the API into their code.

However, API developers do not always dispose of the necessary
time or resources to invest in documentation, which is often inade-
quate or even missing. In this case the risk is that the API is used
incorrectly by the developer, who, not having full knowledge of how
to use the API, is more likely to introduce bugs into the code. Our
assumption is that the introduction of bugs by developers may be
related to the use of low quality APIs and that this impact is higher
when the API is first used.

To investigate the quality of the API, we analyzed 805 Java meth-
ods, paying particular attention to the information content in the
documentation. We used a web platform which was implemented
to simplify the documentation analysis process and to automate the
selection of APIs assigned to evaluators. For each method we identi-
fied the overall quality of the documentation and the quality of the
individual parts (paragraphs). This process of analysis involved 6 re-
searchers and took about 2 months. The analysis allowed us to create
a taxonomy of the information contained in the API documentation,
but most importantly to investigate the relationship between the qual-
ity of the documentation and the introduction of bugs when the API
was first used.

Our assumption is that APIs with low quality documentation may
lead the developer to introduce bugs in the software code, in partic-
ular when the API is first used. We used the SZZ algorithm [68] to
analyze the history of 201 GitHub projects, which use at least one

55

56

API QUALITY AND SOFTWARE FAILURE PRONENESS

of the analyzed methods, in order to investigate the relationship be-
tween the first use of an API and the presence of bugs in the source
code.

The results confirm our initial hypothesis, in fact we showed that
APIs with lower documentation are more likely to introduce bugs
when used for the first time within a software project.

4.2 EMPIRICAL STUDY DESIGN

The goal of this study is to investigate the relationship between the
quality of API documentation and the proneness to introduce bugs
into the code, in particular to what extent this happens when the API
is used for the first time within a software project. The study context
consists of documentation for 8o5 Java methods that were manually
analyzed and assessed for information content and quality, and 201
GitHub projects using at least one of the investigated methods.

4.2.1 Research Questions

The first purpose of the study is to understand what information is
contained within the API documentation. For this reason we formu-
late the following research question:

RQq: What are the elements composing the documentation of
Java APIs?

The RQ; answer produced the creation of a taxonomy of knowl-
edge types detailed in Section 4.3.1. At the same time as analyzing
the type of information contained in an API, we analyzed the quality
of the components and the overall quality of the method documenta-
tion, and we managed to answer the second research question:

RQ;: What is the quality of API documentation, and of its ele-
ments?

After answering the first two research questions closely related to
the characteristics of the documentation, we tried to understand to
what extent the use of APIs with different quality ratings relates to
the introduction of bugs in the code. We then pose the third search
question:

RQ3: Does a low API documentation quality relate with higher
defect-proneness?

To answer the RQ3 we considered the history of 201 Java projects
on GitHub employing at least one of the methods previously ana-
lyzed and we used the SZZ algorithm to look for a link between the
introduction of bugs and the use of low quality APIs.

4.2 EMPIRICAL STUDY DESIGN

4.2.2 Analysis Methodology

The first step for data collection was the selection of Java libraries
from Maven Central Repository'. We randomly chose two libraries
for each category in the repository, for a total of 290 libraries and
then we implemented a tool to extract all public methods with their
javadoc. The Table 11 shows the categories covered by the analysis
and reports the number of analyzed methods documentation and the
total number of downloaded methods for each category.

Table 11: Number of analyzed methods (#M) and total number of meth-
ods (#T) for Maven categories.

MVN category #M/4T MVN category #M/#T

Aspect Oriented 4/20 Language Runtime 6/20

Assertion Libraries 12/40 Math Libraries 5/20

Bytecode Libraries 6/20 Message Queue Clients 5/20

CSS, LESS, SASS 11/20 Microbenchmarks 7/19

Cache Clients 5/20 MySQL Drivers 10/20

Cache Implementations 11/18 Native Access Tools 4/19

Cassandra Clients 15/38 OSGI Utilities 5/20

Chart Libraries 2/20 Object Serialization 5/19

Collections 4/15 Off-Heap Libraries 4/18

Compression Libraries 6/20 PostgreSQL Drivers 8/20

Console Utilities 11/20 RDF Libraries 4/20

Core Utilities 4/20 REST Framework 5/20

DB Migration Tools 8/20 Rule Engines 9/38

Distributed Computing 8/20 SSH Libraries 5/20

Distributed Coordination 8/20 Search Engines 10/20

Embedded SQL Databases 13/40 Security Frameworks 3/20

Expression Languages 9/20 Social Network Clients 9/40

Functional Programming 11/20 Swing Layouts 5/20

Graph Databases 92/19 Swing Libraries ~ 11/40

HBase Clients 8/20 Testing Frameworks 8/20

HTML Parsers 9/40 Web Frameworks 14/40

118N Libraries 7/20 Web Servers 14/40

JDBC Extensions 6/20 Web Testing 7/20

JPA Implementations 4/20 WebSocket Clients 5/18

Java Compilers/Parsers 7/20 || XMPP Integration Libraries 8/20
JavaScript Processors 2/20

The selected Java methods were manually analyzed with the goal
of evaluating both the overall documentation quality of a method
and the quality of the individual parts (paragraph level). The overall
quality and the quality at paragraph level was assigned by a scale

1 https://mvnrepository.com

57

https://mvnrepository.com

58

API QUALITY AND SOFTWARE FAILURE PRONENESS

of values ranging from 1 (very low) to 5 (very high). Moreover, start-
ing from the taxonomy of knowledge types proposed by Maalej and
Robillard [38], for each paragraph we assigned one or more types
of knowledge and we identified any information patterns (e.g., if
[condition] returns [something]).

The labeling process was supported by a web application imple-
mented ad hoc. The web application displayed the documentation and
source code of the methods, which were randomly selected before be-
ing submitted to two evaluators. After highlighting individual para-
graphs, the evaluators had to assign a quality assessment, identify
the type of information contained in the paragraph, choose between
existing labels or create new ones, and assign an assessment to the
quality of the paragraph. Finally, after analyzing all paragraphs, the
evaluators made an assessment of the overall quality of the method
documentation. The platform not only randomly assigned the APIs
to be evaluated, but also ensured that each method was evaluated by
at least two evaluators.

At the end of the labelling process, data from 805 methods were col-
lected, each of which was analyzed by two random evaluators. At this
point we proceeded with the conflict resolution phase. The web appli-
cation highlighted cases where the two evaluators had a conflicting
opinion about the type of information contained in the paragraphs.
These cases were submitted to a third evaluator who could either
confirm the decision of one of the two evaluators or reject both of
them and re-label the paragraph. In addition, the two evaluators re-
solved conflicts in quality assessment by manually analyzing all cases
where the quality assessment differed by at least two score points,
while in other cases the conflict resolution process was automated by
averaging the scores assigned to the documentation. Finally two eval-
uators came together to refine the new taxonomy of knowledge types
identified in the individual paragraphs, merging similar categories,
splitting those that were too general or specifying others.

After collecting information and analyzing the quality of 8o5 Java
APIs methods, the purpose was to identify open source projects on
GitHub that use those methods within their code. To achieve our goal
we used the GitHub search APIs to search for files containing the
API and method name. A representative example of our search was:
"import org.springframework.core.TypeDescriptor" "getType".

The resulting files were sorted by the best match criteria so that at
the top of the GitHub search APIs output list were the files contain-
ing both search keys. We took the first 1020 projects resulting from
the query and then we eliminated the false positives. In this way we
collected more than 239k API uses belonging to more than 51k repos-
itories, which covers 662 methods out of 8o5. Finally, we checked
the matching between versions of the libraries, identifying 2098 APIs
uses (out of 239k) belonging to 920 repositories and covering 79 of

4.3 RESULTS

the 805 methods analyzed during the previous phase. From the list
of 920 repositories we eliminated all those with less than 100 com-
mits and less than 3 contributors, obtaining the final number of 201
repositories approved for analysis.

In order to identify the commits that introduced a bug, we cloned
the 201 repositories from GitHub and for each project we produced a
log file in the following format:

FileName,GitID,TimeStamp,Author,Change-Type,CommitMessage

Since we were unable to know if the 201 projects used an issue track-
ing system and we did not know what it was, we decided to adopt a
very simple approach to identify potential fix commits. We exploited
the content of the CommitMessage attribute to establish whether a com-
mit was a fix or not. More specifically, we considered fix commits all
those commits that contained the keyword fix within the commit mes-
sage. We then used the SZZ algorithm, implemented based on Bavota
et al. [8], to identify the commits that introduced the bugs. The SZZ
implementation first identifies the lines changed by the fix (excluding
cosmetic changes and changes to commented lines). Then, starting
from the file version before the fix, and considering only the fixed
lines, we use "git blame -w -p" to identify the last change before
the fix to these lines, along with the file name, and line number map-
ping. In summary, for each non-comment changed line of fixed files,
the algorithm outputs a candidate introduction location (commit, file
name and line number).

4.3 RESULTS

In this section we present and discuss results aimed at addressing the
research questions formulated in Section 4.2.

4.3.1 What are the elements composing the documentation of Java APIs?

Figure 7 shows the first contribution of this work: the creation of a
knowledge types taxonomy of API documentation. For the taxonomy
definition we started from the knowledge types taxonomy proposed
by Maalej and Robillard [38]. Examining the elements that compose
the documentation of the 805 methods employed in our study, we re-
alized that the taxonomy categories defined by Maalej and Robillard
[38] were not enough. Out of this observation emerged the necessity
to define 10 new categories but, above all, the need to make them
more specific in order to delineate the various API documentation
elements. The proposed taxonomy can be read from left to right. On
the left we find the 21 main categories (colored in blue) to which are
linked, to the right, the 67 subcategories (colored in blue, green and
yellow).

59

60 API QUALITY AND SOFTWARE FAILURE PRONENESS

[Avallability/Versioning]—[Prone to change (Provisional)]

Code snippet related to API
i ion without descripti

Description of the behavior
modeled in a code snippet

API

Code Example

How undo the effect of
using this APl

D H ive API i J
el B
Cautions)—[Experimental feature J

Limitations

—

[For internal usage only]

Override

Postcondition

Side-effect

Conditions that do not
generate the exception

Conditions under which
itis thrown

Technical debt

Behavior in specific
situations

Behavior of the APl in
response to a given
parameter value

Exception occurs

Comparison With different APIs

Constructor] With older versions
of the same API
Default behavior if this
APl s not called

Multiple invocations
of the API

Best practices about
parameters values

Potential use cases of
returned value

Usage context (when/where
to use/not use)
Usage suggestion
Default initial values

Technical debt

—

Mandatory
(not null, not empty, et

Optional]—(By default]

values

Accepted types

Assumptions on
specific values

[Parameters H Example]

Value will be ignored

in certain situations

Documenting why a method
is invoked

to be passed
not needed
Related API/Object/Class
the same value
[Return H Never null]

Technical debt

Purpose and Rationale

Memory consumption

Quality Attributes and
Internal Aspects

Value returned in

specific conditions

Figure 7: Taxonomy of documentation knowledge types.

4.3 RESULTS

For clarity we provide a complete list of the 21 main categories with
their description, divided into categories which perfectly fit those pro-
posed by Maalej and Robillard [38], existing categories in [38] modi-
fied to adapt them to our taxonomy, and new categories arising from
our empirical study.

4.3.1.1 Categories which perfectly fit the Maalej and Robillard taxonomy

Concepts. Explains the meaning of terms used to name or describe an
API element, or describes design or domain concepts used or imple-
mented by the APL

Non-information. A section of documentation containing any complete
sentence or self-contained fragment of text that provides only unin-
formative boilerplate text.

Patterns. Describes how to accomplish specific outcomes with the API,
for example, how to implement a certain scenario, how the behavior
of an element can be customized, etc.

Structure. Describes the internal organization of a compound element
(e.g. important classes, fields, or methods), information about type
hierarchies, or how elements are related to each other.

4.3.1.2 Evolution of Maalej and Robillard taxonomy categories

Code Example. Provides code examples of how to use and combine
elements to implement certain functionality or design outcomes. We
specialized the category in two subcategories: code snippet related to
API invocation without description, and description of the behavior
modeled in a code snippet.

Directives. Specifies what users are allowed/not allowed to do with
the API element. Directives are clear contracts. In defining our tax-
onomy, we focused on six aspects relating to directives: assumptions
made by the API, cautions, limitations, directives in case of method
override, preconditions, and postconditions.

Environment. Describes aspects related to the environment in which
the API is used. The difference from the taxonomy baseline is the
lack of compatibility issues, differences between versions, and licens-
ing information, which are placed in specially created categories such
as Availability/Versioning, and License, or in subcategories such as Com-
parison with older version of the same API and Compatibility information.

Functionality & Behavior. Describes what the API does (or does not do)
in terms of functionality or features. Describes what happens when
the API is used. Our category differs from the baseline taxonomy in
that elements describing API calls to other methods do not fit into
this category, but are labeled as Implementation.

61

62

API QUALITY AND SOFTWARE FAILURE PRONENESS

Purpose and Rationale. Explains the purpose of providing an element
or the rationale of a certain design decision. This is information that
answers a “why” question. Specifically, we include in this category
the documentation elements that answer the questions: why a method
is invoked?, why a parameter needs to be passed?, why another API
is not needed?, and why this API is implemented?

Quality Attributes and Internal Aspects. Contains all the elements that
discuss API performance, readability, stability, and compatibility in-
formation.

References. Includes any pointer to other sources of information. It
does not only refer to external resources, but includes cases where
the API delegates execution to another method, adds a reference to
other APISs, objects, classes, or exceptions.

4.3.1.3 New categories
Availability/Versioning. Information about availability of an API or in-
formation about API changes from the last version.

Complementary information. Any additional information which is not
directly related to the API, but is useful for who use the APL

Deprecated. Notify that the API is deprecated or describes the reason
why API is deprecated.

Exception. Describes the possible conditions under which the excep-
tion is thrown by the API and/or the conditions that do not generate
the exception.

Generated code. Refers to portions of automatically generated code.

Guidelines. Explains how to use the API in specific situations, in which
contexts it is suggested to use/not to use the API and best practices.

Implementation. Information about how the API is implemented and
what methods are called within the APL

License. Add information related to license(s).

Parameters. Describes about parameter(s), how the API uses them, the
meaning of specific values, examples of possible parameter values,
etc.

Return. Add information about what is returned by the method.

4.3.2 What is the quality of API documentation, and of its elements?

Table 12 shows the overall quality distribution of the analyzed doc-
umentation on a scale from 1 (low quality) to 5 (high quality), in
half-point increments. The results reveal that in 192 cases the quality
of the documentation obtains the average value of 3. Although in only

4.3 RESULTS

Table 12: Number of API documentation (#N) for different overall documen-
tation rates (API rate).

APIrate | 1.0 15 20 25 30 35 4.0 45 50| Tot
#N | 28 31 66 116 192 177 145 40 10 | 805

10 cases the quality reaches the maximum value, considering all the
occurrences in which the score exceeds the median value, it results
that in 46% of the cases the observed quality is medium-high, while
in 30% of cases the API documentation quality is medium-low.

Table 13 lists the documentation element types, showing the num-
ber of times an evaluator identified an element belonging to that cate-
gory and a set of statistical data related to quality, such as minimum,
maximum, average and median. The first data that stands out con-
cerns the massive presence of elements regarding the description of
parameters, 3328 out of 8497 total elements. It is also possible to no-
tice that the 3 most frequent categories, Functionality & Behavior, Re-
turn, and Parameters cover 75% of the elements identified. This data
proves that developers tend to prioritize these three pieces of infor-
mation when documenting an API, But there is another reason that
should not be overlooked: the automatic creation of javadoc tags (e.g.
@param). In fact, looking more closely at the table we notice that 4 of
the 5 most populated categories are those containing the most com-
mon block tags, such as @param, @return, @hrows, and @see.

From the quality point of view it has been observed that Code Ex-
ample, Guidelines, and Purpose & Rationale get the highest scores, aver-
aging 3.86, 3.82, and 3.81, respectively. The result means that develop-
ers take special care in describing these elements, contributing to the
overall improvement of API quality.

4.3.3 Does a low API documentation quality relate with higher defect-
proneness?

Before answering the RQ3 we did the Shapiro-Wilk test on our data,
in particular we tested quality_overall and quality_average for the
purpose of studying its distribution. The obtained results are shown
below:

Shapiro-Wilk normality test

data: quality_ overall
W = 0.86507, p-value < 2.2e-16

data: quality_average
W = 0.81588, p-value < 2.2e-16

63

64

API QUALITY AND SOFTWARE FAILURE PRONENESS

Table 13: Documentation Element Types with number of occurrences (#N)
and quality statistics.

Documentation Element Type #N Quality
min max avg med

Availability / Versioning 126 2 5 310 3
Code Example 79 2 5 38 4
Complementary Information 183 1 5 363 4
Concepts 20 3 5 360 4
Deprecated 46 1 4 328 3
Directives 116 1 5 349 4
Environment 11 3 4 364 4
Exception 636 1 5 323 3
Functionality & Behavior 1848 1 5 331 3
Generated code 1T 3 3 300 3
Guidelines 141 2 5 38 4
Implementation 136 2 5 364 4
License 2 3 4 350 35
Non-information 43 1 3 233 3
Parameters 3328 1 5 307 3
Patterns 2 4 4 400 4
Purpose & Rationale 57 2 5 381 4
Quality Attr. & Internal Aspects 51 2 5 363 4
References 454 1 5 312 3
Return 1216 1 5 316 3
Structure 1 2 2 200 2

Figure 8 is the Quantile-Quantile plot produced by the functions
gqgnorm() and qqline() available in R. Both analyses reveal that the
distribution of the data is non-normal.

For this reason we decided to use a non-parametric test for com-
paring independent samples. First of all we decided to investigate the
quality aspects of API documentation by dividing them into APIs that
contributed to the introduction of bugs coincided with their first use
and all the others. This analysis was carried out both from the point
of view of overall documentation quality and considering the doc-
umentation components average scores. As shown in the left frame
of the Figure 9, the overall quality of API documentation that is not
part of fix-inducing changes is averaged at 2.91, on the contrary, the
overall quality of APIs considered responsible for causing the intro-
duction of bugs is 2.30. Even more interesting are the values of the
first and third quartile and the median, in fact while the first data val-

4.3 RESULTS

Normal Q-Q Plot (quality_overall) Normal Q-Q Plot (quality_average)

5.0

4.5
3.5

35
3.0
1

Sample Quantiles
Sample Quantiles

3.0
1

25

Theoretical Quantiles Theoretical Quantiles

Figure 8: Normal Q-Q Plots of overall API quality and average API elements
quality.

ues are between 2.5 and 3.5 and have a median of 2.5, the second are
between 1.5 and 2.5 with a median of 1.5. Later we used the Wilcoxon
Rank Sum test [79] and Cliff’s delta (d) effect size [25] to compare the
data distribution and to verify if there was a statistically significant
difference between the distributions. This hypothesis was confirmed
by the test, as shown by the following results:

--- Wilcoxon rank sum test with continuity correction ---
data: quality_overall by is_bug

W = 84974, p-value = 1.752e-15

alternative hypothesis:

true location shift is greater than 0

--- Cliff’'s Delta ---

delta estimate: 0.3501438 (medium)

95 percent confidence interval:
inf sup

0.2582226 0.4357820

We also obtained similar results with the quality data of the ele-
ments that make up the documentation of an APIL In this case, the
API quality average is the average of the quality scores assigned to
its component elements. The two boxplots in the right frame of the
Figure 9 show the quality comparison between APIs not responsible
(is_buggy_commit = 0) and responsible (is_buggy_commit = 1) for
introducing bugs during their first use. In the first case the first and

65

66

API QUALITY AND SOFTWARE FAILURE PRONENESS

quality overall quality_avg

5.0 A1 T 4

4.5 (6] .

3.5 1 .

3.0 A 4

1.5 4 .

0 1 0 1
is_buggy_commit is_buggy_commit

Figure 9: Boxplot of API quality.

third quartile data vary between 3.00 and 3.50, while in the second
case they vary between 2.25 and 3.07. Regarding the median, in the
first case we have a value of 3.20, while in the second we have a value
of 2.25. Again, there is a significant statistical difference according to
the Wilcoxon Rank Sum test and the effect size is medium.

--- Wilcoxon rank sum test with continuity correction ---
data: quality_average by is_bug

W = 84159, p-value = 2.815e-14

alternative hypothesis:

true location shift is greater than 0

--- Cliff’'s Delta ---

delta estimate: 0.3371943 (medium)

95 percent confidence interval:
inf sup

0.2469371 0.4216513

In conclusion, findings suggest that commits containing the intro-
duction of APIs having low quality documentation induce more bugs
than commits where the introduced APIs have higher quality docu-
mentation.

4.4 THREATS TO VALIDITY

4.4 THREATS TO VALIDITY

Construct validity. The main threat concerns the data obtained as
a result of the SZZ algorithm. As explained by Da Costa et al. [19]
the SZZ algorithm can be imprecise for several reasons, e.g., bulk
changes, or considering as fix-inducing changes the first commit in
the program history. We mitigated this threat by, at least, excluding
the first commit in the history of each source code file, considering,
instead, bulk changes as still valid, potential responsible of fix induc-
ing changes. A second threat to construct validity is the subjectivity
in the evaluation of API documentation. As explained in Section 4.2.2,
to minimize the level of subjectivity we used two evaluators for the
analysis of each API, and in cases where the evaluators disagreed, a
third evaluator was in charge of resolving the conflicts.

Internal validity. We are aware that there is no cause-effect rela-
tionship between the low quality API documentation and the bug
introduction. The introduction of defects in the code may depend on
a plethora of other factors such as software complexity, partial under-
standing or misinterpretation of software requirements, delivery time
pressure, lack of efficient testing tools or “simply” developer distrac-
tion. For this reason, we don’t make any claims about the cause-effect
relationship in our work.

External validity. We are aware that our work, to be generalized,
must extend (i) the number of analyzed API documentation and (ii)
the number of GitHub projects that use these APIs.

4.5 RELATED WORK

The importance of APIs documentation and its impact on software
life has inspired a lot of research. There are many studies on whether
and to what extent the information on the web could enrich and
improve the quality of APIs documentation. Robillard and Chhetri
[61] developed a tool called Krec that could detect and recommend
API documentation fragments relevant to the developer. In particu-
lar the tool is able to highlight indispensable and valid information.
Parnin and Treude [51] studied the extent to which methods of a
particular API are documented on the Web, measuring the effective-
ness and completeness of crowdsourced documentation. Their anal-
ysis showed the importance of social media information about API
documentation. Treude and Robillard [72] use the information on the
web, in particular the meta data available on Stack Overflow, to im-
prove the official APIs documentation. Petrosyan, Robillard, and De
Mori [54] proposed an approach based on textual classification tech-
niques able to identify the sections of the tutorial where it is explained
how to use a given API type. They analyzed five tutorials for Java
APIs achieving a precision between 0.74 and 0.94. Parnin et al. [52]

67

68

API QUALITY AND SOFTWARE FAILURE PRONENESS

made an empirical study on coverage, dynamics, and quality of Stack
Overflow crowd documentation and proposed an approach that uses
API discussions to automatically generate API documentation. Robil-
lard et al. [62] proposed a new way of producing documentation, the
On-Demand Developer Documentation (OD3). According to their vi-
sion, the OD3 should answer the developer’s queries by generating
high-quality documentation.

4.6 CONCLUSION

The quality of API documentation plays a key role in understand-
ing what the API does and, most importantly, in integrating it into
the code without introducing bugs. However, factors such as lack of
time or developer negligence affect the quality of the API documen-
tation. In this chapter we analyze the documentation of 805 methods
belonging to Java APIs. The analysis was performed thanks to the
implementation of a web application responsible for checking that
each document was analyzed by at least two evaluators. The eval-
uators identified the different knowledge types, assigned them an
assessment of the quality and evaluated the overall quality of the
documentation.

The first contribution of the work was the creation of a taxonomy
of knowledge types within the API documentation. We then ana-
lyzed the quality of the documentation and its elements, observing
that in 46% of the cases the overall quality of the documentation was
medium-high, while the elements with the highest scores were Code
Example, Guidelines, and Purpose & Rationale. Finally, we used the SZZ
algorithm to check whether the first use of APIs with low quality doc-
umentation would affect the introduction of bugs. During this anal-
ysis, we investigated the history of 201 GitHub projects. The results
showed a relationship between the low quality API documentation
and the introduction of bugs.

Although manual analysis of the quality of API documentation
takes a lot of effort and time, to be sure of the validity of our results,
we should extend the study to a larger number of APIs and projects
that exploit them. In addition, in the future we plan to include in
the analysis not only the API documentation, but also external infor-
mation, such as information contained within Stack Overflow discus-
sions.

CONCLUSION

The purpose of this thesis is to summarize the research works car-
ried out over the three years of my PhD, during which I had the
opportunity to engage in various research activities, facing different
issues and problems, from defects prediction to the analysis of API
documentation. Research works presented in this thesis are those that
embrace a common thread, that of crowdsourced documentation and
code snippets. In fact, in Chapter 2 we analyze the characteristics of
Stack Overflow answers containing code snippets that are exploited
within GitHub projects, in Chapter 3 we propose an approach for
the creation of naturalness models based on developers” knowledge
in order to predict the understandability of code snippets, finally, in
Chapter 4 we investigate the relationship between the quality of Java
API documentation and the introduction of bugs in the code.

Specifically, we posed six research questions. First, we investigated
the characteristics of Stack Overflow answers containing one or more
code snippets that are leveraged within the GitHub project code. Then,
the first research question is:

Which are the characteristics of SO answers that have been lever-
aged by developers?

We studied 22 factors, grouped into three categories: community
factors, code quality factors, and text readability factors. We address
this research question by statistically comparing the value distribu-
tions of these factors between leveraged and non-leveraged answers.
Results highlight that community factors play a role, in particular
the answer score, the number of comments and the creation date
exhibit significant and large/medium differences between leveraged
and non-leveraged posts. Another interesting result shows that devel-
opers tend to leverage longer and more complex code snippets. Based
on the results, we asked ourselves whether it would be useful to use
recommender systems to identify posts that are likely to be leveraged
by developers. Therefore, our second research question:

Which is the performance of a recommender system in identify-
ing posts that are likely to be leveraged by developers?

We developed 12 classifiers, combining four machine learning tech-
niques with three data balancing techniques. The classifiers used a
subset of the factors analyzed in the RQ; as independent variables
and the categorical variable leveraged /non-leveraged as dependent
variable. Our results showed that the classifier that achieved the best

69

70

CONCLUSION

results was the Random Forest without data balance, but the most in-
teresting finding was the evidence of how the recency of data affected
the accuracy of the classifiers.

Staying in the field of code snippets, another aspect that moti-
vated our research was the understandability of code. Specifically we
investigated the relationship between developer-centric naturalness
and source code understandability, by making the following research
question:

How does the understandability vary for source code snippets
exhibiting different levels of developer-centric naturalness?

To answer the RQ3; we assessed the experience of 52 developers on
eight Java topics, and we used this information to build developer-
centric naturalness models. We employed these models to select a list
of naturalunnatural code snippets and submitted them to the devel-
opers to verify their actual understanding of the code. The result of
the analysis was astounding, in fact when developers are faced with
unnatural code snippets more often they perceived they perceive to
understand the code while, in reality, they did not.

Regarding crowdsourced documentation, we investigated the doc-
umentation quality of 805 Java methods in order to: (i) identify the
elements that make up the documentation, (ii) analyze the quality of
the elements and the overall quality of the documentation, and (iii)
investigate the relationship between the first use of low quality APIs
and the introduction of bugs in the code. Our last research question
can be summarized with the following one:

What is the quality of the Java API documentation and how does
it relate with the introduction of defects in the code?

Our empirical study showed that in 46% of cases the documenta-
tion quality is between 3.5 and 5, while in 30% of cases it is between
1 and 2.5. The most important result, however, relates to the introduc-
tion of defects. In fact, the results show that APIs with lower qual-
ity documentation are the ones most involved in the introduction of
bugs.

BIBLIOGRAPHY

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Rabe Abdalkareem, Emad Shihab, and Juergen Rilling. “On
code reuse from stackoverflow: An exploratory study on an-
droid apps”. In: Information and Software Technology 88 (2017),
pp. 148-158.

Yasemin Acar, Michael Backes, Sascha Fahl, Doowon Kim,
Michelle L Mazurek, and Christian Stransky. “You get where
you're looking for: The impact of information sources on code
security”. In: Security and Privacy (SP), 2016 IEEE Symposium on.
IEEE. 2016, pp. 289—305.

Emad Aghajani, Gabriele Bavota, Mario Linares-Vasquez, and
Michele Lanza. “Automated Documentation of Android Apps”.
In: IEEE Transactions on Software Engineering (2019).

Miltiadis Allamanis, Earl T Barr, Christian Bird, and Charles
Sutton. “Learning natural coding conventions”. In: Proceedings
of the 22nd ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering. 2014, pp. 281-293.

Le An, Ons Mlouki, Foutse Khomh, and Giuliano Antoniol.
“Stack overflow: a code laundering platform?” In: 2017 IEEE
24th International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE. 2017, pp. 283-293.

Sebastian Baltes and Stephan Diehl. “Usage and Attribution of
Stack Overflow Code Snippets in GitHub Projects”. In: arXiv
preprint arXiv:1802.02938 (2018).

Sebastian Baltes, Lorik Dumani, Christoph Treude, and Stephan
Diehl. “SOTorrent: Reconstructing and Analyzing the Evolution
of Stack Overflow Posts”. In: arXiv preprint arXiv:1803.07311
(2018).

Gabriele Bavota, Bernardino De Carluccio, Andrea De Lucia,
Massimiliano Di Penta, Rocco Oliveto, and Orazio Strol-
lo. “When does a refactoring induce bugs? an empirical study”.
In: 2012 IEEE 12th International Working Conference on Source
Code Analysis and Manipulation. IEEE. 2012, pp. 104-113.

Yoav Benjamini and Yosef Hochberg. “Controlling the false dis-
covery rate: a practical and powerful approach to multiple test-
ing”. In: Journal of the Royal statistical society: series B (Methodolog-

ical) 57.1 (1995), pp- 289-300.

71

72

BIBLIOGRAPHY

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Joel Brandt, Mira Dontcheva, Marcos Weskamp, and Scott R
Klemmer. “Example-centric programming: integrating web
search into the development environment”. In: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems.
ACM. 2010, pp. 513—-522.

Raymond PL Buse and Westley R Weimer. “Learning a metric
for code readability”. In: IEEE Transactions on Software Engineer-
ing 36.4 (2009), pp. 546-558.

Andrea Capiluppi, Maurizio Morisio, and Patricia Lago. “Evo-
lution of understandability in OSS projects”. In: Eighth Euro-
pean Conference on Software Maintenance and Reengineering, 2004.
CSMR 2004. Proceedings. IEEE. 2004, pp. 58—66.

Norman Cliff. “Dominance statistics: Ordinal analyses to an-
swer ordinal questions.” In: Psychological bulletin 114.3 (1993),
P- 494-

Jacob Cohen. Statistical power analysis for the behavioral sciences.
Routledge, 2013.

Meri Coleman and Ta Lin Liau. “A computer readability for-
mula designed for machine scoring.” In: Journal of Applied Psy-

chology 60.2 (1975), p. 283.

Michael L Collard, Huzefa H Kagdi, and Jonathan I Maletic.
“An XML-based lightweight C++ fact extractor”. In: 11th
IEEE International Workshop on Program Comprehension, 2003.
IEEE. 2003, pp. 134-143.

Joel Cordeiro, Bruno Antunes, and Paulo Gomes. “Context-
based recommendation to support problem solving in software
development”. In: 2012 Third International Workshop on Recom-
mendation Systems for Software Engineering (RSSE). IEEE. 2012,
pp- 85-89.

Denzil Correa and Ashish Sureka. “Chaff from the wheat: char-
acterization and modeling of deleted questions on stack over-
flow”. In: Proceedings of the 23rd international conference on World
wide web. ACM. 2014, pp. 631-642.

Daniel Alencar Da Costa, Shane McIntosh, Weiyi Shang, Uira
Kulesza, Roberta Coelho, and Ahmed E Hassan. “A framework
for evaluating the results of the szz approach for identifying
bug-introducing changes”. In: IEEE Transactions on Software En-
gineering 43.7 (2016), pp. 641-657.

Masayuki Doi, Yoshiki Higo, Ryo Arima, Kento Shimonaka,
and Shinji Kusumoto. “On the naturalness of auto-generated
code: can we identify auto-generated code automatically?” In:
Proceedings of the 26th Conference on Program Comprehension. 2018,

PP- 340-343.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

BIBLIOGRAPHY

David Dunning. “The Dunning-Kruger effect: On being igno-
rant of one’s own ignorance”. In: Advances in experimental social
psychology. Vol. 44. Elsevier, 2011, pp. 247-296.

Felix Fischer, Konstantin Bottinger, Huang Xiao, Christian Stran-
sky, Yasemin Acar, Michael Backes, and Sascha Fahl. “Stack
overflow considered harmful? the impact of copy&paste on an-
droid application security”. In: Security and Privacy (SP), 2017
IEEE Symposium on. IEEE. 2017, pp. 121-136.

Rudolph Flesch. “A new readability yardstick.” In: Journal of
applied psychology 32.3 (1948), p. 221.

Mark Gabel and Zhendong Su. “A study of the uniqueness of
source code”. In: Proceedings of the eighteenth ACM SIGSOFT
International Symposium on Foundations of Software Engineering.
2010, pp. 147-156.

Robert J Grissom and John J Kim. Effect sizes for research: A
broad practical approach. Lawrence Erlbaum Associates Publish-
ers, 2005.

R. Gunning. The technique of clear writing. McGraw-Hill, 1968.
URL: https://books.google.ch/books?id=vIZpAAAAMAA].

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer,
Peter Reutemann, and Ian H Witten. “The WEKA data mining
software: an update”. In: ACM SIGKDD explorations newsletter
11.1 (2009), pp. 10-18.

Vincent | Hellendoorn, Premkumar T Devanbu, and Alberto
Bacchelli. “Will they like this? evaluating code contributions
with language models”. In: 2015 IEEE/ACM 12th Working Con-
ference on Mining Software Repositories. IEEE. 2015, pp. 157-167.

Abram Hindle, Earl T Barr, Zhendong Su, Mark Gabel, and
Premkumar Devanbu. “On the naturalness of software”. In: Soft-
ware Engineering (ICSE), 2012 34th International Conference on.
IEEE. 2012, pp. 837-847.

Sture Holm. “A simple sequentially rejective multiple test pro-
cedure”. In: Scandinavian journal of statistics (1979), pp. 65—70.

Matthieu Jimenez, Thiery Titcheu Checkam, Maxime Cordy,
Mike Papadakis, Marinos Kintis, and Mark Traon Yves Le and
Harman. “Are mutants really natural? a study on how "nat-
uralness" helps mutant selection”. In: Proceedings of the 12th
ACMY/IEEE International Symposium on Empirical Software Engi-
neering and Measurement. 2018, pp. 1-10.

Yasutaka Kamei, Takafumi Fukushima, Shane McIntosh,
Kazuhiro Yamashita, Naoyasu Ubayashi, and Ahmed E Has-
san. “Studying just-in-time defect prediction using cross-project
models”. In: Empirical Software Engineering 21.5 (2016), pp. 2072—
2106.

73

https://books.google.ch/books?id=vJZpAAAAMAAJ

74

BIBLIOGRAPHY

[33]

[34]

[35]

[36]

(371

(38]

[39]

[40]

[41]

[42]

[43]

[44]

Maurice G Kendall. “A new measure of rank correlation”. In:
Biometrika 30.1/2 (1938), pp- 81-93.

] Peter Kincaid, Robert P Fishburne Jr, Richard L Rogers, and
Brad S Chissom. “Derivation of new readability formulas (Au-
tomated Readability Index, Fog Count and Flesch Reading Ease
Formula) for navy enlisted personnel”. In: (1975).

Bin Lin, Luca Ponzanelli, Andrea Mocci, Gabriele Bavota, and
Michele Lanza. “On the uniqueness of code redundancies”. In:
2017 IEEE/ACM 25th International Conference on Program Compre-
hension (ICPC). IEEE. 2017, pp. 121-131.

Jin-Cherng Lin and Kuo-Chiang Wu. “A model for measur-
ing software understandability”. In: The Sixth IEEE International
Conference on Computer and Information Technology (CIT 06). IEEE.
2006, pp. 192-192.

Gilles Louppe, Louis Wehenkel, Antonio Sutera, and Pierre
Geurts. “Understanding variable importances in forests of ran-
domized trees”. In: Advances in neural information processing sys-

tems. 2013, pp. 431—439.

Walid Maalej and Martin P Robillard. “Patterns of knowledge
in API reference documentation”. In: IEEE Transactions on Soft-
ware Engineering 39.9 (2013), pp. 1264-1282.

Brian W Matthews. “Comparison of the predicted and observed
secondary structure of T4 phage lysozyme”. In: Biochimica et
Biophysica Acta (BBA)-Protein Structure (1975).

G Harry Mc Laughlin. “SMOG grading-a new readability for-
mula”. In: Journal of reading 12.8 (1969), pp. 639—646.

Thomas] McCabe. “A complexity measure”. In: IEEE Transac-
tions on software Engineering 4 (1976), pp. 308-320.

Shane McIntosh and Yasutaka Kamei. “Are fix-inducing chan-
ges a moving target? a longitudinal case study of just-in-time
defect prediction”. In: IEEE Transactions on Software Engineering
44.5 (2017), pp. 412—428.

Roberto Minelli, Andrea Mocci, and Michele Lanza. “I know
what you did last summer - An investigation of how developers
spend their time”. In: 2015 IEEE 23rd International Conference on
Program Comprehension. IEEE. 2015, pp. 25-35.

Sanjay Misra and Ibrahim Akman. “Comparative study of cog-
nitive complexity measures”. In: Computer and Information Sci-
ences, 2008. ISCIS’08. 23rd International Symposium on. IEEE. 2008,

pp. 1-4.

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

BIBLIOGRAPHY

Anh Tuan Nguyen, Hoan Anh Nguyen, and Tien N Nguyen. “A
large-scale study on repetitiveness, containment, and compos-
ability of routines in open-source projects”. In: 2016 IEEE/ACM
13th Working Conference on Mining Software Repositories (MSR).
IEEE. 2016, pp. 362-373.

Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N Nguyen.
“Divide-and-conquer approach for multi-phase statistical mi-
gration for source code (t)”. In: 2015 30th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE). IEEE.
2015, pp- 585-596.

Tam The Nguyen, Hung Viet Pham, Phong Minh Vu, and Tung
Thanh Nguyen. “Learning API usages from bytecode: a statisti-
cal approach”. In: 2016 IEEE/ACM 38th International Conference
on Software Engineering (ICSE). IEEE. 2016, pp. 416—427.

Tung Thanh Nguyen, Anh Tuan Nguyen, Hoan Anh Nguyen,
and Tien N Nguyen. “A statistical semantic language model
for source code”. In: Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering. 2013, pp. 532-542.

Anders Odén, Hans Wedel, et al. “Arguments for Fisher’s per-
mutation test”. In: The Annals of Statistics 3.2 (1975), pp. 518—
520.

Abraham Naftali Oppenheim. Questionnaire design, interviewing
and attitude measurement. Bloomsbury Publishing, 2000.

Chris Parnin and Christoph Treude. “Measuring API documen-
tation on the web”. In: Proceedings of the 2nd international work-
shop on Web 2.0 for software engineering. 2011, pp. 25-30.

Chris Parnin, Christoph Treude, Lars Grammel, and Margaret-
Anne Storey. “Crowd documentation: Exploring the coverage
and the dynamics of API discussions on Stack Overflow”. In:
Georgia Institute of Technology, Tech. Rep 11 (2012).

Luca Pascarella, Fabio Palomba, and Alberto Bacchelli. “Fine-
grained just-in-time defect prediction”. In: Journal of Systems and
Software 150 (2019), pp. 22—36.

Gayane Petrosyan, Martin P Robillard, and Renato De Mori.
“Discovering information explaining API types using text classi-
fication”. In: 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering. Vol. 1. IEEE. 2015, pp. 869-879.

Luca Ponzanelli, Andrea Mocci, and Michele Lanza. “StORMeD:

Stack Overflow ready made data”. In: 2015 IEEE/ACM 12th
Working Conference on Mining Software Repositories. IEEE. 2015,

PP- 474-477-

75

76

BIBLIOGRAPHY

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco
Oliveto, and Michele Lanza. “Mining StackOverflow to turn the
IDE into a self-confident programming prompter”. In: Proceed-
ings of the 11th Working Conference on Mining Software Repositories.
2014, pp. 102—111.

Luca Ponzanelli, Andrea Mocci, Alberto Bacchelli, and Michele
Lanza. “Understanding and classifying the quality of technical
forum questions”. In: 2014 14th International Conference on Qual-
ity Software. IEEE. 2014, pp. 343-352.

Baishakhi Ray, Vincent Hellendoorn, Saheel Godhane, Zhao-
peng Tu, Alberto Bacchelli, and Premkumar Devanbu. “On the
"naturalness" of buggy code”. In: 2016 IEEE/ACM 38th Inter-
national Conference on Software Engineering (ICSE). IEEE. 2016,
pp- 428-439.

Veselin Raychev, Martin Vechev, and Eran Yahav. “Code com-
pletion with statistical language models”. In: Proceedings of the
35th ACM SIGPLAN Conference on Programming Language Design
and Implementation. 2014, pp. 419—428.

Peter C Rigby and Martin P Robillard. “Discovering essential
code elements in informal documentation”. In: 2013 35th Inter-
national Conference on Software Engineering (ICSE). IEEE. 2013,
pp- 832-841.

Martin P Robillard and Yam B Chhetri. “Recommending ref-
erence API documentation”. In: Empirical Software Engineering
20.6 (2015), pp. 1558-1586.

Martin P Robillard, Andrian Marcus, Christoph Treude,
Gabriele Bavota, Oscar Chaparro, Neil Ernst, Marco Aurélio
Gerosa, Michael Godfrey, Michele Lanza, Mario
Linares-Vasquez, et al. “On-demand developer documentation”.
In: 2017 IEEE International Conference on Software Maintenance
and Evolution (ICSME). IEEE. 2017, pp. 479-483.

Taniya Saini and Sachin Tripathi. “Predicting tags for Stack
Overflow questions using different classifiers”. In: 2018 4th In-
ternational Conference on Recent Advances in Information Technol-
ogy (RAIT). IEEE. 2018, pp. 1-5.

Simone Scalabrino, Mario Linares-Vasquez, Denys Poshyvanyk,
and Rocco Oliveto. “Improving code readability models with
textual features”. In: 2016 IEEE 24th International Conference on
Program Comprehension (ICPC). IEEE. 2016, pp. 1-10.

Simone Scalabrino, Gabriele Bavota, Christopher Vendome,
Mario Linares-Vasquez, Denys Poshyvanyk, and Rocco Oliveto.
“Automatically Assessing Code Understandability: How Far
Are We?” In: Proceedings of the 32nd IEEE/ACM International

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

BIBLIOGRAPHY

Conference on Automated Software Engineering. IEEE Press. 2017,
PP- 417-427.

Simone Scalabrino, Gabriele Bavota, Christopher Vendome,
Mario Linares-Véasquez, Denys Poshyvanyk, and Rocco Oliveto.
“Automatically Assessing Code Understandability”. In: IEEE
Transactions on Software Engineering (2019).

RJ Senter and Edgar A Smith. Automated readability index. Tech.
rep. CINCINNATI UNIV OH, 1967.

Jacek Sliwerski, Thomas Zimmermann, and Andreas
Zeller. “When do changes induce fixes?” In: ACM sigsoft soft-
ware engineering notes 30.4 (2005), pp. 1-5.

Manuel Sojer and Joachim Henkel. “License risks from ad hoc
reuse of code from the internet”. In: Communications of the ACM

54.12 (2011), pp. 74-81.

D Srinivasulu, Adepu Sridhar, and Durga Prasad Mohapatra.
“Evaluation of Software Understandability Using Rough Sets”.
In: Intelligent Computing, Networking, and Informatics. Springer,
2014, Pp- 939-946-

Mathupayas Thongmak and Pornsiri Muenchaisri. “Measuring
understandability of aspect-oriented code”. In: International
Conference on Digital Information and Communication Technology
and Its Applications. Springer. 2011, pp. 43-54-.

Christoph Treude and Martin P Robillard. “Augmenting api
documentation with insights from stack overflow”. In: 2016
IEEE/ACM 38th International Conference on Software Engineering
(ICSE). IEEE. 2016, pp. 392—403.

Zhaopeng Tu, Zhendong Su, and Premkumar Devanbu. “On
the localness of software”. In: Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engi-
neering. 2014, pp. 269—280.

Medha Umarji, Susan Elliott Sim, and Crista Lopes. “Archety-
pal internet-scale source code searching”. In: IFIP International
Conference on Open Source Systems. Springer. 2008, pp. 257-263.

Bogdan Vasilescu, Casey Casalnuovo, and Premkumar Devan-
bu. “Recovering clear, natural identifiers from obfuscated]S
names”. In: Proceedings of the 2017 11th Joint Meeting on Foun-
dations of Software Engineering. 2017, pp. 683-693.

Christopher Vendome, Daniel German, Massimiliano Di Penta,
Gabriele Bavota, Mario Linares-Vasquez, and Denys Poshyva-
nyk. “To Distribute or Not to Distribute? Why Licensing Bugs
Matter”. In: 2018 IEEE/ACM goth International Conference on Soft-
ware Engineering (ICSE). IEEE. 2018, pp. 268-279.

77

78

BIBLIOGRAPHY

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

Shaowei Wang, David Lo, Bogdan Vasilescu, and Alexander
Serebrenik. “EnTagRec++: An enhanced tag recommendation
system for software information sites”. In: Empirical Software
Engineering 23.2 (2018), pp. 800-832.

Elaine J. Weyuker. “Evaluating software complexity measures”.
In: IEEE Transactions on Software Engineering (TSE) 14.9 (1988),

Pp. 1357-1365.
Frank Wilcoxon. “Individual comparisons by ranking methods”.
In: Breakthroughs in statistics. Springer, 1992, pp. 196—202.

Edmund Wong, Jinqiu Yang, and Lin Tan. “Autocomment: Min-
ing question and answer sites for automatic comment genera-
tion”. In: Automated Software Engineering (ASE), 2013 IEEE/ACM
28th International Conference on. IEEE. 2013, pp. 562-567.

Xin Xia, David Lo, Xinyu Wang, and Bo Zhou. “Tag recommen-
dation in software information sites”. In: Mining Software Repos-
itories (MSR), 2013 10th IEEE Working Conference on. IEEE. 2013,
pp. 287—296.

Xin Xia, David Lo, Denzil Correa, Ashish Sureka, and Emad
Shihab. “It takes two to tango: Deleted stack overflow question
prediction with text and meta features”. In: Computer Software
and Applications Conference (COMPSAC), 2016 IEEE 4oth Annual.
Vol. 1. IEEE. 2016, pp. 73-82.

Xin Xia, Lingfeng Bao, David Lo, Pavneet Singh Kochhar,
Ahmed E Hassan, and Zhenchang Xing. “What do developers
search for on the web?” In: Empirical Software Engineering 22.6
(2017), pp. 3149-3185.

Di Yang, Aftab Hussain, and Cristina Videira Lopes. “From
query to usable code: an analysis of Stack Overflow code snip-
pets”. In: Proceedings of the 13th International Conference on Min-
ing Software Repositories. ACM. 2016, pp. 391—402.

Di Yang, Pedro Martins, Vaibhav Saini, and Cristina
Lopes. “Stack Overflow in Github: any snippets there?” In: Min-
ing Software Repositories (MSR), 2017 IEEE/ACM 14th Interna-
tional Conference on. IEEE. 2017, pp. 280—290.

Alexey Zagalsky, Ohad Barzilay, and Amiram Yehudai. “Exam-
ple overflow: Using social media for code recommendation”. In:
Proceedings of the Third International Workshop on Recommendation
Systems for Software Engineering. IEEE Press. 2012, pp. 38—42.

	Abstract
	Abstract
	Publications
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Origin of chapters and thesis contributions

	2 Characterizing Leveraged Stack Overflow Posts
	2.1 Introduction
	2.2 Study Design
	2.2.1 Data Collection
	2.2.2 Analysis Methodology
	2.2.3 Replication Package

	2.3 Results
	2.3.1 To what extent are code snippets from ``non-leveraged'' answers used in GitHub projects?
	2.3.2 Which are the characteristics of SO answers that have been leveraged by developers?
	2.3.3 Which is the performance of a recommender system in identifying posts that are likely to be leveraged by developers?

	2.4 Threats to Validity
	2.5 Related work
	2.5.1 Reusing Code From the Internet
	2.5.2 Prediction Tasks on Stack Overflow
	2.5.3 Stack Overflow in Recommender Systems

	2.6 Conclusion

	3 A Developer-Centric Naturalness Model for Predicting Code Understandability
	3.1 Introduction
	3.2 Background and Related Work
	3.2.1 Measuring Code Understandability
	3.2.2 Naturalness of Code

	3.3 Motivating study
	3.3.1 Research Question and Design
	3.3.2 Analysis of the results
	3.3.3 Take Away

	3.4 Empirical Study Design
	3.4.1 Study Context and Data Collection
	3.4.2 Data Analysis

	3.5 Empirical Study Results
	3.5.1 Discussion and Implications

	3.6 Threats to Validity
	3.7 Conclusion

	4 On the relationship between API quality and the software failure proneness
	4.1 Introduction
	4.2 Empirical Study Design
	4.2.1 Research Questions
	4.2.2 Analysis Methodology

	4.3 Results
	4.3.1 What are the elements composing the documentation of Java APIs?
	4.3.2 What is the quality of API documentation, and of its elements?
	4.3.3 Does a low API documentation quality relate with higher defect-proneness?

	4.4 Threats to Validity
	4.5 Related work
	4.6 Conclusion

	5 Conclusion
	Bibliography

