
Mobile application development
process analysis and proposal of a

specific UML extension for
Android applications.

Roberto Valente

DIBT - University Of Molise

Phd thesis

Supervisor: Prof. Fausto Fasano
PhD Program Coordinator: Prof.ssa Gabriella Stefania Scippa

Abstract

Every bit of technology is evolving and will continue to do so. Mobile

applications, in particular, represent today one of the main evolution in

technology. They are now widely used in different sectors. The mobile app

ecosystem represents today one of the biggest industries all over the world.

It encapsulates millions of app developers, literally billions of smartphone

owners who use mobile apps daily and many companies that uses apps and

make money with them. This evolution of mobile software requires more

attention, more skills and a better comprehension for the development,

maintenance and engineering of applications. Due to this evolution and

to the growing presence of mobile application in everyday life, we though

to analyse mobile context and mobile development process to study if a

specific UML extension could facilitate development and maintenance of

Android mobile application process. The idea was to model, extending

UML standard Class Diagram objects, Android structural and UI compo-

nents and provide a more specific diagram, and to support development

process in all phases. We proposed an UML extension with graphical

stereotype to represent information and try to increase the domain com-

prehension. In this work, after anlaysing mobile applications modeling ad

developing issues, we studied Android, iOS and cross platform develop-

ment. Considering UML standard and extension mechanism, we proposed

and evaluated a Droid UML extension. We carried out a controlled exper-

iment defining two maintenance tasks for two open source applications.

We submitted surveys to 20 developers, divided in 4 groups with differ-

ent tasks and UML representation and we analysed results. The obtained

data told us that using a specific UML extension could improve code com-

prehension ad could facilitate maintenance activities. In future we think

to repeat so the experiment with a larger number of developers to con-

firm the obtained results and we will realize a tool to automatically define

Droid UML class diagrams. Further-more we think to propose a UML

extension for cross platform developed applications.

Contents

1 Introduction 1

2 The mobile context 6

2.1 Android applications analysis 7

2.1.1 Google play store analysis 7

2.1.2 FDroid analysis . 9

2.1.3 GitHub analysis . 12

2.2 Modeling mobile application: state of art 18

2.2.1 Model driven design in support of development of

applications . 18

2.2.2 UML extensions approaches 20

2.2.3 UML extensions for mobile applications 21

2.2.4 Empirical experiments to evaluate notations utility 23

3 Mobile technologies and applications development 25

3.1 The mobile operating systems 26

3.1.1 Android Operating System 28

3.1.1.1 Android OS evolution 28

3.1.1.2 Android platform components 32

3.1.2 iPhone Operating System 35

3.1.2.1 iPhone OS evolution 35

3.1.2.2 iOS application structure 38

3.2 Android applications development 41

i

3.2.1 Kotlin . 41

3.2.2 Java . 41

3.2.3 Android Studio . 42

3.2.4 Other tools . 42

3.3 iOS applications development 45

3.3.1 Swift . 45

3.3.2 Objective C . 46

3.3.3 Xcode . 46

3.4 Cross platform applications development 48

3.5 Why an UML extension for Android applications? 50

4 Droid UML: an UML extension for Android native appli-

cations 51

4.1 UML: Unified Modeling Language 52

4.1.1 UML Class Diagram 55

4.2 The UML extension mechanism 57

4.3 Android UML proposed extension 58

4.3.1 Modeled Android Components 58

4.4 Droid UML extension definition 60

5 Case study: a controlled experiment to evaluate Droid

UML extension 64

5.1 Experiment design . 65

5.1.1 Experiment Design 65

5.1.2 Application selection and task definition 66

5.1.3 Participant selection and survey submission 67

5.2 Experiment results and evaluation 73

5.2.1 RQ1: Actual usefulness 73

5.2.2 RQ2: Perceived usefulness 74

5.2.2.1 Discussion 77

ii

5.2.2.2 Internal Validity 78

5.2.2.3 External Validity 79

6 Conclusions and future works 80

A Appendix - Evaluation survey 83

B Droid and plain UML diagrams 91

Bibliography 95

iii

List of Figures

1.1 Number of applications in the Google Play Store 2

2.1 Metrics trend from 2009 to 2015 10

2.2 F-Droid metrics average from 2011 to 2016 13

2.3 Commits average number 15

2.4 Commits average number per four months period 15

2.5 Authors average number per four months period 16

4.1 UML diagrams overview 55

4.2 Class diagram relationship examples 56

4.3 Extension stereotype example 57

4.4 Standard UML class diagram for Android user interface

features . 62

4.5 Standard UML class diagram for Android structural com-

ponents . 63

4.6 Droid UML class diagram for Android structural components 63

4.7 Droid UML class diagram for Android structural components 63

5.1 Plain UML class diagram for Simple Alarm Clock 68

5.2 Droid UML class diagram for NextCloud News Reader . . 69

5.3 percentage usage of the diagram 74

5.4 Droid-UML perceived utility 75

5.5 Plain vs Droid-UML perceived utility 75

5.6 Plain vs Droid-UML task with application 1 perceived dif-

ficulty . 76

iv

5.7 Plain vs Droid-UML task with application 2 perceived dif-

ficulty . 77

5.8 Plain vs Droid-UML overall perceived difficulty 78

B.1 Simple Alarm Clock - Plain UML diagram 92

B.2 Simple Alarm Clock - Droid UML diagram 93

B.3 NextCloud News Reader - Plain UML diagram 94

B.4 NextCloud News Reader- Droid UML diagram 94

v

Chapter 1

Introduction

Every bit of technology is evolving and will continue to do so. Mobile

applications, in particular, represent today one of the main evolution in

technology. They are now widely used in different sectors. Innovation is

one of the driving factors of this evolution. It is fast and it has led to the

launch of many new apps that we use everyday. Comparing the apps we

use today with that used a few years ago, the difference is poles apart, just

like the sun and moon differ from each other [24]. At the same time, many

companies have changed the way they develop software often changing

their traditional software and making it compatible with latest mobile

devices. 25 years ago, IBM launched the first palmtop that included the

use of applications like agenda, calendar, clock, notepad, email, etc. In

2002, RIM made the first Blackberry with integrated phone and in 2007

Apple created the first iPhone with a set of default applications. In 2008,

Apple launched the first Apple Store and, in 2009, Google launched the

Android Market. In 2011, the number of mobile applications exceeds

one billion and the number of applications downloaded from the store

exceeds 20 billions (10 billions from Android Market and 10 billions from

Apple store). In 2012, more than 15 billions of applications have been

downloaded from Google Play Store. [8]. The app market is seeing the

revenue of more than $30 billion yearly and still growing. The year of

2014 was witnessed over 138 million app downloads in a single year, with

an estimation of downloads reaching 268 million by the year 2017. The

growth concerns mobile developers too. There were 19 million software

developers across the world in the year 2014, and the number will grow to

a whopping 25 million by 2020. Nowadays, India, Russia and China are

1

Figure 1.1: Number of applications in the Google Play Store

seeing fast growth in the number of mobile app developers compared to the

countries that historically had more mobile applications developers[23].

Figure 1.1 shows the number of available applications in the Google Play

Store from December 2009 to September 2018. The number of available

apps in the Google Play Store was most recently placed at 2.6 million

apps in March 2018, after surpassing 1 million apps in July 2013. [19].

The mobile app ecosystem represents today one of the biggest industries

all over the world. It encapsulates millions of app developers, literally

billions of smartphone owners who use mobile apps daily and many com-

panies that uses apps and make money with them. In 2015, global mobile

app revenues amounted to 69.7 billion U.S. dollars. In 2020, mobile apps

are projected to generate 188.9 billion U.S. dollars in revenues via app

stores and in-app advertising [48].

These numbers substantiate mobile-first. Mobile first requires a new ap-

proach to planning, UX design, and development that puts handheld de-

vices at the forefront of both strategy and implementation. The digital

landscape has changed, and companies have realized that consumers are

now accessing more contents on their mobile devices than anywhere else.

Mobile first shifts the paradigm of a Web-site user experience. Instead of

users viewing desktop versions of Web sites on their mobile device with

2

some adjustments, users are now viewing sites that have been created

specifically for their mobile device. This begs the question: how will sta-

tionary, desktop computer users view these Web sites? They will still

view versions of Web sites that were developed for the desktop Web but

designed with mobile in mind. This means designers should tailor site

user experiences to the needs of users who are on the go and in mul-

tiple contexts. Text must be easier to read and navigate. Photos and

maps should be easily accessible, and all content should adjust to display

properly on the device on which a user is viewing it. The needs of users

change because their context continually changes. Users have a harder

time reading in-depth content on a small screen. Without a keyboard,

their ability to type is hindered. Mobile devices introduce new modes of

interaction such as touch and gestures. [14]. Before the iPhone, pres-

ence was equated with keyboard activity. The thinking was that it meant

a person was at their computer, likely in their office and available. At

the same time it’s no longer just a matter of which app gets developed

first, but how to maximize productivity. This evolution of mobile software

requires more attention, more skills and a better comprehension for the

development, maintenance and engineering of applications. Specifically,

smartphones, in contrast to desktop and laptop computers, have many

sensors that could increment usability. With such sensors it is possible to

find position, rumor level, light, usage angle, movement and so on. Mobile

applications can use these sensors simultaneously thus changing the way

to design, implement and test software. In addition to these hardware

innovations, mobile applications runs on small devices, in mobility and

with limited battery duration. Furthermore, mobile apps are downloaded

and updated quickly, they need to seamlessly interact with back-ends end

servers whenever required which can be accomplished with numerous al-

terations and adjustments during the development phase[34].

In this thesis I decided to focus my attention on mobile application evo-

lution in order to propose an UML extension and facilitate the code com-

prehension during development and maintenance phases.

Due to this evolution and to the growing presence of mobile application

in everyday life, we though to analyse mobile context and mobile devel-

opment process to study if a specific UML extension could facilitate de-

velopment and maintenance of Android mobile application process. Why

3

native Android applications? We faced different issues in choosing what

kind of application to consider in our research. Actually mobile applica-

tions market is mainly composed by cross platform, Android native and

iOS native applications. A set of executives who are developing mobile

applications in their own company or helping clients at the question ”How

has native mobile app development evolved?” answered that:

• Mobile apps have evolved from merely smaller versions of their desk-

top parents (usually just ported) to applications that are built ground

up to take advantage of the rich set of sensors and systems of the

devices they run on.

• There are a lot of SDKs available today that werent around two

years ago - Crash analytics, user management, real-time SDK. SDK

services are all native. Every major language has gone through this

maturity cycle. Mobile was very fractured until iOS and Android

began to dominate in the last eight years. Mobile development is

more mature.

• In recent years, there have been huge debates over whether native,

HTML5 or hybrid provided a superior app. Native has won the war

- it looks better and provides a better experience. Movement from

manual to automated testing. To stay competitive, you must move

to automated testing. Deep interaction happens on the app not on

the mobile site.

• People used native mobile app development tools. Now more cross-

platform development but its going back to native to deliver a more

truly responsive experience. Need to go native to optimize on the

device. Cross-platform is not optimized for any platform [9].

We choose Android native applications as object of our research because

Android applications evolved and are evolving really fast and because

source code and development process information are easier to retrieve.

We have open source markets, hosting and versioning repositories to anal-

yse and a lot of applications. We thought that the Android applications

development represents the most widespread development sectors of re-

cent years, so it could be really interesting and useful for our research

objectives.

4

The idea was to model, extending UML standard Class Diagram objects,

Android structural and UI components and provide a more specific di-

agram, and to support development process in all phases. As studied

by Ludwik Kuzniarz, Miroslaw Staron, Claes Wohlin [40] we proposed

an UML extension adding graphical stereotype to represent information,

to increase the domain comprehension. We started from studying mo-

bile context and analysing Google Play Store and its applications. Then

we considered open source F-Droid applications and, to retrieve informa-

tion about development process, we evaluated GitHub repositories. The

goal of this phase of the research was to understand the evolution of An-

droid applications source code and the evolution of development process.

Successively, we examined all the research approaches proposing UML

extension for web, mobile and, in particular, Android applications. We

studied also approaches to evaluate quality of proposed UML extension.

In Chapter 3, the involved mobile technologies are presented, analysing

differences between Android, iOS, and cross platform development of ap-

plications and, in chapter 4, after describing UML standard, a Droid UML

extension is proposed. In chapter 5, a controlled experiment is designed

and carried out in order to evaluate utility of Droid UML extension dis-

cussing results of experiment. Finally, the thesis is concluded with final

considerations and proposal for future works.

5

Chapter 2

The mobile context

In this chapter we report the studies done during the research of the

mobile applications modeling and development context. We analysed so

different aspects. The first one concerns Android applications source code

and development process analysis. We tried to understand if there were

an evolution in source code and in development process of mobile applica-

tions. So we evaluated the number of apps and some source code metrics of

a set of Google Play Store applications. Then we focus our attention on

F-Droid repositories to understand if data carried out from decompiled

applications from Google Play Store was similar to data obtained from

source code applications found on F-Droid. The last study was carried

out to better understand the development process of an Android project.

Indeed we analysed GitHub repositories and in particular data related to

authors, commits and releases during the time. Furthermore, we focused

attention on the state of art of mobile application modeling techniques,

the attempts done in extending UML to mobile application context and

the experiment done to evaluate quality of a formal representation in

modeling software.

6

2.1 Android applications analysis

In order to give a real validation to the effective evolution of applications

not only in terms of number but also in terms of functionalities and nature,

we decided to analyse code metrics and GitHub repositories of Android

applications to understand how source code and development process has

evolved during the years.

2.1.1 Google play store analysis

The first analysis was done on Google Play Store applications. We decided

to calculate some code metrics to analyse app complexity and source code

evolution. To achieve that, we realized a tool written in PHP code to

retrieve link to apk files from Google Play Store web site and write them

into a txt file. The tool stores in a database table “online apps” the

following information: package name, last update data and downloaded

flag, that contains one if package has already been downloaded and zero

otherwise. The main PHP file uses an HTML DOM library to parse apps

page of Google Play Store.

$html = new simple html dom () ;
$html−> l o a d f i l e (” https : // play . goog l e . com/ s t o r e /apps”) ;

For each ¡¡href¿¿ value in anchor tags of Google Play Store web site the

tool gets the link related to category of applications and explode them

recursively. The tool then writes in database the package name and link.

f unc t i on wr i tetodb ($ l ink , $package){
$ sq l=” I n s e r t i n to on l i n e apps (package) va lue s ($package) ” ;
i f (c h e c k i f e x i s t s ($ l ink , $package)){
$ r e s = $l ink−>query ($ sq l) ;

i f ($ r e s) re turn true ;
e l s e re turn f a l s e ;

} e l s e re turn f a l s e ;
}

Moreover, during a second phase, the tool writes or updates the data

relative to the packages previously found on The Google Play Store. In

fact we implemented a second part of the tool that reads from the database

all the packages already written before and, for each of them, writes last

updated data relative to single application. The date is needed to check

7

if package has already been downloaded and if it has been updated. In

that case the tool sets the downloaded flag to 1 and store package name

“updates” table.

$ sq l=” s e l e c t ∗ from on l in e apps
where download= ’0 ’ order by package” ;

$ r e s = $l ink−>query ($ sq l) ;
i f ($res−>num rows >0){

whi le ($row = $res−>f e t c h a r r a y (MYSQLI ASSOC)){
$ t i t l e=$row [’ package ’] ;

$date1=$row [’ data ’] ;
$date2=getLastUpdateFromStore ($ t i t l e) ;
i f ($date2>$date1){

updateDB2 ($ l ink , ” on l i n e apps ” , $ t i t l e , $date1) ;
wr i teupdate ($ l ink , ” updates ” , $ t i t l e , $date1) ;

}
}

}

The tool now creates a download lists writing it in a txt file. The file is

given in input at a java tool that downloads new or updated packages.

In this way, we have all the information about applications updates and

we can download different versions of the same applications to eventually

evaluate metrics of the different versions for the same applications. The

Java tool mentioned before, is a Java Google Play Crawler available on

GitHub [11] realized by Ali Demiroz. The tool, mainly composed of a jar

file, takes in input the downloads list, and downloads apk files in a specific

location of the file system. Once downloaded apk files, we launched a

script that renames all the files into zip and then unzip them. We obtained

so jars files of all applications preciously downloaded. We need so a jar

decompiler to obtain so source code of applications.

Now started the metrics calculation phase. Using SonarJava project [21]

we calculated so metrics from about 5000 projects with decompiled source

code. We calculated 4 code metrics: Number of Classes, Blank Lines,

Comments and Lines of Code of applications decompiled code from year

2009 to year 2015. Table 2.1 contains medium values per year.

8

Year N.of classes Blank Lines Comments Lines of Code
2009 19,25 227,38 307,51 2633,59
2010 41,67 523,84 827,11 5960,53
2011 121,61 1322,72 2144,28 15135,96
2012 224,46 2361,33 4487,45 25976,75
2013 412,04 55115,504 7713,83 56857,61
2014 1411,01 16973,799 27075,685 166051,1
2015 2167,25 24391,155 36467,42 238373,1

Table 2.1: Medium values of decompiled code metrics from 2009 to 2015

Fig 2.1 shows that metrics grows during the years. Even if the Android

applications grows in number and size, we cannot understand exactly

what happens in code complexity for two main reasons. First because we

considered a different number and different type of applications during

the different years so we cannot understand if this influences the obtained

data. Then because we need to compare decompiled to source code one to

understand if they are different in terms of metrics and if decompilation

phase influences them.

We decided so to consider applications with their source code and decom-

piled code retrieving them from F-Droid store that contains both.

2.1.2 FDroid analysis

At the end of Google Play Stora application evaluation, we noticed that

metrics trend is not directly related to size and complexity of applications.

This maybe depends by Android SDK evolution in terms of libraries and

APIs and by number and type of applications randomly downloaded from

Google Play store.

We thought so to analyse source code of applications downloaded from F-

Droid store to have a more clear picture of the Android application source

code and to understand if metrics calculated on code of decompiled apps

defer from metrics calculated on source code ones.

First analysis was done on five F-Droid applications in their last three dif-

ferent versions. We calculated metrics on source code and on decompiled

code without SDK and API libraries.

9

Figure 2.1: Metrics trend from 2009 to 2015

Application Name LOC eLOC WMC
Lightning 19581 14045 2778
DNSSetter 335 156 19
BRouter 3160 1989 336
Alarm Clock 5343 3452 842
AutoAnswer 155 83 17

Table 2.2: F-Droid source code metrics

We used a java tool proposed by Palomba F. et al [44] called Code Smell

Detector to retrieve 3 source code metrics: Lines Of Code (LOC), effective

Lines Of Code(eLOC) and Weighted Method per Class (WMC) where

weighted methods for class measures the complexity of an individual class

[31].

Table 2.2 and 2.3 contains the results of the analysis.

As we can observe from tables 2.2 and 2.3 we didn’t find more differences

between source and decompiled code.

So we decided to proceed with a second analysis to understand if applica-

tions code complexity changes during the time. We evaluated LOC, eLOC

and WMC metrics for three different versions of the same applications.

The data showed in tables 2.4, 2.5 and 2.6 tell us that there isn’t a real

10

Application Name LOC eLOC WMC
Lightning 18973 13998 2719
DNSSetter 306 216 19
BRouter 3141 2503 332
Alarm Clock 5377 3972 618
AutoAnswer 155 104 15

Table 2.3: F-Droid decompiled code metrics

Application name version 1 LOC version 2 LOC version 3 LOC
Lightning 19581 19954 19979
DNSSetter 335 345 347
BRouter 3160 3462 3837
Alarm Clock 5343 5404 3283
AutoAnswer 155 390 567

Table 2.4: F-Droid Lines Of Code for three versions

growth of source code in terms of code metrics. The metrics evaluated in

different versions, except application Alarm Clock that probably has been

optimized, have similar metrics values.

We can affirm so that there isn’t a difference between versions and between

source code and decompiled code of applications. This could depend from

the fact that we considered a small set of applications so we decided to

analyse source code of entire F-Droid market to understand evolution of

applications.

We realized so a new Html crawler to retrieve all the links to source code

projects of F-Droid store and write them in a txt file. Then we cloned all

the applications whose source code is hosted on GitHub. We used Code

Smell Detector to calculate metrics again. Once obtained snapshot of

FDroid applications we divided information by different years from 2011

to 2016 in order to evaluate code evolution.

Application name version 1 eLOC version 2 eLOC version 3 eLOC
Lightning 14045 14230 14253
DNSSetter 156 163 165
BRouter 1989 2114 2367
Alarm Clock 3452 3477 2011
AutoAnswer 83 256 276

Table 2.5: F-Droid effective Lines Of Code for three versions

11

Application name version 1 WMC version 2 WMC version 3 WMC
Lightning 2778 2881 2888
DNSSetter 19 19 19
BRouter 336 358 409
Alarm Clock 842 849 377
AutoAnswer 17 49 53

Table 2.6: F-Droid Weighted Methods per Class for three versions

Year LOC eLOC WMC
2011 15152,41 10567,04 1956,111
2012 7828,245 5098,255 927,3804
2013 10898,04 6999,227 1305,752
2014 18462,24 10953,13 2185,005
2015 15550,48 9338,396 1829,087
2016 16233,46 9777,262 1944,695

Table 2.7: F-Droid source code metrics by year

Table 2.7 contains average metrics (LOC, eLOC, WMC) of the entire F-

Droid store at 2016. As we can see in Figure 2.2 code metrics does not

grow during years so we can observe that application complexity is not

representable by evaluating code metrics during the time.

At this time of the research, the idea was to move our attention to de-

velopment process of applications in order to verify a growth in terms of

participation to an application development and maintenance phases. We

decided so to retrieve information on GitHub repositories to understand

the evolution of the number of commits, number of releases and number

of authors.

2.1.3 GitHub analysis

The GitHub analysis had the objective to better evaluate the develop-

ment process of an Android application during the years and to asses

the number of developers that participate to the application development

and maintenance so we could propose and evaluate a specific Droid UML

extension in order to facilitate developers code comprehension and main-

tenance phases.

To do that we realized another PHP tool that retrieves F-Droid source

code links and write them in a txt file.

12

Figure 2.2: F-Droid metrics average from 2011 to 2016

$h tm l f i l e = f i l e g e t h tm l (’ . . . ’) ;
crawlPage ($ h tm l f i l e) ;
f o r each ($ l i n k s as $ l i nk){

crawlPage (f i l e g e t h tm l (” . . . ” . $ l i nk)) ;
}

For each page of the F-Droid wiki list (contained in variable $links)

the tools use the crawlPage() function that retrieves links and use get-

GitRepo() function to write them in a file called list.txt.

f unc t i on crawlPage ($html){
f o r each ($html−>f i nd (’ a ’) as $e){
i f (s t rpo s ($e , ”/wik i /page/”)!= f a l s e){

i f (s t rpo s ($e−>hre f , ” : ”)==f a l s e){
i f (s t rpo s ($e−>hre f , ”Main Page”)==f a l s e){

echo ($e−>hr e f) ;
getGitRepo (f i l e g e t h tm l ($e−>hr e f)) ;

}
}

}
}

}

f unc t i on getGitRepo ($page){
$myf i l e = fopen (” l i s t . txt ” , ”a”) or d i e (”Error ”) ;

f o r each ($page−>f i nd (’p ’) as $par){

13

i f (s t rpo s ($par , ” Source ”)!= f a l s e){
fw r i t e ($myf i le , $par−> f i r s t c h i l d ()−>hre f , PHP EOL) ;

}
}

f c l o s e ($myf i l e) ;
}

At the end of the process we obtained a list of GitHub repositories to work

with. We needed so to clone repositories and retrieve information about

commits, releases and author and analyse them.

We used GitWrapper PHP library [10] to retrieve all the commits for

different time intervals.

$ r e s u l t=getCommits ($ c l i e n t , $repo name , $params , ”” , $ l ink , $k) ;
whi l e ($ r e s u l t){

$ca l lCount++;
$ r e s u l t=getLastCommitByTimeInterval ($ c l i e n t , $repo name ,
$params . ”&sha=” . $ r e su l t , $ r e su l t , $ l ink , $k) ;

}
$ i++;

The function getCommits() writes in database the commit code, the au-

thor, the date and the commit message. Figure 4.1 contains the medium

number of commits from 2009 to 2017. Value of year 2017 is smaller be-

cause the commits are relative to the first five months of the year. As

we can observe from Figure 2.3, the average number of commits is quite

similar during the year except for year 2009 maybe because there was a

small number of repositories with an high number of commits.

As we can observe from Figure 2.3, there isn’t a real relationship between

time and number of commits. We observed same data trends for number

of authors and releases.

We thought so to analyse data considering smaller time intervals. So

we calculated commits and authors relative to four months periods as

reported in Figure 2.4 and 2.5.

As we can observe in figures 2.4 and 2.5 we obtained the same results

of larger time intervals. Number of commits and authors does not grows

during the years. We obtained same trend of releases data.

So we moved the attention to the aspects related to the participation of

developers the the projects. In particular we thought to evaluate the num-

ber of contributors that participate to the applications development. We

14

Figure 2.3: Commits average number

Figure 2.4: Commits average number per four months period

15

Figure 2.5: Authors average number per four months period

can assume that if there is a significant number of projects with relevant

number of contributors it could be useful propose the extension with the

scope to facilitate development and maintenance of applications.

To achieve this result, we decide to design an algorithm that, starting from

first month of life of an android project repository on GitHub, browse all

the commits of the same repository and memorize all the new comers

(authors) found in a database.

f unc t i on totalNewcomers (repo) {
newcomers = 0
authors = {}
f o r each commit in commits [repo . s t a r t , repo . s t a r t+1month]{

i f commit . author not in authors
authors = authors + commit . author

}
f o r each commit in commits [repo . s t a r t+30days , repo . end]{

i f commit . author not in authors
newcomers++

}
re turn newcomers
}

The data obtained from the execution of the algorithm are reported in

table 2.8. The second column contains the number of repositories with a

number of newcomers higher of value contained in first column.

16

new comers repositories
>10 200
>15 127
>20 96
>50 22
>100 11

Table 2.8: number of repositories with relevant number of new comers

There is a significant number of repositories, about 500 on 1400, (about

35% of total number of repositories analysed), with a relevant number of

contributors (from more than 10 to more than 100). We decided so to

define the extension and empirically evaluate it with a controlled experi-

ment.

17

2.2 Modeling mobile application: state of

art

During our context study, we found several research works concerning

mobile application development and modeling. The main part of the re-

searches in past years, concerned specific modeling in support of automatic

code generation for applications. At the same time, different approaches

were realized in order to propose specific UML diagrams for Android and

multi-platform applications. In this section we present related works rel-

ative Mobile modeling approaches focusing our attention on three main

areas:

1. Model driven design in support of development applications.

2. UML general extension approaches.

3. UML extensions for mobile applications.

4. Empirical experiments to evaluate notations utility.

2.2.1 Model driven design in support of develop-
ment of applications

Different approaches concerns model driven design in support of devel-

opment of applications. They are focused on code generation in support

of multi platform development. Parada and De Brisolara [45] in 2012

proposed a model driven approach for Android applications development.

The main objective of this approach was to reduce the gap between the

problem domain and the software implementation through the use of tech-

nologies that support systematic model transformations. The approach

included UML based modeling and automatic code generation to facilitate

and accelerate the development of Android applications. Their modeling

was based on UML, using class diagram to describe the application struc-

tural view, and sequence diagrams to represent the behavioral view. This

approach was useful to better understand what kind of components con-

sider in our approaches but misses of a quality evaluation of the extension

proposed and of the code generated.

Another interesting approach was proposed by Sabraoiu et al [46] in 2012.

They proposed an approach based on MDA, to generate GUI for mobile

18

applications on smartphones. The adopted approach consists of three

main steps (i) analyzing and modeling the GUI under UML; (ii) trans-

forming the obtained diagrams to a simplified XMI schema using JDOM

API; and (iii) generating the GUI based on MDA. Their method has the

advantages to generate automatically GUI for several platforms, and gives

a graphical way for designing in UML. This approach does not propose a

real UML extension for mobile applications but examine mobile context

defining a metamodel for automatic code generator.

M. Usman et al. [49] in 2014 proposed a model-driven approach to gen-

erate mobile applications code for multiple platforms. They proposed

a modeling methodology using real use-case for requirement gathering,

class diagrams for structural modeling and state machine for behavioral

modeling. To generate mobile application automatically, they develop a

tool named Mobile Application Generator (MAG) that takes the devel-

oped UML models as input and generates application for the specified

target mobile platforms. They also proposed an UML profile for model-

ing domain specific concepts. The approach presented concerns multiple

platform applications and focused on code generation phase. It presents

a code evaluation too, but misses of an evaluation about effective utility

in programming applications.

G. Botturi et al [29], likewise, proposed a model driven approach based on

code generation so that no additional library or process is needed on the

smartphone to support different platforms. They used UML2 profile to

represent the elements of application independently of the target platform.

This approaches, like the others, is oriented to code generation and take

into account UI elements. It misses os structural components.

Another interesting proposal comes out from F. Freitas et al. [35]. They

asserted that Model-driven Engineering (MDE) has emerged as a concrete

alternative to automatically generate Android applications and proposed

JustModeling, an MDE approach formed by JBModel, a graphical model-

ing tool with which the user models the application business classes using

the UML class diagram and that provides a set of model transformations

to generate code for the JustBusiness framework, which automatically

generates all necessary resources of the mobile application. This allows

19

developers to work on a higher level of abstraction, focusing on the appli-

cation design rather than implementation issues. The approach is mainly

oriented to Android Business applications and misses of structural com-

ponent.

2.2.2 UML extensions approaches

All these approaches concerns modeling and automated generating code

for Android or cross platform applications. Since our interest is mainly

focused on application modeling to improve code comprehension during

development and maintenance phases we analysed approaches that pro-

posed UML extensions.

First important approach to UML extension was presented by Conallen

[32] in 2000. He proposed an important extension of UML language to face

the modeling of web applications. His work aim at proposing a workable

solution for releasing web applications. The proposal privileges client-

server interactions and underestimate the logical vs. physical design of

both information and navigation structures. It defines stereotypes, tagged

values, and OCL constraints to model web pages and hyperlinks, forms,

frames, and client-server components at a concrete level. Conallen adapts

also all classical phases of software development to web architectures, and

tailors almost all UML diagrams to render web related concepts.

Different proposal came out from the Conallen one. Baumeister et al.

[27] proposed an UML extensions to model hypermedia applications run-

ning on the Internet. In their paper they proposed such an extension for

modeling the navigation and the user interfaces of hypermedia systems.

Similar to other design methods for hypermedia systems they viewed the

design of hypermedia systems as consisting of three models: the concep-

tual, navigational and presentational model.

Koch, Nora, et al. [39] presented another approach of UML Profile for

Web applications. It was a UML extension based on the general exten-

sion mechanism provided by the UML that defines specific stereotypes to

model aspects related to navigation and presentation of Web applications.

This profile is part of a methodology for the analysis and design of Web

applications. This methodology performs separate steps for conceptual,

20

navigational and presentational modeling in a similar way as it is pro-

posed by other methods for hypermedia or Web design. The novelty of

this approach consists in the modeling techniques and notation used, that

are entirely based on the Unified Modeling Language.

An interesting approach comes from M.Nassar [42] that proposed an ex-

tension of UML called VUML (View based Unified Modeling Language).

VUML was based on the concept of multi views component whose goal

is to store and deliver information according to users’ viewpoints. This

approach allows for dynamic change of viewpoints and offers mechanisms

to describe views dependencies.

Other researches concerns different application sectors. Once of them

was realized on Secure Systems Development. Jrjens, Jan.[37] proposed

a UML extension to support using UML for secure system development

(UMLsec). With their proposal, they encapsulated knowledge on prudent

security engineering and thereby made it available to developers witch

may not be specialized in security. Jrjens defined new stereotypes and

tags and enabled so developers with background in security to make use

of security engineering knowledge encapsulated in a widely used design

notations.

All these approaches led us to elaborate on mobile applications context.

If UML extensions mechanism is useful in web, security and other sectors,

why not in development of application form mobile devices?

2.2.3 UML extensions for mobile applications

We found in literature different approaches that concern UML extensions

for mobile applications context.

The proposal of M. Ko et al. [38] seemed to be the most interesting ap-

proach about extending UML for android applications. They used UML

extension mechanism and proposed a meta-model for developing an ap-

plication on the Android platform using this mechanism. They identified

main Android applications features and provided a more specific UML

class diagram containing specific domain definitions. Anyway the research

misses of experiments to understand effective utility of meta model pro-

posed.

21

Table 2.9: Related work comparison
Proposal Platform UML diagram Modeled components Case Study Experiment Graphycal Stereotype

Parada et al Android Class, Sequence Interface, hardware YES NO NO
Sabraoiu et al Android None Structural YES NO NO
M. Usman et al Multiplatform Class Business Logic YES NO NO
G. Botturi et al Multiplatform Class Interface YES NO NO
F.Freitas et al Android Class Business Logic YES NO NO

M. Ko et al. Android Class Structural, Dynamic YES NO NO
Bup-Ki Min et al Windows Class Hardware, software YES NO NO

Perego and Pezzetti Multiplatform Class
Hardware, lifecicle,
interface

YES
YES
code quality

NO

Bup-Ki Min et al. [41] proposed an UML metamodel for application based

on Windows Phone. They suggested an extended metamodel for modeling

applications based on Windows Phone 7 using the UML extension mecha-

nism. To do this, they analyzed Windows Phone 7s features and classified

them with respect to software elements and hardware resources. They

extended software hardware and fundamental functions using stereotype

mechanism provided by UML.

Another interesting proposal comes from Perego and Pezzetti in 2013 [36].

They analysed mobile application development context and proposed an

abstract UML meta-model whose instances represent high level models for

mobile applications. Then they created a more concrete version of meta-

model aimed to define a more detailed model of the applications. They

also presented a tool to generate Android and iOS source code starting

from meta-model defined. The evaluations done concerned only quality

of code generated and not effective utility of the proposal.

Before analysing evaluation experiment approaches we present a sum-

mary table about related works and their differences with our proposed

approach.

Table 2.9 shows differences between approaches analysed and our works.

The table contains the approaches related to the Model Driven design

in support of development application and the approaches more strictly

related to mobile context UML extension proposal. The first aspect ev-

idenced is about the execution of the controlled experiment to evaluate

extension proposed. No one did the evaluation except Perego and Pezzetti

works that tried to analyse code generated quality. Further more no

one approach consider the utility of graphical stereotype as proposed by

Conallen [32] and no one thought to evaluate developers utilization of

22

such approaches for code maintenance processes. Let analyse now empir-

ical experiment to understand how to design our experimentation.

2.2.4 Empirical experiments to evaluate notations
utility

During the research done we analysed different empirical studies for a

correct evaluation of the utility of the proposed Droid-UML extension.

The first controlled experiment was conducted by W. J. Dzidek et al [33].

They investigated the costs of maintaining and the benefits of using UML

documentation during the maintenance and evolution of a real, non-trivial

system, using professional developers as subjects, working with a state-

of-the-art UML tool during an extended period of time. Kuzinarz L. et

al.

Kuzniarz et al, [40] analysed the use of stereotype to improve understand-

ing of UML models. The paper elaborates on this role of stereotypes

from the perspective of UML, clarifies the role and describes a controlled

experiment aimed at evaluation of the role - in the context of model un-

derstanding. The results of the experiment support the claim that stereo-

types with graphical icons for their representation play a significant role

in comprehension of models and show the size of the improvement.

in 2005 Briand et al, [30] proposed a controlled experiment that inves-

tigate the impact of using OCL on three software engineering activities

using UML analysis models: detection of model defects through inspec-

tions, comprehension of the system logic and functionality, and impact

analysis of changes. In order to investigate the impact of OCL in UML

development, they designed, performed, and replicated a controlled ex-

periment. It involved fourth year software/computer engineering students

who received substantial training in UML and OCL. We investigated the

impact of using OCL on three important software engineering activities:

1) understanding the functionality and internal logic of modeled systems,

2) performing a change impact analysis based on UML models, and 3)

detecting defects through model inspections.

Safdar A. et al, [47] realized a controlled experiment for comparison of

MDSE modeling tools. They measured the productivity in terms of mod-

23

eling effort required to correctly complete a task, learnability, time and

number of clicks required, and memory load required for the software

engineer to complete a task.

Another approach proposed by G.Bavota et al. [28]. They formalized an

empirical study aiming at comparing the support provided by ER and

UML class diagrams during maintenance of data models. The experiment

done was aimed to understand the effectiveness of UML class diagrams

and ER diagrams for the purpose of understanding which provides bet-

ter support with respect to the comprehension and modification of data

models.

24

Chapter 3

Mobile technologies and
applications development

In this chapter we report the main mobile operating systems and the

application development techniques for each of them. In particular we

focus our attention on Android and iOS operative systems, specifying

their evolution, their main components and how to develop applications.

We describe cross platform development too, with particular attention

to different development approaches and different tools used to develop

applications.

25

3.1 The mobile operating systems

A mobile operating system (or mobile OS) is an operating system for

phones, tablets, smartwatches, or other mobile devices.

Mobile operating systems combine features of a personal computer operat-

ing system with other features useful for mobile or handheld use. Some of

this features are considered essential in modern mobile systems: wireless

inbuilt modem and SIM tray for telephony and data connection, touch-

screen, cellular, Bluetooth, Wi-Fi Protected Access, Wi-Fi, Global Posi-

tioning System (GPS) mobile navigation, video- and single-frame picture

cameras, speech recognition, voice recorder, music player, near field com-

munication, and infrared blaster [15].

Main mobile OS are:

1. Android OS (Google Inc.): The Android mobile operating system is

Google’s open and free software stack that includes an operating sys-

tem, middleware and also key applications for use on mobile devices,

including smartphones.

2. Bada (Samsung Electronics): Bada is a proprietary Samsung mo-

bile OS that was first launched in 2010. The Samsung Wave was

the first smartphone to use this mobile OS. Bada provides mobile

features such as multipoint-touch, 3D graphics and of course, appli-

cation downloads and installation.

3. BlackBerry OS (Research In Motion): The BlackBerry OS is a pro-

prietary mobile operating system developed by Research In Motion

for use on the companys popular BlackBerry handheld devices. The

BlackBerry platform is popular with corporate users as it offers syn-

chronization with Microsoft Exchange, Lotus Domino, Novell Group-

Wise email and other business software, when used with the Black-

Berry Enterprise Server.

4. iPhone OS / iOS (Apple): Apple’s iPhone OS was originally de-

veloped for use on its iPhone devices. Now, the mobile operating

system is referred to as iOS and is supported on a number of Apple

devices including the iPhone, iPad, iPad 2 and iPod Touch. The iOS

26

mobile operating system is available only on Apple’s own manufac-

tured devices as the company does not license the OS for third-party

hardware. Apple iOS is derived from Apple’s Mac OS X operating

system.

5. MeeGo OS (Nokia and Intel): A joint open source mobile operating

system which is the result of merging two products based on open

source technologies: Maemo (Nokia) and Moblin (Intel). MeeGo

is a mobile OS designed to work on a number of devices including

smartphones, netbooks, tablets, in-vehicle information systems and

various devices using Intel Atom and ARMv7 architectures.

6. Palm OS (Garnet OS): The Palm OS is a proprietary mobile oper-

ating system (PDA operating system) that was originally released in

1996 on the Pilot 1000 handheld. Newer versions of the Palm OS

have added support for expansion ports, new processors, external

memory cards, improved security and support for ARM processors

and smartphones. Palm OS 5 was extended to provide support for a

broad range of screen resolutions, wireless connections and enhanced

multimedia capabilities and is called Garnet OS.

7. Symbian OS (Nokia): Symbian is a mobile operating system (OS)

targeted at mobile phones that offers a high-level of integration with

communication and personal information management (PIM) func-

tionality. Symbian OS combines middleware with wireless commu-

nications through an integrated mailbox and the integration of Java

and PIM functionality (agenda and contacts). Nokia has made the

Symbian platform available under an alternative, open and direct

model, to work with some OEMs and the small community of plat-

form development collaborators. Nokia does not maintain Symbian

as an open source development project.

8. webOS (Palm/HP): WebOS is a mobile operating system that runs

on the Linux kernel. WebOS was initially developed by Palm as the

successor to its Palm OS mobile operating system. It is a proprietary

Mobile OS which was eventually acquired by HP and now referred

to as webOS (lower-case w) in HP literature. HP uses webOS in

a number of devices including several smartphones and HP Touch-

Pads. HP has pushed its webOS into the enterprise mobile market

27

by focusing on improving security features and management with the

release of webOS 3.x. HP has also announced plans for a version of

webOS to run within the Microsoft Windows operating system and

to be installed on all HP desktop and notebook computers in 2012.

9. Windows Mobile (Windows Phone): Windows Mobile is Microsoft’s

mobile operating system used in smartphones and mobile devices

with or without touchscreens. The Mobile OS is based on the Win-

dows CE 5.2 kernel. In 2010 Microsoft announced a new smartphone

platform called Windows Phone [17].

With the exception of Android (developed by Google), mobile operating

systems are developed by different mobile phone manufacturers, includ-

ing Nokia (Symbian, MeeGo, Maemo); Apple (Apple iOS); Research In

Motion (RIM) (BlackBerry OS); Microsoft (Windows Mobile, Windows

Phone) and Samsung (Palm WebOS and bada). Android, LiMo, Maemo,

Openmoko and Qt Extended (Qtopia) are based on the Linux open-source

OS [16].

3.1.1 Android Operating System

Android is a mobile operating system developed by Google. It is based on

a modified version of the Linux kernel and other open source software, and

is designed primarily for touchscreen mobile devices such as smartphones

and tablets. Initially developed by Android Inc., which Google bought in

2005, Android was unveiled in 2007, with the first commercial Android

device launched in September 2008. The operating system has since gone

through multiple major releases, with the current version being 9 ”Pie”,

released in August 2018.

3.1.1.1 Android OS evolution

Android made its official public debut in 2008 with Android 1.0 a release

so ancient it didn’t even have a cute codename.

In 2009’s Android released version 1.5: Cupcake. The tradition of Android

version names was born. Cupcake introduced numerous refinements to the

Android interface, including the first on-screen keyboard, something nec-

essary as phones moved away from the once-ubiquitous physical keyboard

28

model. This version also brought about the framework for third-party

app widgets, which would quickly turn into one of Android’s most dis-

tinguishing elements, and it provided the platform’s first-ever option for

video recording.

Android 1.6, Donut, rolled into the world in the fall of 2009. Donut filled

in some important holes in Android’s center, including the ability for the

OS to operate on a variety of different screen sizes and resolutions, a factor

that should be critical in the years to come.

Android 2.0 Eclair, emerged just six weeks after Donut and its ”point-

one” update, also called Eclair, came out a couple months later. Eclair

was the first Android release to enter mainstream consciousness thanks to

the original Motorola Droid phone and the massive Verizon-led marketing

campaign surrounding it.

Just four months after Android 2.1 arrived, Google served up Android

2.2, Froyo, which revolved largely around under-the-hood performance

improvements. Froyo did deliver some important front-facing features,

though, including the addition of the now-standard dock at the bottom

of the home screen as well as the first incarnation of Voice Actions, which

allowed you to perform basic functions like getting directions and making

notes by tapping an icon and then speaking a command.

Android’s first true visual identity started coming into focus with 2010’s

Gingerbread release. Bright green had long been the color of Android’s

robot mascot, and with Gingerbread, it became an integral part of the

operating system’s appearance. Black and green seeped all over the UI as

Android started its slow march toward distinctive design.

Android 3.0 (Honeycomb, 2011) came into the world as a tablet-only re-

lease to accompany the launch of the Motorola Xoom, and through the

subsequent 3.1 and 3.2 updates, it remained a tablet-exclusive (and closed-

source) entity. Under the guidance of newly arrived design chief Matias

Duarte, Honeycomb introduced a dramatically reimagined UI for Android.

It had a space-like ”holographic” design that traded the platform’s trade-

mark green for blue and placed an emphasis on making the most of a

tablet’s screen space.

Ice Cream Sandwich, also released in 2011, served as the platform’s official

entry into the era of modern design. The release refined the visual concepts

29

introduced with Honeycomb and reunited tablets and phones with a single,

unified UI vision.

In 2012 and 2013 three version of Android Jelly Bean was released. They

took ICS’s fresh foundation and made meaningful strides in fine-tuning

and building upon it. The releases added plenty of poise and polish into

the operating system and went a long way in making Android more invit-

ing for the average user. Visuals aside, Jelly Bean brought about our first

taste of Google Now, the spectacular predictive-intelligence utility that’s

sadly since devolved into a glorified news feed. It gave us expandable and

interactive notifications, an expanded voice search system and a more ad-

vanced system for displaying search results in general, with a focus on

card-based results that attempted to answer questions directly.Multiuser

support also came into play, albeit on tablets only at this point, and an

early version of Android’s Quick Settings panel made its first appearance.

In 2013’s KitKat release marked the end of Android’s dark era, as the

blacks of Gingerbread and the blues of Honeycomb finally made their

way out of the operating system. Lighter backgrounds and more neutral

highlights took their places, with a transparent status bar and white icons

giving the OS a more contemporary appearance. Android 4.4 also saw

the first version of ”OK, Google” support but in KitKat, the hands-free

activation prompt worked only when your screen was already on and you

were either at your home screen or inside the Google app.

Google essentially reinvented Android with its Android 5.0 Lollipop re-

lease in the fall of 2014. Lollipop launched the Material Design standard,

still present today, which brought a whole new look that extended across

all of Android, its apps and even other Google products. The card-based

concept that had been scattered throughout Android became a core UI

pattern, one that would guide the appearance of everything from notifica-

tions, which now showed up on the lock screen for at-a-glance access, to

the Recent Apps list, which took on an unabashedly card-based appear-

ance. Lollipop introduced a slew of new features into Android, including

truly hands-free voice control via the ”OK, Google” command, support

for multiple users on phones and a priority mode for better notification

management. It changed so much, unfortunately, that it also introduced

30

a bunch of troubling bugs, many of which wouldn’t be fully ironed out

until the following year’s 5.1 release.

In the grand scheme of things, 2015’s Marshmallow (Android 6.0) was a

fairly minor Android release, one that seemed more like a 0.1-level update

than anything deserving of a full number bump. But it started the trend

of Google releasing one major Android version per year and that version

always receiving its own whole number. Most important element of this

release was a screen-search feature called Now On Tap, something that had

tons of potential that wasn’t fully tapped. Google never quite perfected

the system and ended up quietly retiring its brand and moving it out of

the forefront the following year. Android 6.0 did introduce some stuff with

lasting impact, though, including more granular app permissions, support

for fingerprint readers and support for USB-C.

Google’s 2016 Android Nougat (7.0 and 7.1) releases provided Android

with a native split-screen mode, a system for organizing notifications and

a Data Saver feature. Nougat added some smaller but still significant

features, too, like an Alt-Tab-like shortcut for snapping between apps.

Perhaps most pivotal among Nougat’s enhancements, however, was the

launch of the Google Assistant, which came alongside the announcement

of Google’s first fully self-made phone, the Pixel, about two months after

Nougat’s debut. The Assistant would go on to become a critical com-

ponent of Android and most other Google products and is arguably the

company’s foremost effort today.

Android 8.0 (Oreo) added a variety of niceties to the platform, includ-

ing a native picture-in-picture mode, a notification snoozing option and

notification channels that offer fine control over how apps can alert you.

The 2017 release also included some noteworthy elements that furthered

Google’s goal of aligning Android and Chrome OS and improving the

experience of using Android apps on Chromebooks, and it was the first

Android version to feature Project Treble, an ambitious effort to create

a modular base for Android’s code with the hope of making it easier for

device-makers to provide timely software updates.

The newest addition to our Android versions list is the freshly baked

Android Pie. Android 9 entered the world in early August 2018 after

31

several months of evolution in public beta previews. Pie’s most trans-

formative change is its new gesture navigation system, which trades the

traditional Android Back, Home and Overview keys for a single multifunc-

tional Home button and a series of gesture-based commands. elongated

Home button and a small Back button that appears as needed. Android

9 boasts numerous other noteworthy productivity features, including a

universal suggested-reply system for messaging notifications, a more ef-

fective method of screenshot management, and more intelligent systems

for power management and screen brightness control. And, of course,

there’s no shortage of smaller but still-significant advancements hidden

throughout Pie’s filling, such as a smarter way to handle Wi-Fi hotspots,

a welcome twist to Android’s Battery Saver mode and a useful new touch

for fingerprint sensors. [4]

3.1.1.2 Android platform components

Android architecture components are a collection of libraries that help

you design robust, testable, and maintainable apps. Start with classes

for managing your UI component lifecycle and handling data persistence.

App components are the essential building blocks of an Android app. Each

component is an entry point through which the system or a user can enter

your app. Some components depend on others. There are four different

types of app components: Activities, Services, Broadcast receivers and

Content providers. Each type serves a distinct purpose and has a distinct

lifecycle that defines how the component is created and destroyed.

• Activity: An activity is the entry point for interacting with the

user. It represents a single screen with a user interface. An activity

facilitates the following key interactions between system and app:

– Keeping track of what the user currently cares about (what is on

screen) to ensure that the system keeps running the process that

is hosting the activity; knowing that previously used processes

contain things the user may return to (stopped activities), and

thus more highly prioritize keeping those processes around.

– helping the app handle having its process killed so the user can

return to activities with their previous state restored;

32

– providing a way for apps to implement user flows between each

other, and for the system to coordinate these flows.

An activity is implemented as a subclass of the Activity class.

• Service: A service is a general-purpose entry point for keeping an

app running in the background for all kinds of reasons. It is a compo-

nent that runs in the background to perform long-running operations

or to perform work for remote processes. A service does not provide

a user interface. Another component, such as an activity, can start

the service and let it run or bind to it in order to interact with it.

There are actually two very distinct semantics services tell the sys-

tem about how to manage an app: Started services tell the system

to keep them running until their work is completed. This could be

to sync some data in the background or play music even after the

user leaves the app. Bound services run because some other app (or

the system) has said that it wants to make use of the service. This

is basically the service providing an API to another process. The

system thus knows there is a dependency between these processes.

A service is implemented as a subclass of Service.

• Broadcast receiver: A broadcast receiver is a component that en-

ables the system to deliver events to the app outside of a regular

user flow, allowing the app to respond to system-wide broadcast an-

nouncements. Because broadcast receivers are another well-defined

entry into the app, the system can deliver broadcasts even to apps

that aren’t currently running. Broadcast receivers don’t display a

user interface, they may create a status bar notification to alert the

user when a broadcast event occurs. More commonly, though, a

broadcast receiver is just a gateway to other components and is in-

tended to do a very minimal amount of work. A broadcast receiver is

implemented as a subclass of BroadcastReceiver and each broadcast

is delivered as an Intent object.

• Content Provider: A content provider manages a shared set of app

data that you can store in the file system, in a SQLite database, on

the web, or on any other persistent storage location that your app

can access. Through the content provider, other apps can query or

modify the data if the content provider allows it. To the system, a

33

content provider is an entry point into an app for publishing named

data items, identified by a URI scheme. Thus an app can decide how

it wants to map the data it contains to a URI namespace, handing

out those URIs to other entities which can in turn use them to access

the data. Content providers are also useful for reading and writing

data that is private to your app and not shared. A content provider is

implemented as a subclass of ContentProvider and must implement a

standard set of APIs that enable other apps to perform transactions

• Intent: Three of the four component types activities, services, and

broadcast receivers are activated by an asynchronous message called

an intent. Intents bind individual components to each other at run-

time. You can think of them as the messengers that request an action

from other components, whether the component belongs to your app

or another. An intent is created with an Intent object, which defines

a message to activate either a specific component (explicit intent) or

a specific type of component (implicit intent).

Before the Android system can start an app component, the system must

know that the component exists by reading the app’s manifest file, An-

droidManifest.xml. Your app must declare all its components in this file,

which must be at the root of the app project directory.

The manifest does a number of things in addition to declaring the app’s

components, such as the following:

• Identifies any user permissions the app requires, such as Internet

access or read-access to the user’s contacts.

• Declares the minimum API Level required by the app, based on which

APIs the app uses.

• Declares hardware and software features used or required by the app,

such as a camera, bluetooth services, or a multitouch screen.

• Declares API libraries the app needs to be linked against (other than

the Android framework APIs), such as the Google Maps library.

Android provides a variety of pre-built UI components such as structured

layout objects and UI controls that allow you to build the graphical user

interface for your app. Android also provides other UI modules for special

interfaces such as dialogs, notifications, and menus [3].

34

3.1.2 iPhone Operating System

iOS is a mobile operating system created and developed by Apple Inc.

exclusively for its hardware. It is the operating system that presently

powers many of the company’s mobile devices, including the iPhone, iPad,

and iPod Touch. It is the second most popular mobile operating system

globally after Android. iOS has been extended to support other Apple

devices such as the iPod Touch (September 2007) and the iPad (January

2010).

iOS utilizes a multi-touch interface in which simple gestures are used to

operate the device, such as swiping your finger across the screen to move

to the next page or pinching your fingers to zoom out.

3.1.2.1 iPhone OS evolution

Apple announced iPhone OS 1 at the iPhone keynote on January 9,

2007, and it was released to the public alongside the original iPhone on

June 29, 2007. No official name was given on its initial release.

In March 2008 Apple announced iPhone OS 2but it was released to the

public on July 11, 2008 alongside the iPhone 3G. Apple did not drop sup-

port for any devices with this release. iPhone OS 2 was compatible with all

devices released up to that time. The release of iPhone OS 2.1.1 brought

support for the iPod Touch (2nd generation). The most profound change

introduced in this version was the App Store and its support for native,

third-party apps. Around 500 apps were available in the App Store at

launch. Hundreds of other crucial improvements were also added. Other

important changes introduced in the 5 updates iPhone OS 2.0 included

podcast support and public transit and walking directions in Maps (both

in version 2.2).

iPhone OS 3 was released to the public on June 17, 2009 alongside the

iPhone 3GS. The release of this version of the iOS accompanied the debut

of the iPhone 3GS. It added features including copy and paste, Spotlight

search, MMS support in the Messages app, and the ability to record videos

using the Camera app. Also notable about this version of the iOS is that

it was the first to support the iPad. The 1st generation iPad was released

in 2010, and version 3.2 of the software came with it.

35

In June 21, 2010 Apple released OS 4 alongside the iPhone 4. With this

release, Apple dropped support for the original iPhone and iPod Touch

(1st generation), which is the first time Apple had dropped support for

any device in an iOS release. The iPhone 3G and the iPod Touch (2nd

generation) were capable of running iOS 4, but had limited features. For

example, both devices lack multitasking capabilities and the ability to

set a home screen wallpaper. However, iOS 4 was the first major release

that iPod Touch users did not have to pay any money for. The release

of iOS 4.2.1 brought compatibility to the original iPad and was the final

release supported on the iPhone 3G and iPod Touch (2nd generation)

due to major performance issues. The release of iOS 4.3 brought iPad 2

compatibility. It became unsupported on 18 December 2013.

iOS 5 was announced on June 6, 2011 at its annual Apple Worldwide

Developers Conference (WWDC) event, and it was released to the public

on October 12, 2011 alongside the iPhone 4S. Apple did not drop support

for any devices with this release; support for the iPhone 3G and the iPod

Touch 2nd Generation had already been dropped with the release of iOS

4.3 seven months earlier. Therefore, iOS 5 was released for the iPhone

3GS onwards, iPod Touch (3rd generation) onwards, and all iPad models.

With this release Apple responded to the growing trend of wirelessness,

and cloud computing, in iOS 5, by introducing essential new features and

platforms. Among those was iCloud, the ability to activate an iPhone

wirelessly (previously it had required a connection to a computer), and

syncing with iTunes via Wi-Fi.

iOS 6 was released to the public on September 19, 2012 alongside the

iPhone 5, iPod Touch (5th generation), and iPad 4. With this release,

Apple dropped support for the iPod Touch (3rd generation) and the iPad

(1st generation) due to hardware limitations, and offered only limited

support on the iPhone 3GS, iPad 2, and iPod Touch (4th generation).

iOS 6.1.6 was the final release supported for the iPhone 3GS and iPod

Touch (4th generation). This version introduced the world to Siri which,

despite being later surpassed by competitors, was a truly revolutionary

technology. Apple introduced its own Maps app too, which was badly

received due to bugs, bad directions, and problems with certain features.

36

Apple announced iOS 7 on June 10, 2013 at its annual Apple Worldwide

Developers Conference (WWDC) event, and it was released to the public

on September 18, 2013 alongside the iPhone 5C and iPhone 5S. With

this release, Apple dropped support for the iPhone 3GS (due to hardware

limitations) and the iPod Touch (4th generation) (due to performance

issues). In this version of the iOS, Apple ushered in a major overhaul of

the user interface, designed to make it more modern.

Apple released iOS 8 to the public on September 17, 2014 alongside the

iPhone 6 and iPhone 6 Plus. The release of iOS 8.1 brought support

for the iPad Air 2 and iPad Mini 3, and the release of iOS 8.4 brought

support for the iPod Touch (6th generation). iOS 8.3 was the first version

of iOS to have public beta testing available, where users could test the

beta for upcoming releases of iOS and send feedback to Apple about bugs

or glitches. The final version of iOS 8 was iOS 8.4.1. With the radical

changes of the last two versions now in the past, Apple once again focused

on delivering major new features. Among these features was its secure,

contactless payment system Apple Pay and, with the iOS 8.4 update, the

Apple Music subscription service. There were continued improvements to

the iCloud platform, too, with the addition of the Dropbox-like iClould

Drive, iCloud Photo Library, and iCloud Music Library.

Apple announced iOS 9 on June 8, 2015, and released it to the public

on September 16, 2015 alongside the iPhone 6S, iPhone 6S Plus and iPad

Mini 4. With this release, Apple did not drop support for any iOS devices.

Therefore, iOS 9 was supported on the iPhone 4S onwards, iPod Touch

(5th generation) onwards, the iPad 2 onwards, and the iPad Mini (1st

generation) onwards. This release made the iPad 2 the first device to

support six major releases of iOS, supporting iOS 4 to 9. Despite Apple’s

promise of better performance on these devices, there were still widespread

complaints that the issue had not been fixed. iOS 9.3.5 is the final release

on the iPhone 4S, iPad 2 and 3, iPod Touch (5th generation) and iPad

Mini (1st generation). This release was generally aimed at solidifying the

foundation of the OS for the future. Major improvements were delivered

in speed and responsiveness, stability, and performance on older devices.

In September 13, 2016 Apple released iOS 10 alongside the iPhone 7 and

iPhone 7 Plus. This version has limited support on the iPhone 5, iPhone

37

5C, and iPad 4 because those devices have 32bit processors. However, the

iPhone 5S onwards, iPod Touch (6th generation) onwards, and the iPad

Mini 2 onwards are fully supported. The major themes of iOS 10 were

interoperability and customization. Apps could now communicate directly

with each other on a device, allowing one app to use some features from

another without opening the second app Siri became available to third

party apps in new ways.

iOS 11 was announced on June 5, 2017 and released to the public on

September 19, 2017 alongside the iPhone 8 and iPhone 8 Plus. With this

release, Apple dropped support for the 32bit iPhone 5 and iPhone 5C,

and the iPad 4, making iOS a 64bit only OS that only runs 64bit apps.

All other devices from the iPhone 6S 6S Plus onwards, iPad Pro onwards,

and iPad (2017) onwards are fully supported. iOS 11 contains lots of

improvements for the iPhone, but its major focus is turning the iPad Pro

series models into legitimate laptop replacements for some users.

Apple announced iOS 12 on June 4, 2018 and released it to the public on

September 17, 2018 alongside the iPhone XS and iPhone XS Max. With

this release, Apple did not drop support for any iOS devices. Therefore,

iOS 12 was supported on the iPhone 5S onwards, iPod Touch (6th gen-

eration) onwards, the iPad Air onwards, and the iPad Mini 2 onwards.

The new features and improvements added in iOS 12 aren’t as extensive

or revolutionary as in some previous updates to the OS. Instead, iOS 12

focused more on making refinements to commonly used features and on

adding wrinkles that improve how people use their devices [12] [13].

3.1.2.2 iOS application structure

iOS applications are different from Android ones. When you create an app

it must have different resources and metadata so that it can be displayed

properly on iOS devices:

• An information property-list file. The Info.plist file contains meta-

data about your app, which the system uses to interact with your

app.

• A declaration of the apps required capabilities. Every app must

declare the hardware capabilities or features that it requires to run.

38

• One or more icons. The system displays your app icon on the home

screen of a users device. The system may also use other versions

of your icon in the Settings app or when displaying the results of a

search.

• One or more launch images. When an app is launched, the system

displays a temporary image until the app is able to present its user

interface.

These resources are required for all apps but are not the only ones you

should include.

During startup, the UIApplicationMain function sets up several key ob-

jects and starts the app running. Note that iOS apps use a model-view-

controller architecture. This pattern separates the apps data and business

logic from the visual presentation of that data. This architecture is cru-

cial to creating apps that can run on different devices with different screen

sizes.

The UIApplication object manages the event loop and other high-level

app behaviors. It also reports key app transitions and some special events

(such as incoming push notifications) to its delegate, which is a custom

object you define. Use the UIApplication object as isthat is, without

subclassing.

The app delegate is the heart of your custom code. This object works in

tandem with the UIApplication object to handle app initialization, state

transitions, and many high-level app events. This object is also the only

one guaranteed to be present in every app, so it is often used to set up

the apps initial data structures.

Data model objects store your apps content and are specific to your app.

For example, a banking app might store a database containing financial

transactions, whereas a painting app might store an image object or even

the sequence of drawing commands that led to the creation of that image.

(In the latter case, an image object is still a data object because it is just

a container for the image data.)

Apps can also use document objects (custom subclasses of UIDocument)

to manage some or all of their data model objects. Document objects are

39

not required but offer a convenient way to group data that belongs in a

single file or file package.

View controller objects manage the presentation of your apps content

on screen. A view controller manages a single view and its collection of

subviews. When presented, the view controller makes its views visible by

installing them in the apps window.

The UIViewController class is the base class for all view controller ob-

jects. It provides default functionality for loading views, presenting them,

rotating them in response to device rotations, and several other standard

system behaviors. UIKit and other frameworks define additional view con-

troller classes to implement standard system interfaces such as the image

picker, tab bar interface, and navigation interface.

A UIWindow object coordinates the presentation of one or more views

on a screen. Most apps have only one window, which presents content

on the main screen, but apps may have an additional window for content

displayed on an external display. To change the content of your app, you

use a view controller to change the views displayed in the corresponding

window. You never replace the window itself. In addition to hosting

views, windows work with the UIApplication object to deliver events to

your views and view controllers.

Views and controls provide the visual representation of your apps con-

tent. A view is an object that draws content in a designated rectangular

area and responds to events within that area. Controls are a specialized

type of view responsible for implementing familiar interface objects such

as buttons, text fields, and toggle switches. The UIKit framework pro-

vides standard views for presenting many different types of content. You

can also define your own custom views by subclassing UIView (or its de-

scendants) directly. In addition to incorporating views and controls, apps

can also incorporate Core Animation layers into their view and control

hierarchies. Layer objects are actually data objects that represent visual

content. Views use layer objects intensively behind the scenes to render

their content. You can also add custom layer objects to your interface

to implement complex animations and other types of sophisticated visual

effects [5]

40

3.2 Android applications development

Android applications are mainly based on java language. In general, creat-

ing an Android app requires the SDK (Software Development Kit), an IDE

(Integrated Development Environment) like Android Studio or Eclipse,

the Java Software Development Kit (JDK) and a virtual device to test

on.

Android applications can be developed with two different programming

languages Java and Kotlin.

3.2.1 Kotlin

Kotlin is a statically typed programming language that runs on the Java

virtual machine and also can be compiled to JavaScript source code or

use the LLVM compiler infrastructure. It is sponsored and developed by

JetBrains. While the syntax is not compatible with Java, the JVM imple-

mentation of the Kotlin standard library is designed to interoperate with

Java code and relies on Java code from the existing Java Class Library,

such as the collections framework. Kotlin is: Concise it reduces the

amount of boilerplate code. Safe it avoids entire classes of errors (null

pointer exceptions, etc.). Interoperable it leverages existing libraries

for the JVM, Android and browsers. Tool-friendly applications could

be build from any Java IDE or from the command line.

3.2.2 Java

Java is a general-purpose computer-programming language that is con-

current, class-based, object-oriented, and specifically designed to have as

few implementation dependencies as possible. Java applications are typ-

ically compiled to bytecode that can run on any Java virtual machine

(JVM) regardless of computer architecture. Java was designed with a few

key principles in mind: Ease of Use: The fundamentals of Java came

from a programming language called C++. Although C++ is a powerful

language, it is complex in its syntax and inadequate for some of Java’s

requirements. Java built on and improved the ideas of C++ to provide a

programming language that was powerful and simple to use. Reliability:

41

Java needed to reduce the likelihood of fatal errors from programmer mis-

takes. With this in mind, object-oriented programming was introduced.

When data and its manipulation were packaged together in one place,

Java was robust. Security: Because Java was originally targeting mo-

bile devices that would be exchanging data over networks, it was built

to include a high level of security. Java is probably the most secure pro-

gramming language to date. Platform Independence: Programs need

to work regardless of the machines they’re being executed on. Java was

written to be a portable and cross-platform language that doesn’t care

about the operating system, hardware, or devices that it’s running on.

3.2.3 Android Studio

The most popular Android application development tool is Android Stu-

dio. Android Studio is the official integrated development environment

(IDE) for Google’s Android operating system, built on JetBrains’ IntelliJ

IDEA software and designed specifically for Android development. It is

available for download on Windows, macOS and Linux based operating

systems. It is a replacement for the Eclipse Android Development Tools

(ADT) as the primary IDE for native Android application development.

Android studio installation provide SDK tools and ADB manager to com-

pile and test applications trought emulators.

3.2.4 Other tools

1. ADB (Android Debug Bridge): Android Studio includes the Android

Debug Bridge, which is a command-line tool or bridge of communi-

cation between Android devices and other computers that can be

used during development and the overall debugging and QA process.

By connecting an Android device to the development PC and en-

tering a series of terminal commands, a developer is able to make

modifications as needed to both devices.

2. AVD Manager: Another useful feature of Android Studio is the AVD

Manager, the short form for Android Virtual Device. The AVD Man-

ager is an emulator used to run Android apps on a computer. This

42

allows developers the ability to work with all types of Android de-

vices to test responsiveness and performance on different versions,

screen sizes, and resolutions.

3. Eclipse: As we mentioned above, there was Eclipse before there was

Android Studio. For a long time, Eclipse was the officially preferred

IDE for all Android application development. Even though Google

no longer offers support for Eclipse, many developers still use it to

create Android and other cross-platform apps, as it works very well

with many different programming languages.

4. Fabric: Fabric is the development platform behind Twitters mobile

application. It gives developers the ability to build better mobile

apps by providing them with a suite of kits that they can pick and

choose from. These kits include everything from beta-testing to mar-

keting and advertising tools. Google purchased Fabric from Twitter

in January of 2017. Uber, Spotify, Square, Groupon, Yelp, and more

big-name companies have utilized Fabric in developing their mobile

application

5. FlowUp: FlowUp allows you to monitor the performance of all your

production apps. Handy dashboards let you keep track of your stats

and metrics, including CPU and disk usage, memory usage, frames

per second, bandwidth, and more.

6. Gradle: Back in 2013, Google endorsed Gradle as a build system for

Android apps. Based on Apache Maven and Apache Ant, Gradle is

one of the most popular development tools for creating large-scale

applications involving Java. Developers like using Gradle in con-

junction with Android Studio because its very easy to add external

libraries using a single line of code.

7. IntelliJ IDEA: From the developers at JetBrains, IntelliJ IDEA is

designed for ultimate programmer productivity. Its extremely fast

and features a full suite of development tools right out of the box.

8. RAD Studio: RAD Studio is an integrated development environment

that allows you to write, compile, package, and deploy cross-platform

applications. It provides support for the full development lifecycle

resulting in a single source codebase that can be recompiled and

redeployed.

43

9. Unity 3D: Unity 3D is a cross-platform game development environ-

ment used for creating complicated, graphics-intensive mobile games

such as those containing virtual or augmented reality. You can still

use Unity 3D to create simpler 2D-based gaming experiences, but it

is more typically used for advanced gaming development.

10. Unreal Engine: Another advanced gaming development platform,

Unreal Engine is a free, open-source, cross-platform solution for cre-

ating high-level interactive games.

11. Visual Studio with Xamarin: Visual Studio is Microsofts official inte-

grated development environment and is a free tool for developers to

use. It supports several different programming languages and when

combined with Xamarin, it can be utilized to create native Windows,

Android, and iOS applications [22].

There are literally hundreds of other useful tools such as these available for

Android development. Each developer has their own personal preference

for what tools and environments they work with based on the particular

application they are developing. As the demand for Android applications

continues to grow, the pool of platforms and solutions that help save

developers time while helping to produce higher quality apps will continue

to increase as well.

44

3.3 iOS applications development

To develop iOS apps, you need a Mac computer running the latest version

of Xcode. Xcode includes all the features you need to design, develop, and

debug an app. Xcode also contains the iOS SDK, which extends Xcode

to include the tools, compilers, and frameworks you need specifically for

iOS development.

Languages used to develop applications are Swift and Objective C.

3.3.1 Swift

Swift is a general-purpose programming language built using a modern

approach to safety, performance, and software design patterns.

The goal of the Swift project is to create the best available language for

uses ranging from systems programming, to mobile and desktop apps,

scaling up to cloud services. Most importantly, Swift is designed to make

writing and maintaining correct programs easier for the developer. To

achieve this goal, we believe that the most obvious way to write Swift

code must also be:

Safe: The most obvious way to write code should also behave in a safe

manner. Undefined behavior is the enemy of safety, and developer mis-

takes should be caught before software is in production. Opting for safety

sometimes means Swift will feel strict, but we believe that clarity saves

time in the long run.

Fast. Swift is intended as a replacement for C-based languages (C, C++,

and Objective-C). As such, Swift must be comparable to those languages

in performance for most tasks. Performance must also be predictable and

consistent, not just fast in short bursts that require clean-up later. There

are lots of languages with novel features being fast is rare.

Expressive. Swift benefits from decades of advancement in computer

science to offer syntax that is a joy to use, with modern features developers

expect. But Swift is never done. We will monitor language advancements

and embrace what works, continually evolving to make Swift even better

[2].

45

3.3.2 Objective C

Objective C is an object-oriented language and hence, it would be easy

for those who have some background in object-oriented programming lan-

guages.

Objective-C is the primary programming language you use when writing

software for OS X and iOS. Its a superset of the C programming lan-

guage and provides object-oriented capabilities and a dynamic runtime.

Objective-C inherits the syntax, primitive types, and flow control state-

ments of C and adds syntax for defining classes and methods. It also adds

language-level support for object graph management and object literals

while providing dynamic typing and binding, deferring many responsibil-

ities until runtime. [1]

3.3.3 Xcode

The tool used to create iOS application is Xcode. Xcode is an integrated

development environment (IDE) for macOS containing a suite of software

development tools developed by Apple for developing software for macOS,

iOS, watchOS, and tvOS. First released in 2003, the latest stable release

is version 10.1 and is available via the Mac App Store free of charge for

macOS High Sierra and macOS Mojave users.[2] Registered developers

can download preview releases and prior versions of the suite through the

Apple Developer website

Xcode supports source code for the programming languages C, C++,

Objective-C, Objective-C++, Java, AppleScript, Python, Ruby, ResEdit

(Rez), and Swift, with a variety of programming models, including but not

limited to Cocoa, Carbon, and Java. Third parties have added support

for GNU Pascal Free Pascal, Ada, C#,Perl, D and Fortran.

Xcode can build fat binary files containing code for multiple architectures

with the Mach-O executable format. These are called universal binary

files, which allow software to run on both PowerPC and Intel-based (x86)

platforms and that can include both 32-bit and 64-bit code for both ar-

chitectures. Using the iOS SDK, Xcode can also be used to compile and

debug applications for iOS that run on ARM architecture processors.

46

Xcode includes the GUI tool Instruments, which runs atop a dynamic

tracing framework, DTrace, created by Sun Microsystems and released as

part of OpenSolaris[26].

47

3.4 Cross platform applications development

Cross-platform mobile development is the creation of software applications

that are compatible with multiple mobile operating systems. Originally,

the complexity of developing mobile apps was compounded by the dif-

ficulty of building out a backend that worked across multiple platforms.

Although it was time-consuming and expensive, it was often easier to build

native applications for each mobile operating system (OS). The problem

was that the code built for one operating system could not be repurposed

for another OS.

Cross-platform mobile development tools have been developed with the

purpose to give them the possibility to write the application source code

once and run it on different OSs [43].

Major benefits that these tools have brought are:

• Reduction of required skills for developers to develop applications

due to the use of common programming languages;

• Reduction of coding, because the source code is written once and it

is compiled for each supported OS;

• Reduction of development time and long term maintenance costs;

• Decrement of API knowledge, because with these tools;

• Greater ease of development compared to building native applica-

tions for each OS;

Approaches to cross-platform development include: 1. Hybrid mobile app

development: developers write the core of the application as an HTML5

or JavaScript mobile app and then place a native device wrapper around

it. 2. Rapid mobile app development (RMAD): developers use code-free

programming tools. RMAD offers business users the ability to quickly

build and manage good-enough internal apps to address specific business

issues. 3. Windows universal apps: one codebase for all Windows devices.

The goal is to enable the same app to run on a Windows PC, tablet,

smartphone, smartwatch or XBox. 4. Progressive web apps (PWAs):

websites that look and behave as if they are mobile apps. PWAs are built

to take advantage of native mobile device features, without requiring the

48

end user to visit an app store, make a purchase and download software

locally [7].

Most popular cross platform development tools are: Xamarin, PhoneGap,

Sencha, Appcelerator, iFactr, Kony, AlphaAnywhere, Redhat.

Anyway, cross platform development present some limitations. Though

cross platform mobile apps are faster and friendly, but they have less

performance quality when compared to native apps. Since each app is

designed on one or more OS platforms, it is hard to be supported by every

feature of OS. Each time the OS gets updated with new features, your app

also needs an update. A connection needs to be set up for starting up a

cross platform app, which is not needed with native apps. Cross platform

mobile applications has restrictions to some of the hardware features, as

these apps come up with multiple mobile OS platforms. Lot of frameworks

are build using Javascript and hence if you wish to move from one OS to

another, the code you already used is not going to work out. It can be

made reusable by putting in a lot of work on your codes. Hybrid apps come

up with features and limitations that could either delight or disappoint

any developer.

49

3.5 Why an UML extension for Android

applications?

Studying approaches about mobile applications modeling support and

analysing mobile applications context, we decided to focus our researches

on Android native applications. The reason that drove us to propose and

evaluate Android specific UML extension concerns Android devices pop-

ularity. Analysing smartphone usage, stores presence and downloads, we

observed a growing usage of Android applications and devices and so we

decided to provide support for Android development processes and de-

velopers. Further more, we found useful the open source nature of such

applications. In fact there are different repositories (F-Droid, GitHub,

etc.) and there is an open access to source code of a big number of

Android apps. The idea was so to analyse applications as described in

chapter 2, propose an UML extension (DROID UML) and evaluate its

utility through a controlled experiment.

50

Chapter 4

Droid UML: an UML
extension for Android native
applications

In this chapter we present the proposed Droid UML extension. We de-

scribed android applications components we will model and analysed source

code of applications to understand if there were other components to ex-

tend. To propose extension we decided to present the Unified Modeling

Language definition with particular attention to Class Diagrams and to

the extension mechanism. So we formalized the extension.

51

4.1 UML: Unified Modeling Language

Modeling is the designing of software applications before coding. Model-

ing is an Essential Part of large software projects, and helpful to medium

and even small projects as well. A model plays the analogous role in soft-

ware development that blueprints and other plans (site maps, elevations,

physical models) play in the building of a skyscraper.

The OMG’s Unified Modeling Language (UML) helps you specify, visual-

ize, and document models of software systems, including their structure

and design, in a way that meets all of these requirements [25]. UML

makes these artifacts scalable, secure and robust in execution. UML is

an important aspect involved in object-oriented software development. It

uses graphic notation to create visual models of software systems.

UML has been evolving since the second half of the 1990s and has its

roots in the object-oriented programming methods developed in the late

1980s and early 1990s. The timeline (see image) shows the highlights of

the history of object-oriented modeling methods and notation.

Under the technical leadership of those three (Rumbaugh, Jacobson and

Booch), a consortium called the UML Partners was organized in 1996 to

complete the Unified Modeling Language (UML) specification, and pro-

pose it to the Object Management Group (OMG) for standardization.

The partnership also contained additional interested parties (for exam-

ple HP, DEC, IBM and Microsoft). The UML Partners’ UML 1.0 draft

was proposed to the OMG in January 1997 by the consortium. During

the same month the UML Partners formed a group, designed to define

the exact meaning of language constructs, chaired by Cris Kobryn and

administered by Ed Eykholt, to finalize the specification and integrate

it with other standardization efforts. The result of this work, UML 1.1,

was submitted to the OMG in August 1997 and adopted by the OMG in

November 1997.

UML 2.0 major revision replaced version 1.5 in 2005, which was developed

with an enlarged consortium to improve the language further to reflect new

experience on usage of its features.

A UML model consists of three major categories of model elements, each of

which may be used to make statements about different kinds of individual

52

things within the system being modeled (termed simply individuals in the

following). These categories are:

• Classifiers. A classifier describes a set of objects. An object is an

individual with a state and relationships to other objects. The state

of an object identifies the values for that object of properties of the

classifier of the object. (In some cases, a classifier itself may also

be considered an individual; for example, see the discussion of static

structural features in sub clause 9.4.3.)

• Events. An event describes a set of possible occurrences. An oc-

currence is something that happens that has some consequence with

regard to the system.

• Behaviors. A behavior describes a set of possible executions. An

execution is a performance of a set of actions (potentially over some

period of time) that may generate and respond to occurrences of

events, including 12 Unified Modeling Language 2.5.1 accessing and

changing the state of objects. (As described in sub clause 13.2, be-

haviors are themselves modeled in UML as kinds of classifiers, so

that executions are essentially modeled as objects. However, for the

purposes of the present discussion, it is clearer to consider behaviors

and executions to be in a separate semantic category than classifiers

and objects.)

UML 2.0 defines thirteen types of diagrams, divided into three categories

(see Figure 4.1: Six diagram types represent static application structure;

three represent general types of behavior; and four represent different

aspects of interactions:

• Structure Diagrams: include the Class Diagram, Object Diagram,

Component Diagram, Composite Structure Diagram, Package Dia-

gram, and Deployment Diagram.

• Behavior Diagrams: include the Use Case Diagram (used by some

methodologies during requirements gathering); Activity Diagram,

and State Machine Diagram.

• Interaction Diagrams: all derived from the more general Behavior

Diagram, include the Sequence Diagram, Communication Diagram,

Timing Diagram, and Interaction Overview Diagram.

53

Structure diagrams are:

• Class Diagram: represents system class, attributes and relationships

among the classes.

• Component Diagram: represents how components are split in a soft-

ware system and dependencies among the components.

• Deployment Diagram: describes the hardware used in system imple-

mentations.

• Composite Structure Diagram: describes internal structure of classes.

• Object Diagram: represents a complete or partial view of the struc-

ture of a modeled system.

• Package Diagram: represents splitting of a system into logical group-

ings and dependency among the grouping.

Behavior and interaction diagrams are:

• Activity Diagram: represents step by step workflow of business and

operational components.

• Use Case Diagram: describes functionality of a system in terms of

actors, goals as use cases and dependencies among the use cases.

• UML State Machine Diagram: represents states and state transition.

• Communication Diagram: represents interaction between objects in

terms of sequenced messages.

• Timing Diagrams: focuses on timing constraints.

• Interaction Overview Diagram: provides an overview and nodes rep-

resenting communication diagrams.

• Sequence Diagram: represents communication between objects in

terms of a sequence of messages.

UML diagrams represent static and dynamic views of a system model.

The static view includes class diagrams and composite structure diagrams,

which emphasize static structure of systems using objects, attributes, op-

erations and relations. The dynamic view represents collaboration among

objects and changes to internal states of objects through sequence, activity

and state machine diagrams.

54

Figure 4.1: UML diagrams overview

In our approach we decided to use Class Diagram of UML standard be-

cause it represent the best way to model system classes of an Android

application.

4.1.1 UML Class Diagram

Class Diagram represents type of static structure diagram that describes

the structure of a system by showing the system’s classes, their attributes,

operations (or methods), and the relationships among objects.

The class diagram is the main building block of object-oriented model-

ing. It is used for general conceptual modeling of the systematic of the

application, and for detailed modeling translating the models into pro-

gramming code. Class diagrams can also be used for data modeling.The

classes in a class diagram represent both the main elements, interactions

in the application, and the classes to be programmed.

Using class diagrams UML provides relationships. A relationship is a

general term covering the specific types of logical connections found on

class and object diagrams.

UML defines relationship between classes. Instance-level relationships:

55

Figure 4.2: Class diagram relationship examples

Dependency, Association, Aggregation, Composition; class-level relation-

ships: Generalization/Inheritance, Realization/Implementation; General

relationship: Dependency, Multiplicity [6]. Figure 4.2 show example of

class diagrams relationships.

56

Figure 4.3: Extension stereotype example

4.2 The UML extension mechanism

UML provide an extension mechanism to indicate that the properties of

a metaclass are extended through a stereotype, and gives the ability to

flexibly add (and later remove) stereotypes to classes.

Extension mechanisms are the means for customizing and extending the

UML. UML extension mechanisms are based on Stereotypes, Tagged Val-

ues, and Constraints. Briefly, stereotypes are means of extending the UML

vocabulary. They are used for introducing new types of model elements.

Each stereotype defines a set of properties that are received by elements

of that stereotype as well as rules that must be satisfied by elements of

that stereotype[50].

The notation for an extension is an arrow with the filled triangle arrowhead

pointing from a stereotype to the extended metaclass as shown in figure

4.3.

57

4.3 Android UML proposed extension

Starting from approach proposed by Ko et al. [38] we decided to model

structural features of an Android application considering user interface

features and application fundamentals. In particular, we extended the

class diagram of the UML standard adding several Android-specific com-

ponents. To understand what are the most used object by developers and,

therefore, to decide which are the most important components that need

to be modeled, we analyzed the source code of 100 popular applications.

In this section we first describe the most important Android components

and we describe in details how we decided the components that needed to

be modeled; then, we formally introduce Droid UML, our Android-specific

UML extension.

4.3.1 Modeled Android Components

As described in chapter 3, Android is an operating system for mobile

devices. It is an open source platform designed to simply reuse com-

ponents. Android applications could be written using Kotlin, Java, and

C++ languages. Android applications are composed mainly by four dif-

ferent types of components: activities, services, broadcast receivers and

content providers. Each type of component has a distinct purpose and

lifecycle. An activity is the component interacting with the user; a service

is a component that keeps app running in the background; a broadcast re-

ceiver enables the system to deliver events to the app; a content provider

manages data that need to be stored. Besides, Android provides an asyn-

chronous activation mechanism called intent. Intents bind components to

each other at runtime. [3]

To understand if Android application components as proposed by Ko et al.

[38] were enough to model an application, we analyzed 100 Android apps.

Specifically, we considered open-source projects from F-Droid. Starting

from a list of repositories, we chose randomly 100 GitHub repository and

launched a script that cloned them and analysed source code.To extract

the most used components, we associated to each class its superclass.

Then, we counted the occurrences of each superclass, filtering only the

ones from the Android SDK.

58

Object type Number of occurrences Frequency
Activity 423 11,45%
Fragment 370 10 %
AsyncTask 285 7,7 %
Widget 177 4,8%
Service 114 3%
BroadcastReceiver 92 2,5%
Layout 86 2.32%

Table 4.1: Most used Android components

Table 4.1 contains the result of the analysis done on 3694 classes obtained

from source code of 100 Android repositories. Starting from the data out-

lined by code analysis, we defined our extension (Droid-UML) starting

from the core Android components as defined in the official documenta-

tion, and we added to such components the most frequent ones we found,

Fragment Adapters, Widgets, AsyncTasks and Layouts. It is worth noting

that Intents could not be found in our analysis, since they are usually not

extended.

59

4.4 Droid UML extension definition

We describe the objects extended giving a formal definition, specifying

what kind of UML component they extend, their constraints, and showing

graphical icons. We report in 4.2 a summary of the components and the

icons we used in our model.

Activity. An Activity represent a single screen where the user directly

interact with the Android app. It is a container in which developers place

visual elements called views (also known as widgets).

Service. A Service is a component that runs in the background and

does not have any graphical user interface. While the user works on the

interface in the foreground, services could manage processes that needs

to run in the background. There are two types of services: unbound

services and bound services. The first are services not bounded by any

component. Once started they run in the background indefinitely, even if

the component that started them is destroyed. They can be stopped after

they completed their task. Bound services, instead, run only as long as

another application component is bound to them. Multiple components

can bind the service at once, but when all of them unbind, the service is

destroyed.

Broadcast Receiver. A Broadcast Receiver is a component used to

receive messages sent in a broadcast way from Android system or other

applications. There are different broadcast messages initiated by the An-

droid system itself and caught by other applications using Broadcast re-

ceivers. Battery warning, screen turned off, change time zone, camera

used, etc..

Content Provider. A Content Provider provides a flexible way to make

the data available across applications. Other applications are able to

query, access or modify data using this component. Content Providers

give also access to data provided from other utilities.

60

Intent. It represent the mechanism of activation of components. Intents

are the main system of communication they define how to activate other

components. There are two types of intents: explicit intent and implicit

intent. An explicit intent is an intent which requires component speci-

fication when activated. An implicit intent, instead, sends a message to

Android system to find a component that meets the intent.

Fragment Adapter. A Fragment Adapter represents a UI page as a

fragment that is persistently kept in memory (in a so called Fragment

Manager) as long as the user can return to the such a page. It is often

used when in the application there is a set of static fragments to be paged

or a set of tabs. The fragment of each page will be kept in memory and

destroyed when not visible.

Widget. A Widget is an object that can be embedded in other appli-

cations or activities. It is a view object that composes the UI. There are

different types of widgets and each of them extends a specific class of SDK

(Button, Image, and Clock).

AsyncTask An AsyncTask is a component that allows to perform back-

ground operations and publish results on the UI thread without having

to create threads and handlers. AsyncTasks should be ideally used for

relatively short operations (few second at most).

Layout. It defines the visual structure of a user interface. Layouts rep-

resent the way to graphically organize widgets in the UI. There are several

types of layouts, such as linear and relative layouts.

The components defined above extend the concept of class object provided

by standard UML. We report in figures 4.4 and 4.5 the basic class diagrams

for user interface components and structural (non-visual) components,

respectively. The idea is to use the extension mechanism adding to class

entity of class diagram graphical stereotypes.

Figures 4.6 and 4.7 instead, present proposed Droid UML extension.

Starting from this general definition we later try to propose a controlled

experiment with real applications to evaluate utility.

61

Android object UML type Costraints Icon

Activity class It has to contain at least one layout
component

Service class It has to be strarted by an activity or
another service

Broadcast receiver class none

Content provider class none

Intent class It has to be launched by an activity and
it has to launch a new activity

Fragment adapter class It has to be contained in an activity; it
has at leas one page (fragment)

Widget class It has to be contained in a layout

Async task class none

Layout class It has to be contained in an activity or
subclasses

Table 4.2: Most used Android components

Figure 4.4: Standard UML class diagram for Android user interface features

62

Figure 4.5: Standard UML class diagram for Android structural components

Figure 4.6: Droid UML class diagram for Android structural components

Figure 4.7: Droid UML class diagram for Android structural components

63

Chapter 5

Case study: a controlled
experiment to evaluate Droid
UML extension

In this chapter we present the experiment carried out to evaluate extension

proposed. The idea is to design and submit, to a set of developers, a survey

with two different maintenance tasks and evaluate the differences for the

tasks supported by plain UML and the tasks supported by Droid UML.

64

5.1 Experiment design

The goal of our empirical study is to check if Droid UML can support

developers in the comprehension of an Android project while performing

a maintenance task.

Our study was steered by the following research questions:

• RQ1: What is the effectiveness of Droid-UML? With this research

questions we want to investigate what is the level of accuracy of the

responses given during the task completion.

• RQ2: How do developers perceive the Droid-UML extension? With

this second research question we try to understand if developers find

Droid UML diagrams useful.

To answer the questions we designed a controlled experiment based on a

survey submission to developers and on survey result evaluation.

5.1.1 Experiment Design

The context of the experiment is based on two Android applications X

and Y and a set of participant selection. We will ask to developer a set

of questions to understand a detailed application mechanism. To answer

questions, developer will be supported by applications source code and

an UML diagram in the different two version (one task with Droid UML

and one with plain UML). Every developer will compile a preliminary

questionnaire and a post questionnaire. The preliminary one contains

questions about programming experience, actual work employment, UML

knowledge. More specifically :

1. Current job.

2. General programming experience (years).

3. Java programming experience (evaluation).

4. Android application development/maintenance experience (yes, no).

5. Android application programming experience (years).

6. Android application programming experience (evaluation).

7. UML usage experience (evaluation).

65

Table 5.1: Experiment survey organization
Group Task 1 Model Type Task 2 UML type
1 NextCloud News Reader Plain UML Simple Alarm Clock Droid UML
2 Simple Alarm Clock Plain UML NextCloud News Reader Droid UML
3 NextCloud News Reader Droid UML Simple Alarm Clock Plain UML
4 Simple Alarm Clock1 Droid UML NextCloud News Reader Plain UML

The post questionnaire contains questions about qualitative evaluation of

the proposed extension:

1. How useful is Droid UML.

2. How simple is to understand Droid UML.

3. Activity stereotype utility.

4. Fragment adapter stereotype utility.

5. Intent stereotype utility.

6. Further information.

For each application we selected a task defined by choosing a solved is-

sue on GitHub repository of the app. Every questionnaire will contain

questions about the two tasks of the two applications. We linked source

code and UML diagram (Droid and plain) to support each task resolution.

The survey organization is resumed in table 5.1. To guarantee coverage of

all possible combinations of task and UML extension we need 4 different

questionnaires.

5.1.2 Application selection and task definition

The next step, was focused to select two Android native applications from

GitHub. Basing on our previous investigation reported in 2.1.3, we se-

lected the two Android apps with highest number of newcomers written

in Java programming language. We decided to select Java applications

because it is the most popular programming language for Android appli-

cations and it is simpler find Android programmers using that languages.

There was different applications written in Kodin code but we excluded

them. The app selected are Simple Alarm Clock[20], an alarm clock, and

NextCloud News Reader[18], an app that allows to connect to the Own-

Cloud News Reader server app and read RSS feeds. For both such apps,

66

we used two resolved issues from the GitHub issue tracker to define the

tasks for our study. More specifically, each task consisted in the detection

of the classes that would be involved to complete the task. Here the 2

task definition:

• Task 1: Simple Alarm Clock application. The task consists to detect

classes and object involved in the action of adding a context menu

to dismiss alarm snooze notification.

• Task 2: NextCloud News Reader application. The task consists to

detect classes and object involved in allowing user to open links in

an external browser and made URLs visible.

The two applications selected did not provide any UML class diagrams.

Therefore, we downloaded the snapshot of the apps after the fix of the issue

was committed and we reverse-engineered both starting from the source

code and we defined plain UML class diagrams. We obtained UML class

diagram using the UML Generator plugin realized for Eclipse software

development tool.Starting from this plain UML class diagrams, we man-

ually refine them and then we manually define corresponding Droid UML

diagrams. We report in Figure 5.1 the plain UML class diagram created

for Simple Alarm Clock and in Figure 5.2, the Droid UML class diagram

created for NextCloud News Reader.

5.1.3 Participant selection and survey submission

Subsequently we needed to find a set of developers to submit forms. We

decided to send Google Form mail invitation to more then 40 developers.

We send form to students of Universty of Molise, with experience in An-

droid programming, and working developers in different companies. We

asked the ones who agreed to provide us with a self-evaluation of their

Android app development skills on a Likert scale from 1 (novice) to 5

(expert). We did not invite developers with no experience with Android

app development. Based on such information, we selected a sample of

20 developers with diverse Android experience levels. Then, we divided

the participants in four groups, with equal median experience level of the

developers. Each group of developers needed to complete two tasks: in

one of them we provided participants with plain UML, while in the other

67

Figure 5.1: Plain UML class diagram for Simple Alarm Clock

68

Figure 5.2: Droid UML class diagram for NextCloud News Reader

69

Table 5.2: Composition of the four groups
Group Median Android skill #of developers # of students
1 3 4 1
2 3 3 2
3 3 3 2
4 3 3 2

one with Droid UML. In both the tasks the participants could also look at

the source code. We report the composition of such groups with the task

they needed to perform and the diagram they were provided with in Table

5.2. We reduced by design potential biases due to the order in which the

tasks were completed: two groups were forced to complete the task using

plain UML first, while the other two groups were forced to complete the

task using Droid UML first.

The next step was to send Google form invitation to complete the ques-

tionnaire. The participants had to complete a pre-questionnaire, as de-

scribed in section 5.1.1, before performing the tasks. In such a question-

naire we gathered data about the experience in Android, in Java, and in

UML. Here we report questions in details :

• Current Job: student, phd student, developer;

• Programming general experience: less then 1 year, from 1 to 3 years,

from 3 to 5 years, from 5 to 7 years, more then 7 years;

• Java programming experience:less then 1 year, from 1 to 3 years,

from 3 to 5 years, from 5 to 7 years, more then 7 years;

• Java programming personal evaluation : from 1 to 5;

• Have you ever developed an Android application?

• Android programming experience:less then 1 year, from 1 to 3 years,

from 3 to 5 years, from 5 to 7 years, more then 7 years;

• Android programming personal evaluation; from 1 to 5;

• UML modeling personal evaluation: from 1 to 5;

After completing the pre-questionnaire, we asked the participants to com-

plete the two tasks in a specific order, based on the groups they belonged

to. We did not ask the participants to write code to actually implement

the features. Instead, we asked them to just report the classes that would

70

be involved in the fixing of the issue. Such an operation was performed

offline. However, we asked the participants not to take breaks while they

were completing a task. On the other hand, they were free to take a break

between the two tasks. After each task, the developers were asked (i) in

what percentage they used the model and the code, and (ii) the classes

that needed to be changed to perform the maintenance task. Finally, af-

ter completing both the tasks, we asked the participants to complete a

post-questionnaire. Here the questions:

• Q3 : Which diagram did you find more useful? To what extent?

• Q4 : How useful would be an Android-specific UML extension, in

general?

• Q5 : How simple is understanding the Droid UML notation?

• Q6 : How useful is a graphical representation for Activity?

• Q7 : How useful is a graphical representation for Fragment?

• Q8 : How useful is a graphical representation for Intent?

Also in this case the participants could answer with a score between 1 and

5. All the developers were invited to read a brief guide about Droid UML

before starting the experiment. We did this to allow them familiarizing

with the new notation.

To answer RQ1, we first defined an oracle for both the tasks, the classes

involved in the issue fixing process. To do this, we looked at the changes

made by the original app developers to actually fix the issue. We defined

the following oracles for the two tasks:

• Task 1: TransparentActivity;

• Task 2: NewsDetailActivity, NewsDetailFragment.

We used such a piece of information to compute three metrics commonly

used in Information Retrieval (IR): precision, recall, and F-measure.

Precision is calculated as the classes correctly detected by the participants

divided by classes to detect and recall is calculated by class correctly

detected by participants divided by the number of classes defined in oracle.

F-measure is computed as the harmonic mean of precision and recall.

71

Such metrics do not take into account the actual usage of the diagram.

Any difference observed in the metrics could be unrelated to the diagram.

For this reason, we first report the difference in the actual usage of both the

models declared by the developers; then, we compute precision, recall, and

F-measure weighted by the percentage of use of the UML model used for

the task. For example, if a developer declared that she used the diagram

at 75% and she achieved a recall of 50%, the weighted recall is 0.375. In

this case a score of 1 means that the participant used only the diagram

and that she achieved the best score for a specific metric. On the other

hand, a score of 0 may mean either that the developer did not use the

diagram or that the developer achieved a score of 0 for a specific metric.

To answer RQ2 we analyzed the answers to the qualitative questions we

asked in our post-questionnaire. Specifically, we asked the following ques-

tions after each task:

• Q1 : What was the complexity of the comprehension task?

• Q2 : How useful was the UML diagram you used?

The authors could answer with a score between 1 and 5. In this case, we

compared the scores achieved by plain UML with the scores achieved by

Droid UML.

72

Table 5.3: Mean precision, recall and F-measure.
All T1 T2

Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure
2*Normal Droid-UML 0.305 0.277 0.277 0.111 0.111 0.111 0.5 0.44 0.444

UML 0.2 0.133 0.15 0.00 0.00 0.00 0.375 0.25 0.291
2*Weighted Droid-UML 0.201 0.166 0.171 0.083 0.083 0.083 0.319 0.25 0.259

UML 0.034 0.018 0.023 0.00 0.00 0.00 0.065 0.033 0.044

5.2 Experiment results and evaluation

We report in this section the results of our empirical study, divided by

research question.

5.2.1 RQ1: Actual usefulness

Table 5.3 reports the results of the comparison. First, we observed that

participants were more likely to complete the tasks when they were pre-

sented with Droid UML (Precision 0,305 and Recall 0,277 for Droid UML

vs Precision 0,2 and Recall 0.133 for plain UML). We report in Figure

5.3 the distribution of the usage of the diagrams. When developers are

provided with a Droid UML diagram, they are more prone using it. On

the other hand, when they are provided with a classic UML diagram, they

tend to focus more on the code. As for the actual performance achieved by

the developers, Table 5.3 shows the mean precision, recall and F-measure

achieved by the developers using both Droid UML and the baseline. First,

it is worth noting that the absolute values of such metrics are low, in gen-

eral. This means that the participants found the tasks quite difficult to

complete. Indeed, we found that in 7 cases they could not complete the

task at all, while in 23 cases they were not able to identify any of the

classes involved in the fix. However, this was partially expected, since the

task were not trivial and the code bases of the applications taken into ac-

count were quite big. Despite the low values, we observed some interesting

results. For T1, none of the developers who used plain UML was able to

identify any class involved in the fix. Droid UML, instead, was useful to

complete this task for 6 developers. However, when we weight the perfor-

mance of the developers with the percentage usage of the diagrams they

declared, we can see that the difference is, overall, even larger.

In summary, we can conclude that developers use more Droid UML dia-

grams, and this also allows them to generally perform slightly better.

73

X

0

25

50

75

100

Droid−UML UML

Figure 5.3: percentage usage of the diagram

5.2.2 RQ2: Perceived usefulness

Figure 5.4 reports the frequency of the responses to the question Q4. The

bar plot shows that 15 participants think that Droid-UML is somewhat

useful (greater than 2) and only 1 participant thinks that it is not. The

median value of responses is 4. It represent a high perceived utility of

Droid-UML in supporting development and maintenance of Android ap-

plications.

Figure 5.5 reports a comparison between the perceived usefulness of plain

UML and Droid UML (question Q2). The plot shows us that Droid UML

was perceived as more useful than plain UML. The median values com-

puted on given responses confirm visual data contained in Figure 4.6.

Although both UML diagrams result useful in development and mainte-

nance processes, the Droid UML was perceived as more useful. Indeed,

plain UML median is equal to 3 while Droid UML median is equal to 4.

To answer sub question three of RQ2 we considered question about task

perceived difficulty for task with application 1 and task with application

74

Figure 5.4: Droid-UML perceived utility

Figure 5.5: Plain vs Droid-UML perceived utility

75

Figure 5.6: Plain vs Droid-UML task with application 1 perceived difficulty

2. We anaysed responses taking into account single task data and overall

data. In particular 5.6 contains bar plot about how users found complex

to understand and resolve task with application 1. The plots contain

frequency of given responses and it shows us that there is a small difference

between the uses of the diagrams (plain UML and Droid UML) and some

users found more difficult resolve task with plain UML. If we analyse

median value of the use of two diagrams we can confirm visual data. In

fact the median is both 3 while the average value of the responses is a

little bit higher for plain UML diagram (3,18 vs 2,85). Looking at task

with application 2 the situation is different. 5.7 contains bar plots of

the perceived difficulty to understand and solve task with application 2.

The differences for application 2 are more evident. There are more users

compared to application 1 data, that found more difficult resolve task 2

with plain UML diagram. The data is confirmed by median value (4 for

plain UML and 3 for Droid UML) and by average values (3,75 for plain

and 3,17 for Droid). Taking into consideration that task with application

2 is a little bit more difficult of task with application 1, we can assert that

a specific Android UML extension could be more useful when developers

face with more complex Android apps.

76

Figure 5.7: Plain vs Droid-UML task with application 2 perceived difficulty

The overall data contained in 5.8 confirm that using a specific UML exten-

sion for Android application development (Droid UML) could help in task

comprehension. Even if median value is 3 for both extension the average

value is higher for tasks completed using Simple UML (3,4 vs 3,15).

Figures 5.6 and 5.7 report different numbers because they refer to single

tasks. Application 1 with plain UML has been submitted to 11 partici-

pants while Application 1 with Droid UML to 9 participants. For Appli-

cation 2 the Droid-UML 15 participants that completed task with plain

UML are 9, instead participants that completed task with Droid UML are

11.

5.2.2.1 Discussion

Our results from both RQ1 and RQ2 clearly show that Droid-UML helps

the developers in achieving a better performance in the tasks they had

to complete more than plain UML. While we do not achieve statistically

significant results because of the size of our sample, we observe some very

clear trends. We have to notice a real difficulty to retrieve developers to

task completion. We send invitations to more then 40 developers but only

77

Figure 5.8: Plain vs Droid-UML overall perceived difficulty

the 50% of them completed the survey. Another relevant data was the bad

task completion comprehension. We observed that different participants

to experiment did not indicate any classes even if them understand the

task. Anyway we focused attention on internal and external validity as-

pects.

5.2.2.2 Internal Validity

. Threats to internal validity concern factors related to the study design.

The choice of the Android apps could have affected the results. Specif-

ically, selecting too simple or too complex tasks may not let us observe

differences between UML Droid and plain UML. The results show that

the performance of the developers was relatively low in absolute terms,

suggesting that the tasks were quite complex. This may have flattened

the results. A potential threat could be represented by the fact that

Droid UML uses icons. Developers could be naturally inclined to pre-

fer a diagram with icons, while such a feature could provide no practical

advantage. To mitigate this threat, we used objective measures of the

developers performance (precision, recall and F-measure). Therefore, we

78

conclude that using icons for some types of classes actually helps improv-

ing the understanding.

5.2.2.3 External Validity

. Threats to external validity concern the generalization of the results.

The sample of developers we took into account is rather small (e.g., 20

developers). To mitigate the potential lack of generalization, we consid-

ered developers with heterogeneous experience (variation sampling). We

selected, indeed, both students and developers with different level of pro-

gramming and modeling skills.

In conclusion we observed a quite big difference in the use of both the

diagrams: the developers used Droid UML to complete the task more

than plain UML. So we can affirm that Droid-UML helps navigating the

code more than the plain UML notation.

79

Chapter 6

Conclusions and future works

In this work we studied the mobile context and the modeling approaches

for mobile and in particular for Android applications. We started with an

in-depth analysis of source code and decompiled code of Android applica-

tion. We tried to understand if there was a real evolution of application

directly connected to source code but we observed that, despite some

differences of code analysed, there isn’t a real evolution. The number

of application published on Google Play Store and F-Droid store grows

and grows the usage of APIs. So we focused attention on development

process participation by studying commits and authors of a large set of

GitHub repositories. We found interesting that there is a relevant number

of projects with a significant number of contributors so we proposed an

UML extension to support Android application development and mainte-

nance processes. The idea is to extend the UML class diagram paradigm

and define new stereotypes with the support of graphical icons. To better

understand mobile context we studied the mobile technologies, the mo-

bile operative systems differences and the differences between Android,

iOS and cross-platform applications development techniques. To assess

the usefulness of Droid UML we conducted a controlled experiment in

two ways: objectively evaluating the actual performance of the partici-

pants, and subjectively, considering the perceived usefulness. The results

tell us that participants are more prone to use Droid UML than plain

UML. Besides, Droid UML helped them achieving better feature loca-

tion performances. Also, the developers perceived Droid UML as more

useful than plain UML. In summary, the results suggest that the Droid

UML supports developers that face for the first time a new project, above

80

all if the task at hand is complex. Anyway we need to reply the study

done with a larger number of developers in order to increase the statis-

tical power of our results and understand if there is some aspect we can

improve in proposed extension.

Despite proposing a context UML extension could create confusion to de-

velopers and result unnecessary, the results of the experiment done during

our research seems going in the opposite direction. I tried to intercept

market needs derived from a growth in terms of application realized and

mobile devices usage. Apps becomes comparable to traditional software

and so need more attention in terms of modeling and maintenance. While

the software changes, it will be necessary introduce new methodologies

and new concept in software design too. Droid UML wants to represent

a preliminary approach to better support design and maintenance activi-

ties and better understand so complex Android applications. Considering

results of the controlled experiment, despite a quite personal satisfaction

for the work done, it is necessary to evidence some needed improvements.

Droid UML represents a small piece of the big world of Software Engi-

neering that needs to be improved and that has to continuously follow

development concepts changes. For example we could try to propose an

extension concerning architectural components as well as dynamic com-

ponents of UML. At the same time it is necessary refine the controlled

experiment, changing some question and considering a larger number of

developers and better understand so the developers perception.

In future, following this approach, we will try to extend UML components

to model dynamic aspect of applications. The idea is to propose exten-

sion for UML Sequence Diagram and give so more support in application

development and maintenance processes. Android applications are com-

posed by static and behavioural aspects. Using sequence diagram to model

behavioural aspects as proposed by Parada et al. [45] and adding graphi-

cal stereotype to represent iteration, conditional, and message exchanges,

as usual for traditional object-oriented software could help developers in

development phases. Another idea to better support developers is the

development of a tool for automatic Droid UML class diagram genera-

tion. The approach could be realized as a plugin for Android Studio the

most used tool for Android application development. The last work to do

81

concerns proposing an extension to support cross platform applications.

Cross platform development is becoming even more widespread so, study

cross platform development application and propose UML extension could

be really interesting.

82

Appendix A

Appendix - Evaluation survey

83

6/1/2019 Android e UML

https://docs.google.com/forms/d/1cqtJUaIH2nh3n_x92mLzR1Hbf-xgDIli7hI2flyIk2g/edit 1/7

Android e UML
Grazie per aver scelto di partecipare allo studio.

Il questionario è diviso in tre sezioni. Nella prima sezione ti verrà chiesto di inserire informazioni
relative al tuo background. Nella seconda e nella terza, invece, ti verrà chiesto di completare due
task di comprensione su diverse applicazioni Android e, successivamente, di rispondere ad alcune
domande su questi meccanismi.

In entrambi i casi, sarai supportato da diagrammi che descrivono le applicazioni che implementano i
meccanismi che dovrai comprendere. In uno dei due task ti sarà proposto di usare un diagramma
UML classico; nell'altro, invece, avrai a disposizione un diagramma UML esteso.

Ogni task richiede circa 30 minuti. Ti chiederemo di specificare l'orario di inizio e di fine di ogni task
quanto ti verrà chiesto. Puoi fare una pausa tra i due task, ma ti chiediamo, se possibile, di non fare
pause durante lo svolgimento del task. Se hai dovuto fare pause, ti chiediamo di specificarlo
nell'apposito campo alla fine del task.

Rispondere bene e/o velocemente non ha nessun riscontro pratico. Per questo, ti chiediamo di
rispondere nel modo più sincero possibile a tutte le domande e di indicare in maniera accurata gli
orari di inizio e fine dei task. Ti chiediamo, infine, di limitare al minimo l'utilizzo di risorse esterne (es:
Google, GitHub, StackOverflow).

* Required

1. Email address *

2. Occupazione attuale *
Mark only one oval.

 Studente laurea triennale

 Studente laurea magistrale

 Dottorando

 Sviluppatore occupato

3. Anni di esperienza in programmazione (incluso corsi universitari) *
Mark only one oval.

 Meno di 1 anno

 Tra 1 e 3 anni

 Tra 3 e 5 anni

 Tra 5 e 7 anni

 Più di 7 anni

4. Anni di esperienza in programmazione Java (incluso corsi universitari) *
Mark only one oval.

 Meno di 1 anno

 Tra 1 e 3 anni

 Tra 3 e 5 anni

 Tra 5 e 7 anni

 Più di 7 anni

6/1/2019 Android e UML

https://docs.google.com/forms/d/1cqtJUaIH2nh3n_x92mLzR1Hbf-xgDIli7hI2flyIk2g/edit 2/7

5. Valuta la tua esperienza in programmazione Java su una scala da 1 (molto bassa) a 5
(molto alta) *
Mark only one oval.

1 2 3 4 5

6. Hai mai sviluppato o fatto manutazione di app per Android (anche nell'ambito di corsi
universitari) *
Mark only one oval.

 Si

 No

7. Anni di esperienza in programmazione Android (incluso corsi universitari) *
Mark only one oval.

 Meno di 1 anno

 Tra 1 e 3 anni

 Tra 3 e 5 anni

 Tra 5 e 7 anni

 Più di 7 anni

8. Valuta la tua esperienza in programmazione Android su una scala da 1 (molto bassa) a 5
(molto alta) *
Mark only one oval.

1 2 3 4 5

9. Valuta la tua esperienza nell'utilizzo della notazione UML su una scala da 1 (molto bassa) a
5 (molto alta) *
Mark only one oval.

1 2 3 4 5

Inizio primo task
Questa sezione è relativa al primo task da svolgere. Puoi fare una pausa prima di iniziare. Appena sei
pronto, inserisci l'orario e procedi con il questionario per i dettagli sul primo task.

10. Inserisci l'orario di inizio del task *

Example: 8:30 AM

Primo task

Materiale

Scarica il codice dell'applicazione a questo link:
https://drive.google.com/open?id=18KmWN7gs8cctauXmh4Q0GbN1UBh3LWaL

6/1/2019 Android e UML

https://docs.google.com/forms/d/1cqtJUaIH2nh3n_x92mLzR1Hbf-xgDIli7hI2flyIk2g/edit 3/7

Scarica il diagramma dell'applicazione a questo link:
https://drive.google.com/open?id=1Kdi-Sri7NGhrfsIuwNsYpbACQ1ofy7nP

App

L’applicazione News Reader di NextCloud consente la sincronizzazione di feed tra Android e l’app
News di Nextcloud/ownCloud. Tra le varie funzionalità l’app consente di leggere le news offline,
visualizzare l’elenco delle news e personalizzarlo, cambiare tema, regolare la grandezza del carattere
e molto altro.

Task

Per dare la possibilità agli utenti di aprire i link in un browser esterno e migliorare la sicurezza dell’app
specificando così quale link si sta aprendo bisogna apportare delle modifiche a quali file
dell’applicazione? Che tipo di componenti Android devono essere modificati?

Appena hai completato il task o se non riesci a completarlo in un tempo ragionevole, procedi con il
questionario.

Fine primo task

11. Inserisci l'orario di fine del task *

Example: 8:30 AM

12. Quanti minuti di pausa hai fatto durante il
task? *

Valutazione primo task
In questa sezione ti verrà chiesto di valutare l'attività svolta durante il primo task.

13. Quanto hai trovato difficile comprendere il meccanismo? *
Mark only one oval.

1 2 3 4 5

Molto facile Molto difficile

14. Hai capito pienamente come è implementato il meccanismo che dovevi comprendere? *
Mark only one oval.

 Sì

 No

15. Se sì, descrivi brevemente, a parole, il meccanismo che hai dovuto comprendere *

6/1/2019 Android e UML

https://docs.google.com/forms/d/1cqtJUaIH2nh3n_x92mLzR1Hbf-xgDIli7hI2flyIk2g/edit 4/7

16. Quanto ti è stato utile il diagramma che hai usato?
Mark only one oval.

1 2 3 4 5

Poco utile Molto utile

17. In che percentuale hai utilizzato codice sorgente e diagramma forniti?
Mark only one oval.

 100% codice (non ho usato il diagramma)

 75% codice, 25% diagramma

 50% codice, 50% diagramma

 25% codice, 75% diagramma

 100% diagramma (non ho usato il codice sorgente)

Inizio secondo task
Questa sezione è relativa al secondo task da svolgere. Puoi fare una pausa prima di iniziare. Appena
sei pronto, inserisci l'orario e procedi con il questionario per i dettagli sul secondo task.

18. Inserisci l'ora di inizio del task *

Example: 8:30 AM

Secondo task

Materiale

Scarica il codice dell'applicazione a questo link:
https://drive.google.com/open?id=19_A4CQbKrc_UbtfHL6kjDtkncVL7CgmI

Scarica il diagramma dell'applicazione a questo link:
https://drive.google.com/open?id=1dFxaiRWPaJu356ZYW4K7TL5PLpf9Ij_0
Leggi la spiegazione del diagramma:
https://docs.google.com/document/d/e/2PACX-1vRROHNglp-EXM-
U3eV3e67XN9LxlDBJR6ri9tDQ_z1hoJB2v9oVvwLGyxasB8datWx-w82xOh0nqsLt/pub

App

Simple Alarm Clock è una sveglia per smartphone e tablet Android che trasmette l’esperienza di una
semplice sveglia combinando funzionalità potenti con interfaccia semplice. L’interfaccia della sveglia è
disegnata per essere semplice, intuitiva ed efficiente.

Task

Individuare le activities da modificare nel caso in cui si voglia aggiungere un menu contestuale (es.
Dismetti, Riprogramma sveglia) per le notifiche posticipate di un allarme.

Appena hai completato il task o se non riesci a completarlo in un tempo ragionevole, procedi con il
questionario.

Fine secondo task

6/1/2019 Android e UML

https://docs.google.com/forms/d/1cqtJUaIH2nh3n_x92mLzR1Hbf-xgDIli7hI2flyIk2g/edit 5/7

19. Inserisci l'ora di fine del task *

Example: 8:30 AM

20. Quanti minuti di pausa hai fatto durante il
task? *

Valutazione secondo task
In questa sezione ti verrà chiesto di valutare l'attività svolta durante il secondo task.

21. Quanto hai trovato difficile comprendere il meccanismo? *
Mark only one oval.

1 2 3 4 5

Molto facile Molto difficile

22. Hai capito pienamente come è implementato il meccanismo che dovevi comprendere? *
Mark only one oval.

 Sì

 No

23. Se sì, descrivi brevemente, a parole, il meccanismo che hai dovuto comprendere *

24. Quanto ti è stato utile il diagramma che hai usato?
Mark only one oval.

1 2 3 4 5

Poco utile Molto utile

25. In che percentuale hai utilizzato codice sorgente e diagramma forniti?
Mark only one oval.

 100% codice (non ho usato il diagramma)

 75% codice, 25% diagramma

 50% codice, 50% diagramma

 25% codice, 75% diagramma

 100% diagramma (non ho usato il codice sorgente)

Valutazione complessiva
Ti chiediamo di rispondere a queste domande basandoti su quello che hai potuto vedere svolgendo i
due task.

6/1/2019 Android e UML

https://docs.google.com/forms/d/1cqtJUaIH2nh3n_x92mLzR1Hbf-xgDIli7hI2flyIk2g/edit 6/7

26. Quale dei due diagrammi hai trovato più utile? *
Mark only one oval.

 UML classico

 UML esteso

 Ugualmente utili

27. In che misura pensi che il diagramma che hai scelto nella precedente domanda sia stato
più utile dell'altro? *
Mark only one oval.

1 2 3 4 5

Poco più utile Molto più utile

Valutazione qualitativa
Ti chiediamo di rispondere a queste ultime domande sulle notazioni UML che hai usato, cercando di
pensare alla loro utilità in generale e, quindi, non limitandoti all'utilità che hanno dimostrato nei task
che hai svolto.

28. Quanto pensi possa essere utile, in generale, un'estensione di UML specifica per Android?
*
Mark only one oval.

1 2 3 4 5

Poco utile Molto utile

29. Quanto pensi che sia facile capire la notazione UML estesa, conoscendo la notazione
classica? *
Mark only one oval.

1 2 3 4 5

Molto difficile Molto facile

30. Quanto pensi sia utile lo stereotipo che rappresenta la componente Activity? *
Mark only one oval.

1 2 3 4 5

Poco utile Molto utile

31. Quanto pensi sia utile lo stereotipo che rappresenta la componente Fragment Adapter *
Mark only one oval.

1 2 3 4 5

Poco utile Molto utile

6/1/2019 Android e UML

https://docs.google.com/forms/d/1cqtJUaIH2nh3n_x92mLzR1Hbf-xgDIli7hI2flyIk2g/edit 7/7

Powered by

32. Quanto pensi sia utile lo stereotipo che rappresenta la componente Intent? *
Mark only one oval.

1 2 3 4 5

Poco utile Molto utile

33. Quali informazioni aggiuntive pensi che possano migliorare l'estensione UML?

Hai quasi terminato...
Clicca su "Submit"/"Invia" per registrare la tua risposta. Ti ringraziamo per aver partecipato!

Appendix B

Droid and plain UML
diagrams

91

Figure B.1: Simple Alarm Clock - Plain UML diagram

92

Figure B.2: Simple Alarm Clock - Droid UML diagram

93

Figure B.3: NextCloud News Reader - Plain UML diagram

Figure B.4: NextCloud News Reader- Droid UML diagram

94

Bibliography

[1] About objective-c.

[2] About swift.

[3] Android application fundamentals.

[4] Android versions: A living history from 1.0 to pie.

[5] App programming guide for ios.

[6] Class diagram.

[7] cross-platform mobile development.

[8] The evolution of mobile apps.

[9] The evolution of native mobile app development.

[10] Gitwrapper library.

[11] Google play crawler java api.

[12] The history of ios, from version 1.0 to 11.0.

[13] ios version history.

[14] Mobile first: What does it mean.

[15] Mobile operating system.

[16] Mobile operating system (mobile os).

[17] Mobile operating systems (mobile os) explained.

[18] Nextcloud news reader.

[19] Number of available applications in the google play store from de-

cember 2009 to september 2018.

[20] Simple alarm clock.

[21] Sonarjava.

[22] Top 20 tools for android development.

95

[23] Tracing the history and evolution of mobile apps.

[24] Vision impairment and blindness.

[25] What is uml.

[26] Xcode.

[27] Hubert Baumeister, Nora Koch, and Luis Mandel. Towards a uml

extension for hypermedia design. In UML, 1999.

[28] Gabriele Bavota, Carmine Gravino, Rocco Oliveto, Andrea De Lucia,

Genoveffa Tortora, Marcela Genero, and José A Cruz-Lemus. A fine-

grained analysis of the support provided by uml class diagrams and

er diagrams during data model maintenance. Software & Systems

Modeling, 14(1):287–306, 2015.

[29] G. Botturi, E. Ebeid, F. Fummi, and D. Quaglia. Model-driven design

for the development of multi-platform smartphone applications, Sept

2013.

[30] Lionel C Briand, Yvan Labiche, Massimiliano Di Penta, and Han

Yan-Bondoc. An experimental investigation of formality in uml-

based development. IEEE Transactions on Software Engineering,

31(10):833–849, 2005.

[31] S. R. Chidamber and C. F. Kemerer. A metrics suite for ob-

ject oriented design. IEEE Transactions on Software Engineering,

20(6):476–493, June 1994.

[32] Jim Conallen. Building Web applications with UML. Addison-Wesley

Longman Publishing Co., Inc., 2002.

[33] Wojciech J. Dzidek, Erik Arisholm, and Lionel C. Briand. A realis-

tic empirical evaluation of the costs and benefits of uml in software

maintenance. IEEE Transactions on Software Engineering, 34:407–

432, 2008.

[34] Harleen K Flora, Swati V Chande, and Xiaofeng Wang. Adopting an

agile approach for the development of mobile applications. Interna-

tional Journal of Computer Applications, 94(17), 2014.

[35] F. Freitas and P. H. M. Maia. Justmodeling: An mde approach to

develop android business applications. In 2016 VI Brazilian Sym-

posium on Computing Systems Engineering (SBESC), pages 48–55,

Nov 2016.

96

[36] Stefania Pezzetti Gregorio Perego. Un approccio model-driven per lo

sviluppo di applicazioni mobili native. Master’s thesis, Politecnico di

Milano, 2013.

[37] Jan Jürjens. Umlsec: Extending uml for secure systems develop-

ment. In International Conference on The Unified Modeling Lan-

guage, pages 412–425. Springer, 2002.

[38] M. Ko, Y. Seo, B. Min, S. Kuk, and H. S. Kim. Extending uml

meta-model for android application. In 2012 IEEE/ACIS 11th In-

ternational Conference on Computer and Information Science, pages

669–674, 2012.

[39] Nora Koch, Hubert Baumeister, Rolf Hennicker, and Luis Mandel.

Extending uml to model navigation and presentation in web appli-

cations. In Proceedings of Modelling Web Applications in the UML

Workshop. York, England, 2000.

[40] Ludwik Kuzniarz, Miroslaw Staron, and Claes Wohlin. An empirical

study on using stereotypes to improve understanding of uml models.

In Program Comprehension, 2004. Proceedings. 12th IEEE Interna-

tional Workshop on, pages 14–23. Citeseer, 2004.

[41] Bup-Ki Min, Minhyuk Ko, Yongjin Seo, Seunghak Kuk, and

Hyeon Soo Kim. A uml metamodel for smart device application

modeling based on windows phone 7 platform. In TENCON 2011 -

2011 IEEE Region 10 Conference, pages 201–205, Nov 2011.

[42] M. Nassar. Vuml: a viewpoint oriented uml extension. In 18th IEEE

International Conference on Automated Software Engineering, 2003.

Proceedings., pages 373–376, Oct 2003.

[43] Manuel Palmieri, Inderjeet Singh, and Antonio Cicchetti. Compar-

ison of cross-platform mobile development tools. In Intelligence in

Next Generation Networks (ICIN), 2012 16th International Confer-

ence on, pages 179–186. IEEE, 2012.

[44] Fabio Palomba, Dario Di Nucci, Annibale Panichella, Andy Zaid-

man, and Andrea De Lucia. Lightweight detection of android-specific

code smells: The adoctor project. In 2017 IEEE 24th Interna-

tional Conference on Software Analysis, Evolution and Reengineering

(SANER), pages 487–491. IEEE, 2017.

97

[45] Abilio G Parada and Lisane B De Brisolara. A model driven ap-

proach for android applications development. In Computing System

Engineering (SBESC), 2012 Brazilian Symposium on, pages 192–197.

IEEE, 2012.

[46] A. Sabraoui, M. E. Koutbi, and I. Khriss. Gui code generation for an-

droid applications using a mda approach. In 2012 IEEE International

Conference on Complex Systems (ICCS), pages 1–6, Nov 2012.

[47] Safdar Aqeel Safdar, Muhammad Zohaib Iqbal, and Muham-

mad Uzair Khan. Empirical evaluation of uml modeling tools–a con-

trolled experiment. In European Conference on Modelling Founda-

tions and Applications, pages 33–44. Springer, 2015.

[48] Graziano E. Tufano A., Valente R. and Matarazzo M. Tech & knowl-

edge based economy: how mobile technologies influences the eco-

nomics of small and medium activities. In Integrated Economy and

Society: Diversity, Creativity, and Technology, pages 847–852. Inter-

national School for Social and Business Studies, Slovenia, 2018.

[49] M. Usman, M. Z. Iqbal, and M. U. Khan. A model-driven approach

to generate mobile applications for multiple platforms, Dec 2014.

[50] Aida Atef Zakaria, Hoda Hosny, and Amir Zeid. A uml extension

for modeling aspect-oriented systems. In International Workshop on

Aspect-Oriented Modeling with UML, Germany, 2002.

98

