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Abstract  

Mechanical stress is a common environmental perturbation that can 
considerably affect plant stability. In the course of evolution, plants evolved 
different mechanisms for coping with and mitigating the negative effects of 
this disadvantageous abiotic stress. Study the impact of this stress on the 
woody plant means to provide a scientific basis in the knowledge of the root 
biology and complex dynamics of the reaction wood formation, important in 
the context of plant productivity and utilization. 
In this thesis, a controlled simulation of mechanical stress was performed in 
Populus nigra roots by using a simple experimental system. After giving an 
outline of the molecular mechanisms that regulate the responses to long-term 
bending stress between the two sides of the poplar root (the convex and the 
concave side), this thesis lays emphasis on the roles of main plant hormones 
in the stress-induced reaction wood formation. 
Using the method based on liquid chromatography coupled to tandem mass 
spectrometry analysis (LC-MS/MS) auxins, abscisic acid and cytokinins 
profiling was obtained for different sectors and sides of the bent root and 
stem, subjected to different intensities of tension and compression forces. 
Data obtained were then compared in order to verify similarities and 
differences between root and stem response to bending.   
In order to better understand the role of hormones in the induction of cambial 
zone of poplar root subjected to bending, a method for isolation of cambial 
tissue was developed and the analysis of auxins, abscisic acid and cytokinins 
profile was carried out.  
Taking together, data of this thesis showed as poplar root responds to bending 
producing in the concave zone a compression wood, rich in lignin content, 
with features similar to the compression wood produced at stem level by 
gymnosperms. A high level of auxin and abscisic acid seems to accompany 
this development process, even in the early phases of the treatment.        
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1 Introduction  
 

Plants, as sessile organisms, need a constantly adaptation to changing of 
surrounding environment, and often suffering the consequences of different 
adverse factors (Boyer, 1982). Any extreme environmental condition that 
tends to inhibit the correct developmental process of a biological system 
could be a potential stress factor (Nilsen and Orcutt et al., 1996; Borics et al., 
2013). In nature, plants encounter numerous stresses, which can be 
distinguished in two general categories: biotic stress, imposed by other 
organisms, and abiotic stress, imposed by physical/chemical environmental 
alterations (Boyer, 1982). Biotic (i.e. pathogenic infection) and abiotic (i.e. 
flooding/drought, salinity, light excess/deficiency, extreme temperatures, ion 
toxicity/deficiency, pollutants, brushing, bending) stresses can cause aberrant 
changes in plant growth, productivity and survival (Boyer, 1982; Dhlamini et 

al., 2005). These different types of stress can act separately or in combination; 
therefore, severity, together with duration and number of exposures can 
significantly affect perception and response of the plant to the stress. 
Plants exhibit extraordinary plasticity, responding to the stress with transient 
or chronic solutions, but their susceptibility depends also on the species, 
organ or tissue in question, stage of development and genotype (Rai and 
Varma, 2010; Martínez-Crego et al., 2010; Reddy et al., 2011).  
In the course of evolution, plants developed a great number of sophisticated 
avoidance and adaptive mechanisms, to prevent/escape the stress exposure or 
withstand/tolerate stressful conditions (Levitt, 1972; Hasanuzzaman et al., 
2013). The resistance mechanisms that allow plants to survive in adverse 
conditions may be constitutive or stress-induced; in the last case, an 
acclimatization period (a gradual stress exposure) is necessary for the 
acquisition of the maximum degree of tolerance (Tuteja and Gill, 2013; 
Anjum, 2015). Elucidation of avoidance and tolerance mechanisms by which 
plants respond to various stresses is of great interest to plant biologists to 
know fundamental principles in cellular signaling but also to apply that 
knowledge in the generation of transgenic plants with increased resistance to 
grow under adverse environmental conditions (Reddy et al., 2011; Wang et 

al., 2003; Zhang et al., 2004). 
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1.1 Mechanical stress  
 
The mechanical stress is a common abiotic stress that can considerably affect 
plant stability and survival. Plants in their environmental are subject to many 
different kinds of mechanical stress, including shaking, rubbing, brushing, 
wounding, bending, impedance. These disadvantageous conditions are 
caused by several factors, such as wind, rain, slope of soil, presence of 
natural/artificial physical barriers and gravity (Jaffe and Forbes, 1993). 
The responses of plants to these mechanical factors involving alterations on 
plant growth and development are defined “thigmomorphogenesis” (Boyer, 
1967; Jaffe, 1973) and can be considered as a series of physiological, 
morphological, biomechanical and molecular adaptations of the plant in 
response to mechanical stimuli (Jaffe and Forbes, 1993). The 
thigmomorphogenesis has been studied for a long time, for different 
mechanical stresses, in various plant species: in the herbaceous plant 
Arabidopsis thaliana (Braam and Davis, 1990; Paul-Victor and Rowe, 2011), 
in gymnosperms, as Pinus taeda (Telewski and Jaffe, 1986a), in woody 
angiosperms, as Nicotiana tabacum (Anten et al., 2005) and Populus spp. 
(Pruyn et al., 2000; DeBell et al., 2002; Kern et al., 2005).  
Plants experience mechanical stress at any level; leaves, branches, stems, 
roots but also individual cells and subcellular organelles can sense and 
respond to changes in turgor and cell wall integrity (Braam, 2005).   
Different plant species react to mechanical stimuli in different ways; in some 
plants the responses occur rapidly, in other slowly over time (Zhang et al., 
2013). In some cases, plant morphogenesis can be influenced by mechanical 
perturbations, resulting in visible phenotypic changes. For example, is known 
that in A. thaliana mechanical perturbation inhibits elongation of the 
inflorescence stem (Paul-Victor and Rowe, 2011), touching retards flowering 
(Chehab et al., 2009) and bending induces postembryonic lateral roots 
formation (Richter et al., 2009). In woody plants, flexing increases stem 
diameter in Ulmus (Telewski and Pruyn, 1998) and in Pinus (Telewski and 
Jaffe, 1986a) often at the expense of elongation growth. Also in woody 
herbaceous plants, such Solanum lycopersicum, bending determines a 
decrease in extension growth (Coutand et al., 2000). 
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Compression wood was detected in wind-treated Pinus pinaster, although no 
difference in the righting response was observed between leaning trees 
growing toward or away from the source of wind, suggesting that also other 
factors can determine the reorientation rate of leaning trees (Berthier and 
Stokes, 2005). Maritime pine (Pinus pinaster) exposed to wind can induce 
phototropic responses in the early stage of pine seedlings development 
(Berthier and Stokes, 2005). Herrera et al., (2010) demonstrated a rapid 
gravitropic response in apices of inclined pine seedlings, little or no response 
at the stem bases of the plants.  
In Acer saccharum, leaf petioles exposed to wind are short and narrow with 
less lignified tissues (Niklas, 1996). In Spartium junceum root system 
morphology, pulling strength and chemical lignin content change in slope 
conditions (Scippa et al., 2006). An asymmetric allocation of root biomass in 
two preferential directions, named up-slope and down-slope, characterizes 

Fraxinus ornus growth on slope (Chiatante et al., 2003).   
More generally, the responses to mechanical perturbations at biomechanical 
level include an increase of flexural rigidity (strengthening tissue production) 
resulting, often, in an increase of diameter needed to counteract the reduction 
in stiffness and improve resistance to mechanical damage (Telewski and 
Jaffe, 1986b; Kern et al., 2005). 
In recent years, considerable progress has been made in understanding the 
effects of mechanical stresses at the molecular level. Signaling pathways 
involving various messengers that participate in stress adaptation, such as 
plant hormones, auxin, abscisic acid (ABA), ethylene, gibberellins (GAs), but 
also others signal molecules, such as Ca2+, reactive oxygen species (ROS) 
and miRNA (Ditengou et al., 2008; Trupiano et al., 2012b; Reddy et al., 
2011; Braam, 2005; Lu et al., 2005). 
Progress in this field have been done thanks to many experimental studies 
conducted in controlled conditions using mechanical bending (Osler et al., 
1996; Countand et al., 2000, 2010), primary object of this thesis.  
In the following sections, I will focus on the effects of bending at root level.  
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1.2 Responses of herbaceous plants to mechanical stress  
 
Effects of mechanical perturbations on root system have been widely studied 
on plant model of herbaceous species Arabidopsis thaliana. Richter et al., 
(2009) have found that the application of mechanical forces on the primary 
root can act as one of the triggers that entrain lateral roots (LRs) production 
on the convex side of an imposed bend. In this study it was demonstrated that 
a transient bending of 20s can be sufficient to elicit this developmental 
program. Curve-related LRs may forme also in decapped root, showing as 
mechanically induced bends lead to LRs formation also without a gravitropic 
stimulation. While, the surgical removal of the hypocotyl, to deplete 
Arabidopsis root of an acropetal source of auxin, prevented bend-induced LR 
emergence but still supported bend-induced primordium formation.  
As regard LRs formation is known that accumulation of auxin in the pericycle 
is likely sufficient to convert a pericycle cell to a founder pericycle cell, 
responsible of LRs formation, as detailed in Péret et al., (2009) and 
Dubrovsky et al., (2008). Furthermore, Arabidopsis mutants defective in 
auxin transport or signaling show reduced LRs formation (De Smet et al., 
2007).  
Richter et al., (2009), demonstrated that the establishment of the LR 
primordium induced by bending was not disrupted in mutants related with 
auxin transport and auxin receptor/response elements. For example, mutants 
in the AUX1 auxin permease, responsible for auxin influx into the cell, 
normally exhibit a reduction in LRs density, but if these mutants are subjected 
to bending, show a wild-type frequency of LRs induction. These results 
suggest that the bending and, consequently, the stretching of root cells in the 
convex side, is sufficient by itself to start the development of LRs in A. 

thaliana. Cytoplasmic Ca2+ may act as a key messenger in regulating many 
stress-related developmental processes in roots.  
Bending, as many other abiotic stresses, is known to elicit Ca2+ changes in 
root cells (Monshausen et al., 2009), and Ca2+ seems play a crucial role for 
the bend-related signals linked to LRs formation. Monshausen et al., (2009) 
showed that a touch stimulus in Arabidopsis roots elicits a cytoplasmic 
acidification and an apoplastic alkalization, correlated with apoplastic ROS 
production. 
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These responses regulated by intracellular calcium, show the same kinetics 
of Ca2+ increase stress-induced, and can be: a) elicited in the absence of a 
mechanical stimulus by artificially increasing Ca2+ concentrations; b) 
inhibited blocking Ca2+ variation, by using Ca2+-channel blocker (e.g. La3+). 
Blocking these Ca2+ changes, can be selectively blocked LRs formation in 
bent roots (Richter et al., 2009; Monshausen et al., 2009). ROS production 
and pH changes are independent of each other. In fact, in Arabidopsis root 
hair defective2 mutant (rhd2), lacking of a functional NADPH oxidase 
RBOH C involved in ROS production (Mori and Schroeder, 2004; Foreman 
et al., 2003), touch stimulation still triggered pH changes but not the local 
increase in ROS production seen in wild-type plants (Monshausen et al., 
2009). A model of early signaling events related with bending was proposed 
by Monshausen et al., (2009, Fig. 1). 
 
 

 
 

 
Fig. 1. Model of signaling events upon mechanical stimulation. The deformation of the cell 
wall and plasma membrane caused by mechanical stress is perceived through the activation of 
mechanosensors, such as Ca2+ permeable channels (1) and/or cell wall integrity sensors (2). The 
activation of these channels leads to an influx of Ca2+ into the cytoplasm directly (3) or indirectly 
(4). A signal amplification is determinate by the mobilization of Ca2+ from internal stores (5). 
Ca2+-dependent activation of plasma membrane NADPH oxidases results in NADPH oxidation 
(6) and extracellular superoxide (ROS) production (7). In the cell wall, superoxide is dismutated 
to H2O2 (8), which can diffuse back into the cytoplasm. The inhibition of plasma membrane H+ 
ATPases (9) contribute, together with the involvement of other transporters, such as unselective 
cation or anion channels (10) to pH changes. ER, endoplasmic reticulum; V, vacuole 
(Monshausen et al., 2009). 
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This model is applicable both to the mechanical exogenous perturbations (e.g. 
wind, obstacles in the soil) and internal mechanical stresses (e.g. tissue 
tension). In this model, mechanical stimulus determine an increase of Ca2+ 
levels, which leads to: a) an alteration in ROS and cytosolic acidification, 
known to elicit signaling events; b) a cell wall alkalinization, known to 
rigidify the cell wall matrix.   
Similar signaling cascades have also been described during pathogen defense 
responses (Garcia-Brugger et al., 2006), suggesting that this changes are used 
by plants to protect themselves against a range of environmental insults but 
also to regulate cellular expansion and tissue growth.  
Knowing the importance of Ca2+ in signaling events arising from bending of 
Arabidopsis root, Richter et al., (2009) proposed a possible Ca2+ role in 
stretch-induced founder pericycle cell recruitment for LRs formation (Fig. 2). 
Tension perception on the convex side of the bent root could activate Ca2+ 
channels, leading to an increase of Ca2+ in founder pericycle cell and elicit a 
cascade of events that operate in parallel or interact with auxin-dependent 
pathway. 
 
 

 

Fig. 2. Model of Ca2+ role in stretch-induced LRs formation (Richter et al., 2009). 
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Laskowski et al., (2008) observed that in Arabidopsis root the concentration 
of auxin increase along the outside of the bend, in the pericycle cells on the 
outside of the curve. The side of the root where LRs emerge is invariant, even 
in mutants closely related with auxin transport, such as PIN-FORMED (PIN) 
mutants, suggesting that a robust developmental pathway focuses LRs on the 
convex side of curves (Laskowski, 2013). 

 

1.3 Responses of woody plants to mechanical stress 

 

The studies on woody plants, especially on root system, are quite difficult. 
The lack of information in the literature about woody root response to 
mechanical stresses may be attributed to intrinsic difficulties of analysis of 
these species, compared to herbaceous species, given the large sizes, longer 
growth cycles and the limitations related with planting and sampling 
procedures. In fact, excavation and cleaning procedures can considerably 
damage the root system, determining alterations in the analysis at any level 
(Scippa et al., 2008).  
As regards the woody plants, therefore, many studies dealing with 
mechanical stimuli were conducted at stem level (Pruyn et al., 2000; DeBell 
et al., 2002; Kern et al., 2005; Telewski, 2006; Azri et al., 2009).  
Inhibition of stem elongation is often cited as a response to mechanical 
perturbation in many woody species (Jaffe, 1973; Paul-Victor and Rowe, 
2011), together with a high radial growth rates (Osler et al., 1996; Jourez et 

al., 2001).  
Roots, important for anchoring and mechanical support, show a great 
plasticity to adapt to the mechanical stress and optimize the whole plant 
stability. On the basis of such plasticity, root morphology and anatomy are 
considerably influenced by mechanical perturbations. Several studies 
reported that mechanical stress determines an increase of root diameter 
(Materechera et al., 1991), and root biomass (Di Iorio et al., 2005; Scippa et 

al., 2008), an increase of LRs numbers (Potters, 2007; 2009) and, similarly 
to the stem, a reduction of main root elongation rate (Bengough and Mullins, 
1990; Bengough et al., 2011; Popova et al., 2016).  
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In the last years, several progress has been made in the understanding of the 
physiological, molecular and biomechanical basis of Populus root responses 
to mechanical bending stress (Scippa et al., 2008; Trupiano et al., 2012a, b; 
Trupiano et al., 2013a, b; Trupiano et al., 2014; Rossi et al., 2015; Saviano 
et al., 2016). 
Poplar, as model plant of woody species, is widely studied for the 
understanding of mechanisms that control the adaptations of woody root to a 
wide variety of changing environments (Kieffer et al., 2008, 2009; Bohler et 

al., 2010; Plomion et al., 2006). In fact, its genome was the first forest tree 
genome to be decoded (Tuskan et al., 2006), with more than 45,000 putative 
protein-coding genes identified. 
The works of Scippa et al., (2008) and Trupiano et al., (2012a, b; 2013a, b), 
conducted on Populus nigra root subjected to bending, highlighted how, the 
integration of different signals (hormones, transporters, ROS, etc.) 
determines specific morphological alterations, such as variations in LRs 
density, root biomass, root radial growth and lignin content.   
In detail, in these studies a bending stress condition was simulated using a 
simple experimental system, in which poplar roots where linked to right angle 
curved steel nets (Scippa et al., 2008; Trupiano et al. 2012a), carrying out the 
analysis on three specific bent sectors (ABS, above bending sector; BS, 
bending sector, the point of maximum bending; BBS, below bending sector).  
In Trupiano et al., (2012b) a model has been proposed where along the bent 
taproot tensile and compression forces differently distributed identifying the 
three different regions, ABS, BS and BBS. According to this model, both 
types of forces (tensile and compression) resulted particularly intense in BS 
and BBS regions (Fig. 3).  
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Fig. 3. Model of the mechanical forces distribution along Populus bent taproot. Forces 
distribution was analyzed in three specific bent sectors (ABS, BS and BBS) of poplar root at two 
time points (Ti on the left and T2 on the right). Values are indicates under tension (positive values) 
and compression (negatives values) conditions. ABS: above bending sector; BS: bending sector 
(point of maximum bending); BBS: below bending sectors (Trupiano et al., 2012b).  

 
 
Furthermore, in this study, it was observed that the three regions undergo 
diverse alterations. ABS and BS react to bending stress increasing LRs 
emission in their convex side (Fig. 4), while BS and BBS regions respond 
with a predominant lignin accumulation. For this reason, a relation between 
these specific morphogenetic responses and forces distribution along the bent 
root was hypothesized.  
These studies provide also first insights on molecular factors regulating the 
response to bending of poplar plants, through the acquisition of the first 
poplar proteome map (Trupiano et al., 2012a). Indeed the comparative 
analysis of root proteome maps revealed that proteins involved in plant 
defense, metabolism, reaction wood formation and LRs development resulted 
differentially expressed between the different bent sectors and control roots, 
seemingly in relation to the mechanical forces distribution along the stressed 
woody taproots. 
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Fig. 4. Frequency of first-order lateral emission. The measurements were done in stressed (A) 
and control (B) poplar taproot at 5 cm length intervals, and within BS sector of bent root (C) and 
control (D). The black lines originating from the center indicate the average emission direction. 
The arc red line highlights the 95% confidence interval, while 0° coincides with the root convex 
side (Trupiano et al., 2012b). 
 

 
 
The modulated expression in ABS and BS of the ethylene responsive protein 
(ERF), the transcription factor BTF3 or pectin acetyl esterase and β-1,3 
glucanase enzymes resulted particularly interesting in relation with the 
morphogenetic responses. In fact, these factors are directly associated with 
the LRs formation and the wall weakening required during primordium 
growth and LRs emergence (van der Graaff et al., 2000; Banno et al., 2001; 
Chuck et al., 2002; Xie et al., 2000; Yoshida et al., 2006).  
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Factors involved in cell differentiation and gravitropic response were 
identified mainly in BS and BBS regions. The overexpression of annexin 
protein or enzymes, such fructosebisphosphate aldolase and fructokinase, 
was associated with conditions of altered gravity (Clark et al., 2005; 
Martzivanou and Hampp, 2003; Kimbrough et al., 2004). 
Furthermore, investigating the effects of bending during plant transition from 
winter dormancy to full vegetative activity, Trupiano et al., (2012a) suggest 
that long-term bending treatment reinforces the plant’s defense machinery, 
enabling the bent taproot to overcome winter better and resume growth earlier 
than unbent controls. 
Gene expression data on factors associated with cell cycle regulation, as Kip-
related protein (KipRP) and scarecrow (SCR), or associated with auxin 
transport, as PIN3, seem to support the earlier growth resumption induced by 
mechanical stress and the differential modulation of process involved in 
growth-dormancy cycle within ABS, BS and BBS regions, in relation to their 
dissimilar intensity of tension and compression forces (Trupiano et al., 
2013b).  
Overall, these works provide new information on how the intensity of tension 
and compression forces and the direction of gravity in the bent woody root 
can elicit specific responses. Poplar plants subject to bending, therefore, 
change their root morphology emitting new LRs, and their biomechanical 
properties increasing the root biomass and lignin content, showing a high 
degree of flexibility that allow them to acclimate and resist stress condition.  

 

1.4 Mechanical stress: a stimulus for reaction wood 

formation 

 

Morphological and anatomical changes caused by mechanical perturbations 

in woody plant often need time to be appreciated, making the study of 
thigmomorphogenesis very difficult (Braam, 2005). In general, as previously 
mentioned, woody plants respond to a gravistimulus increasing their tissue 
rigidity or flexibility (Biddington, 1986; Telewski, 1995) or reducing vertical 
growth in favor of the radial growth, this is made possible by the production 
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of a specialized tissue, defined "reaction wood" (Telewski and Jaffe, 1986a; 
Braam and David, 1990; Braam, 2005). Reaction wood, represent a serious 
defect in wood utility because possesses altered anatomical and chemical 
proprieties, but for the plant is necessary to perform the support function 
when needed (Du and Yamamoto, 2007). Reaction wood is formed in 
gymnosperms and in woody dicotyledonous angiosperms, generally in 
response to a non-optimal orientation of the stem or branches and root. In the 
case of woody plants, in fact, a longitudinal growth promotion on the lower 
side, as happens in the inclined herbaceous plants, is not sufficient to 
overcome the bending (Du and Yamamoto, 2007).  
Reaction wood in gymnosperms (softwood species) is generally called 
compression wood (CW) and is localized in a compression zone, developing 
on the lower side of leaning stems or branches, while in woody 
dicotyledonous angiosperms (hardwood species), it is called tension wood 
(TW) and is formed on the upper side of the leaning, in the tension zone. The 
wood produced on the side opposite to the reaction wood is named opposite 
wood (OW) and is characterized by properties intermediate between normal 
and reaction wood (Timell, 1986). The formation of both CW and TW causes 
an eccentric radial growth (Fig. 5).   

 

 

 

                               
 

 

 

 

 

Fig. 5. Compression wood in a stem of Picea abies (to the left), tension wood in a stem of 

Eperua falcate (to the right). The force vectors are indicated with a black arrows. Scale bar = 5 
cm (Ruelle, 2014). 
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CW and TW differ for cellulose and lignin content. CW is highly lignified 
and presents less cellulose than normal wood, while TW is characterized by 
a lower lignin content and more cellulose. 
Anatomically, CW presents short and rounder tracheid (xylem cell) with 
thick cell walls, resulting in intercellular spaces larger than in normal wood. 
In the CW, tracheid secondary wall lacks of the innermost S3 layer (for more 
details see Fig. 6), while the primary wall is the same as in normal wood. The 
microfibril angle in CW is much higher than in normal wood. These changes 
allow a longitudinally expansion of CW, necessary in order to push up the 
organ in the opposite direction of the bending (Timell, 1986; Du and 
Yamamoto, 2007). 
 
 
 

 
 

Fig. 6. Tracheid secondary cell wall in three-dimensional structure. The cell wall presents 
different layers, each characterized by a particular arrangement of cellulose microfibrils 
(Plomion et al., 2001).  

 
 
In angiosperms, as beech (Fagus spp.) or poplar (Populus spp.), TW is 
characterized by fibres with a particular morphology and chemical 
composition that form the so-called gelatinous layer (G-layer), that is the 
inner cell wall layer with a high crystalline cellulose content. In the G-layer 
the microfibril orientation is always longitudinal and parallel to the fiber axis, 
but fibres can show some variations: they can replace both S2 and S3 layers, 
only S3 layer or they can represent the innermost layer next to the S3 layer 
(Ruelle, 2014; Fig. 7). 
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Longitudinal tension wood fibres create a strong tensile tissue capable of 
pulling the stem upright (Timell, 1969; Felten and Sundberg, 2013; Ruelle, 
2014).   
 
 
 

 

 

Fig. 7. Fibres in normal wood (a) and tension wood (b–d). Lines indicate cellulose microfibril 
orientation. The variants in G-layer are showed: (a) Normal fibres do not develop a G-layer. (b) 
S2 and S3 layers replaced with G-layer. (c) S3 layer replaced with G-layer. (d) G-layer forms as 
the innermost layer next to the S3 layer (Ruelle, 2014). 
 

 

 

 

The formation of reaction wood (CW and TW) is essentially regulated by 
environmental factors, such as gravity, bending, wind, compressive or tensile 
stimuli, but it can take place every time the tree needs to adjust the proper 
state of balance. Consequently, this specialized tissue, extremely different 
between gymnosperms and angiosperms, always forms on the side of the 
organ where it serves to reestablish a correct position (Du and Yamamoto, 
2007). 
In nature, there are also some exceptions: plants that not produce reaction 
wood or produce a type different from the group they belong. For instance, 
the angiosperm Bruxus produce a reaction wood with features similar to CW, 
including increased lignification and absence of S3 layer (Yoshizawa et al., 
1993).   
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1.5 Plant hormones and reaction wood formation 
 
Several studies indicate that phytohormones play a central role during 
reaction wood formation. Phytohormones are organic compounds usually 
synthesized in one tissue of the plant and then transported to another location, 
where they induce a specific physiological response (Antoniadi et al., 2015).   
Auxins, cytokinins (CKs), abscisic acid (ABA), gibberellins (GAs), and 
ethylene are the five “classical” groups of plant hormones (Kende and 
Zeewart, 1997). 
Auxins affect numerous aspects of plant growth and development, such as 
photo- and gravitropism, cell division and differentiation, apical dominance, 
flowering and senescence, are involved in many different biotic and abiotic 
stress responses and seem to regulate reaction wood formation as well (Simm 
et al., 2016; Du and Yamamoto 2007). The major auxin found in plants is 
indole-3-acetic acid (IAA); its biosynthesis, mostly tryptophan-dependent, is 
associated with rapidly dividing and rapidly growing tissue (meristems, 
young leaves, seeds and root tips), although all plant tissues seem able to 
produce low levels of IAA (Cohen et al., 2003; Ljung et al., 2001; Aloni et 

al., 2006).  
Regarding the involvement of IAA in CW formation, data reported in the 
literature are scarce and sometimes contradictory (Table 1), while negative 
or no relations were observed between IAA and TW formation (Table 2, Du 
and Yamamoto, 2007). 
Until recently, the role of auxin in the development of CW was mainly 
demonstrated by indirect investigations, applying exogenous auxins, auxin 
regulators (i.e. naphthaleneacetic acid, NAA) or inhibitors (i.e. dinitrophenol, 
DNP) at stem level (Hejnowicz and Tomaszewski, 1969; Kurt et al., 2014; 
Fagerstedt et al., 2016).   
Results showed that high concentrations of IAA can induce the formation of 
CW in upright softwood stems at the site of application (Little and Savidge, 
1987). In decapitated stems of Scots pine, the apically application of IAA 
induced cambial cells division and xylem production in a dose-dependent 
manner (Sundberg and Little, 1990). While the application of the IAA 
transport inhibitor NPA (N-1-naphthylphthalamic acid) to upright stems can 
induce CW above the site of application (Sundberg et al., 1994). 
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Table. 1-2. Reports on relationship between IAA/CW or TW formation. (Du and Yamamoto, 
2007). 
 
 
 
Du et al., (2004) found a higher amount of endogenous IAA in the cambial 
region producing CW. Contrary, Hellgren et al., (2004) suggested that IAA 
gradient in the cambium could not be the signal for the development of 
reaction wood, since it can form even without changes in auxin distribution 
within the cambial region of Populus tremula and Pinus sylvestris bent stem.  
Regarding the development of TW, reports in the literature suggest that it is 
induced by IAA deficiency or it formed around the stem position where IAA 
concentration is lowest (Timell, 1986).  
The application of IAA to one side of Populus tremula upright stems induces 
TW on the opposite side (Blum, 1971). Most recently, genes expression 
studies in bent poplar stem showed a rapid downregulation of PttIAA genes 
during the earliest responses associated with TW formation (Moyle et al., 
2002). In the same study, no measurable changes in IAA content were found 
after days of bending in isolated stem tissues (xylem and phloem tissues) after 
induction of TW (Moyle et al., 2002). The analysis of expressed sequence 
tags (ESTs) of poplar stems subjected to bending seems to confirm these 
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results. In fact, Jin et al., (2011) identified many genes involved in cell wall 
biosynthesis and modification after bending treatment but also a 
downregulation of the majority auxin-related genes.  
These experiments provided interesting and very informative results about 
the potential role of IAA in reaction wood formation. However, the measure 
of endogenous auxin concentrations in planta is still necessary to better 
validate its role in reaction wood formation. 
Unlike auxins, CKs and ABA have been seldom investigated in reaction 
wood formation and, so far, any direct relations with reaction wood formation 
has been shown (Du and Yamamoto, 2007).  
CKs are adenine derivatives, produced in the root cap that can move upward. 
Mainly based on cell division and proliferation activity, CKs are involved in 
many development aspects, as seed germination, shoot apical meristem 
activity, floral development, photomorphogenesis, leaf senescence and 
regulation of vascular development (Simm et al., 2016; Svačinová et al., 
2012; Kieber and Schaller, 2014; Paul et al., 2016).  
Several studies suggest that CKs interact with IAA in a synergetic manner for 
xylem differentiation: this combination appears to be essential for induction 
of lignification and tracheary element differentiation (Du and Yamamoto, 
2007). In growing poplars, CKs can stimulate vascular cambium cells 
division and promote the development of vascular cambium (Matsumoto-
Kitano et al., 2008). CKs can increase the auxin-responsiveness in the 
cambial zone, for example, regulating the level of PIN auxin efflux proteins 
(Paul et al., 2016).  
As regards the universal stress hormone, ABA, evidence demonstrated that, 
it plays a central role in the plasticity of plant development; it can regulate 
the wood formation by retarding or ending the cambial activity during winter 
(Carvalho et al., 2013). Differently from CKs, ABA acts in an inhibitory 
manner with IAA in xylem differentiation (Du and Yamamoto, 2007). ABA 
seems to be involved in plants responses to mechanical stimuli (Trupiano et 

al., 2012b), but its specific role in the reaction wood formation needs to be 
further investigated.   
Among the hormones mainly involved in reaction wood formation, aside the 
IAA, there are gibberellins and the gaseous hormone ethylene.   
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GAs are a large family of tetracyclic diterpenes which promote cell and stem 
elongation, inducing long tracheids, in gymnosperms, and fibres, in 
angiosperms (Carvalho et al., 2013). 
GAs are known to be involved in TW formation, while their role in the 
development of CW is weakly supported. The application of GA to vertical 
stems of Populus plants induces the development of TW with typical G-fibres 
in the absence of gravistimulus (Funada et al., 2008). Exogenous application 
of GAs on branches of cherry trees stimulated cambial growth and promoted 
TW formation on the upper side (Fagerstedt et al., 2016). 
Several GAs have been identified in the cambial region in both woody 
angiosperms and gymnosperms (Du and Yamamoto, 2007). However, are 
still needed more direct evidence on their involvement in reaction wood 
formation.  
Ethylene, synthesized in response to various stress (wounding, flooding, wind 
bending) is usually measured by using application experiments or by the 
estimation of its precursor, the 1-aminocyclopropane-1-carboxylic acid 
(ACC). Applied ethylene alters polysaccharide deposition during cell wall 
formation and induced the activity of key enzymes in the lignin biosynthesis 
(Du and Yamamoto, 2007), despite this, many examples rejected its role in 
CW formation. In bent poplars (P. tremula x tremuloides), for example, an 
induction of PttACO1 (ACC oxidase, the last enzyme in the ethylene 
biosynthesis pathway) expression was observed in the TW (Andersson-
Gunnerås et al., 2003). The role of ethylene in CW-forming tissue would 
appear mainly correlated with his positive regulation function of IAA levels 
and IAA sensitivity (Love et al., 2009).  
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2 Objectives and papers 

 

The aim of the research reported in this doctoral thesis was to deepen the 
knowledge on woody root biology with a particular focus on the mechanisms 
regulating the responses to mechanical stress. 
Previous studies showed that a bent Populus nigra woody root is subjected 
to tension and compression mechanical forces that distributed differently 
along the taproot and between the convex and concave side. This different 
mechanical forces distribution resulted to be associated with specific 
responses such as lateral roots emission and reaction wood formation in an 
asymmetric manner.  
Based on these evidence, in this thesis, it has been hypothesized that the type 
(tension and compression) and the intensity of mechanical forces play a 
pivotal role in activating specific cambium cells signal transduction pathways 
which in turn, lead their different activity and differentiation. 
To verify this hypothesis, detailed goals of the project were:  
 
 

Ø To analyze along the bent poplar root morphological and anatomical 
changes induced by different intensities of tension and compression 
forces, investigating the role of hormones and molecular factors 
(paper I).  
 

Ø To investigate, through the analysis of the metabolome profile, the 
role of the main hormones (IAA, ABA, CKs) in the bent woody root, 
correlating data to those of bent poplar stem and focusing on 
asymmetric responses at the base of the reaction wood production 
(paper II).  
 

Ø To develop a method for cambium cells isolation from the convex 
and concave sides of the bent woody root, with a consequent 
determination of tissue-specific hormones profiling in order to 
investigate their role in meristematic cells initiation and 
differentiation in response to mechanical stress (paper III). 



 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I 







 

 

 

 

 

 

 

 

 

 

 

II 



 

Paper II - Page 1 of 25 

 

(Paper in preparation) 

MECHANICAL BENDING STRESS IN POPULUS NIGRA PLANTS: 

HORMONES PROFILING IN ROOT AND STEM  

Elena De Zio1, Michal Karady3, Ioanna Antoniadi3, Dalila Trupiano1, Antonio 

Montagnoli2, Mattia Terzaghi2, Donato Chiatante2, Karin Ljung3, Gabriella S. 

Scippa1. 

1Dipartimento di Bioscienze e Territorio, University of Molise, 86090 Pesche (IS), 
Italy   
2Dipartimento di Biotecnologie e Scienze della Vita, University of Insubria, 21100 
Varese (VA), Italy   
3Department of Forest Genetics and Plant Physiology, Swedish University of 
Agricultural Sciences, 90183 Umeå, Sweden 

 
 

ABSTRACT 
This research is focused on understanding the role of hormones in Populus 

nigra responses to long-term bending stress. We analyzed and compared the 
response of different sectors of poplar root and stem to mechanical treatment, 
being interested in the roles played by main plant hormones. In detail, we 
investigated the auxins metabolite profiling, the cytokinins and abscisic acid 
content, using a method based on liquid chromatography coupled to tandem 
mass spectrometry analysis (LC-MS/MS).   
We provide the hormonal profile, explaining the differences between the 
convex and concave side of taproot and stem. An asymmetry of auxin 
concentration may trigger the reaction wood formation in poplar root after 
bending stress, while any asymmetrical distribution of auxin seems to be at 
the basis of tension wood formation in the stem. Changes in IAA conjugation 
and degradation pathways seems to be involved in reaction wood formation 
as well.  
 
Key words: bending stress, auxins, cytokinins, metabolite profiling, LC-
MS/MS. 
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Abbreviations: ABA, abscisic acid; ABS, above bending sector; BS, bending 
sector; BBS, below bending sector; CE, concave side; CKs, cytokinins; CW, 
compression wood; CX, convex side; IAA, indole-3-acetic acid; IAAsp, 
IAA-aspartate; IAGlu, IAA-glutamate; oxIAA, 2-oxindole-3-acetic acid; 
TW, tension wood. 

 

INTRODUCTION 

Mechanical stimuli (e.g. rain, wind, gravity, impedance, slope of soil, 
wounding, bending) can considerable influence plant growth and 
development. To optimizing its anchorage and survival, plant responds with 
physiological, morphological, biomechanical and molecular adaptations that, 
in some case, can be quite noticeable (Jaffe and Forbes, 1993). Bending 
stresses experienced by a tree may involve both root system and aerial parts 
of plant. Branches and trunks subjected to bending tend to reduce their 
elongation (Coutand and Moulia, 2000) and to increase their radial growth 
and their elastic resilience (Coutand et al., 2009). Bending at root level leads 
to alterations of tissue architecture (Nicoll and Ray, 1996; Chiatante et al., 
2003) and mechanical properties (Goodman and Ennos, 1998).  
Progress has been made in the understanding of the physiological, molecular 
and biochemical basis of woody root response to mechanical stress (Scippa 
et al., 2008; Trupiano et al., 2012a, b; Trupiano et al., 2013a), which have 
highlighted some similarities with herbaceous species. Indeed, similar to 
Arabidopsis thaliana, in poplar trees bending of roots causes the initiation of 
lateral root primordia toward the convex side (Ditegou et al., 2008; 
Monshausen et al., 2009; Richter et al., 2009; Tupiano et al., 2012b). 
However, differently from herbaceous species, compression forces can also 
elicit reaction wood formation in the concave side of the bent roots (De Zio 
et al., 2016). 
Reaction wood possesses altered properties and forms as part of a 
developmental process important to re-orient plant in response to a 
gravistimulus. In gymnosperms it is referred to as compression wood (CW) 
and develops on the lower side of leaning stems or branches, whereas, in 
dicotyledonous angiosperms, it forms on the upper side and is called tension 
wood (TW; Du and Yamamoto 2007). Interestingly, in Populus roots a CW 
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similar to that observed in gymnosperm stems forms after bending (De Zio et 

al., 2016).  
The anatomical and biochemical features of reaction wood in woody stems 
and roots have been the subject of several studies, and although the 
physiological and molecular signals inducing the formation of reaction wood 
remain poorly described, evidence on the involvement of plant hormones 
have been provided (for review, see Elo et al., 2009; Nieminen et al., 2012; 
Ursache et al., 2013; Trupiano et al., 2012b; De Zio et al., 2016).   
The functional role of auxin in plant response to mechanical stress has been 
an active area of research on woody stems. However, findings on the 
relationship between endogenous auxin levels and the formation of CW or 
TW are still scarce and sometimes contradictory and remain to be elucidated 
(Du and Yamamoto, 2007). Indeed, Hellgren et al. (2004) found that the 
formation of tension and compression wood in poplar and pine bent stems is 
not mediated by changes in the indole-3-acetic acid (IAA) level in the 
cambial tissues, whereas Funada et al. (1990) and Du et al. (2004) detected 
higher amount of endogenous IAA at the side of the cambial region forming 
CW. In the case of poplar bent roots, in a recent work we found that wood 
formation is induced by compression forces and mediated by high levels of 
IAA (De Zio et al., 2016).  
Since the role of auxin in reaction wood formation has been demonstrate 
essentially by indirect investigations, applying exogenous auxins, auxin 
regulators or inhibitors (Hejnowicz and Tomaszewski, 1969; Fagerstedt et 

al., 2016), and few studies analyzed the IAA endogenous level within the 
reaction wood (Du and Yamamoto, 2007) a documentation of auxin 
concentration and auxin metabolism in planta in the reaction wood-forming 
tissue resulted necessary, especially at root level.   
In this study, a recent developed plant hormone profiling method (Novák et 

al., 2012) was used, to unravel the crosstalk between hormones and broaden 
the knowledge of the hormonal regulation at the basis of woody plant bending 
stress and reaction wood formation. This method offers the possibility to 
know endogenous levels of IAA, abscisic acid (ABA) and cytokinins (CKs) 
and, simultaneously, to know the degree of regulation of IAA, through the 
quantification of auxin amino acid conjugates, IAAsp (IAA-aspartate) and 
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IAGlu (IAA-glutamate), and principal auxin degradation product, the 2-
oxindole-3-acetic acid (oxIAA, Ljung et al., 2002; Novák et al., 2008, 2012). 
In many species and plant tissues, mechanisms such as conjugation with 
amino acids or degradation are essential to convert the auxin active form to 
the inactive form, maintaining its appropriate homeostasis at cellular level 
(Tran and Pal, 2014). IAA metabolism (biosynthesis, conjugation/de-
conjugation and degradation) and IAA transport between tissues and cell 
compartments define the net concentration of auxin within a plant cell. 
Environmental mechanical stimuli can considerably influence the rate of 
removal or release of free auxin in the cells, as well as the content of other 
hormones. There are evidences about cytokinins (CKs) mechanically induced 
stress responsiveness (Sanyal and Bangerth, 1998), and about the role of 
abscisic acid (ABA) in responses to mechanical stimuli (Jaffe, 1980; Scippa 
et al., 2008; Trupiano et al., 2012b; De Zio et al., 2016), although their role 
in reaction wood formation remains to be elucidated (Du and Yamamoto, 
2007). In view of this, here we provide a detailed hormones profiling 
considering different sectors and sides (convex and concave) of poplar bent 
roots and stems in relation of the different intensity of tension and 
compression forces perception during the bending stress.   
 

MATERIALS AND METHODS  
 

Plant material and bending conditions 

Long-term bending stress was applied to four years-old P. nigra plants. The 
root bending simulation was performed tying taproots around right angle 
curved steel nets, as previously described in Scippa et al. (2008), Trupiano et 

al. (2012a) and De Zio et al. (2016). The same bending angle (~90°) and 
similar supporters were used to impose the stress at stem level of other poplar 
plants. Differently, control plants were linked to vertical steel nets localized 
at root or stem level. All plants were grown in a growth chamber for five 
months under temperature and water controlled conditions, using LED lights 
(ʎ420 - ʎ740) to emulate a natural photoperiod.  
After the treatment, control samples collection was made cutting randomly: 
(i) a zone between 12-27 cm from the root collar zone (equivalent of stem 
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base) downward (root control); (ii) a zone between 12-27 cm from the root 
collar zone upward (stem control).  
A detailed spatial analysis was performed in the case of bent samples. Firstly, 
three transversal sectors, each 5 cm long, were taken in the root as like as in 
the stem: the Above Bending Sector (ABS), corresponding to the region just 
above the bending zone; the Bending Sector (BS), representing the point of 
maximum bending and the Below Bending Sector (BBS), corresponding to 
the region just below the bending zone. In the case of bent roots, ABS was 
localized at 12-17 cm distant from the root collar, BS at 17-22 cm and BBS 
at 22-27 cm. In the case of bent stems, ABS was localized at 22-27 cm distant 
from the root collar (stem base), BS at 17-22 cm and BBS at 12-17 cm.   
Secondly, each of these regions (ABS, BS and BBS) was further divided 
lengthwise into two parts to collect both the convex (CX) and concave side 
(CE) [Fig. 1 Supplementary information]. Samples were frozen in liquid 
nitrogen and stored at -80°C for successive analysis.   
 
Auxins, abscisic acid and cytokinins purification 

For the simultaneous purification of auxins, ABA and CKs, we used a 
modified Dobrev and Kamínek (2002) method. Briefly, 20 mg of fresh weight 
of plant material was grounded in liquid nitrogen and mixed with 1 mL of 
cold extraction mixture of methanol/water/formic acid (modified Bieleski 
buffer - 15/4/1, v/v/v). Labeled internal standards (Olchemim Ltd, Czech 
Republic) were supplemented in this first extraction step. After adding 3 
ceramic beads, the samples were homogenized using a MixerMill MM 301 
bead mill (Retsch) at a frequency of 25 Hz for 8 min, incubated for 10 min at 
4°C with continuous shaking, and centrifuged for 15 min, 14000 rpm at 4°C.  
Supernatants were reconstituted in 7 mL of 1 M formic acid and purified by 

solid-phase extraction (SPE) on MCX 1cc/30mg columns (Oasis Extraction 
Cartridges - Waters). Columns were conditioned with methanol and water, 
equilibrated with 1 mL 50% (v/v) nitric acid, 2 mL of water, and 1 mL of 1 
M formic acid. After samples application, the columns were washed with 1 
mL of 1 M formic acid and eluted with following order of solutions: 1 mL of 
methanol (to collect the auxin and ABA fraction); 1 mL of 0.35 M ammonium 
hydroxide and 2 mL of 0.35 M ammonium hydroxide in 60% (v/v) methanol 
solution (to collect the cytokinin fraction). The eluates were vacuum-dried 



 

Paper II - Page 6 of 25 

 

using a SpeedVac concentrator, dissolved in 40 µL of 10% methanol and 
stored at -20°C until mass analysis.  
 

UHPLC-MS/MS method 

The ultra-high-performance liquid chromatography-tandem mass 
spectrometry (UHPLC-MS/MS) was used to analyze the auxins metabolites 
and detect ABA and CKs. Separation and determination of compounds was 
performed using a 1290 Infinity LC system and 6490 Triple Quadrupole 

LC/MS system (Agilent Technologies). Auxins mass analysis was done 
according to Novák et al., (2012), with subsequent ABA detection, while CKs 
mass analysis was carried out in accordance with Novák et al., (2008). IAA 
metabolites and ABA were expressed as pg mg-1 of fresh weight, while CKs 
as pmol g-1 of fresh weight. MassHunter software (version B.05.02; Agilent 
Technologies) was used to determine the concentrations of all examined 
compounds using stable isotope dilution. 
 
Statistical analysis 

When needed, variables were square root or log transformed to ensure normal 
distributions and equal variances for the use of parametric statistics. For each 
variable, a one-way ANOVA was used to compare different plant 
compartments (root and stem), regions (ABS, BS, BBS) and sides (CX and 
CE). Post-hoc LSD-tests were conducted to detect overall differences 
between convex and concave sides for each region of each plant 
compartment. Analyses were applied on a 95% significance level. Statistical 
analysis was carried out using statistical software package SPSS 17.0 (SPSS 
Inc, Chicago IL, USA). 
 

RESULTS AND DISCUSSION 

 
IAA metabolites response to bending  
Based on isotope feeding experiments and a sensitive mass spectrometry-
based method we identified and quantified the major primary IAA catabolite, 
oxIAA and the conjugates IAGlu and IAAsp, in Populus woody root and stem 
subjected to long-term bending stress.  
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In order to ascertain the root/stem zones involved in the major contribution 
to the degradation and conjugation of IAA, we analyzed the concentration of 
the hormone and its metabolites along and across the main root and stem, 
focusing our attention on two aspects: i) differences and similarities between 
the two tissues analyzed; ii) characterization of the asymmetric response 
between the concave and convex side from each tissue.   
As regards root tissue, in a previous study we showed that bending stress in 
P. nigra induces drastic changes in cells shape and tissues organization (De 
Zio et al., 2016). Stretched and compressed cells, distributed in the convex 
and concave side, respectively, perceive differently tensile and compression 
forces along the taproot and this results in an asymmetric distribution of 
lateral roots and reaction wood formation in the main root (De Zio et al., 
2016). 
In accordance with previous observations, here we showed that in poplar root 
the concentration of IAA was higher in the concave side of BS and BBS 
regions, compared to the opposite side, confirming, once again, the presence 
of an asymmetry in these root zones. This asymmetry was greater in BBS, 
with the highest IAA value in BBS concave side (Fig. 1D). 
In De Zio et al., (2016) has been hypothesized, that the stress-related 
anatomical changes, expressed through reaction wood development in the 
concave side of the main root [Fig. 2 Supplementary information], could 
be due to an increase of cambial activity, associated with an increase of auxin 
level in that side. The role of IAA in the regulation of cambial growth (Little 
and Pharis, 1995; Sundberg et al., 2000) has been well established; 
furthermore, there are evidence of the IAA role in the regulation of reaction 
wood formation (Funada et al., 1990; Sundberg et al., 1994; Du et al., 2004). 
However, most of the information regarding the reaction wood development 
comes from experiments involving applications of exogenous IAA or IAA-
transport inhibitors at stem level.  
In general, it is known that the reaction wood is induced by differential 
endogenous IAA levels in both gymnosperm and angiosperm tree species 
(Hellgren et al., 2004). A widely accepted model suggests that the TW 
requires a difference in auxin concentration around the stem and forms in the 
region deficient in IAA, whereas CW is induced by an increase of auxin 
concentration (for review, see Timell, 1986; Little and Savidge, 1987; 
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Srivastava, 2002). Accordingly with this model, we found a reduction of IAA 
in the upper portion of the stem (ABS region), where TW formed (for more 
details see later and Fig. 1D).   
Compared to the control, IAA catabolism, measured through the 
accumulation of oxIAA, in the root is induced in the point of maximum 
bending (BS region, Fig. 1A), but without any differences between the two 
sides of this region. This result seems to indicate that the asymmetrical IAA 
reduction in BS convex side may not be provided by the increase of IAA 
catabolism, but rather caused by asymmetrical decrease of IAA biosynthesis, 
considering that conjugation processes were also affected in that root zone 
(BS convex side).  
The strong reduction of IAA observed in BBS convex side of the root was 
not accompanied by a high level of oxIAA catabolite, although, also in this 
sector the conjugations with glutamate and aspartate were affected (Fig. 1). 
Although the IAA biosynthesis pathways in Populus have so far not been 
well elucidated (Vayssières et al., 2015), it has been reported that oxIAA can 
be induced by IAA biosynthesis (Band et al., 2012), and that the 
accumulation of oxIAA, is a typical response to high IAA levels, as observed 
in IAA-overproducing mutants (Novák et al., 2012; Pencìk et al., 2013).  
It has been demonstrated that localized auxin accumulation increases both 
ROS and oxIAA. Furthermore, oxIAA seems not to be transported from cell 
to cell, although it appears to be a substrate for the ATP-binding cassette 
subfamily G (ABCG) transporters, positioned primarily on the outer lateral 
surface of the root epidermis (Peer et al., 2013). Several lines of evidence 
suggest a relationship between IAA oxidation and cellular redox status. For 
instance, Peer et al., (2013) demonstrated that flavonoid mutants with altered 
ROS scavenging present high oxIAA levels.  
Richter et al., (2009) and Monshausen et al., (2009) demonstrated the 
importance of Ca2+ and ROS in bent Arabidopsis root for the lateral roots 
emission in the convex side. Therefore, knowing that ROS represented an 
important signal for lateral roots emission and that auxin maximum correlates 
with a change in redox status, as oxidation increases where auxin level is 
high, we might hypothesize that the asymmetrical increase of oxIAA in ABS 
convex side, could be strongly associated with lateral roots emission. In this 
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particular region of the bent root, in fact, was previously found a greater 
lateral roots emission (Trupiano et al., 2012b). 
Interesting, the higher content of IAA in BS root concave side was 
accompanied by an increase of IAGlu conjugate in respect to the control and 
the opposite site (Fig. 1C). An asymmetry about IAGlu content was also 
found in ABS, whit the highest value in the convex side, also characterized 
by a high level of oxIAA. 
Contrary to IAGlu conjugate, IAAsp content was reduced in all stressed 
sectors of the root compared to the control, except for ABS convex side and 
BBS concave side, which showed similar values to the control and higher 
values compared to the opposite side.  
In our measurements, IAAsp and IAGlu conjugates were detected in the 
stressed samples as like as in the root control, suggesting that IAA 
conjugation occurs during Populus root development and is not inhibited, 
although reduced in some root zones, by the mechanical stress. Normally, 
IAA amino acid conjugates are present in much lower quantities compared to 
oxIAA (Pencík et al., 2013; Vayssières et al., 2015). In the root, we noticed, 
in fact, a concentration range equal to ~100-300 pg mg-1 of FW for oxIAA, 
~9-25 pg mg-1 of FW for IAGlu and ~7-15 pg mg-1 of FW for IAAsp. 
The auxin conjugation pathway is differentially regulated in various tissues 
and during plant development, upon abiotic and biotic stresses, and can be 
activated in response to exogenous auxin (Ljung et al., 2013). As IAA 
degradation pathway, conjugation can be induced by high levels of auxin 
(Pencík et al., 2013). 
Concerning stress-tolerance roles, it has been demonstrated the involvement 
of IAA metabolites in the adaptation to high salinity in poplar plant (Junghans 
et al., 2006), in pathogen infection responses (Ludwig-Müller, 2011) and in 
the interaction plant-rhizosphere (Vayssières et al., 2015). The formation of 
IAA conjugates may serve other functions as well, including storage and 
protection against oxidative degradation (Tran and Pal, 2014). 
In rice, has been demonstrated that overexpression of GH3-8 recombinant 
auxin-responsive gene, encoding  IAA-amino acid synthetase, promotes 
IAAsp conjugates formation and enhance resistances to pathogens, reducing 
the auxin-induced cell wall loosening, through the suppression of expansin 
genes (wall loosening proteins; Ding et al., 2008). 
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Furthermore, there is evidence that IAAsp is induced after exogenous 
application of IAA, showing a function in adventitious root formation in 
cuttings of P. tremula (Plüss et al., 1989). The percentage of adventitious root 
formation in Betula pendula seems to respond to IAAsp conjugate as well, 
and seems to be correlated with gravitropism of the stem (Makhnev et al., 
2012).  
In light of the above knowledge, we can suppose that the increase of IAGlu 
in BS root concave side could be related with the signaling that regulate the 
lignin deposition and the stabilization/thickening of cell wall, in this region, 
where compression forces triggered CW formation, characterized by high 
lignin content (De Zio et al., 2016). However, considering the complexity of 
auxin pathway and the limited amount of information about root bending-
auxin metabolism this hypothesis requires further investigation. 
As mentioned earlier, in the stem, our results reveled a reduction of IAA 
content compared to control only in ABS region, but any statistical difference 
was found between the concave and convex sides (Fig. 1D).   
Hellgren et al. (2004) found that the formation of TW and CW in poplar and 
pine bent stems is not mediated by changes in the IAA level in the cambial 
tissue, but there are several evidences that TW forms in the region deficient 
in IAA (for review, see Timell, 1986; Little and Savidge, 1987; Srivastava, 
2002). 
According to these observations, we found a TW [Fig. 2 Supplementary 

information], characterized by high levels of carbohydrates and low lignin 
content (data not showed), in the upper region of the bent stem, ABS, and 
towards the convex side, where the levels of IAA measured were lower than 
the other regions of the stem. 
Furthermore, results showed a reduction of oxIAA content compared to the 
control in all convex side of the stem. The decrease of oxIAA in BBS convex 
side of the bent stem is significant compared to the control but also to the 
corresponding opposite side (Fig. 1A).  
Interestingly, in the stem, IAAsp conjugate was detected only in ABS region, 
with a lower level in the convex side (Fig. 1B). The absence of IAAsp in the 
control and in the other bent sectors suggests that in the stem IAA balance is 
regulated mainly by IAA biosynthesis and degradation. The IAAsp absence 
in BS and BBS regions could be associated with a positive regulation of stem 
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elongation process; in fact, there are evidences that members of the GH3 
auxin-responsive gene family, involved in auxin signal transduction by 
IAAsp production, negatively regulate shoot cell elongation (Nakazawa et 

al., 2001). This result could be also correlated with the high level of CKs 
(known to be involved in stem elongation) in BS region (Makhnev et al., 
2012).  
In this regard, however, it cannot be ruled out that the presence of IAAsp 
conjugates exclusively in ABS region is connected with the levels of IAGlu: 
below the detection limit in ABS convex side and reduced in ABS concave 
side compared to the stem control.  
As concerns IAGlu conjugate, a reduction was also found in the concave side 
of BS, significant compared to the stem control and the corresponding 
opposite side. Interestingly, IAGlu in BS concave side showed an opposite 
trend between root and stem (Fig. 1C).  
 
ABA and CKs response to bending 
In order to ascertain the contributors of other important plant hormones in the 
response of Populus to bending stress, we analyzed the content of ABA and 
CKs as well, in all bent sectors of the root and stem (Fig. 2). Surprisingly, our 
results showed that in the bent root ABA levels were not higher than control, 
nevertheless, a decrease of this hormone was found in BS and BBS convex 
side in respect to the control and the opposite concave side (Fig. 2A). This 
result appears to be contradictory, since various stresses, including drought, 
salinity, cold, induce ABA synthesis (Zhu, 2002; Mahajan and Tuteja, 2005; 
Swamy et al., 1999; Verma et al., 2016). Nevertheless, in the stressed 
samples, the most significant differences in ABA distribution were observed 
between the two sides of BS and BBS regions, according with previous 
results (De Zio et al., 2016), confirming a potential role in counteracting the 
deformation of conduits and changes in hydraulic conductivity, related with 
the high compression forces perception and the CW formation (Trupiano et 

al., 2012b; Mayr and Cochard, 2003).   
Similarly to ABA distribution, we observed a reduction of total CKs in all 
stressed samples compared to root control (Fig. 2B). Root represents an 
important source of CKs that are required for normal plant growth and 
development, but it was recently demonstrated that CKs can regulate 
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negatively some abiotic stress responses. Nishiyama et al., (2011) showed as 
in salt and drought stress conditions, plants with reduced CKs activity 
exhibited a strong stress-tolerant phenotype, associated with an increase of 
cell membrane integrity and ABA hypersensitivity. 
Based on the above, we could hypothesize that also in mechanical stress 
condition there is a mutual regulation between CKs and ABA, aimed at 
raising the adaptation to the stress trough the regulation of cell elasticity and 
integrity, particularly important in presence of strong curvature.  
Contrary to the bent root, the bending in the stem determined a significant 
increment of CKs in ABS convex side and BS region compared to the control, 
the variation in ABS convex side was significant also in respect to the 
opposite concave side (Fig. 2B). The high CKs content in BS region could be 
related with well-established function of CKs in cell division, tracheid 
differentiation and stem elongation (Little and Savidge, 1987; Aloni et al., 
2006; Simm et al., 2016; Kieber and Schaller, 2014; Paul et al., 2016). In the 
literature, there are examples of increased CKs activity in xylem exudate in 
plants subject to constant shaking stress (Beyl and Mitchell, 1983). So far, 
any direct relation was found for CKs and ABA with reaction wood 
formation, even if, it was reported an increase of kinetin, a particular type of 
cytokinin, in TW in IAA-treated stems (Blum, 1971), and a localization of 
kinetin in the upper side of horizontally placed willow stems (Wareing, 1970; 
Lepp and Peel, 1971). Taking into account the CKs asymmetrical distribution 
in ABS, we could hypothesize a possible role of CKs in TW formation after 
bending imposition in Populus.   
As in the case of the root, the bending in the stem may induce a water stress 
condition. Parkhurst et al., (1972) observed cavitation and conductance 
losses in the xylem of bent stem, resulting also in a decline of transpiration 
rates. In our experiment, BBS region showed lower levels of ABA, and this 
can be related with a lower perception of mechanical forces in that stem zone. 
Surprisingly, we detected a low ABA level in ABS concave side as well, 
significant in respect to the control and the corresponding convex side (Fig. 
2A). This result is not easily explained, considering the curvature influence 
and the intensity of compression forces in that stem zone. Therefore the 
asymmetrical distribution of ABA in ABS region must be clearly considering 
also, the ABA interaction with IAA in xylem differentiation (Sundberg et al., 
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2000; Mellerowicz et al., 2001; Muday and DeLong, 2001), or its role in the 
regulation of cambial activity associated with the reaction wood formation 
(Aloni, 2007). 
 
Differences of woody root and stem in response to bending  
Valuating the differences in the bending response between the two different 
tissues analyzed, it appeared that the most important changes concerned 
amino acid conjugates concentrations. In fact, IAAsp in the stem was detected 
just in ABS region, while in the root tissue this conjugate has been measured 
in all bent sectors and in the control. In the stem, contrary to IAAsp, the 
conjugation with glutamate was not affected by the bending stress, and the 
IAGlu levels resulted higher than root ranges, except for the differences 
observed in ABS region. The levels of oxIAA in the bent stem were higher 
compared with the same sector of the root, excepted for the convex side of 
ABS and BS, where any statistical difference in oxIAA content was found 
between the two tissues. 
Despite we did not find significant variations in IAA levels between control 
root and control stem, results showed that bending affected IAA 
concentration in an opposite manner between the two tissue in the different 
regions: ABS showed lower levels in the stem, while BS region and BBS 
convex side lower levels in the root.    
In addition, we found higher ABA levels in all stem samples compared to 
root samples and a high value of CKs in BS convex side of the stem compared 
with the same sector of the root, while between the two controls, a high value 
of CKs was detected in the root. 
 

CONCLUSIONS 

In this study we investigated the influence of mechanical forces on Populus 
root and stem, providing new data on hormonal profiles in the convex and 
concave side of the bent plants.  
In particular, we analyzed how auxin metabolism is affected by the bending 
and by different tension and compression forces intensities.  
Metabolic profiling showed great variation of IAA levels in stressed samples 
between root and stem tissues and noticeable changes in IAA conjugation and 
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degradation pathways during bending stress, highlighting how the two organs 
perceive and respond differently to the stimulus. 
The confirmed asymmetry of auxin accumulation in the concave side of bent 
poplar root provides additional evidence for the hypothesis that root responds 
to the bending producing an IAA-mediated reaction wood at the compressed 
side. While the reduction of IAA in the upper region of the stem (ABS region) 
seems to be at the basis of TW formation. In both root and stem IAA signaling 
is attenuated by IAA catabolism, but so far, IAA catabolic/oxidation 

pathways in plants has not been well established, making difficult to study 
the specific regulation and function of IAA catabolism. 
According to the current knowledge, this study represent the first approach 
to quantify the major known IAA metabolites in P. nigra root and stem 
subjected to mechanical bending stress. However, understanding of 
processes, such conjugation or degradation, and their relative importance in 
different root/stem zones remains rudimentary and needs to be further 
analyzed in depth.  
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Fig. 1. Auxin metabolites profiling in different bent sectors of P. nigra root and stem. 

Concentrations of oxIAA, IAAsp, IAGlu and IAA were analyzed by UHPLC-MS/MS. The 
values are expressed in pg mg-1 of fresh weight. Data represent the mean of three independent 
extractions ± SD. Values marked with the same letter are not statistically significant (Post-hoc 
LSD-tests, p<0.05). ABS, above bending sector; BS, bending sector; BBS, below bending sector; 
CX, convex side; CE, concave side. 
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Fig. 2. ABA and CKs content in different bent sectors of P. nigra root and stem. 

Concentrations were analyzed by UHPLC-MS/MS. The values are expressed in pg mg-1 of fresh 
weight for ABA and in pmol g-1 of fresh weight for CKs. Data represent the mean of three 
independent extractions ± SD. Values marked with the same letter are not statistically significant 
(Post-hoc LSD-tests, p<0.05). ABS, above bending sector; BS, bending sector; BBS, below 
bending sector; CX, convex side; CE, concave side.  
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Fig. 1S. Simulation of bending stress in P. nigra root and stem. Roots and stems were linked 
for five months to steel nets curved at a right angle (90°). Three different regions of the taproot 
and stem were defined during sampling: the Above Bending Sector (ABS); the Bending Sector 
(BS) and the Below Bending Sector (BBS). To analyze the convex (CX) and concave side (CE), 
each region (ABS, BS and BBS) was further divided into two parts. 
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Fig. 2S. Reaction wood in P. nigra root and stem after 5 months of bending treatment. The 
reaction wood was produced at the compressed side (concave side) of P. nigra root and tension 
side (convex side) of the stem.   
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ABSTRACT 
Tissue-specific hormonal profile was carried out in Populus root subjected to 
short-time bending stress, with the aim of investigating the differences 
between the concave and convex side within the cambial zone of the bent 
taproot. The analysis were focused on taproot zone corresponding to the point 
of maximum bending. Auxins, abscisic acid and cytokinins metabolites were 
separated and quantified using liquid chromatography coupled to tandem 
mass spectrometry analysis (LC-MS/MS).  
A strong modulation of auxin gradient across the cambial zone occurred in 
the concave side of the bent root, in the side where stress-related compression 
wood (CW) developed. The levels of auxin metabolites in the cambial zone 
also varied between the two sides analyzed, suggesting a correlation between 
the auxin metabolism and CW formation, even from the early phases of the 
stress treatment. A role of abscisic acid and cytokinins also was hypothesized 
in CW formation after bending stress imposition.  
 
Key words: bending stress, vascular cambium, cryosectioning, auxins, 
cytokinins, metabolite profiling, LC-MS/MS. 
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Abbreviations: ABA, abscisic acid; BS, bending sector; CE, concave side; 
CKs, cytokinins; CW, compression wood; CX, convex side; CZ, cambial 
zone; IAA, indole-3-acetic acid; IAAsp, IAA-aspartate; IAGlu, IAA-
glutamate; oxIAA, 2-oxindole-3-acetic acid; Ph dev, developing phloem; 
TW, tension wood; Xy dev, developing xylem.  
 

 

INTRODUCTION 

The vascular cambium is a secondary meristem that ensures postembryonic 
secondary growth, through the production of secondary phloem and xylem in 
roots and shoots of dicotyledonous angiosperms and gymnosperms (Larson, 
1994). Cambium sensu stricto is formed by one layer of juvenile cells, called 
initials, whose division produces phloem and xylem mother cells. Cambial 
initials, together with mother cells, constituted the so-called cambial zone 
(CZ, Plomion et al., 2001). 
The cambial cells division determines the formation of secondary xylem or 
wood on the inner side and secondary phloem on the outer side, the rate of 
cell division regulates the amount/quality of wood biomass (Plomion et al., 
2001; Sorce et al., 2013). Cambial activity and xylogenesis are regulated by 
many environmental factors, such as temperature (Arend and Fromm, 2007) 
or nutrient/photoassimilates availability (Escalante-Perez et al., 2009; Berta 
et al., 2010; Krabel, 2000), and by several endogenous signal molecules 
(Sorce et al., 2013). 
One of the endogenous components that acts both as a morphogen, as well as 
a transmitter of environmental signals, is indole-3-acetic acid (IAA), the most 
abundant auxin in plants (Schrader et al., 2003).  
Another group of plant hormones essential in cambial growth are cytokinins 
(CKs), which have a well-established function in cell division (Du and 
Yamamoto, 2007). While auxin is considered to play a crucial role in 
formation of vascular strands and xylem differentiation, other hormones have 
been shown to be involved in these processes by interacting with IAA in a 
synergetic (CKs) or inhibitory (abscisic acid, ABA) manner (Davies, 1995; 
Sundberg et al., 2000; Mellerowicz et al., 2001; Muday and DeLong, 2001; 
Schrader et al., 2003; Du and Yamamoto, 2007; Simm et al., 2016).    
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Auxin responsiveness in the plants is essentially determined by establishment 
of concentration gradients across tissues and organs (Petersson et al., 2009; 
Sorefan et al., 2009; Novák et al., 2012). Areas of maxima and minima of 
auxin concentration confer positional information to the developing cells and 
trigger differential development responses (Schrader et al., 2003; Novák et 

al., 2012). The control of auxin concentration in the tissues occurs through 
the regulation of its biosynthesis, transport, degradation, and conjugation. 
The auxin conjugation with amino acid, such as aspartate and glutamate, 
forming IAAsp and IAGlu respectively, is a process that serves to maintain 
proper auxin homeostasis in the cells (Tuominen et al., 1994; Ljung et al., 
2002; Pencìk et al., 2013; Tran and Pal, 2014). 
In response to environmental stimuli (e.g., in cases of tropic growth) the auxin 
gradient is rapidly established, but there are also cases where it has a more 
stable nature (e.g., during primary root development; Schrader et al., 2003). 
Knowing the importance of the endogenous hormones in cambial activity 
regulation, xylem differentiation and wood formation and considering that 
hormones and their metabolites level can considerably vary between different 
plant tissues (Novák et al., 2012), in this work we provide a detailed 
hormonal tissue analysis across the cambial zone of Populus nigra root 
subjected to mechanical bending stress. We used a method that permits, from 
small amounts of plant material, to analyze simultaneously IAA, its majority 
catabolite, the 2-oxindole-3-acetic acid (oxIAA), its conjugates (IAAsp and 
IAGlu), ABA and CKs, combining one-step solid phase extraction (SPE) 
purification method with liquid chromatography/tandem mass spectrometry 
(LC-MS/MS) analysis (Novák et al., 2008; 2012).  
The mechanical stress in plants can be caused by several factors, such as 
wind, rain, slope of soil, presence of natural/artificial physical barriers and 
gravity, these disadvantageous conditions can influence drastically the plant 
stability and survival (Jaffe and Forbes, 1993). Plants, equipped with a great 
plasticity, respond to these severe perturbations adapting their growth 
behavior. In particular, the woody species, react to the mechanical stress 
producing a specialized tissue, defined "reaction wood" (Telewski and Jaffe, 
1986a; Braam and David, 1990; Braam, 2005) in order to adjust the non-
optimal orientation of affected organ and improve the support function when 
needed (Du and Yamamoto, 2007).  
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Studies performed by Scippa et al., (2008), Trupiano et al., (2012a,b, 2013b) 
offer several progress in the understanding of biochemical, physiological and 
molecular processes related with bending responses in the woody root. In 
particular, in our recent work it was demonstrated that the diverse perception 
of mechanical forces (tension and compression forces) along Populus root 
influences differently the cambium cells activity between the two sides 
(convex and concave) of the taproot, stimulating the reaction wood formation 
in the concave side of the maximum point of root bending (De Zio et al., 
2016). 
Considering the central role of cambium in wood production, the 
investigation of the role played by the major plant hormones in this secondary 
meristem is fundamental to increase knowledge on response to bending in the 
woody root, where it is difficult gaining access to the cambial zone, without 
affecting tissue proprieties and biological activity of signal molecules. In fact, 
most of the research in the literature concerning the study of mechanical 
stress/reaction wood induction in woody plants/vascular cambium isolation 
were conducted at stem level (Savidge et al., 1983; Hallgren et al., 2004; 
Goué et al., 2008, 2012). 
In this work, a method was developed to isolate cambium tissue and the 
surrounding areas (developing phloem and xylem) from the concave and 
convex side of poplar bent root, in order to obtain tissue-specific hormonal 
information, know hormones role in meristematic cells initiation and 
contribute in establishing their still unknown role in the reaction wood 
formation (Du and Yamamoto, 2007).  
 

MATERIALS AND METHODS  

Plant material and bending stress conditions 

Taproots of four-years-old P. nigra plants were subjected to short-term 
bending stress. To simulate the mechanical perturbation, taproots were tying 
around right angle curved steel nets [Fig. 1 Supplementary information], 
as previously described in Scippa et al. (2008), Trupiano et al. (2012a) and 
De Zio et al. (2016). 
Plants were grown for two months in a growth chamber with normal 
photoperiod simulated by LED lights (ʎ420 - ʎ740), ensuring temperature and 
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water controlled conditions. During sampling, on each plant, a transversal 
root sector, 5 cm long, was defined, corresponding to the point of maximum 
root bending, the Bending Sector (BS), localized at 17-22 cm from the root 
collar (equivalent of stem base) downward. Each BS whole sector was 
immediately snap-frozen in liquid N2 and then stored at -80°C. 
BS regions were used in the successive cryosectiong procedures. The cambial 
zone (CZ) and its adjacent areas, the developing phloem (Ph dev) and xylem 
(Xy dev, Fig. 1A) were isolated from the left/convex (CX) and right/concave 
(CE) sides of each BS region.  
 
Isolation of vascular cambium  

The complete procedure for vascular cambium isolation from BS region of 
P. nigra root can be summarized in four steps: a) preparation of wood block; 
b) cryosectioning on wood block, performed through two different cutting 
directions; c) lyophilization of sections in «glass sandwiches»; d) samples 
storage in silica gel until hormones analysis [Fig. 2 Supplementary 

information]. 
Frozen plant material (BS region), with a diameter of about 10 mm, was cut 
in a block (2 x 13 x 10 mm). Cubic wood block was fixed on the cryotome 
holder with O.C.T (TissueTek, Agar Scientific, England) and used for the 
successive sectioning procedures carried out to the cryomicrotome 
(HM505E, Microm Laborgeräte, Walldorf, Germany) [Fig. 3 

Supplementary information]. Transverse sections (50 µm) were cut from 
each side of the block, corresponding to the left/convex (CX) and 
right/concave (CE) side of BS region. Slide-mounted transverse sections 
were photographed using a Zeiss Axioplan 2 microscope equipped with Zeiss 
AxioCamMR3 digital camera (Carl Zeiss, Inc., Thornwood, NY, USA). 
Images were analyzed by Zeiss AxioVision Software in order to calculate the 
distance cortex-cambium and cortex-Ph dev/Xy dev and be able to collect 
tissues of interest, performing, subsequently, a serial tangential 
cryosectioning [Fig. 4 Supplementary information]. This cryosectioning 
method was validated staining vascular cambium tissue with safranin and 
alcian-blue solution [Fig. 5 Supplementary information]. 
Tangential sections (50 µm) of cambium and developing phloem and xylem 
from the convex and concave side of BS regions were collected on 
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microscope slides and protected within «glass sandwiches». Sections were 
lyophilized for 2 h, collected into 2.0 mL eppendorf tube and stored in silica 
gel until hormonal extraction. 
 

Auxins, abscisic acid and cytokinins analysis 

Auxins, ABA and CKs were extracted from 2 mg of lyophilized tissues, using 
a modified Dobrev and Kamínek (2002) method. Hormones and metabolites 
were purified by solid-phase extraction (SPE) on MCX 1cc/30mg columns 
(Oasis Extraction Cartridges, Waters) and analyzed by ultra-high-
performance liquid chromatography-tandem mass spectrometry (UHPLC-
MS/MS) as described elsewhere (Novák et al., 2008, 2012). MassHunter 
software (version B.05.02; Agilent Technologies) was used to determine the 
concentrations of all examined compounds using stable isotope dilution. 
Concentrations of IAA metabolites and ABA were expressed as pg mg-1 of 
dry weight, while CKs as pmol g-1 of dry weight. 
 
Statistical analysis 

When needed, variables were square root or log transformed to ensure normal 
distributions and equal variances for the use of parametric statistics. For each 
variable, a one-way ANOVA was used to compare different root tissues (Ph 
dev, CZ, Xy dev) and sides (CX and CE). Post-hoc LSD-tests were conducted 
to detect overall differences between convex and concave sides for all root 
tissues. Analyses were applied on a 95% significance level. Statistical 
analysis was carried out using statistical software package SPSS 17.0 (SPSS 
Inc, Chicago IL, USA).   

 
RESULTS AND DISCUSSION 
 

IAA metabolites response to bending in the cambial zone 

A sensitive mass spectrometry-based method (LC-MS/MS) was carried out 
to profile IAA and auxin metabolites, oxIAA, IAAGlu and IAAsp in P. nigra 
root subjected to bending stress. In detail, in order to explore the IAA 
regulation during cambium development and reaction wood formation a 
detailed tissue analysis was performed, isolating vascular cambium together 
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with the developing phloem and xylem from the convex and concave side of 
the point of maximum root bending (BS region).  
Our results showed a considerable increase of IAA in CZ sampled in the 
concave side of the BS region, compared to both the surrounding areas (Ph 
and Xy dev zones, characterized by the same IAA level) and CZ of the 
opposite convex side (Fig. 1B, 2D).  
In our previous work we showed that bending stress in P. nigra root induces 
a strong asymmetry in the cambium cells activity between the two sides 
(convex and concave) of the root, with a very high number of cambium cells 
in the concave side of BS region, where a compression wood (CW) formed, 
triggered by high levels of compression forces (De Zio et al., 2016).  
In the literature, a clear model regarding the role of auxin in the reaction wood 
formation does not exist yet, although its involvement in the early steps of 
the process has not been ruled out (Fagerstedt et al., 2016).   
Differently, roles of auxin in the vascular tissue during normal development 
are well documented, IAA is thought to induce cambium cells division and 
regulate vascular cells differentiation (Sachs, 1981; Aloni, 2004; Aloni et al., 
2006a; Sorce et al., 2013). 
High levels of IAA were found in the side of cambial region producing CW 
in Cryptomeria japonica (Funada et al., 1990) and Metasequoia 

glyptostroboides (Du et al., 2004) and in the cambium initial mother cells in 
Pinus sylvestris (L.) trees during secondary growth. In this last case, Uggla 
et al., (1996) suggested a link between the high IAA levels in the cambium 
region and its role in maintaining cambial cells meristematic state, proposing 
the first evidence on IAA radial concentration gradient in developing tissues. 
Evidence from the literature support the occurrence of this radial gradient, 
with highest concentration of IAA in the cambial tissue, where the hormone 
promotes cambium cells division, and decreasing concentrations towards the 
maturing xylem and phloem (Tuominen et al., 1997; Sundberg et al., 2000). 
At decreasing concentration, IAA regulates the expansion of xylem and 
phloem derivative cambial cells and, later the onset of the maturation stage, 
the secondary cell wall apposition and lignification (Sorce et al., 2013).  
Despite such evidence, Hallgren et al., (2004) proposed that the IAA gradient 
across the cambial zone in Populus tremula and Pinus sylvestris stem under 



  

Paper III - Page 8 of 23 

 

gravistimuli might not be the signal to maintain the cells in a reaction wood 
development state. 
In all cases, the strong asymmetry in IAA content between the two sides of 
CZ in bent Populus root reported in this work supports the hypothesis, 
proposed in De Zio et al., (2016), of the role of auxin in stress-related CW 
formation in the concave side of the taproot. 
Our results showed that in BS convex side, contrary to the concave side, does 
not exist an auxin gradient between CZ and the surrounding areas, although 
the IAA level in Xy dev convex side was lower compared to Ph dev of the 
same side (Fig. 1B,2D). In the convex side of the bent root lower auxin 
concentrations in the CZ resulted in a slower rate of cambium cells division 
(De Zio et al., 2016) and probably in a slower xylem differentiation. 
Interesting, the Ph dev tissues showed comparable IAA content between the 
convex and concave side, whereas differences were found between the two 
sides of Xy dev, with lower IAA content in the convex side, confirming the 
asymmetry in xylem development and wood formation.  
The role of auxin in the regulation of xylem development and wood formation 
is well established (Uggla et al., 1996; Sundberg et al., 2000). The radial 
conveying of IAA regulate the duration of developmental processes, such as 
xylem fiber expansion, affecting essential anatomical traits of the xylem 
(Tuominen et al., 1997). Moyle et al, (2002) found that a specific IAA signal 
transduction gene in mature xylem responds to lower levels of auxin. 
Bhalerao and Bennett (2003) suggested that different concentrations of auxin 
regulate the expression level of IAA-related genes: high concentrations of 
IAA in the cambium serve to maintain cambial cells identity, while lower 
concentrations of the hormone are necessary to promote xylem development. 
Most recently, it has been suggested that the transcription of few auxin-
responsive genes responds dynamically to the changes of auxin levels 
regulating the xylem development (Nilsson et al., 2008).  
Based on the above reported evidence, we could hypothesize that the lower 
levels of auxin found in the Xy dev, especially in the convex side of the bent 
root, are related with the signaling involved in xylem differentiation and 
development, but is the strong asymmetry in auxin concentration to trigger 
the CW formation in the concave side.  
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The analysis of auxin metabolome profiling showed that the major auxin 
degradation product, oxIAA, and the auxin aspartate conjugate, IAAsp, 
followed the same distribution trend of IAA concentrations in the different 
tissues analyzed (Fig. 2A,B,D), whereas the auxin conjugation with 
glutamate was completely affected by short-time bending stress in Populus 
root, since concentrations of IAGlu were low detection limit in all samples 
analyzed (Fig. 2C). 
Therefore, the levels of oxIAA and IAAsp in CZ concave side were higher 
compared to the CZ of the convex side, following the same trend of auxin. 
Generally, the accumulation of oxIAA, as well as amino acid conjugates, is a 
typical response to high IAA levels, and this would explain such distribution 
trend (Novák et al., 2012; Pencìk et al., 2013). In detail, oxIAA level in the 
CZ concave side was in a 1:25 ratio compared to IAA concentration (Fig. 
2A), while much lower quantities of IAAsp conjugate were found in the same 
tissue (Fig. 2B). In the literature is reported that IAA amino acid conjugates 
normally are present in much lower quantities compared to oxIAA (Pencík et 

al., 2013; Vayssières et al., 2015). Sundberg et al., (1990) observed the 
occurrence of higher concentration of ester conjugates than amide conjugates 
in cambial tissue of P. sylvestris. Interesting, in the concave side, IAAsp, 
contrary to oxIAA, presented a distribution gradient within the three tissue 
analyzed. In fact, despite no difference in IAA levels was observed between 
Ph and Xy dev concave side, Xy dev showed a lower IAAsp level compared 
to Ph dev of the same side (Fig. 2B).  
In the convex side, we have not measured differences in oxIAA content 
within the three isolated tissues (Fig. 2A); but we observed an increase of 
IAAsp in Ph dev convex side in respect to the other zones of the same side 
(Fig. 2B). Comparable levels in oxIAA and IAAsp were found between Ph 
dev convex/concave and Xy dev convex/concave side.  
The minor rate of conjugation with aspartate in the Xy dev (concave and 
convex) could be explained by the correlation with corresponding minor 
auxin levels. Nevertheless, most plant organs contain significant pools of 
IAA conjugates, but in wood-forming tissues of softwoods and hardwoods 
only trace amounts have been found (Sundberg et al., 1990; Tuominen et al., 
1995). 
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ABA and CKs response to bending in the cambial zone   
The levels of ABA and CKs were also measured in the isolated tissues in 
order to understand their influence in vascular tissue of poplar root subjected 
to bending and broaden the knowledge of the tissue-specific hormonal 
crosstalk during the stress condition.  
Interestingly, our results showed an asymmetric ABA and CKs 
concentrations between the convex and concave side of the CZ, with higher 
ABA and CKs levels in the concave side (Fig. 3A,B).  
Nevertheless, no difference in ABA content was observed between the three 
tissues (Ph dev, CZ, Xy dev) in the concave side (Fig. 3A). Whereas, 
concerning the measurements of CKs, in the concave side, our results showed 
a lower content of this hormone in the Xy dev compared with the other tissues 
of the same side (Fig. 3B). In the convex side of BS region, instead, an 
increase of ABA and CKs was observed in Ph dev compared to CZ and Xy 
dev of the same side (Fig. 3A,B).  
Unlike the auxin, CKs and ABA have seldom been investigated in the 
vascular cambium of trees (Mellerowicz et al., 2001). Endogenous ABA and 
CKs are known to exist in the cambial region of trees, but usually at levels 
much lower than auxin (Moritz and Sundberg, 1996; Funada et al., 2001). In 
accordance with this, we measured lower levels of ABA and CKs compared 
to auxin, in both cambial zones.  
At lower levels compared to IAA, ABA regulates IAA biosynthesis and 
activity, while CKs promotes cytokinesis and the sensibility of cambial 
initials and derivatives to auxin, stimulating vascular differentiation into 
xylem cells (Baum et al., 1991; Aloni, 1995; Aloni et al., 2006b). 
Furthermore, it is known that CKs can increase the sensitivity of cambium to 
the free auxin also preventing the IAA conjugation (Coenen and Lomax, 
1997; Fromm, 2013). In addition to auxin, CKs has also a pivotal role in the 
regulation of cambium development. In quadruple ipt mutant, in which CKs 
levels are severely decreased, the stem diameter is greatly reduced, together 
with the number and size of the vascular bundles (Matsumoto-Kitano et al., 
2008). 
These roles could be closely related with the strong asymmetry found in this 
work between the convex and concave side of the cambial region, with the 
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high levels of ABA and CKs in the concave side and the events that in the 
concave side lead to CW formation.   
In this regard, it should be underlined that despite CKs have a role in 
regulating tracheid differentiation and lignin biosynthesis (Savidge, 1988), as 
well as ABA has a role in avoidance of cell wall loosing, prerequisite for cell 
expansion (Gimeno-Gilles et al., 2009), a their direct involvement in CW 
formation has not yet been demonstrated (Du and Yamamoto, 2007).  
 
CONCLUSIONS 
Concluding, this work provides new insights in the complex dynamics of 
hormones regulation in poplar plant under bending stress condition. 
Performing a detailed tissue analysis, we evaluated the hormones profile in 
the cambial zone and surrounding areas (developing phloem and xylem), 
taking in account, for each tissue, of the differences between the convex and 
concave side of the bent woody root.  
Data showed a noticeable increase of IAA, ABA and CKs in the vascular 
cambium isolated from the concave side compared to the opposite side. This 
asymmetrical response in the cambial region suggests an involvement of 
these hormones in the early phases of CW development in the concave side.  
Furthermore, our results reveled the occurrence of IAA gradient in the 
concave side, absent in the opposite side, where no difference in IAA levels 
was found within the three zones analyzed.  
Despite these results, the consolidation of ABA and CKs role in the CW 
formation deserves further investigations.  
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FIGURES  
 

 

 

 

 

 

 

Fig. 1. (A) Transverse section of BS region in bent P. nigra root. Section was stained in one 

part safranin (1% w/v safranin in 50% ethanol) and two parts alcian-blue (1% v/w alcian-blue, 

1% v/v formalin, 36% formaldehyde). Tissues used for successive hormones extractions are 

indicated in the squares. Each tissue was sampled from the convex and concave side of BS region 

of the bent root. Scale bar=100 µm. (B) Comparison of IAA, ABA, CKs concentrations 

between the convex and concave side of BS region for each analyzed tissue. The values are 

expressed in pg mg-1 of dry weight for IAA and ABA and in pmol g-1 of dry weight for CKs. Ph 

dev, developing phloem; CZ, cambial zone; Xy dev, developing xylem.  
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Fig. 2. Tissue-specific auxin metabolites profiling in bent P. nigra root. Concentrations of 

oxIAA, IAAsp, IAGlu and IAA were analyzed by UHPLC-MS/MS. Cambium tissue was 

isolated from the convex and concave side of BS region, the point of maximum root bending, 

together with the convex and concave developing phloem and xylem. The values are expressed 

in pg mg-1 of dry weight. Data represent the mean of three independent extractions ± SD. Values 

marked with the same letter are not statistically significant (Post-hoc LSD-tests, p<0.05). Ph dev, 

developing phloem; CZ, cambial zone; Xy dev, developing xylem.  

 

 

 

Fig. 3. Tissue-specific ABA and CKs content in bent P. nigra root. Concentrations were 

analyzed by UHPLC-MS/MS. Hormones were extracted from the convex and concave side of 
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BS region, focusing for each side, on the cambial zone and developing phloem and xylem zones. 

The values are expressed in pg mg-1 of dry weight for ABA and in pmol g-1 of dry weight for 

CKs. Data represent the mean of three independent extractions ± SD. Values marked with the 

same letter are not statistically significant (Post-hoc LSD-tests, p<0.05). Ph dev, developing 

phloem; CZ, cambial zone; Xy dev, developing xylem.  

 

 

 

SUPPLEMENTARY INFORMATION 

 

 

 

 

 

Fig. 1S. Simulation of bending stress in P. nigra root. Taproots were linked to 90° curved steel 

nets and sampled after two months of treatment. The Bending Sector (BS) region, localized at 

17-22 cm from the root collar, was defined during sampling on each stressed plant. The outer 

side (left side) of the main root is referred to as convex side (CX), the inner side (right side) is 

called concave side (CE).  
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Fig. 2S. Procedure used for cambium isolation from BS region of P. nigra root. The 

preparation of wood block was done by cutting a cube (2 x 13 x 10 mm) from the central part of 

the root, where the cambium ring appeared more linear. Cryosectioning procedures were carried 

out on cubic wood block; firstly, transverse sections were collected, in order to calculate the 

distances cortex-cambium and continue, subsequently, with the serial tangential cryosectioning. 

Vascular cambium tissue, together with developing phloem and xylem, was collected from the 

convex (left) and concave (right) side of BS root sector. Different cutting directions on wood 

structure are showed on the right.    

 
 

 

 

Fig. 3S. Preparation of cubic wood block from BS region of P. nigra root. (A) The entire BS 

region. (B) Wood block taken from the central part of BS region and characterized by following 

dimensions: 2 mm tangentially x 13 mm longitudinally x 10 mm radially. (C) Cryosectioning on 

cubic wood block. 
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Fig. 4S. Transverse sections of the convex and concave side of BS region. Slide-mounted 

sections were viewed using a Zeiss Axioplan 2 microscope with a Zeiss AxioCamMR3 digital 

camera and analyzed by Zeiss AxioVision Software (Carl Zeiss, Inc., Thornwood, NY, USA). 

A detailed analysis of distances cortex-tissues of interest was performed using the transversal 

sections. Scale bar=200 µm.  

 

 

 

 

Fig. 5S. Tangential section of vascular cambium isolated by cryosectioning procedures 

from BS region of P. nigra bent root. Section was stained in one part safranin (1% w/v safranin 

in 50% ethanol) and two parts alcian-blue (1% v/w alcian-blue, 1% v/v formalin, 36% 

formaldehyde). Scale bar=100 µm.  
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3 Conclusions and future perspectives 
 

In this thesis, the hypothesis that the type (tension and compression) and the 
intensity of mechanical forces differently distributed along a bent poplar 
woody root regulate specific responses was verified through a multi-
disciplinary approach.   
In paper I, morphological and anatomical changes induced by different 
intensities of tension and compression forces along the bent woody root were 
investigated together with proteomic analysis, hormones assay and chemical 
determination of lignin content.  
Results of this first work clearly indicated the presence of important 
morphological/anatomical changes in the root area affected by the maximum 
intensity of mechanical compression forces (BS sector concave side), where 
was observed: a) an increase of cambial activity; b) an increase of lignin 
content and xylem thickness; c) production of reaction wood; d) an 
asymmetrical over-expression of key factors controlling cell wall 
deformation, lignification and xylem development and differentiation (such 
as, Ara4-interacting protein or CDC48); e) an asymmetrical under-expression 
of factors (such as, AlaT1 or MMSDH) related with LRs formation, that were 
mainly produced at the tension side (convex side) of the taproot. 
Hormones analysis suggested that IAA and ABA concentrations were likely 
to be responsible for regulating these alterations. 
In paper II, a detailed analysis of main hormones (IAA, ABA, CKs) and their 
metabolites (oxIAA, IAAsp, IAGlu) was carried out, using an innovative and 
sensitive method based on liquid chromatography coupled to tandem mass 
spectrometry analysis (LC-MS/MS). Different sectors/sides of bent poplar 
root were profiled, together with the corresponding sectors/sides of bent 
poplar stem, in order to compare hormonal responses between two organs, 
especially related with the reaction wood formation process.  
Considering together the results obtained in paper I and II, seems that in the 
root, bending, more than age, growth conditions, and stress duration 
influences the asymmetric responses between the concave and convex side. 
The increase of IAA and ABA concentrations in the concave side of the root, 
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found in both works, even using different techniques, suggests a role of these 
hormones in the reaction wood formation bending-induced. Regarding the 
production of this special wood, our results proved the existence of an 
important exception within the hardwood species, in fact in poplar root, 
mechanically stimulated, reaction wood was induced by high compression 
forces at the concave side, showing features similar to those observed in 
gymnosperm CW at the stem level.   
Hormones analysis in the root indicated that, IAA plays an important role in 
the stimulation of cambial cells activity, enhancing the cell wall stiffening 
through lignin deposition, to trigger the CW formation in the compressed 
side; while the increase of ABA could serve to counters the deformation of 
conduits and changes in hydraulic conductivity determined by bending.   
Data obtained in paper II showed also that, the root sector subjected to the 
highest compression forces and affected by significant anatomical, 
biochemical and molecular changes (BS concave side) is also one of the 
sectors more involved in IAA conjugation with glutamate. This result 
suggests a stress-tolerance role of IAGlu in that sector and the existence of a 
correlation between IAGlu, lignin deposition and cell wall stabilization. The 
increase of IAA catabolism and conjugation (increase of oxIAA, IAAsp and 
IAGlu) in ABS convex side, instead, has been associated with LRs formation 
process and the probable alteration of redox state that regulate the LRs 
emission.  
Paper II also gives an outline on the hormones profile of poplar stem 
subjected to bending, in this case, TW formed in the upper side of the leaning 
(corresponding to the ABS sector), in a zone characterized by the lowest IAA 
content, in accordance with literature data. 
Since no asymmetric distribution of auxin between the two sides of ABS 
sector seems to support TW formation, differently from what happens for CW 
in the root, a role of ABA and CKs in TW formation was hypothesized, 
considering also their high concentrations in ABS convex side.    
Interestingly, metabolites analysis indicated that, ABS, is the unique sector 
of the stem in which the conjugation with aspartate takes place. This result 
suggests an involvement of IAAsp in TW formation, but represent also an 
example of stress-tolerance metabolites-mediated. In fact, the absence of 
IAAsp in the rest of bent sectors and control could be associated to a positive 
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regulation of stem elongation, necessary to overcome the inhibition of stem 
elongation caused by bending.    
In this context, it should be underlined that the spatial analysis designed in 
the root has followed the different intensities of mechanical forces along the 
taproot, in accordance with an accepted model of tensile and compression 
forces distribution. This model has not been defined yet for the bent stem, an 
elaboration of this data, correlated with a detailed stem 
morphological/anatomical analysis, would allow to widen the knowledge of 
the different response of poplar stem to applied bending and better specify 
the links with the hormones/metabolites distribution. 
Furthermore, an investigation of the role of ethylene and GAs could be carry 
out, in the view of know their influence in stress-related reaction wood 
formation in poplar root/stem and present a complete picture of hormonal 
crosstalk.  
In a forward-looking vision of this work, could be important also: a) valuate 
the IAA biosynthesis (e.g., through the detention of IAA precursor by using 
LC-MS/MS), to test, for example, the presumed reduction in the convex side 
of the root; b) analyze the expression pattern of IAA 
degradation/conjugation-associated genes (e.g., GH3 gene family) or auxin 
influx/efflux carriers-associated genes (e.g., AUXIN1/LIKE-AUX1, 

AUX/LAX or PIN-FORMED, PIN genes families) to harmonize data 
obtained; c) determine the level of ROS, to know the real influence of the 
redox state on IAA degradation/conjugation processes and find the 
correlation redox state-LRs/reaction wood formation in the different poplar 
bent sectors/sides.  
In paper III, differently from paper I and II, poplar woody taproots were 
subjected to short-time bending stress and a tissue-specific hormonal 
profiling was carried out using LC-MS/MS, investigating the differences 
between the convex and concave side of the cambium ring at the point of 
maximum root bending (BS sector). 
The occurrence of a strong IAA radial gradient across the concave side of the 
bent root confirms the role of this hormone in the CW formation bending-
induced, manifested through the stimulation of cambial activity. This work 
showed that the mechanisms aimed to counteract the stress condition take 
place from the early phases of the treatment and the region particularly 
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involved in the stress responses belongs, once again, to the concave side of 
the taproot. Results showed as IAA at high concentrations in the cambial zone 
of the concave side promotes cambium cells division and at decreasing 
concentrations, towards the maturing xylem, regulates the expansion of 
xylem and secondary cell wall apposition and lignification. The asymmetry 
in IAA content between the xylem developing zone of the concave and 
convex side reflects the asymmetry in xylem development and wood 
formation.  
Across the cambial zone IAA metabolites (oxIAA and IAAsp) follow the 
same IAA concentration trend, while the conjugation with glutamate is 
affected by short-time bending stress, showing as IAGlu signal can be 
stronger during the time, in a more developed phase of CW (paper II).    
Interestingly, while data obtained in paper I and II suggested a 
marginal/negative role of CKs in the root after long-term bending stress and 
a mutual regulation between ABA and CKs, paper III showed an increase of 
these hormones in the cambial zone of the concave side, suggesting a their 
involvement in the early phases of the treatment, probably related with IAA 
biosynthesis, cytokinesis and prevention of IAA conjugation.  
In a prospective vision for this research may be further proposed: a) the 
investigation of the involvement of ABA and CKs in CW formation at tissue 
level using poplar mutant; b) the analysis of the expression pattern of 
cambium-specific key genes (e.g., WUSCHEL-RELATED HOMEOBOX4, 
WOX4 or WOX14 genes) to better validate the used tissue-isolation technique 
or approach to tissue isolation through a more innovative and specific 
technique (e.g., fluorescence activated cell sorting, FACS or laser 
microdissection, LMD) to separate, instead of enriched tissues, single 
cambium cell.  
At this regards, it would be interesting to continue the establishment of the 
protocol, started during the course of my doctorate, on preparation of root 
sectioned tissues to use for LMD, in order to perform the successive specific-
cells hormones extractions.  

 

 



  

41 

 

Acknowledgement 
 

I would like to thank my supervisor Gabriella Stefania Scippa for trusting on 
me during the three years of doctoral and giving me the opportunity to live 
unique experiences and achieve this important degree. Special thanks for 
helping me with good advises and constant and kind support.  

Thanks to Dalila, Antonella, Carla, Miriam and Tonia for sharing all the 
adventures in the BioVeg laboratory, thanks also to Laura and Antonio, that 
are a bit part of our lab even if microbiologists. Thanks to all for the help, 
and, above all, for the smiles.   

Many thanks to Professor Donato Chiatante for sharing with me his great 
knowledge and also to Antonello and Mattia for their nice collaboration.   

Special thanks to Professor Karin Ljung for accepting me in her group at 
Umeå Plant Science Centre (UPSC) for a long time, for giving me the 
opportunity to grow professionally. I would like to express my appreciation 
for her help and kindness that has always shown me. 

Thanks a lot to Ioanna, Michal, Rubén, Federica, the best group at UPSC, 
thanks for their friendship, support and collaboration. I have learned and 
received so much from them.  

Thanks to Professors Totte Niittylä and Catherine Bellini and also to Junko 
Takahashi Schmidt, Marta Derba-Maceluch, Ilara Budzinski, Veronica 
Bourquin for giving me several advise to reach my objectives.  

Thanks to all special people that I met to UPSC for making the experience in 
the North of world amazing. I will never forget all of you. Thanks above all 
to Nora, Tamara, Anne, Yan, Marta, Guadalupe, Elena, Marina, Sanaria, 
Alfredo, Daniel, Pieter, Tim, Álvaro.  

Thanks to my family for being always with me, for encouraging me all the 
time. Thanks to my special friend Roberta, thanks to Alessia and my “paty” 
Laura. Thanks to Antonio for loving me and for teaching me the 
perseverance. 


