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 ABBREVIATIONS 

 
ankG: ankyrin-G 
 
ais: axon initial segment  
 
BFNS: Benign Familial Neonatal Seizures  
 
BFNIS: Benign Familial Neonatal-Infantile Seizures 
 
BFIS: Benign Familial Infantile Seizures 
 
CaM: Calmodulin 
 
CHO: Chinese Hamster Ovary 
 
DIV: Day In Vitro 
 
DTT: Dithiothreitol 
 
EOEE: Early Onset Epileptic Encephalopathy 
 
ML-252: 2-phenyl-N-(2-(pyrrolidin-1-yl)phenyl)acetamide 
 
NEE: Neonatal Epileptic Encephalopathy 
 
ngs: normal goat serum 
 
PIP2: Phosphatidylinositol 4,5-bisphosphate 
 
RT: Room Temperature 
 
RTG: retigabine 
 
STXBP1: Sintaxin Binding Protein 1 
 
syx-1A: sintaxin-1A 
 
VSD: Voltage Sensing Domain 
 
 
 
 
 
 

http://scholar.google.it/scholar_url?url=http://www.thelancet.com/journals/lancet/article/PIIS0140-6736(03)13312-0/abstract&hl=it&sa=X&scisig=AAGBfm25LjLHEBeXHkNYABIEVBFeVVNJhQ&nossl=1&oi=scholarr&sqi=2&ved=0ahUKEwj6moXPo8fRAhXBzxQKHVA0CI4QgAMIGigAMAA
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INTRODUCTION 
 

Epilepsy: definition, cause 
 

The word “epilepsy” originates from the Greek ἑπιληψία which means "to seize, 

possess or afflict”; in fact, in ancient times individuals with epilepsy were thought to be 

possessed, implying that gods take hold or “seize” a person at the time that a convulsion 

occurs. These conceptions have changed and the current definition of epilepsy has little 

religious connotation. The International League Against Epilepsy (ILAE) defines the 

epilepsy as a disorder of the brain characterized by an enduring predisposition to 

generate epileptic seizures, and by the neurobiologic, cognitive, psychological, and social 

consequences of this condition. The definition of epilepsy requires the occurrence of at 

least one epileptic seizure (ILAE). The terms “seizures” and “epilepsy” indicate two 

different conditions: the term “seizure” indicates a period (typically seconds or minutes) 

of abnormal, synchronous excitation of a neuronal population, while “epilepsy” is defined 

as a state of recurrent, spontaneous seizures.  

Epilepsy may be the result of different etiologies (Berg et al., 2010): 

 Genetic: the epileptic seizures are the direct result of a known or presumed 

genetic defect(s). Designation of the fundamental nature of the disorder as 

genetic does not exclude the possibility that environmental factors may 

contribute to the expression of the disease. At the moment, there isn’t knowledge 

to support specific environmental influences as causes of or contributors to these 

form of epilepsy; 

 Structural/metabolic: epilepsy is the result of structural (for example stroke, 

trauma, infection) or metabolic conditions or diseases. They may also be of 

genetic origin; 

 “Unknown cause” in which the nature of the underlying cause is yet unknown 

 

Seizures can be caused by multiple mechanisms; however, one that is often discussed is 

that seizures arise when there is a disruption of mechanisms that normally create a 

balance between neuronal excitation and inhibition. Disrupting the mechanisms that 
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inhibit firing or promoting the mechanisms that facilitate excitation can lead to seizures. 

Normally, there is a different ions distribution between the two sides of the plasma 

membrane, in particular with high concentrations of K+ inside the neuron and high 

concentration of Na+ in the extracellular space, leading to a net transmembrane potential 

of -60 mV (when measured at intracellular levels). If this balance is perturbed (for 

example, abnormalities in Na+ or K+ channel function), membrane potential can be 

depolarized, thus promoting an abnormal activity in different ways: terminals may be 

depolarized, leading to neurotransmitter release and an increase in action potentials 

firing. The concept that an alteration of the balance between excitation and inhibition 

processes is responsable for the onset of epileptic seizures has led to the design of 

anticonvulsivant drugs able to restore the physiological neuronal excitability. The 

traditional antiepileptic drugs in fact act mainly blocking Na+ (phenytoin, carbamazepine, 

lamotrigine) or Ca2+ (ethosuximide) channels or increasing the inhibitory GABAergic 

transmission (phenobarbital, benzodiazepines, tiagabine, vigabatrin). 

One of the most relevant problem for the treatment of epilepsy is that the response to 

anticonvulsivants is often poor and 25-30% of people with epilepsy are still refractory to 

these pharmacological treatments. Therefore, the development of new anti-epileptic 

drug should be continued especially those targeting pediatric epilepsies and developing 

brains. Recently, at the list of traditional antiepileptic drugs, anticonvulsants with novel 

mechanisms of action have been introduced, such as lacosamide (that enhances the slow 

inactivation of sodium channels), levetiracetam (able to bind the synaptic vesicle SV2A), 

perampanel (that blocks the action of glutamate at AMPA receptors), retigabine (which 

acts as a positive modulator of Kv7 potassium channels), expanding the availability of 

drugs for the treatment for these clinical conditions. 

 

Overview of the Epileptic Encephalopathies 
 

As above reported, about one-third of epilepsies are refractory to medical 

treatments, and a significant proportion of childhood intractable epilepsies have a 

significant detrimental effect on cognition and brain function. These conditions in which 

the epileptic activity during brain maturation is the main causative factor of severe 
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cognitive and behavioral impairments are referred to as epileptic encephalopathies (Berg 

et al., 2010).  

In recent years, owing the advent of new genetic technologies, such as the Next 

Generation Sequencing, an increasing number of genes implicated in the etiology of 

Epileptic Encephalopathy (EE) have been identified (Table 1). The list of epileptic 

encephalopathy genes is rapidly growing, and several of them can now be readily 

screened in clinical practice.  

OMIM Gene MOI Protein 

EIEE1 ARX XL Homeobox protein ARX 

EIEE2 CDKL5 
 

XL 
 

Cyclin-dependent kinase-like 5 

EIEE3 SLC25A22 AR Mitochondrial glutamate carrier 1 

EIEE4 STXBP1 AD Syntaxin-binding protein 1 

EIEE5 SPTAN1 AD Spectrin alpha chain, non-erythrocytic 1 

EIEE6 SCN1A AD Sodium channel protein type 1 subunit alpha 

EIEE7 KCNQ2 AD Potassium voltage-gated channel subfamily KQT member 2 

EIEE8 ARHGEF9 XL Rho guanine nucleotide exchange factor 9 

EIEE9 PCDH19 XL Protocadherin-19 

EIEE10 PNKP AR Bifunctional polynucleotide phosphatase/kinase 

EIEE11 SCN2A AD Sodium channel protein type 2 subunit alpha 

EIEE12 PLCB1 AR 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase β-1 

EIEE13 SCN8A AD Sodium channel protein type 8 subunit alpha 

EIEE14 KCNT1 AD Potassium channel subfamily T member 1 

EIEE15 ST3GAL3 AR CMP-N-acetylneuraminate-β-1,4-galactoside -2,3-sialyltransferase 

EIEE16 TBC1D24 AR TBC1 domain family member 24 

EIEE17 GNAO1 AD Guanine nucleotide-binding protein G(o) subunit alpha 

EIEE18 SZT2 AR Protein SZT2 

EIEE19 GABRA1 AD Gamma-aminobutyric acid receptor subunit alpha-1 

EIEE20 PIGA XL Phosphatidylinositol N-acetylglucosaminyltransferase subunit A 

EIEE21 NECAP1 AR Adaptin ear-binding coat-associated protein 1 

EIEE22 SLC35A2 XL UDP-galactose translocator 

EIEE23 DOCK7 AR Dedicator of cytokinesis protein 7 

EIEE24 HCN1 AD Potassium/sodium hyperpolarization-activated cyclic nucleotide-
gated channel 1 

EIEE25 SLC13A5 AR Solute carrier family 13 member 5 

EIEE26 KCNB1 AD Potassium voltage-gated channel subfamily B member 1 

EIEE27 GRIN2B AD Glutamate receptor ionotropic, NMDA 2B 

EIEE28 WWOX AR WW domain-containing oxidoreductase 

EIEE29 AARS AR Alanine--tRNA ligase 

EIEE30 SIK1 AD Serine/threonine-protein kinase SIK1 

EIEE31 DNM1 AD Dynamin-1 

EIEE32 KCNA2 AD Potassium voltage-gated channel subfamily A member 2 

EIEE33 EEF1A2 AD Elongation factor 1-alpha 2 

EIEE34 SLC12A5 AR Solute carrier family 12 member 5 

EIEE35 ITPA AR Inosine triphosphate pyrophosphatase 
 

Table 1. Genes for Early-Infantile Epileptic Encephalopathies (EIEEs). MOI = mode of inheritance, XL = X-
linked, AR = autosomal recessive, AD = autodomal dominant (from GeneReview Miceli et al., 2016). 

https://www.ncbi.nlm.nih.gov/books/n/gene/glossary/def-item/mode-of-inheritance/
https://www.ncbi.nlm.nih.gov/books/n/gene/glossary/def-item/x-linked/
https://www.ncbi.nlm.nih.gov/books/n/gene/glossary/def-item/x-linked/
https://www.ncbi.nlm.nih.gov/books/n/gene/glossary/def-item/autosomal-recessive/
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The main features of Epileptic Encephalopathy include: (I) electroencephalographic (EEG) 

abnormalities (Fig. 1), (II) seizures that are usually multi-form and intractable, (III) 

developmental delay or intellectual disability, (IV) sometimes early death (Nieh et al., 

2014).   

 

 

 

 

 

Figure 1. Electroencephalographic abnormalities in patients affected by Epileptic Encephalopathy. A) EEG 
recording showing a burst-suppression pattern in a infant with Ohtahara syndrome, recorded during sleep 
(adapted from Auvin et al., 2016). B) EEG recording showing high-voltage arrhythmic and asynchronous 
slow and sharp waves with multi-focal spikes and polyspikes in infantile spasms (adapted from Nieh et al., 
2014). 
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Based on clinical and EEG features, epileptic encephalopathies can be classified in 

different syndromes, as shown in Tab 2. 

 

EPILEPTIC ENCEPHALOPATHIES 

NEONATES INFANCY CHILDHOOD 

 

Ohtahara Syndrome (OS) 

 
 

Early Myoclonic 
Encephalopathy (EME) 

Malignant Migrating Partial 
seizures of Infancy (MMPSI) 

 

Infantile Spasms (IS) or 
(West Syndrome) 

 

Severe Myoclonic Epilepsy in 
Infancy (Dravet Syndrome) 

Lennox-Gastaut Syndrome 
(LGS) 

 

Landau-Kleffner Syndrome 

 

Continuos Spikes and Waves 
during sleep (CSWS) 

 

Table 2. Electroclinical syndromes considered epileptic encephalopathies, arranged by age at onset. The 
circles highlight syndromes associated to mutations in kcnq2 gene (Adapted from ILAE classification; 
www.ilae.org). 

 
Patients affected by Epileptic Encephalopathy and carrying kcnq2 pathogenetic variants, 

that will be the focus of the present thesis, show a clinical picture very frequently 

resembling Ohtahara syndrome (Saitsu et al., 2012; Kato et al., 2013; Weckhuysen et al., 

2013) and more rarely Early Myoclonic Encephalopathy and Infantile Spasms (Samanta 

et al., 2014; Millichap et al., 2017). 

 

Ohtahara syndrome (OS) occurs in the neonatal or early infantile period (usually first 3 

months of age) and presents a characteristic EEG pattern, the so-called “suppression-

burst”, characterized by alternative periods of high voltage bursts and periods of flat 

suppression (Fig. 1A). The suppression-burst pattern is continue in both waking and 

sleeping states. The seizures are repetitive, with very high daily frequency and 

characterized by tonic spasms. Ohtahara syndrome evolves to West syndrome and 

further to Lennox-Gastaut syndrome with age. The prognosis is extremely poor with 

chronic intractable seizures and severe psychomotor retardation (Ohtahara et al., 2003). 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Saitsu%20H%5BAuthor%5D&cauthor=true&cauthor_uid=22926866


 10 

Mutations in several genes have been described in OS, including ARX, STXBP1, KCNQ2 

and SCN2A (Nieh et al., 2014). 

 

Early Myoclonic Encephalopathy (EME): some features of this syndrome overlap with 

those of OS (neonatal onset, burst-suppression in EEG pattern, poor prognosis). The EME 

is characterized by fragmentary myoclonic jerks or violent myoclonic spasms (hence the 

name); the burst-suppression pattern is limited to sleep. EME persists for long period 

without evolution or changes into partial or severe epilepsy with multiple independent 

spike foci (Ohtahara et al., 2003). Mutations in SLC25A22 gene have been reported in 

several patients with EME (Nieh et al., 2014). 

 

West Syndrome or infantile spasms: it is characterized by a famous triad that consists of 

seizures, psychomotor retardation, and hypsarrhythmic EEG pattern. Typically, the 

spasms involve brief symmetrical contractions of muscolature of the neck, trunk, and 

extremity. The term “hypsarrhythmia” indicates an EEG characterized by random high 

voltage slow waves and spikes, that vary from moment to moment in duration and 

location (Fig. 1B). 

 

From the gene to the protein 

 
The kcnq2 gene is located on the long arm of chromosome 20 at the position 13.3 

(20q13.33) and codes for the voltage-gated potassium channel subunit Kv7.2. This gene 

can produce multiple differentially spliced transcripts: to date, 5 transcripts (called from 

a to e) have been identified (Fig. 2), although their biological significance has not yet been 

completely elucidated.  

The region of the transcript encoding for the transmembrane domain is conserved among 

all variants, while alternative splicing of the Kv7.2 transcript appears restricted to a region 

that encodes the first half of the intracellular C-terminus of the channel.  
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Figure 2. Schematic representation of alternative spliced transcripts of kcnq2 gene. Gray boxes indicate the 
exons, which lenght is proportional to the number of nucleotides in each exon. In black are highlighted the 
nucleotide sequences of the kcnq2 gene involved in alternative splicing. ∆ indicate the amino acid 
sequences deleted in each transcript respect to the longest isoform (www.ensembl.com; 
www.uniprot.com). 

  

Kv7.2 is a member of a voltage-gated potassium channel family 

 

The Kv7.2 subunit is a member of the Kv7 family, first called “KCNQ”, with “K” 

indicating K+ ions; “CN” channel, and “Q” long QT syndrome, since the first kcnq gene to 

be identified (KCNQ1), mainly expressed in the heart, is mutated in about half of the 

hereditary cases of long QT syndrome.  

The Kv7 (KCNQ) family comprises five members (Soldovieri et al., 2011): 

Kv7.1: was the first isoform identified. Like in all the other Kv7 channels, Kv7.1 subunits 

assemble into tetramers, forming heterologous channels together with auxiliary KCNE1 

β-subunits, also known as minK or IsK, to create channels that generate the slow delayed 

rectifier K+ current, IKs, which plays a key role in cardiac late-phase action potential 

repolarization (Sanguinetti et al., 1996). Kv7.1/KCNE1 channels are mainly localized in the 

heart but also in the inner ear, thyroid gland, lung, gastrointestinal tract, small intenstine, 

pancreas, forebrain neuronal networks and brainstem nuclei and in the ovaries. 

Mutations in the kcnq1 gene are associated to Long QT Syndrome (LQTS), an arrhythmic 

disorders characterized by the lengthening of the QT interval of the electrocardiogram, 

http://www.ensembl.com/
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indicative of a delayed cardiac action potential repolarization, which predisposes affected 

individuals to ventricular torsade de pointes and cardiac sudden death. Mutations in 

Kv7.1 and KCNE1 have also been linked to familial atrial fibrillation or to short QT 

syndrome. In LQTS syndrome, the disease pathogenetic mechanism is an impairment of 

IKs function (loss-of-function mutations) while gain-of-function mutations in both Kv7.1 

and KCNE1 have been linked to familial atrial fibrillation or to short QT syndrome. 

Kv7.2 and Kv7.3: these subunits are widely expressed in the central as well as peripheral 

nervous system, where they can form homomeric and heteromeric channels. 

Heteromeric channels conduct slowly activating and deactivating currents elicited at 

subthreshold membrane potentials, the so-called M-current (IKM), a voltage-dependent 

K+ current, suppressed upon activation of M1, M3 or M5 muscarinic receptors (hence its 

name). In situ hybridization experiments showed that Kv7.2 and Kv7.3 expression 

overlaps in large areas of the brain, and it is widely believed that Kv7.2/Kv7.3 co-

assembling is the major composition in the brain, althought Kv7.3 expression is higher in 

several nuclei, for example the amygdala and thalamic nuclei (Schroeder et al., 1998). 

Furthermore, homomeric Kv7.2 channels have been suggested to contribute to IKM 

diversity at Ranvier nodes in central and peripheral fibers (Devaux et al., 2004, Schwarz 

et al., 2006) and possibly, presynaptic nerve terminals (Martire et al., 2004). This is 

supported by the observation that, in some neurons, only one of the two subunits can be 

detected using immunohistochemistry (Cooper et al., 2000). Mutations in kcnq2 or kcnq3 

genes, encoding for Kv7.2 or Kv7.3 subunits respectively, have been associated to Benign 

Familial Neonatal Seizures (BFNS) (Plouin, 1994) and more recently mutations in kcnq2 

gene have also been associated to Early-Onset Epileptic Encephalopathy (EOEE) 

(Weckhuysen et al., 2012).  

Kv7.4: is expressed in the innear ear and low expression is found in the brain; in fact 

mutations in the kcnq4 gene cosegregated with an inherited, autosomal-dominant form 

of nonsyndromic progressive hearing loss (DFNA2). Functional studies have shown that 

DFNA2 mutations in kcnq4 induce a loss-of-function of Kv7.4 channels either by 

haploinsufficiency mechanism or by dominant-negative effects (Maljevic et al., 2010). It 

has been proposed that mutations causing dominant-negative effects are preferentially 

found in patients showing hearing loss with younger onset, while mutations associated 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Schwarz%20JR%5BAuthor%5D&cauthor=true&cauthor_uid=16527853
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to a haploinsufficiency mechanism have been identified in patients affected by a late-

onset hearing impairment (Topsakal et al., 2005). Furthemore, Kv7.4 channels are 

expressed in the vascular tissue, gastrointestinal tract and scheletal muscle (Soldovieri et 

al., 2011). 

Kv7.5: this was the last member of Kv7 family to be identified. Kv7.5 transcripts (splice 

variant I) are broadly expressed in the brain and show an overlapping cellular pattern 

expression with Kv7.2 and Kv7.3 subunits. In addition, Kv7.5 transcripts (splice variant II 

and III) are found also in non neuronal tissue, such as skeletal and smooth muscle cells 

(Lerche et al., 2000; Schroeder et al., 2000).  No mutations related to human disorders 

have been identified. 

 

Structure of a Kv7.2 subunit 
 
Like all Kv channels, Kv7.2 subunits are assembled homomerically or heteromerically with 

homologous Kv7.3 subunits, forming tetrameric channels that underlies K+ currents (IKM). 

Each subunit is formed by two functional domains: a transmembrane region, formed by 

~26% of amino acid sequence, and an intracellular region formed by 74% of amino acid 

sequence (1% at the N-terminal and ~73% at the C-terminal region). The transmembrane 

region shows a topological arrangements with six transmembrane segments (called from 

S1 to S6): among these, the region encompassing S1-S4 segments forms the Voltage 

Sensing Domain (VSD), which play a crucial role in switching the channel from a resting 

to an activated configuration in response to changes in tranmembrane potential, 

according to different proposed models (Tombola et al., 2006), whereas S5 and S6 

segments and the interconneting loop of each subunit form the pore region, which allows 

the flow of K+ ions across the plasma membrane. As well as for other K+ channels, the 

selective transit of dehydrated K+ ions is mainly allowed by the presence of the highly 

conserved GYG sequence. In the tetrameric structure, S5-S6 segments of all 4 subunits are 

located at the center of the channel and delimit the pore region, while the other 

segments are disposed around them (Fig. 3).   

While the transmembrane region plays an important role in selective flow of K+ ions 

across the membrane upon changes in transmembrane potential, the long C-terminus 

plays an important role in Kv7.2 channel function and regulation. The predicted 
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secondary structure of this region of the channel shows four -helical regions (called A-

D helices) which are conserved in all Kv7 family members (Yus-Najera et al., 2002). 

 

 

Figure 3. Topological representation of Kv7.2 subunit. Left, tetrameric structure of a K+ channel formed by 
co-assembling of Kv7.2 (in blue) and Kv7.3 (in yellow) subunits. Right, schematic topology of a Kv7.2 subunit 
formed by six transmembrane segments (S1-S6), and intracellular NH2 and COOH termini. The region 
encompassing S1-S4 segments forms the VSD (in blue), whereas the S5-S6 region and the intervening linker 
forms the ion-selective pore (in gray). The S4 segment is characterized by the presence of six arginine 

residues (+). A long C-terminal region is characterized by 4 -helix domains (boxes from A to D) and is an 
important platform for interaction with regulatory molecules, as indicated by colored rectangles in the 
figure. The C and D helices form the Subunit Interaction Domain (SID), which is involved in multimerization 
and subunit-specific heteromerization. The numbers indicate the amino acid numeration according to the 
longest splicing isoform of the channel (isoform a). 

 

The C-terminal domain is an important platform for the interaction with different 

molecules and proteins, as described below. 

 

AKAP 

Kv7.2 C-terminus binds the AKAP79/150 protein which forms a trimeric complex with 

protein kinase C (PKC). Activation of PKC leads to phosphorylation of serine residues 

located in helix B, which depresses Kv7.2 currents (Hoshi et al., 2003). 
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Calmodulin 

Calmodulin (calcium-modulated protein, CaM) is a small protein that binds calcium ions. 

CaM interacts with all Kv7 subunits (Kv7.1-5); two binding sites for CaM in Kv7 channels 

are located in helices A and B. The one in helix A is formed by a canonical IQ-binding motif 

(IQXXXRXXXXR), in which the first two residues are respectively isoleucine (I) and 

glutamine (Q), while at position 6 and 11 positively charged residues are present. This IQ-

motif seems to be involved in the CaM-binding, as it is conserved in all Kv7 members and 

in other proteins able to interact with CaM (myosin II) (Yus-Näjera et al., 2002). The CaM 

binding site in helix B displays two overlapping consensus 1-5-10 CaM-binding motifs 

(Etxeberria et al., 2008); in addition it contains three serine residues (Ser511, Ser523, Ser530) 

that can be phosphorilated by PKC. It has been observed that when the Ser511 was 

mutated in aspartate, the interaction with CaM was lost, while this interaction is only 

partially altered when the other two serine residues were mutated. These results suggest 

that PKC may be involved in the binding of CaM to Kv7 channels through phosphorylation 

of serine (Yus-Näjera et al., 2002). CaM binding has been shown to play a crucial role in 

the export from the endoplasmic reticulum to plasma membrane expression of Kv7.2 

channels expressed in Human Embryonic Kidney (HEK) cells (Exteberria et al., 2008), and 

for the polarized axonal surface expression of Kv7.2 subunits in rat hippocampal neurons 

(Cavaretta et al., 2014). In addition, CaM binding regulates Kv7.2 assembly with Kv7.3, 

thus influencing expression of heteromeric channel at the AIS (Liu and Devaux., 2014). 

The role of CaM in Kv7 channel function is not well understood and remains controversial. 

Previously reports suggested that CaM overexpression reduced Kv7.2 maximal current 

density (Gamper et al., 2005); by contrast, in our recent paper we found that Kv7.2 

currents are potentiated by CaM overexpression in a dose-dependent manner and that 

this potentiation was not due to an increase in plasma membrane trafficking of channel 

subunits (Ambrosino et al., 2015). Most of the effects are mediated only by CaM and not 

required the binding of Ca2+. In addition, we have demonstrated that some BFNS-causing 

mutations, falling in the binding site of CaM, prompted specific biochemical and/or 

functional consequences, ranging from slight alterations in CaM affinity which did not 

translate into functional changes (L351V), to a significant reduction in the affinity and 
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functional modulation by CaM (L351F, Y362C or R553Q), to a complete functional loss 

without significant alteration in CaM affinity (W344R) (Ambrosino et al., 2015). 

 

Syntaxin-1A 

The SNARE protein syntaxin-1A (syx-1A) is a plasma membrane protein, which serves as 

a docking site for synaptic vesicles. In fact, the N-terminal of syx-1A interacts with 

neuronal Sec1 (STXBP1), forming a core complex involved in membrane fusion and 

following neurotransmitters release (Misura et al., 2002). 

Syx-1A has been demonstrated to interact with the C-terminus (in particular helix A) of 

both Kv7.2 and Kv7.3 subunits; however syx-1A appears able to reduce Kv7.2 currents by 

about 50% while it failed to inhibit the Kv7.3 currents (Regev et al., 2009). This different 

effect seems to be associated to difference of the N-terminal sequences between the 

two subunits (Regev et al., 2009).   

Notably, some mutations associated to BFNS and localized in the C-terminal domain of 

Kv7.2 channels, decrease (L351V, Y362C) or abolish (L351F, R553G) the ability of syx-1A 

to inhibit homomeric Kv7.2 or heteromeric Kv7.2/Kv7.3 currents (Soldovieri et al., 2014).  

 

Phosphatidylinositol-(4,5)-Bisphosphate  

Phosphatidylinositol-(4,5)-bisphosphate (PIP2) is a phospholipid present in the 

intracellular leaflet of the plasma membrane. It is an important co-factor for numerous 

ion channels and transporters which shown multiple sites of interactions within the Kv7.2 

channel. In particular, two binding sites are localized in the S2-S3 loop (where the K162 

residue appears to be particularly involved) and S4-S5 loop (where a crucial role is played 

by the K230 residue): it was proposed that in the closed state, PIP2 is anchored at the S2-

S3 loop, while upon channel activation PIP2 interacts with the S4-S5 loop, modulating 

channel gating (Zhang et al., 2013). A third binding-region is localized at the proximal C-

terminus of Kv7.2 subunits, where the R325 and H327 residues seem to be involved in 

the binding (Logothetis et al., 2010; Telezhkin et al 2013; Soldovieri et al., 2016). 

Furthemore, a large region rich in positively-charged residues localized between A and B 

helices is involved in PIP2 binding (Hernandez et al., 2009). Functionally, higher PIP2 

concentrations increase the open probability of homomeric and heteromeric Kv7 
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channels, thus stabilizing their open state. The differences in the single channel open 

probability among channels formed by Kv7.2, Kv7.3, Kv7.4 and Kv7.5 subunits appear to 

be dependent on their intrinsic affinities for intracellular PIP2 (Li et al., 2005).  

 

Nedd4-2 

The ubiquitin-protein ligase Nedd4-2 regulates the plasma membrane expression of 

Kv7.2/Kv7.3 and Kv7.3/Kv7.5 channels (Ekberg et al., 2007). Nedd4-2 reduces the current 

elicitated by these channels, probably by promoting the ubiquitination, internalization 

and degradation of these channels: a PY domain, localized at the C-terminal domain of 

Kv7.1, is crucial for this process, whereas the role of the same region in Kv7.2/Kv7.3 

subunits is less defined.  

 

Ankyrin-G 

In Kv7.2 and Kv7.3 subunits, but not in other Kv7 subunits, a binding-site for ankyrin-G 

(ankG) has been identified at their C-terminus, mapping distally from the helix-D (Fig. 3). 

AnkG is an adaptor protein which anchors Kv7.2 and Kv7.3 subunits at the axon initial 

segment as well as at the nodes of Ranvier, neuronal site crucially involved in the 

generation and propagation of action potentials (Fig. 4) (Devaux et al 2004; Pan et al., 

2006). Interestingly, AnkG binding motif only emerged in the vertebrate orthologues of 

NaV and Kv7 genes, coinciding with the development of myelination (Pan et al., 2006). 

 

A complex interplay among these regulatory molecules is suggested by the observation 

that they often bind overlapping regions within the Kv7.2 C-terminus: in fact, the CaM 

binding site, which involves two A and B helices, partially overlaps with that for PIP2, 

AKAPs, syntaxin-1A and contains putative phosphorylation sites for PKC (Fig. 3). 
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Neuronal distribution and targeting of Kv7.2/Kv7.3 channels 
 
Kv7.2 and Kv7.3 channels have been found to be co-expressed in different neurons of the 

central and peripheral nervous system. In the brain, they have been detected in different 

sites, including hippocampus, cortex, and thalamus, in both inhibitory and excitatory 

neurons (Cooper et., 2000). At subcellular levels, Kv7.2/Kv7.3 channels are highly 

concentrated at the distal end of the AIS and nodes of Ranvier (Devaux et al., 2004, Pan 

et al., 2006), and expressed at lower densities at the soma and dendrities and synaptic 

terminals (Martire et al., 2004) (Fig. 5).  

Figure 4. Colocalization of Kv7.2 and Kv7.3 in axon initial segment and node of Ranvier. A-B) Images of 
horizontal sections of unfixed mouse brain immunolabeled for Kv7.2, Kv7.3, and ankyrin-G. Kv7.3 
colocalized with both ankyrin-G and Kv7.2 in the axon initial segment of neurons from the CA1 (A) and the 
temporal neocortex (B). Scale bars, 20 µm. (images adapted from Devaux et al., 2004). C) Longitudinal 
optical z-section through the center of a single sciatic nerve fiber stained using Kv7.2 (green) and Kv7.3 
(red) antibodies. Both antibodies show strong colabeling at the membrane of node of Ranvier (image 
adapted from Pan et al., 2004).  D-E) Images of horizontal sections of unfixed rat optic nerve 
immunolabeled for ankyrin-G and Kv7.2 (D) or Kv7.3 (E). All ankyrin-G nodes are strongly Kv7.2 positive, 
but a few are weakly positive for Kv7.3. Scale bars, 10 µm (images adapted from Devaux et al., 2004). 
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Two possible mechanisms have been hypothesized to regulate the expression of Kv7 

channels to the surface of axons. In the first model, Kv7 channels could be enclosed in 

specific vescicle and directly sorted to the axonal, but not to somatodendritic plasma 

membranes. Alternatively, proteins could be inserted uniformely into the plasma 

membrane and then selectively removed (by endocytosis) from somatodendritic regions, 

but not from axons. Althought the last mechanism seems inefficient, some studies 

proposed that some axonal proteins, such as Vesicle-Associated Membrane Protein 

(VAMP) and neuronglia cell adhesion molecule (NgCAM), used this targeting mechanism. 

Independently from the mechanisms, each protein must contain a signal sequence that 

allows to direct the localization in specific cellular compartments. Kv7.2 and Kv7.3 

subunits contain their target sequences for axonal localization at their C-terminal domain; 

in particular, in Kv7.2 two regions have been found to be involved in the AIS targeting of 

heteromeric Kv7.2/Kv7.3 complexes: the proximal region of C-terminal domain/helix A 

and the ankG binding motif. In fact immunocytochemistry experiments have demostrated 

that the CD4 trasmembrane segment showed a significative preferential expression into 

the axonal membrane when fused with C-terminal regions and/or Helix A, but not when 

CD4 was expressed alone. In addition, the localization of ion channels at the AIS is 

mediated by ankG proteins; in fact mutations in the ankG binding motifs of Kv7.2 or Kv7.3 

subunits (E810/D812A in Kv7.2 or E837/D839A in Kv7.3) reduced the preferential 

Figure 5. Schematic representation of the distribution of Na+, K+ and Ca+ channels in the different 
compartments of a myelinated axon. The Kv7 channel is found at the AIS, nodes of Ranvier and 
presynaptic terminals (adapted from Lai et al., 2006) 
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targeting of Kv7 to axonal membrane (Chung et al., 2006). Although Kv7.2 and Kv7.3 

subunits show a highly homologous sequence, the ankG-binding motif in the Kv7.3 has a 

greater impact than Kv7.2 on the Kv7.2/Kv7.3 complex AIS targeting: in fact, the deletion 

of the ankG-binding motif only in Kv7.2 does not alter the subcellular localization of the 

complex. By contrast, the deletion of the ankG-binding motif in Kv7.3 leads to a significant 

reduction in AIS enrichment of the channel complex, highlighting the crucial role of Kv7.3 

in M channel localization to the AIS. In fact, the localization of Kv7.2 subunits at the AIS 

required the co-assembling with Kv7.3 subunits (Chung et al., 2006; Rasmussen et al., 

2007). In addition, an important role for neuronal trafficking is played by calmodulin, 

which orchestrate the heteromeric assembly and the trafficking of Kv7.2/Kv7.3 channels 

at the axon initial segment (Liu and Devaux, 2014).  

 

Functions of M-channels 
 
As described before, heteromeric Kv7.2/Kv7.3 channels underlie the M-current, which 

acts as a powerful brake against excessive neuronal activity. In particular, this current: 

 Controls spike afterdepolarization and burst generation 

The depolarization of the axon hillock over the threshold potentials results in the 

generation and propagation of an action potential. The action potential is a transient 

change in the membrane potential, induced by flow of ions inside/outside the cell; as 

shown in Fig. 6A it is characterized by a gradual depolarization versus threshold values, a 

rapid rising phase, an overshoot, and a repolarization phase. The repolarization phase is 

followed by a brief afterhyperpolarization (AHP) before the membrane potential reaches 

again the resting potential level; this latter phase is a result of K+ channels remaining 

open. AHP is subdivided in a sequence of three phases: a fast one (fAHP, lasting 1-5 ms), 

a medium one (mAHP, typically lasting 50-200 ms) and slow one (sAHP, lasting from about 

0.5 s to several seconds). These three phases are due to distinct potassium channels: the 

fAHP is largely mediated by Ca2+- and voltage-dependent BK channels, mAHP is mediated 

by Kv7 and HCN channels while sAHP is mediated by Kv7 and SKCa2+ channels. 

Given the very slow activation kinetics of IM (in the order of tens of milliseconds), it is 

generally agreed that this current cannot contribute significantly to the repolarization of 

individual action potentials (Storm, 1987, 1989), but it has been suggested that M-
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channels open during afterdepolarization (ADP) that follows the spike, reduce spike 

afterdepolarization, mediate the medium afterhyperpolarization (mAHP) and contributes 

to the slow AHP (sAHP), thereby serve as a brake for neuronal firing (Storm 1990; Yue and 

Yaari 2004; Gu et al., 2005). When Kv7/M channels are blocked (by channel blockers 

linopirdine and XE991), the neuron remains depolarized for a long period during in which 

it may generate multiple spikes (Yue and Yaari, 2004) (Fig 6B). 

Thus, the functional consequence of M-current is to clamp the membrane at more 

negative potentials than resting membrane potential, preventing repetitive action 

potential firing (Yue and Yaari, 2004). Kv7.2 does not inactivate, therefore Kv7 currents 

will persist as long as the membrane remains depolarized. 

These channels also influence excitatory synaptic potential integration (Shah et al., 2011) 

and contribute to the slow substhreshold resonance of cortical neurons at theta 

frequency (4-7 Hz), oscillations that are important for synaptic plasticity, learning and 

memory (Hu et al., 2002).  

 Modulates neurotrasmitters release from presynaptic nerve terminals 

Immunohistochemical studies have demonstrated the distribution of Kv7.2 subunits in 

presynaptic terminals of rodents brain, suggesting its role in neurotrasmitter release 

(Cooper et al., 2000). Augmentation of Kv7 channels at this location attenuates 

neurotrasmitters release: in fact, the activation of presynaptic IKM may hyperpolarize 

hippocampal nerve endings, thus reducing Ca2+ influx through voltage-gated Ca2+ 

channels. These decrease in [Ca2+] reduces the release of neurotrasmitters, such as 

norepineprine, GABA and D-aspartate (Martire et al., 2004). Involvement of Kv7.2 

subunits have been described also in dopamine release from rat striatal synaptosome: 

[3H] dopamine release is inhibited by the IKM activator retigabine while IKM blockers TEA 

and XE991 enhanced K+-evoked [3H] dopamine release and prevented retigabine-

indiuced inhibition of depolarization-evoked [3H] dopamine release (Martire et al., 2007). 

A class of drugs known as “cognition enhancers” (such as linopiridine or XE991) increases 

neurotrasmitter release by suppressing IKM and this affect seems to mediate an increase 

in animal performance of memory tests (Zaczek et al., 1998). 
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Figure 6. Role of neuronal M-current in controlling excitability. A) Representation of an action potential. B) 
Top: excitatory inputs (green arrows, 1) cause membrane depolarization and a single action potential. 
Afterward, increased activation of M-channels hyperpolarizes the membrane potential, preventing spiking 
in response to recurrent excitation (green arrows, 2,3). Bottom, when M-channel activity is reduced (for 
example in the presence of mutations), excitatory inputs lead to multiple action potentials (adapted from 
Cooper and Jan, 2003).  

 

M-channels regulation 
 
The M-current has been discovered as a neuronal K+ current fraction inhibited by 

muscarinic receptors (mAchR); later it became apparent that not only mAchRs but also 

receptors for bradykinin, angiotensin II, histamine, P2Y can inhibit M channels. These 

receptors are coupled to G-proteins (principally Gq and/or G11 subtypes), which stimulate 

phospholipase C (PLC) and catalyze PIP2 hydrolysis in inositol-1,4,5-trisphosphate (IP3) 

and diacylglycerol (DAG). Activation of PLC concomitantly triggers three different signals 

that modulate M channel activity in different ways: 

- Inhibition by PIP2 depletion: Kv7 channels require a certain level of PIP2 in the cell 

membrane to open. Activation of muscarinic receptors reduces the amount of PIP2 by up 

to ~85%, as a results of which most of the channels will shut. 

- Inhibition by Ca2+/CaM: the hydrolysis of PIP2 produces IP3, which triggers Ca2+ release 

from the endoplasmatic reticulum. The Ca2+/CaM binding sites overlaps the putative 
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binding site for PIP2 and it is suggested that occupation of this site by Ca2+/CaM complex 

cause channel closure by reducing the binding of PIP2 to the channel (Gamper and Shapiro 

2003; Gamper et al., 2005). 

- Inhibition by phosphorylation: activation of PKC by DAG induces the phosphorylation of 

the Ser523 and Ser530 in Kv7.2, which overlap with the channel’s CaM binding site. So, 

perhaps phosphorylation of the Kv7.2 subunit by PKC dissociate CaM from the channel, 

which reduces its affinity for PIP2 (Hoshi et al., 2003; Bal et al., 2010). 

 

Pharmacology of Kv7 channels 
 
Given their wide distribution in different organs and systems, and their association with 

different diseases, Kv7 channels are important pharmacological targets for the treatment 

of various pathological conditions. Molecules active on the Kv7 channels may act as 

inhibitors or activators. Reduction of Kv7 channel activity as a result of genetic mutations 

is responsable for various human diseases due to membrane hyperexcitability, including 

epilepsy, arrhythmia and deafness. Therefore, the discovery of compounds that activate 

voltage-gated ion channels is an important strategy for clinical intervention in these 

human disorders. 

 

ACTIVATORS 

Fluipurtine: it is an aminopyridine that still is used as an analgesic drug for acute and 

chronic pain. In 2013, due to its liver toxicity, the European Medicines Agency restricted 

its use to acute pain, for no more than two weeks, and only for people who cannot use 

other pain medications. 

Retigabine (N-[2-amino-4-(4-fluorobenzylamino)-phenyl] carbamic acid ethyl ester) is the 

best characterized activator molecule of Kv7.2-5 channels; the binding site of retigabine 

is formed by a hydrophobic pocket located between the cytoplasmic ends of the S5-S6  

transmembrane segment in the open channels configurations. Within this cavity of the 

Kv7 protein, a tryptophan residue (W236 in Kv7.2 and Kv7.3, W242 in Kv7.4, and W235 

in Kv7.5) in the S5 segment seems to play a crucial role (Wuttke et al., 2005; Schenzer et 

al., 2005). Additional amino acids (in Kv7.2 sequence: Leu234 in S5, Leu275 within the 

inner pore loop, Gly301 in the S6 segment, and Leu299 in S6 of the neighboring subunit) 
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seem also to be involved in the formation of the complete retigabine binding site (Barrese 

et al., 2010). Except for Leu275, these amino acids are conserved among all neural Kv7 

subunits but are missing in the Kv7.1 subunit; the absence of these conserved residues in 

Kv7.1 makes this subunit insensitive to the effects of retigabine (Wuttke et al., 2005; 

Schenzer et al., 2005). The main mechanism by which retigabine enhances the activity of 

Kv7.2-Kv7.5 channels is an hyperpolarizing shift of the activation curve (facilitating 

channel opening at more hyperpolarized membrane potentials), with a slightly difference 

in potency among different Kv7 subunits, together with a potentation of maximal 

currents elicitated by Kv7 channels. Considering its favorable pharmacological profile, 

retigabine (whose trade name is “Trobalt” in Europe or “Potiga” in United States) has 

been approved by European Medicines Agency and the U.S. Food and Drug 

Administration in 2011 as an adjunctive therapy for adults affected by partial-onset 

seizures. Despite its beneficial effects, post-marketing studies revealed the occurence of 

adverse side effects, such as urinary retention, blue skin coloration and pigment 

deposition in the retina; this latter effect is probably due to the photodegradation and 

oxidation of retigabine upon exposure to UV or visible radiations while urinary retention 

is probably due to the broad action on all neuronal Kv7 channels: in fact, retigabine is 

able to potentiate also Kv7.4 channels, which is expressed in smooth muscle cells where 

its activation lead to membrane hyperpolarization, resulting in a reduction of the 

contractile tone. 

These side effects have limited the clinical use of the retigabine as anti-epileptic drug: in 

fact, the production and marketing of this drug will be discontinued after June 2017 

(https://assets.publishing.service.gov.uk/media/57fe4b6640f0b6713800000c/Trobalt_l

etter.pdf). In parallel, many efforts are in progress to find more selective compounds. As 

an example, fluorine substituted at the tri-aminophenyl ring of retigabine have lead to 

the synthesis of SF0034. Preclinical studies performed in animal models revealed that 

SF0034 exhibits a more potent anticonvulsant activity and less toxicity than retigabine. 

Furthermore, SF0034 was significantly less active on Kv7.4 and Kv7.5 channels, suggesting 

that side effects observed for retigabine because of the activation of the channels could 

be reduced.  SF0034 seems to be more chemically stable than retigabine and does not 

produce blue metabolites (Kalappa et al., 2015).  
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Another analogue of retigabine called RL648_81, namely Ethyl (2-amino-3-fluoro-4-((4-

(trifluoromethyl)benzyl)amino)phenyl)carbamate seems to be 3-times more potent than 

SF0034 and 15-times more potent than retigabine in activating Kv7.2/Kv7.3 channels. 

Although, no preclinical data are yet available, this compound is a promising clinical 

candidate for the treatment of neurological disorders associated with neuronal 

hyperexcitability (Kumar et al., 2016).  

The compound R-L3 or L-364 373 [(3-R)-1, 3-dihydro-5-(2-fluorophenyl)-3-(1H-indol-3-

ylmethyl)-1-methyl-2H-1, 4-benzodiazepin-2-one)] is an activator of Kv7.1 channels. 

Intriguingly, the effect of R-L3 on Kv7.1 channels is reduced when Kv7.1 is coexpressed 

with its accessory subunit KCNE1 (Seebohm et al., 2003).  

BMS-204352 [(3S)-(+)-(5-chloro-2-methoxyphenyl)-1,3-dihydro-3-fluoro-6-

(trifluoromethyl)-2H-indol-2-one) is a potent activator of Kv7 channels with an EC50 of 2.4 

µM for Kv7.5. BMS-204352 is able to enhance Kv7.2, Kv7.2/Kv7.3 and Kv7.3-Kv7.4 

channels. BMS-204352 has anxiolytic effects, supporting the possibility that Kv7 channels 

might be targets also for the treatment of anxiety (Xiong et al., 2008).  

Fenamates, including meclofenamic acid and diclofenac, are relatively potent activators 

of Kv7.2 and Kv7.3 channels, with EC50 values of 25 and 2.6 µM, respectively.  

These compounds cause a hyperpolarizing shift of the voltage dependence of channel 

activation and slow the rate of channel closure. In addition, diclofenac and meclofenamic 

acid show robust antiepileptic properties in vivo and are widely used as non-steroidal 

anti-inflammatory drugs that act as non-selective inhibitors of cyclooxygenases (Xiong et 

al., 2008). An analog of the analgesic drug diclofenac, called NH29, has been 

demonstrated to interact with an external groove formed by the interface of S1, S2, and 

S4 helices of the VSD in Kv7.2 channels, where it stabilizes the interaction between two 

conserved residues in S2 (E130) and S4 (R207) (Peretz et al., 2010).  

Although the pharmacological effects on Kv7 channels are observed only at high 

concentrations, these molecules could be used as scaffold for the development of new 

Kv7 modulators, useful for the treatment of neuronal hyperexcitability conditions, such 

as migraine, epilepsy and neuropathic pain (Xiong et al., 2008). 

Acrylamides, including acrylamides (S)-1 and (S)-2, are shown to activate Kv7 channels. 

(S)-1 inhibits the activation of Kv7.1 isoform, while is able to activate other Kv7 channels 
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with different potency. The effect of acrylamide (S)-1 on Kv7.2 or Kv7.2/Kv7.3 channels is 

voltage-dependent: in fact, this compound blocks the channel at high voltages, while it is 

able to potentiate Kv7 currents at low voltages. By contrast (S)-1, is able to potentiate 

Kv7.4 and Kv7.5 channels at all tested membrane potentials.  The (S)-2 acrylamide is more 

potent than (S)-1. 

Zinc pyrithione (ZnPy) or bis(1-hydroxy-2(1H)-pyridineselonato-O,S) shows a strong 

potentation of all Kv7 channels, but not Kv7.3 channels. ZnPy is widely used for control 

of dandruff and in treatment of psoriasis. Like retigabine, the effect of ZnPy on neuronal 

Kv7 is both to prompt a hyperpolarizing shift in voltage activation and to increase the 

amplitude of Kv7 currents (Xiong et al., 2008).  

 

INHIBITORS 

Linopiridine: is one of the first inhibitor to be identified. It was proposed to be potentially 

useful for the treatment of neurodegenerative conditions caused by a deficit in 

neurotransmitter release as in Alzheimer's disease, since it appears to promote the 

release of acetylcholine, leading to learning enhancement in animal models of cognitive 

dysfunction. However, clinical trials on Alzheimer's patients did not show a clear 

effectiveness of this compounds (Zaczek et al., 1998). The most important problem of 

linopiridine (and also of other Kv7 inhibitors) is that it is unable to discriminate among 

the different Kv7 isoforms, being active also on cardiac Kv7.1 channels, although with a 

lower potency when this channel co-assembles with KCNE1 accessory subunits. 

XE-991: is a molecule similar to linopiridine, but showing an increased potency in blocking 

Kv7 currents. Like linopirdine, also XE991 is unable to discriminate among Kv7 subunits 

(Wang et al., 2000). 

TEA (Tetraethylammonium) Kv7.1-Kv7.4 channels show differential sensitivity to TEA: in 

fact, Kv7.2 is highly sensitive (IC50=0.3 mM), Kv7.3 is almost insensitive to TEA (IC50=30 

mM) while Kv7.1 and Kv7.4 show an intermedie sensitivity (IC50 are 5 and 3 mM, 

respectively). The high TEA-sensitivity shown by Kv7.2 subunit is due to the presence of 

a tyrosine residue (Y284) in the pore loop of the channel, absent in other subunits (Hadley 

et al., 2000). 
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ML-252 (S)-2-Phenyl-N-(2-(pyrrolidin-1-yl)phenyl)butanamide ((S)-5) is a small molecule 

acting as Kv7 inhibitor. This molecule, unlike other Kv7 channel blockers (XE991, 

linopiridine), exerts an inhibitory action at very low concentrations, proving to be very 

potent. Furthermore, it appears to be more selective than other inhibitors in blocking 

specifically Kv7.2 isoforms: in fact, the inhibitory action on Kv7.2 currents (IC50=69 nM) is 

about 40 times greater than that shown on Kv7.1 cardiac isoform (IC50=2.92 μM). The 

ML252 shows reduced selectivity for Kv7.2/Kv7.3 heteromeric channels (IC50=0.12 μM) 

or Kv7.4 channels (IC50=0.20 μM) (Cheung et al., 2012). Considered its great selectivity 

profile for Kv7.2 channel, the ML252 is considered a good molecule for the study of the 

role of Kv7.2 channels in neuronal functions. 

 

Mutations in kcnq2 gene are associated to benign and severe epilepsy  
 
Many genes implicated in human epilepsies can result in a range of different epileptic 

phenotypes ranging from mild to severe clinical presentations. This is also the case of 

kcnq2 gene. In fact, mutations in kcnq2 gene, as well as in its homologous kcnq3 gene 

were first associated to Benign Familial Neonatal Seizures.  This clinical condition is 

characterized by frequent, partial or generalized convulsions, which occur during 

wakefulness or sleep, in a context of normal neuropsychological development and EEG 

recordings. Seizures begin within the first days after birth and usually disappear within a 

few weeks or months; however, 10-15% of affected children show seizures later in life 

(Plouin 1994). The question of the transient expression of the seizures limited to the first 

days of life and their spontaneous remission remains puzzling. This effect could be due 

(at least partially) to the proposed excitatory action of GABA-ergic system in immature 

brain: in particular, the intracellular concentration of Cl- ions in neurons is elevated in the 

early postnatal period, and therefore the binding of GABA to its receptor will elicit 

outward Cl- currents, leading to membrane depolarization, opposite to the 

hyperpolarizating effect due to GABA-induced inward Cl- currents in the mature brain. 

Hence, with GABA acting as a depolarizing signal, the M-current might have an even more 

important role in the inhibition of an excessive neuronal firing; this role would diminish 

in parallel with the inhibitory switch of the GABAergic system (Okada et al., 2003). 
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In addition to the identification of kcnq2 mutations in benign form of epilepsy, recently a 

systematic analysis of a cohort of severely affected children with refractory epilepsy and 

mental retardation introduced an epileptic encephalopthy (EE) as a clinical phenotype 

related to kcnq2 mutations (Weckhuysen et al., 2012). Following this initial study, other 

two larger cohorts of patients presenting this phenotype have been analized and the 

percentage of patients carrying de novo mutations was 13% (11/84 pazienti; Weckhuysen 

et al., 2013) or 23% (16/71 pazienti, Milh et al., 2013), largely depending on the age of 

inclusion in the cohort. 

The molecular basis of the phenotypic heterogeneity of epileptic disease associated to 

kcnq2 mutations is not clearly understood. However, the phenotypic manifestation 

(benign or severe phenotypes) appears to be directly dependent on the underlying 

genetic mutation: in fact, kcnq2 mutations associated with BFNS are, to date, distinct 

from those found in EE. The different clinical phenotype could be a consequence of 

different molecular alterations induced by mutations. In fact, in vitro studies performed 

in heterologous systems, such as X laevis oocytes and mammalian cell lines reveal that 

BFNS associated mutations prompt loss-of-function effects on the channels, by altering 

voltage-sensing or by reducing current size, arguing in favor of haploinsufficiency as the 

primary pathogenic mechanism for BFNS. For those mutations affecting the long 

intracellular C-terminal domain, additional pathogenetic mechanisms have been 

described, such as defects in subunit stability (Soldovieri et al., 2006), changes in 

subcellular targeting (Chung et al., 2006) or altered regulation of Kv7.2 currents by 

modulator proteins, such as calmodulin (Ambrosino et al., 2015) or syntaxin-1A 

(Soldovieri et al., 2014). By contrast, more severe consequences on channel function (in 

particular dominant-negative effects) (Miceli et al., 2013; Orhan et al., 2014) or alteration 

in subcellular localization at the axon initial segment, or novel pathogenetic mechanism 

(such as gain-of-function effects) (Miceli et al., 2015a; Devaux et al., 2016; Millichap et 

al., 2016) seems to contribuite to the clinical disease severity of pathogenic variants 

causing Kv7.2-Epileptic Encephalopathy. 

It is also important to observe that mutations associated to different phenotypes are also 

differently distributed along Kv7.2 subunit sequence (Fig. 7): in fact, while mutations 

found in BFNS appear to be spread along the entire Kv7.2 sequence, EE-associated 



 29 

mutations appear to be concentrated in critical channel domains, such as the S4 domain, 

the pore, the proximal C-terminal segment which binds PIP2 and calmodulin, and the B 

helix, which also is involved in CaM-binding (Millichap et al., 2016). 

 

 

 

 

 

 

 

 

 

 

 

Understanding the pathogenetic mechanisms underlying these different epileptic 

disorders is very important to identify novel pharmacological targets: in fact, one the 

main problem in the treatment of epileptic encephalopathy is that seizures are often 

resistant to widely-used old- and new-generation antiepileptic drugs. Currently, the first-

line treatment for epileptic encephalopathy and benign neonatal epilepsy is represented 

by the administration of carbamazepine or phenytoin (sodium channel blockers) (Pisano 

et al., 2015; Sands et al., 2016); in addition, some patients are responsive to the 

treatment with topiramate (active on Ca2+ channels) and leveritacetam (active on 

synaptic SV2A vesicles) (Pisano et al., 2015).  

The important function of Kv7 channels in neuronal excitability, as well as the 

pathogenetic role of Kv7.2 mutations in severe forms of epileptic encephalopathy, has 

led to consider these channels and its modulators as important pharmacological targets.

Figure 7. Distribution of Kv7.2 variants causing benign epilepsy or epileptic encephalopathy. Left, mutations 
found in BFNS/BFNIS/BFIS cases are distribuited among all areas of the polypeptide sequence. Orange 
symbols are missense variants while yellow symbols are all other variant types (i.e. loss of start codon, 
insertions or deletions changing frame, and premature stop codon). Right, in patient with Kv7.2  epileptic 
encephalopathy, mutations are nearly always single nucleotide substitutions, resulting in a single amino 
acid change. Encircled are the 4 hot spots for variants leading to epileptic encephalopathy: the S4 voltage 
sensor, the pore, the proximal C-terminal domain that binds PIP2 and CaM, and more distal domain which 
binds CaM (Millichap et al, 2016). 

BENIGN EPILEPSY EPILEPTIC ENCEPHALOPATHY 
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AIMS OF THE STUDY 
 

The aims of the present Doctoral Project has been to investigate the molecular 

mechanisms prompting channel dysfunction by de novo mutations identified in the kcnq2 

gene in patients affected by Neonatal Epileptic Encephalopathy (NEE). In particular, we 

have selected 7 Kv7.2-mutations (S187F, S195P, R201C, G256R, A265T, R352G, R553G); 

some of these are already present in literature (S195P, R201C, A265T, R325G, R553G) 

and classified in the freely available Rational Intervention of KCNQ2 Epileptic 

Encephalopathy (RIKEE) database (www.rikee.org) that our research group contributes 

to build, other mutations have been identified by collaborating child neurologists (S187F, 

G256R). 

We selected for this study the following mutations (Tab. 3): 

 

Nucleotide substitution Amino acid substitution Reference 

c.560 C>T p. S187F Personal communication from Dr. Pasquale 
Striano (G. Gaslini Institute, Genova) 

c.583 T>C p. S195P (Weckhuysen et al., 2013) 

c.601C>T p. R201C (Weckhuysen et al., 2013) 

c.766 G>A p. G256R Personal communication from Dr. Pasquale 
Striano (G. Gaslini Institute, Genova) 

c.793 G>A p. A265T (Milh et al., 2013; Weckhuysen et al., 2013) 

c.973 A>G p. R325G (Weckhuysen et al., 2013; Numis et al., 2014) 

c.1657 C>G 1 p. R553G (Weckhuysen et al., 2013) 

1In Weckhuysen et al., 2013 the p.R553G (c.1657) mutation in patient L corresponds to p.581G (c.1741) 
according to the longest mRNA transcript (isoform a; NM_172107.2). The nucleotide variation C>A 
reported in Weckhuysen et al., 2013 is an erratum, since the nucleotide variation is not associated to an 
amino acid variation; the correct variation is C>G. 

 

Table 3. List of the naturally-occurring mutations studied in the present work. (“c.” indicates the nucleotide 
substitutions, “p.” indicates the amino acid mutations). 

 

 

 

 

http://www.rikee.org/
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Figure 8. Schematic drawing of a Kv7.2 subunit and location of the naturally-occurring mutations studied in 
the present work. The colored circles indicate the location of the mutations investigated: in particular 3 
mutations are located in the VSD, 2 in the pore region and 2 in the C-terminal domain. For numbering 
mutations, the numeration is according to that of isoform c (NM_004518.4).  

 

To study the biochemical, functional and pharmacological consequences 

prompted by these mutations, following experiments have been performed: 

1. Engineering of mutations in a plasmid encoding for untagged (for electrophysiological 

and biochemical studies) or tagged with Enhanced Green Fluorescent Protein (EGFP) and 

hemagglutinin (HA) tags (for immunocytochemistry experiments) human Kv7.2 subunits 

(isoform c) 

2. Patch-clamp recordings of macroscopic currents expressed by Chinese Hamster Ovary 

(CHO) cells transiently-transfected with wild-type or mutant subunits, in homomeric or 

heteromeric configurations with Kv7.2/Kv7.3 wild-type subunits 

3. For not-functional mutant channels, evaluation of total or plasma membrane 

expression of Kv7.2 subunits  

4. Patch-clamp recordings of macroscopic currents in the presence of Kv7 activators 

(retigabine) or inhibitors (ML252) to evaluate the ability of Kv7 modulators to counteract 

mutation-induced functional alterations  

5. Study of the subcellular localization of EGFP-Kv7.2-HA subunits carrying NEE-

associated mutations in hippocampal neurons  

6. Study of the functional effects prompted by Syntaxin-Binding Protein 1 (STXBP1) on 

Kv7.2/Kv7.3 currents when expressed alone or in co-expression with syntaxin-1A in 

transiently-transfected CHO cells 
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MATERIALS AND METHODS 
 

Site-Directed Mutagenesis 
 

Each mutation was engineered by Quick-change Site-Directed Mutagenesis 

(Agilent Technologies) in a pcDNA3.1-Kv7.2 plasmid encoding for the human transcript 

variant c of Kv7.2 (accession number: NM_004518.4; 844 amino acids) wild-type or 

incorporating the mutation Y284C (for electrophysiological and western-blot 

experiments), or in a double tagged pEGFP-Kv7.2-HA plasmid (for immunocytochemistry 

experiments). The mutations were engineered in each plasmid by Polymerase Chain 

Reaction (PCR), using a pair of primers (forward and reverse), incorporating the 

nucleotide mutation found in the patient (Table 4). 

The amplification reaction was performed in a final volume of 50 µL containing the 

following components: 50-300 ƞg of plasmids for Kv7.2-wt, Kv7.2-Y284C or EGFP-Kv7.2-

HA as template, 0.6 µM primer forward, 0.6 µM primer reverse, 5% DMSO, 3U of Pfu DNA 

Polymerase, 0.2 mM dNTP mix, 1X buffer Pfu. The PCR consisted of 30 cycles, with each 

cycle consisting of three temperature steps, that allow the denaturation of the DNA 

Double Helix (95° C for 1’), the annealing of the primers to the single strand of DNA (the 

temperature was modified according to the nucleotide sequence of each couple of 

primers) and the extension of the primers (73°C for 5’) (Fig. 9).  

 

 

 

 

 

 

 

 

 

Figure 9. Schematic representation of the Polymerase Chain Reaction. Phase 1) Denaturation of the DNA 
Phase 2) Annealing of the mutated primers to the specific complementary sequence of the DNA. Phase 3) 
The Pfu polymerase synthesizes a new DNA strand complementary to the DNA template strand.  
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MUTATION 
 

 
          TEMPLATE 

 
PRIMERS 

c.560 C>T 
p.S187F 

Kv7.2, 50 ng 

EGFP-Kv7.2-HA, 100 ng 

5’ –CCGGCTTCCAGGGCAACG– 3’ 
5’ –CGTTGCCCTGGAAGCCGG– 3’ 

c.583 T>C 
p.S195P 

Kv7.2, 50 ng  

EGFP-Kv7.2-HA, 100 ng 

5’ –CTTTGCCACACCTGCGCTC– 3’ 
5’ –GAGCGCAGGTGTGGCAAAG– 3’ 

c.766 G>A 

p.G256R 

Kv7.2, 50 ng  

Kv7.2-Y284C, 100 ng  

EGFP-Kv7.2-HA, 100 ng 

5’ –GCAGAGAAGAGGGAGAAC– 3’ 

5’ –GTTCTCCCTCTTCTCTGC– 3’ 

c.793 G>A 

p.A265T 

Kv7.2, 50 ng  

Kv7.2-Y284C, 100 ng  

EGFP-Kv7.2-HA, 100 ng 

5’ –GACACCTACACGGATGCAC– 3’ 

5’ –GTGCATCCGTGTAGGTGTC– 3’ 

c.973 A>G 

p.R325G 

Kv7.2, 50 ng  

Kv7.2-Y284C, 100 ng  

EGFP-Kv7.2-HA, 300 ng 

5’ –CAGCACGGGCAGAAG– 3’ 

5’ –CTTCTGCCCGTGCTG– 3’ 

c.1657 C>G 

p.R553G 

Kv7.2, 50 ng  

Kv7.2-Y284C, 100 ng  

EGFP-Kv7.2-HA, 100 ng 

5’–GCTGTCCGGAATTAAGAGC– 3’ 

5’ –GCTCTTAATTCCGGACAGC– 3’ 
 

 

Table 4. Experimental conditions used for PCR reaction. Column 1) Mutations found in patients and 
engineered in the Kv7.2, Kv7.2-Y284C, or EGFP-Kv7.2-HA templates. Column 2) Templates and related 
quantity used for each reaction. Column 3) Nucleotide sequences of primers used for PCR; in bold is 
highlighted the nucleotide mutation present in the patient.  

 

Bacterial transformation and plasmidic DNA preparation 
 

After the amplification reaction, the volume of the reaction contained both 

methylated (parental) and unmethylated (neo-synthesized) DNA: therefore, in order to 

remove the parental DNA, enzymatic digestion with DpnI enzyme (able to digest only 

methylated DNA) was performed.  

After enzymatic digestion with DpnI, competent E. coli DH5 cells were transformated 

with the PCR product by chemical transformation procedure (30’ at 4°C, heat shock step 
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at 42°C for 45’’ followed by 2’ at 4°C). To help the bacterial cells recover from the heat 

shock, the cells were incubated with SOC medium (2% tryptone, 0.5% yeast extract, 10 

mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 mM MgSO4, 20 mM glucose), for 1h at 37 °C. 

Finally, the cells were seeded into LB+agar plates (containing 10 g/L tryptone, 5 g/L yeast 

extract, 5 g/L di NaCl, agar 15 g/L) with the specific antibiotic, to which the plasmids are 

resistant, such as ampicilin (100 μg/μL) to allow the growth only of E.coli cells 

transformed with pcDNA3.1 plasmids (in which Kv7.2 or Kv7.2-Y284C cDNAs are present) 

or kanamycin (25 μg/μL) to allow the selective growth of E. coli cells transformed with 

pEGFP plasmid (containing EGFP-Kv7.2-HA cDNA) (Fig. 10). Plates were then incubated 

inverted at 37 °C for about 16 h to allow bacterial growth.  

 

 

 

Each colony grown on the LB medium was inoculated in 6 mL of fresh LB medium with 

antibiotic selection (Amp/Kan), in agreement with the antibiotic resistance confered by 

the plasmids to the E. coli cells, at 37°C/220 rpm overnight. Then, plasmidic DNA was 

extracted by using a commercially available kit (NucleoSpin Plasmid EasyPure, Promega, 

Figure 10. Overview of the Quick-
Change Mutagenesis method. 1) The 
green circles indicate the parental 
DNA, while dashed blue circles 
represent the DNA produced after 
PCR amplification. The black arrows 
indicate the mutagenic primers used 
for PCR. 2) Dashed green circles 
represent the methylated, parental 
DNA digested by DpnI enzyme while 
blue circles represent the neo-
synthesized plasmid, which present 
the mutation (yellow circles). The 
ends of the plasmid are not ligate. 3) 
After transformation, the E. coli cells 
repair the nicks in the mutated 
plasmid. 
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Milan, Italy). The successful insertion of the desired mutation has been verified by direct 

sequencing (Eurofins, Milan, Italy). To obtain DNA in large amount, one of the positive 

clones was amplified on a large scale (500 mL) and plasmidic DNA was extracted by using 

a commercially available kit (PureYield Plasmid Maxiprep System, Promega). The cDNA 

was sequenced again, to confirm the presence of the mutation of interest and to exclude 

additional mutations in the entire coding sequence. 

 

Cell cultures and transient transfection with Lipofectamine 

 
CHO (Chinese Hamstery Ovary) cells were grown in plastic Petri dishes (100 mm, 

60 mm or 40 mm, according to the different experimental needs) in DMEM (Dulbecco’s 

Minimum Eagle Medium) supplemented with 10% Fetal Bovine Serum (FBS) 

(decomplemented at 56°C for 30’), 1% L-glutamine (2 mM in 0.85% NaCl), 1% penicillin 

(50 U/mL) and streptomycin (50 µg/mL) in a humidified atmosphere at 37°C with 5% CO2. 

CHO cells were transfected using Lipofectamine 2000, according to the manufacturer 

protocol (LifeTechnologies, Milan, Italy). In each transfection mixture, a plasmid encoding 

for EGFP (Enhanced Green Fluorescent Protein) was used as transfection marker. 

Cell cultures and transient transfection with electroporation 
 

CHO cells were grown in flasks in F-12 Nutrient Mixture (Gibco, Lab Inc. Grand 

Island. NY) supplemented with 10% Fetal Bovine Serum (FBS) and 100 U/mL 

antibiotics/antimycotics, in a humidified atmosphere at 37°C with 5% CO2. CHO cells were 

transfected using the Neon® Transfection System (LifeTechnologies), according to the 

manufacturer protocol. Briefly, 100.000 cells were electroporated (1400 V, 1 pulse, 20 

ms) in the presence of a total amount of 1 µg of DNA to allow the incorporation of DNA 

into the cells. Following electroporation, cells were cultured on glass coverslips, pre-

coated with polyethylene glycol, and maintanined at 37 °C for 2 days before 

electrophysiological recordings or immunocytochemistry esperiments. 
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Patch-clamp recordings 
 

For electrophysiological experiments, CHO cells were seeded on glass coverslips, 

heat-sterilized and pre-coated with poly L-lysine, in 40 mm dishes. On the next day cells 

were transiently transfected with 4 µg of total cDNA (3.6 µg of plasmids encoding for 

Kv7.2 and/or Kv7.3 channels + 0.4 µg di pEGFP) and macroscopic currents were recorded 

after 24 h using patch-clamp technique in the whole-cell configuration. During patch-

clamp recordings the cells were perfused with an extracellular solution containing (in 

mM): 138 NaCl, 5.4 KCl, 2 CaCl2, 1 MgCl2, 10 glucose, 10 HEPES, pH 7.4 (adjusted with 

NaOH). The pipettes used for recordings were filled with an intracellular solution 

containing (in mM): 140 KCl, 2 MgCl2, 10 EGTA, 10 HEPES, 5 Mg-ATP, pH 7.4 (adjusted 

with KOH). 

The data were acquired and analyzed using a commercially available amplifier 

(Axopatch 200A, Axon Instruments, Foster City, CA, USA) and pCLAMP10 software (Axon 

Instruments). 

To generate conductance/voltage curves, cells were held at -80 mV, depolarized from -

80 mV to +40 mV in 10/20 mV increments, followed by an isopotential pulse at 0 mV (Fig. 

11). Current values recorded at the beginning of the 0 mV pulse were measured, 

normalized, and expressed as a function of the preceding voltage. The data obtained 

were then fit to a Boltzmann distribution of the following form: 

 

y = max / [1 + exp (V1/2 – V)/k] 

  

where V is the test potential, V1/2 indicate the half-activation potential, and k the slope 

factor. Current densities (expressed in picoamperes per picofarad, pA/pF) were 

calculated as peak K+ currents (pA) measured at 0 mV or +20 mV divided by the 

capacitance of the same cell (expressed in pF).   
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Figure 11. IV protocol and method for quantification. On the left, representative trace obtained by 
application the voltage protocol in the bottom. On the right, conductance/voltage curve obtained fitting to 
a Boltzman distribution the data. 

 
The effects of drugs on Kv7.2 currents were tested by using a different protocol, namely 

by a ramp protocol, in which the voltage was progressively increased from -80 mV to +40 

mV (Fig. 12) in a period of 5 sec. 

 

 

 

 

 

 

 

 

 

 
 

 

Cell Surface Biotinylation and Western Blotting 

 
For biotinylation experiments, CHO cells were seeded on 60 mm Petri dishes 

(250.000 cells for Petri) and 24 h later transiently transfected with 6 µg of total cDNA (5 

µg of wild-type or mutant pcDNA3.1-Kv7.2 + 1 µg EGFP). One day after transfection, CHO 

cells were treated for 30’ at room temperature (RT) with Sulfo-NHS-LC-Biotin (Pierce, 

Figure 12. Functional effects prompted by the Kv7.2 modulators, using ramp protocol. On the left is shown 
the activator effects of retigabine while on the right is shown the inhibitors effects of ML252.  
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Erembodegem-Aalst, Belgium) (Fig. 13A), a 

cell-membrane impermeable reagent, 

which therefore binds only to the proteins 

present at the plasma membrane. Cells 

were washed three times with PBS 

solution enriched with 100 mM glycine, to 

remove the excess of biotin, and lysed in 

CMF-buffer containing (in mM): 120 NaCl, 

50 KCl, 50 NaF, 20 Tris-HCl pH 7.5, 10 

EDTA, 2% Triton, 2 DTT, and 1X protease 

inhibitors (Roche, Milan, Italy). Cell lysates 

were reacted with ImmunoPure 

immobilized streptavidin beads (Pierce) for 

30’ at 4 °C (Fig. 13B), to allow the binding 

of biotin to the surface of the magnetic 

beads. The beads (bound to the plasma 

membrane proteins) were the separated and collected using a magnetic stand, while the 

supernatant was used as total lysates (Fig. 13C). 

 After the biotinylation procedure, the total volume of plasma membrane proteins and 

equal amounts of total lysates among different samples were separated 

electrophoretically at RT on 8% SDS-PAGE gels in running buffer (containing 25 mM Tris, 

192 mM glicine, 0.1% SDS) until a complete separation of the protein marker loaded in 

parallel (Biorad, Milan, Italy). Proteins were then tranferred onto polyvinylidene fluoride 

membranes (PVDF, Biorad, Milan, Italy) blotting papers in transfer buffer (containing 25 

mM Tris, 192 mM glicine, 20% methanol). PVDF blotting papers were then incubated with 

5% milk in the blocking solution (5% milk dissolved in PBS-Tween buffer) to block non 

specific binding sites on the membrane for 1h at RT; then, blots were incubated with 

mouse monoclonal anti-Kv7.2 (diluted 1:1000 in blocking solution, Neuromab) or anti-

tubulin (diluted 1:1000 in blocking solution, Sigma) antibodies for 16 h at 4°C. After 

washing PVDF membranes for 30’ with PBS-Tween, blots were incubated with anti-mouse 

secondary antibodies (diluted 1:5000 in blocking solution, GE HealthCare, UK) for 1 h at 

Figure 13. Procedure for the Biotinylation cell 
surface proteins.  

CHO cell 
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RT. These secondary antibodies are coniugated with horseradish peroxidase enzyme 

(HRP) which allows the emission of light in the presence of enhanced chemiluminescence 

(ECL) solutions (Promega, Madison, WI, USA). Acquisition and data analysis were 

performed by using ImageLab software (version 4.1; Biorad, Milan, Italy).  

 

Study of the incorporation of mutant subunits into tetrameric channel with 
wild-type Kv7.2 subunits  
 

Tetraethylammonium (TEA) is a small molecule that binds to the pore region of 

Kv7.2 channels, therefore blocking their currents with high potency (IC50=0.13±0.01 mM). 

The amino acid substitution Kv7.2-Y284C disrupts this high-affinity interaction, leading to 

TEA-insensitive Kv7.2 channels (IC50=109±9 mM) (Castaldo et al., 2002). Based on this 

pharmacological evidence, the incorporation of mutant subunits into heteromeric 

channels with wild-type Kv7.2 subunits was studied by measuring the TEA-sensitivity of 

currents recorded in cells co-expressing wild-type and mutant Kv7.2 subunits. In 

particular, G256R, A265T, R325G and R553G mutations were first introduced in Kv7.2-

Y284C plasmids, therefore generating TEA-insensitive mutant channels (Kv7.2-

Y284C/G256R, Kv7.2-Y284C/A265T, Kv7.2-Y284C/R325G, Kv7.2-Y284C/R553G). These 

double mutant channels were then co-transfected with wild-type Kv7.2 subunits in CHO 

cells and the cells expressing these currents were exposed to 3 mM TEA to measure TEA 

sensitivity: therefore, an effective incorporation of mutant subunits into heteromeric 

channels with wild-type Kv7.2 subunits was supposed when the TEA-sensitivity was 

significantly different from that of wild-type Kv.2 homomeric channels (Fig. 14). 
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Figure 14. Schematic representation of the strategy used for the study of mutant subunits incorporation into 
tetrameric channels with wild-type Kv7.2 subunits.  

 

Hippocampal cell culture and transient transfection 
 

Hippocampal cultures were prepared as described (Brewer et al., 1993). Briefly, 

we used hippocampi of 18 day embryonic rats, dissociated by treatment with tripsin for 

15’ at 37°C followed by trituration with a constricted Pasteur pipet (Fig. 15). Neurons 

were then plated on glass coverslips, coated with poly-L-lysine, into twelve-well tissue 

culture plates at a density of 75.000/well. Neurons were maintained in neurobasal 

medium (Gibco) supplemented with B27 extract, 0.25% L-glutamine (Gibco) and 1% 

penicillin/streptomycin (ThermoFisher Scientific) in a cell culture incubator (37°C, 5% 

CO2).  
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After 8 days in vitro, neurons were co-transfected with EGFP-Kv7.2-HA (wild-type or 

mutant) and Kv7.3 cDNA (ratio 1:1, total 2 µg) using Lipofectamine 2000 (Invitrogen, San 

Diego, CA). To perform neuronal transfections, two mediums were prepared: 1) 

transfection medium (for each well: 800 µL Neurobasal + 200 µL conditioning medium, 

taken directly from the neuronal culture) and 2) washing medium (for each well: 500 µL 

Neurobasal + 500 µL conditioning medium). Briefly, 2 µg of DNA was diluted in 200 µL of 

Neurobasal medium and mixed with 3 µL of Lipofectamine 2000; after incubation for 15’ 

at RT, the total volume of transfection mixture was added in individual well containing 

neurons in transfection medium. Cells were incubated in this medium for 1 h at 37 °C, 5% 

CO2; then, the transfection medium was replaced with washing medium. 

 

 

Figure 15. Preparation of rat hippocampal culture. Hippocampal neurons were prepared from embryonic 
day 18 (E18) rat embryos (1). Working in a laminar flow hood, take the brain, remove the cerebellum and 
divide the two cerebral hemispheres (2). Using a dissecting microscope, remove carefully the meninges, 
then dissect out the hippocampus, which is recognized by its characteristic shape of a half moon (3). After 
hippocampus isolation (4), collect different hippocampi into a conical centrifuge tube. Incubate the 
hippocampi with trypsin at 37°C for 15’ and after that, dissociate the hippocampi by repeatedly pipetting 
them up and down in a Pasteur pipette (5). After some days in vitro, neurons increase their size and 
develope an intertwined network of axons and dendrities (6). 
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Immunocytochemistry on hippocampal neurons 
 
The immunostaining was performed 72 h after transfection (11 DIV) at RT. Neurons were 

fixed in 4% paraformaldehyde/4% sucrose for 10’ at 37°C, washed three times with PBS 

and blocked with 10% normal goat serum (NGS) in PBS. To detect the surface expression 

of EGFP-Kv7.2 HA channels, neurons were incubated with rabbit anti-HA antibodies 

(745500, Invitrogen) diluited 1:60 in PBS+10% NGS for 1 h at RT. To detect the 

intracellular marker of the AIS, neurons were incubated with mouse monoclonal AnkG 

antibodies (clone 106/36, Millipore) diluited 1:200 in permeabilizing buffer (15 mM buffer 

fosfate pH 7.4, containing 0.1% gelatin, 0.3% Triton X-100 and 0.4 M NaCl) for 2 h at RT. 

After three PBS washes, neurons were incubated simultaneously with rabbit 

AlexaFluor555- and mouse AlexaFluor649-conjugated secondary antibodies 

(LifeTechnologies) diluted 1:400, 1:300 respectively in permeabilizing buffer for 1 h at RT. 

Coverslips were then mounted with moviol and stored at 4 °C until images acquisition.  

Fluorescent images of transfected neurons were acquired using a Zeiss LSM510 Meta 

confocal microscope, using 63X objective. All the images were acquired using the same 

exposure time to compare the fluorescence intensity of the neurons transfected with 

different constructs.  

The fluorescence intensity of the soma, the axon and the major dendritic processes were 

quantified using the software Fiji (ImageJ) (National Institutes of Health, USA, 

http://rsb.info.nih.gov/ij). The same images were used to perform two quantifications: 

the AIS/soma or AIS/dendrite ratios were calculated by expressing the HA fluorescence 

(measured in a 20-30 μm AnkG-positive area) versus the EGFP fluorescence of a 50 μm2 

rectangle in the soma (AIS/soma) or versus a 25 μm-long region of the main dendrite 

(AIS/dendrite); in addition, to detect HA and AnkG signal along the axon, axonal Ank-G 

and HA signals were measured every 0.14 µm along a 40 µm-long region starting from 

the soma; values (expressed as fluorescence arbitrary units of intensity) in each neuron 

were normalized, and averaged every 5 points to decrease signal noise.  

 
 

 

 

http://rsb.info.nih.gov/ij
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Immunocytochemistry on CHO cells 
 
The immunostaining on CHO cells was performed at RT 48 h after transfection. CHO cells 

were fixed with AntigenFix for 20’ at 37°C, washed for three times with PBS and 

permeabilized with PBS+0.3% Triton X-100+3% NGS. After, cells were simultaneously 

incubated with primary antibodies, as indicate in Table 5, diluited in PBS+3% NGS, for 16 

h at 4 °C. The day after, cells were incubated with secondary antibodies diluted in 

PBS+0.3% Triton X-100+3% NGS for 1h at RT. After 3 washes in PBS, CHO cells were 

stained with DAPI for 1’ at RT, and mounted with FluoroGel. Image acquisition was 

performed by Apotome Zeiss equipped with a 40x oil immersion lens.  

 

Plasmids transfected  Primary Antibodies Secondary Antibodies Acquisition 

EGFP (1) - - FITC 

STXBP1 (1) Anti-Rabbit 1:1000 Rabbit Alexa-555 nm DsRed 

HA-Kv7.2 (1) Anti-Rat 1:200 Rat Alexa-594 nm Texas Red 

SYNTAXIN-1A (0,5) Anti-Mouse 1: 5000 (Abcam) Mouse Alexa-647 nm Cy5 

Kv7.3 (1) NO DETECTION   

 

Table 5. Experimental conditions used to perform immunofluorescence experiments in CHO cells. 

 

Multistate structural modeling 
 

Three-dimensional models of Kv7.2 subunits were generated by using as templates the 

coordinates of 6 different states of Kv1.2/2.1 paddle chimera obtained in molecular 

dynamics simulations (Jensen et al., 2012). Modeling of the S1-S4 VSD in each states was 

performed with SWISS-MODEL, as described previously (Miceli et al., 2013). The models 

were optimized through all-atom energy minimization by using the GROMOS96 

implementation of Swiss-PDBViewer and analyzed using both the DeepView module of 

Swiss-PDBViewer and PyMOL. 

 

Statistics 
 

Data are expressed as the mean ±SEM. Statistically significant differences between tha 

data were evaluated with the Student’s t test, with the threshold set at p<0.05.
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RESULTS 
 

Clinical features of patients affected by Neonatal Epileptic Encephalopathy 
 
Variants in kcnq2 gene have been associated with a wide phenotypic spectrum of 

epileptic disorders, ranging from Benign Familial Neonatal Seizures to Early-Onset 

Epileptic Encephalopathy.  

In the present work, we have selected and studied the biochemical/ functional alterations 

together with neuronal trafficking induced by seven Kv7.2-mutations (S187F, S195P, 

R201C, G256R, A265T, R352G, R553G) associated to kcnq2-neonatal epileptic 

encephalopathy 

 Most cases of kcnq2-encephalopathy associated to de novo mutations occuring in 

the egg or sperm cells. Furthermore, the disease is rare and therefore only few cases have 

been reported for each mutation (in fact, to date 1 case of epileptic encephalopathy for 

S187F, S195P, R201C, G256R, 2 cases for R553G mutations and 3 cases for A265T and 

R325G mutations have been reported); unfortunately, these mutations are severely 

debilitating: typically, the neonatal seizures resolve within months to years but children 

have some degree of developmental impairment involving one or more domains (motor, 

social, language, cognition) (Table 6). 
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Mutation  Sex/Age at 
inclusion  

Clinical features Reference 

 
 
c. 583 T>C 
p. S195P 

 
 

Male 
2 years 

 1 month 

 
Seizures onset at 5 months. Extension spasms 
sometimes with eye fluttering or clonic jerks of 
arms. Profound ID. Severe axial hypotonia, 
unable to sit unassisted, head control at 2 
years. Inconsistent visual tracking. 
Spontaneous babbling and smiling. 
Microcephaly and swallowing difficulties  

(Weckhuysen et 
al., 2013) 

c.601 C>T 

p. R201C 

 

 
Female 
2 years 

5 months 

 

 
Seizures onset at 2nd day of life. Axial 
hypotonia, does not sit, no visual eye contact. 
Recurrent gastro-intestinal and respiratory 
infections, with respiratory impairment with 
need of oxygen supplementation. Profound 
ID. Found dead in bed at age 2y 5m. 

(Weckhuysen et 
al., 2013) 

 
 
c.  793 G>A 
p. A265T 

 
 

Male 
24 years 

 
Seizures onset at 2nd day of life. Profound ID. 
Wheelchaired from childhood, axial hypotonia, 
pyramidal tetraparesis, poor speech with 
dysarthria, nystagmus  

(Weckhuysen et 
al., 2013) 

 
c.  793 G>A 
p. A265T 

 
6 months 

 
Seizures onset at 1st day of life. Multiple 
seizures daily. Poor eye contact. Global 
hypotonia, poor head control, pyramidal signs. 

(Milh et al., 
2013) 

 
 
c. 973 A>G 
p. R325G 
 

 
 

Male 
2 years  

6 months 

 

 
Seizures onset at 1st day of life. Profound ID. 
Seizures generalized with apnea, desaturation, 
grimacing, followed by mastication and 
sialorrea. Axial hypotonia, absent speech, 
nystagmus. Limb hypertonia. Episodes of non-
epileptic dystonic opisthotonus  

(Weckhuysen et 
al., 2013) 

 
 
c. 973 A>G 
p. R325G 
 

 
 

Male 
2 years 

 10 months 

 

 
Seizures onset at 2nd day of life.  Seizures with 
pursing of lips, cleanching of eyes and cyanosis. 
Sometimes with eye deviation and flickering of 
eyeballs. Profound ID. Axial hypotonia, limb 
spasticity. No grasping or reaching, poor head 
controI, no fixing or following  

(Weckhuysen et 
al., 2013) 

 
c.  1657 C>G 
p. R553G 

 
Male 

1 year 
 4 months 

 
Seizures onset at 1st day of life. Severe ID and 
autism spectrum disorder. Axial hypotonia, 
excessive sweating, stridor first 6 months. 
Strabism, contact disturbance, macrocephaly  

(Weckhuysen et 
al., 2013) 

 
Table 6. kcnq2 mutations and clinical features of patients affecting by Neonatal Epileptic Encephalopathy. 
(ID: intellectual disability). 
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Electrophysiological characterization of Kv7.2, Kv7.3 or Kv7.2/Kv7.3 currents  
 
 The measurement of currents elicited by wild-type or mutant channels were 

performed in CHO cells, which do not express these voltage-gated potassium channels: 

in fact, after the application of a classical voltage protocol for K+ currents recordings in 

these cells, no current was measured above background levels. When these cells were 

transfected with the cDNAs encoding for Kv7.2 and/or Kv7.3 subunits, outward K+ 

currents were recorded, in response to incremental depolarizing voltage steps from -100 

to + 40 mV. In particular, homomeric wild-type Kv7.2 channels generated robust K+-

selective currents (~39±5 pA/pF), activated at membrane potentials of ~-40 mV, and 

showed slow activation and deactivation kinetics and absence of inactivation; by contrast, 

currents carried by Kv7.3 homomeric channels are rather small (~13±1 pA/pF). Cells co-

expressing Kv7.2 and Kv7.3 subunits generated currents whose amplitude was larger than 

that expected from the simple summation of homomeric Kv7.2 and Kv7.3 currents 

(~127±5 pA/pF) (Fig. 16). 

 

 

 

 

The electrophysiological characterization of wild-type Kv7.2 or Kv7.2/Kv7.3 currents is an 

important control to evaluate the biophysical alterations of the channels induced by 

Kv7.2 mutations studied in the present work.  

Electrophysiological recordings performed on transiently-transfected CHO cells have 

revealed that the mutations herein investigated are associated to heterogeneous 

functional alterations, as detailed in the following paragraphs. 

Figure 16. Voltage-gated K+ currents underlined by homomeric Kv7.2, Kv7.3 or heteromeric 
Kv7.2/Kv7.3 channels. “NT” indicates non transfected CHO cells. 
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Most Kv7.2 mutations induce loss-of-function effects on Kv7.2 currents  
 

In the first series of experiments, patch-clamp recordings were performed on CHO 

cells transfected only with wild-type or mutant Kv7.2 cDNA, thus giving rise to homomeric 

channels. In agreement with previous works, CHO cells expressing wild-type channels 

produced robust K+ currents (current density was 39±5 pA/pF; n=6; p<0.05 versus non 

transfected cells which current density was 0.7±0.1 pA/pF; n=6) (Fig. 17); by contrast, 

cells expressing Kv7.2 subunits carrying G256R, A265T or R325G mutations did not elicit 

currents above background levels (current densities were 0.5±0.2, 1.2±0.1 or  1.1±0.1 

pA/pF respectively; n=5, 15, 13; p<0.05 versus Kv7.2 wild-type) (Fig. 17). 

 

 

To investigate whether the absence of currents observed in cells expressing these 

mutant channels was due to mutation-induced alteration in the steady-state protein 

levels and/or reduction in plasma membrane levels, western-blot experiments were 

performed on total lysates or plasma membrane enriched fraction of CHO cells 

transiently expressing mutant Kv7.2 subunits carrying each of these mutations (Fig. 18). 

Densitometric analysis on total lysates reveals that the ratio between the optical density 

Figure 17. Functional characterization of wild-type or mutant Kv7.2 homomeric channels. Representative 
current traces recorded in CHO cells untransfected (NT) or transiently expressing wild-type or mutant 
Kv7.2 subunits, as indicated. 



 48 

of the band detected by anti-Kv7.2 antibodies and that detected by anti-tubulin 

antibodies in the same lane was not significantly different between wild-type and mutant 

channels, suggesting the mutations didn’t interfere with total expression of Kv7.2 

subunits. Similarly, the ratio between the optical density of the band corresponding to 

Kv7.2 subunit detected in the plasma membrane fractions and that in the corresponding 

total lysates was not significantly different among wild-type and mutant channels, 

suggesting that mutant subunits trafficked to the plasma membrane similarly to wild-type 

subunits (Fig. 18). 

Altogether, these results suggest that the G256R, A265T or R325G mutations 

failed to interfere with the total expression or the plasma membrane trafficking of Kv7.2 

subunit, and that therefore other molecular alterations could explain the absence of 

function observed for Kv7.2 subunits carrying each of these mutations.  

 

 

Figure 18. Biochemical characterization of wild-type or mutant Kv7.2 homomeric channels. Left, 
representative images of western-blotting experiment performed on total lysates or plasma membrane-
enriched fraction obtained from CHO cells untransfeted (NT) or expressing wild-type or mutant subunits, as 
indicated. In each panel, the higher blots were probed with anti-Kv7.2 antibodies to reveal the protein of 

interest (95 kDa), while the lower panels were probed with anti--tubulin (50 kDa), to check for equal 
protein loading and to confirm that the biotin did not leaks into the cell and labels intracellular proteins. 
Numbers on the left correspond to the molecular masses of the proteins marker. Right, densitometric 
analysis obtained from ratio ODKv7.2tot/ODtub or ODKv7.2bio/ODKv7.2tot, in each lane. Each band represents the 

average  ESM of 3 independent experiments. 
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By contrast, in CHO cells transfected with cDNA Kv7.2-R553G a very small currents was 

recorded (3±1 pA/pF; n=10; p<0.05 versus Kv7.2wt), suggesting that the presence of this 

mutation strongly reduces, but does not abolish, Kv7.2 function. Western-blotting 

experiments performed on total lysates obtained from CHO cells transiently expressing 

wild-type or mutant Kv7.2-R553G subunits revealed that this mutation failed to interfere 

with the synthesis/degradation balance of Kv7.2 subunits (ODKv7.2tot/ODtub were 1±0.1 and 

0.7±0.2 respectively; n=3; p>0.05). 

In conclusion, the G256R, A265T, R325G or R553G mutations produce a loss-of-function 

effects, by abolishing (G256R, A265T, R325G) or reducing (R553G) the maximal currents 

produced by Kv7.2 channels.  

By contrast, the Kv7.2-S187F mutation induce a loss-of-function effect on Kv7.2 currents, 

not by reducing Kv7.2 current amplitude, but interfering with the voltage sensitivity of 

the Kv7.2 channel activation. In fact, as shown in Fig. 19 A-B, homomeric wild-type Kv7.2 

channels showed a threshold for activation at around -40 mV, while homomeric Kv7.2-

S187F channels required more depolarized membrane potentials (-30 mV) to become 

activated: in fact the calculated V1/2 was -28±1 mV in Kv7.2 and -16±0 mV in Kv7.2-S187F 

(Fig. 19 C). However, the Kv7.2-S187F channel had maximal densities current identical to 

Kv7.2 channels (39±5 pA/pF for Kv7.2 versus 39±4 pA/pF for S187F, n=12; p>0.05) (Fig. 

19 D).  
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Figure 19. Mascroscopic currents measured in cells expressing Kv7.2 or Kv7.2-S187F homomeric channels. 
Representative current traces recorded in CHO cells expressing Kv7.2 (A) or Kv7.2-S187F (B) channels, in 
response to the indicated voltage protocol. The arrows indicate the voltage threshold for current activation. 
C) Conductance/voltage curves for each indicated channel. D) Quantification of the maximal current density 
measured in CHO cells expressing indicated channels.  
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Functional alterations of heteromeric Kv7.2/Kv7.3 channels carrying NEE-
associated mutations 
 
 In the previous paragraph, the functional and biochemical consequences 

prompted by specific Kv7.2 mutations expressed as homomeric channels have been 

described; however, these mutations have been found in heterozygosity in EOEE-affected 

patients. To reproduce this genetic balance and considering that IKM is mainly formed 

upon heteromeric assembly of Kv7.2 and Kv7.3 subunits, we also assessed the functional 

effects prompted by mutant subunits when expressed simultaneously with wild-type 

Kv7.2 and Kv7.3 subunits. To this aim, patch-clamp recordings were performed on CHO 

cells transfected according to following schema:  

1- Kv7.2+Kv7.3 (transfection ratio 1:1, 1,8 µg+1,8 µg) to reproduce the genetic status of 

healthy individuals 

2- Kv7.2+Kv7.2*+Kv7.3 (transfection ratio 0.5:0.5:1, 0.9 µg+0.9 µg+1,8 µg) to reproduce 

the genetic status of each EOEE-affected patient who carries a single mutant allele 

3- Kv7.2+Kv7.3 (transfection ratio 0.5:1, 0.9 µg+1,8 µg) to evaluate possible dominant-

negative effects prompted by mutant subunits on wild-type channels. 

CHO cells co-expressing Kv7.2 and Kv7.3 subunits (transfection ratio 1:1) produce larger 

currents when compared to those measured in cells expressing Kv7.2 alone (Wang et al., 

1998); the transfection of one half of Kv7.2 cDNA (Kv7.2+Kv7.3, 0.5:1) produced a 

significantly decrease in current amplitude when compared to that measured in cells 

expressing Kv7.2+Kv7.3 (1:1) (the current densities at 0 mV were 127±6 pA/pF for 1:1 

ratio and 82±5 pA/pF for 0.5:1 ratio; n=25, 33 respectively; p<0.05).  

When Kv7.2-S187F, Kv7.2-G256R, Kv7.2-A265T, Kv7.2-R325G or Kv7.2-R553G mutant 

subunits were co-expressed with wild-type Kv7.2+Kv7.3 subunits (Kv7.2+Kv7.2*+Kv7.3, 

ratio 0.5:0.5:1), maximal current densities were reduced when compared to those 

measured in the control group (Kv7.2+Kv7.3, ratio 1:1) (current densities were 107±7, 

78±5, 73±6, 56±6 or 82±2 pA/pF, respectively; n=32, 22, 29, 33, n=22; p<0.05 versus 

Kv7.2/Kv7.3, 1:1), suggesting loss-of-function effects as the pathogenetic mechanism for 

all these mutations. Interestingly, current levels measured in cell co-expressing 
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Kv7.2+Kv7.2-R352G+Kv7.3 subunits were also lower than those measured in the 

Kv7.2+Kv7.3 (0.5:1) control group (Fig. 20 A-B).  

No change in the voltage-dependence of activation was measured in the heteromeric 

mutant channels when compared to that measured in the control group Kv7.2/Kv7.3, 

ratio 1:1 (Table 7).  

 
 

 
 
 
Figure 20. Functional effects of NEE-associated mutations in heteromeric channels with Kv7.2 and Kv7.3 
subunits. A) Schematic representation of the genetic (upper panel) or protein (lower panel) balance of a 
healthy individual (left) or of a patient carrying a Kv7.2 mutation (yellow circle) in heterozygous condition 
(right). B) Quantification of maximal current densities recorded in CHO cells expressing wild-type or mutant 
subunits in heteromeric channels with Kv7.2/Kv7.3 subunits, as indicated. *=p<0.05 versus Kv7.2(1) + 
Kv7.3(1), **=p<0.05 versus Kv7.2(0.5) + Kv7.3(1). The numbers “0.5” and “1” indicate cDNAs stoichiometric 
ratios used for transfections.  
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Kv7.2-R325G subunits seem to incorporate in the heteromeric channels with 
wild-type Kv7.2 subunits  
 
 The functional results indicate that Kv7.2-R325G subunits prompted a drammatic 

reduction of Kv7.2/Kv7.3 currents (Fig. 20). To evaluate whether the presence of this 

mutation could interfere with the incorporation of mutant Kv7.2 subunits in heteromeric 

channels with wild-type Kv7.2 subunits, we have performed additional pharmacological 

experiments. To this aim, NEE-associated mutations were engineered in the plasmid 

encoding for the TEA-insensitive Kv7.2-Y284C as a template (Kv7.2-Y284C/G256R, Kv7.2-

Y284C/A265T, Kv7.2-Y284C/R325G or Kv7.2-Y284C/R553G) and these TEA-insensitive 

double-mutant subunits were co-expressed with TEA-sensitive wild-type Kv7.2 subunits 

(transfection ratio 1:1). Therefore, the ability of mutant subunits to form heteromeric 

channels with wild-type subunits was studied by measuring current inhibition upon 

perfusion of 3 mM TEA. It is important to highlight that each subunit of tetramer 

contribute individually to TEA-binding; namely, in wild-type channel, the almost complete 

current inhibition is due to additive effect of each subunit to bind TEA. Currents expressed 

by Kv7.2 wild-type subunits are almost completely blocked by 3 mM TEA (current 

inhibition at 0 mV was 92±1%; n=14); by contrast, Kv7.2-Y284C subunits are almost 

insensitive to this TEA concentration (the current inhibition was 2±1%; n=4). Cells co-

expressing Kv7.2 and Kv7.2-Y284C subunits produced currents showing an intermediate 

TEA sensitivity (current inhibition at 0 mV was 54±2%; n=7; p<0.05 versus Kv7.2 and 

Kv7.2-Y284C), indicating that Kv7.2/Kv7.2-Y284C heteromeric channels were formed (Fig. 

21). Currents recorded in cell co-expressing wild-type Kv7.2 with Kv7.2-Y284C/G256R, 

Kv7.2-Y284C/A265T or Kv7.2-Y284C/R553G subunits failed to show alterations in TEA-

sensitivity when compared to wild-type Kv7.2 currents (current inhibition was 81±2%, 

89±1%, 91±1%, respectively; n=11,8,10; p>0.05 versus Kv7.2); by contrast, currents 

recorded in CHO cells co-expressing Kv7.2+Kv7.2-Y284C/R325G showed an intermedie 

TEA-sensitivity (current inhibition was 66±3%; n=8), identical to that measured when 

Kv7.2 and Kv7.2-Y284C were coexpressed (Fig. 21). 

 Altogether, these results suggest that only Kv7.2-R325G mutant subunits appear 

effectively incorporated into heteromeric channels with Kv7.2 subunits.  
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Figure 21. Study of the incorporation of mutant subunits in heteromeric channels with wild-type Kv7.2 
subunits. Quantification of TEA-sensitivity of currents measured in CHO cells co-expressing wild-type and 
mutant Kv7.2 subunits. The asterisk indicates values significantly different versus Kv7.2wt.  

 

Study of the total expression of EGFP-Kv7.2 subunits when co-expressed 
with Kv7.2-A265T or Kv7.2-R325G mutant subunits 
 
 To evaluate whether the dramatic reduction of maximal currents prompted by 

Kv7.2-R325G mutant subunits in heteromeric channel with Kv7.2/Kv7.3 was due to a 

reduction in wild-type Kv7.2 subunits levels when co-expressed with mutant subunits, 

and considering that the molecular weight of wild-type or mutant subunits is identical 

(90 kDa), western-blotting experiments were performed on total lysates derived from 

CHO cells co-expressing wild-type or mutant Kv7.2 subunits with EGFP-tagged Kv7.2 

subunits having an increased molecular weight (130 kDa) and therefore allowing to 

discriminate wild-type EGFP-Kv7.2 channel from untagged wild-type or mutant subunits.  

Both proteins were detected by the same anti-Kv7.2 antibodies: in fact, a single band of 

90 kDa was dectected in the lanes corresponding to lysates of cells expressing only Kv7.2 

subunits whereas a single band of 130 kDa was detected in the lanes relative to the 

lysates of cells expressing only EGFP-Kv7.2 subunits, and both bands were visible in the 
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lanes corresponding to lysates from cells co-expressing both Kv7.2 and EGFP-Kv7.2 

subunits. 

The densytometric analysis reveals that (Fig. 22): 

1) in agreement with previous results, the bands at 90 kDa relative to mutant Kv7.2 

subunits carrying A265T or R352G mutations had expression levels similar to those of 

wild-type subunits, confirming that the mutations investigated didn’t interfere with total 

expression of Kv7.2 subunits; 

2) levels of Kv7.2 wild-type subunits when co-expressed with EGFP-Kv7.2 subunits were 

not different from those measured without co-expression of these subunits; similarly, the 

intensities of bands at 90 kDa relative to A265T and R325G in co-expression with EGFP-

Kv7.2 were not different from those observed without co-expression of EGFP-Kv7.2, 

suggesting that tagged EGFP-Kv7.2 subunits didn’t modify the levels of wild-type or 

mutant Kv7.2 subunits; 

3) the intensity of the bands relative to EGFP-Kv7.2 in co-expression with G256R or A265T 

mutant subunits were not different than that measured for EGFP-Kv7.2 in co-expression 

with wild-type Kv7.2, suggesting that the mutations G256R, A265T didn’t interfere with 

the total expression of wild-type subunits and therefore that the dramatic reduction of 

currents prompted by Kv7.2-R325G subunits was not occuring via a reduction of total 

expression of wild-type Kv7.2 channels.  
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Figure 22. Evaluation of total expression of wild-type EGFP-Kv7.2 and mutant Kv7.2 when co-expressed. A) 
Representative image of western-blotting experiments performed on total lysates of non trasfected CHO 
cells (NT) or transfected with different plasmids, as indicated. B) Densytometric analysis of the optical 
density (OD) of the bands detected with anti-Kv7.2 (130 kDa and 90 kDa) or anti-tub (50 kDa) antibodies. 

Each band represents the average  ESM of 3-6 independent experiments. 

 

Pharmacological rescue of loss-of-function mutant channels by retigabine  
 
 As reported in the Introduction, retigabine is a neuronal Kv7.2-5 activator that 

causes a hyperpolarization shift of the voltage dependence of channel activation, 

together with an increase in maximal currents (Barrese et al., 2010). In agreement with 

this, perfusion of 10 µM retigabine on cells expressing homomeric Kv7.2 channels 

produced a significant increase in maximal currents (current densities at 0 mV were 24±5 

1 

3 

 
2 
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or 45±7 pA/pF in the absence or presence of retigabine respectively; n=15; p<0.05) and 

a significant hyperpolarizing shift in the activation gating (∆V1/2= V1/2 RTG- V1/2 CTL was -28 

mV, n=8, 12 respectively, p<0.05). When tested on CHO cells expressing homomeric 

Kv7.2-S187F channels, retigabine was able to induce a similar current potentation: in fact, 

the exposure to this drug produced an increase in maximal current density (current 

densities were 26±2 or 54±4 pA/pF; in the absence or in the presence of 10 µM RTG 

respectively, n=16, p<0.05) and a significant hyperpolarizing shift in the activation gating 

(∆V1/2= V1/2 RTG- V1/2 CTL was -25 mV, n=16, 12 respectively, p<0.05) (Fig. 23).  

 

 

Figure 23. Pharmacological effects of Kv7.2-S187F currents by retigabine. A, B) Superimposed current traces 

from Kv7.2 or Kv7.2-S187F channels in control condition (black traces, C) or after application of 10 M RTG 
(black traces, RTG) and wash out (red traces, W). C) Quantification of current densities measured in cells 

expressing the indicated channels in control condition (black bars) or upon perfusion of 10 M RTG (white 
bars). *=p<0.05 versus each respective control. D) Conductance/voltage curves for the indicated channels, 

in the presence (red curves) or in the absence (black curves) of 10 M RTG.  
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The functional effects of retigabine were not testable on non functional homomeric 

channels Kv7.2-G256R, Kv7.2-A265T, Kv7.2-R325G or Kv7.2-R553G; therefore, the 

possible activation effect of this drug on non functional channels was investigated on 

currents recorded when mutant Kv7.2 subunits were co-expressed with wild-type 

Kv7.2/Kv7.3 channels. 

To this aim, CHO cells were co-transfected with Kv7.2+Kv7.2*+Kv7.3 subunits 

(transfection ratio 0.5:0.5:1) and electrophysiological recordings were performed in the 

absence or presence of 10 µM RTG. The exposure to this drug was able to restore at wild-

type levels (or more) the currents measured in cells co-expressing wild-type Kv7.2/Kv7.3 

subunits with mutant Kv7.2 subunits carrying each mutation herein investigated (Fig. 24; 

Table 7).  

 

  
Figure 24. Study of the effects of retigabine on currents recorded in cells co-transfected with 
Kv7.2+Kv7.2*+Kv7.3. Quantification of current densities measured in cell co-expressing the indicate 
channels in the absence (black bars) or in the presence (white bars) of 10 µM RTG *=p<0.05 versus Kv7.2(1) 
+ Kv7.3(1) without RTG; **=p<0.05 versus the each control without RTG. The numbers “0.5” and “1” 
indicate the cDNAs stoichiometric ratios used for transfections. 
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Co-expressed subunits 
(Transfection Ratio) 

Current density 
(pA/pF) 

Voltage dependence of activation (V1/2, mV) 

-RTG +RTG -RTG +RTG 
∆ mV  

(V1/2 RTG- V1/2 -RTG) 
Kv7.2+Kv7.3  

(1:1) 87±9 170±15* -29.5±0.4 -63.7±0.5 # -34.2 

Kv7.2+Kv7.2-S187F+Kv7.3 
(0.5:0.5:1) 73±4 130±8 * -27.3±0.4 -63.4 ±0,6 # -36.1 

Kv7.2+Kv7.2-G256R+Kv7.3 
(0.5:0.5:1) 62±5 111±10 * -28.9±0.5 -62.3±0.4 # -33.4 

Kv7.2+Kv7.2-A265T+Kv7.3 
(0.5:0.5:1) 59±4 117±10 * -24.2±0.4 -60.2±0.4 # -36.0 

Kv7.2+Kv7.2-R325G+Kv7.3 
(0.5:0.5:1) 44±2 84±4 * -29.6±0,3 -65.1±0.5 # -35.5 

Kv7.2+Kv7.2-R553G+Kv7.3 
(0.5:0.5:1) 64±5 116±11 * -31.7±0.3 -63.5±0.7 # -31.8 

 

Table 7. Current density and V1/2 values in the absence or in the presence of RTG (10 µM). 

 
These results suggest that NEE-associated mutations herein investigated do not affect 

the sensibility to retigabine and that therefore this drug could be a rationale terapeutic 

strategy in patients carrying each of these loss-of-function mutations. 

 

S195P mutation induces gain-of-function effects on Kv7.2 currents, both in 
homomeric and heteromeric configurations with wild-type Kv7.2/Kv7.3 
subunits 
 

In the previous paragraphs, mutations in the Kv7.2 channels associated to a loss-

of-function effects have been described; by contrast, S195P mutation herein investigated 

prompts opposite functional effects: in fact, currents recorded from CHO cells expressing 

homomeric Kv7.2-S195P channels showed a leftward shift in their voltage-dependence 

of activation (V½ were -44±1 and -24±1 mV for S195P and wild-type respectively; n=11; 

n=25 p<0.05) (Fig. 25 A-C), suggesting that gain-of-function effects are instead prompted 

by this mutation on Kv7.2 channels. However, the Kv7.2-S195P channel had maximal 

current densities similar to those of Kv7.2 channels (current densities at +20 mV were 

49±5 and 38±3 pA/pF; n= 18, 13 respectively; p>0.05).  

Based on these functional results, the sensitivity of Kv7.2-S195P mutant subunits to the 

inhibitory molecule ML-252 (Cheung et al., 2012) was tested. Exposure to 100 nM ML252 
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reduced by about 50% the currents elicited by homomeric wild-type Kv7.2 channels 

(current densities were 35±2 or 19±2 pA/pF in the absence or in presence of ML252 

respectively; n=13; p<0.05). When tested in CHO cells expressing homomeric Kv7.2-

S195P channels, ML252 was able to induce a similar current decrease (current densities 

were 49±3 or 27±2 pA/pF in the absence or in presence of ML252 respectively; n=14; 

p<0.05) (Fig. 25 E).  

To investigate the functional consequences in heterozygosity condition, currents also 

were recorded in CHO cells expressing Kv7.2+Kv7.2-S195P+Kv7.3 cDNAs (transfection 

ratio 0.5:0.5:1). The results obtained show that, when compared to wild-type Kv7.2/Kv7.3 

channels, mutant heteromeric channels elicited currents with identical current densities 

(126±5, 125±12 pA/pF, n=27,20 respectively; p>0.05) (Fig. 25 B); notably, currents 

produced by channel incoporating mutant Kv7.2-S195P subunits showed a significant 

hyperpolarizing shift in the current activation (V1/2 were -35±1 mV and -30±0 mV, 

respectively for Kv7.2+Kv7.2-S195P+Kv7.3 and wild-type Kv7.2+Kv7.3, n=27,20 

respectively, p<0.05; Fig. 25D), althought this effect was less drammatic than that 

described for homomeric channels, suggesting that the extent of the observed alterations 

were proportional to the number of mutant Kv7.2 subunits possibly present in 

heteromeric channels. 

Considering that ML252 is less potent on heteromeric Kv7.2+Kv7.3 channels compared 

to homomeric Kv7.2 channels (IC50=0.12±0.02 µM and 0.07±0.01 µM, respectively), an 

higher concentration of ML252 (150 nM) was used to block about 50% currents carried 

by wild-type heteromeric channels (current densities were 96±9 or 51±5 pA/pF in the 

absence or in presence of ML252 respectively; n=14; p<0.05); similarly, perfusion with 

150 nM ML252 in CHO cells expressing Kv7.2+Kv7.2-S195P+Kv7.3 produced similar 

decrease of the currents (current densities were 110±6 or 65±5 pA/pF in the absence or 

in presence of ML252 respectively; n=18; p<0.05; Fig. 25F). 

In conclusion, the results suggest that the presence of S195P mutation don’t interfere 

with the sensitivity to ML252.  
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Figure 25. Functional and pharmacological characterization of Kv7.2-S195 channels. A, B) Representative 
current traces measured in CHO cells expressing wild-type or Kv7.2-S195P mutant subunits in homomeric 
(A) or heteromeric configurations with Kv7.2/Kv7.3 wild-type subunits (B). C, D) Conductance/voltage 
curves for homomeric (C) or heteromeric (D) configurations. Quantification of current densities measured 
for homomeric (E) and heteromeric (F) channels, in control solution (black bars) or in the presence of 100 
or 150 nm ML252 (white bars). Histogram in E, *=p<0.05 versus Kv7.2 (without ML252), **=p<0.05 versus 
Kv7.2-S195P (-ML252). Histogram in F, *=p<0.05 versus respective channels (without ML252). 



 62 

The gain-of-function effects induced by the R201C mutation are due to 
destabilization of the resting state of Kv7.2 channels 
 

 Another mutation, falling in the S4 segment (Kv7.2-R201C) and found mutated in 

a EOEE-affected patient (Weckhuysen et al, 2013), produce similar effects to S195 

mutation. Electrophysiological recordings performed in CHO cells transiently expressing 

wild-type homomeric channels showed that Kv7.2 channels generate K+ currents 

characterized by slow time- and voltage-dependent activation kinetics. At the holding 

voltage of -80 mV, the vast majority of Kv7.2 channels are closed and no currents could 

be recorded (Fig. 26 A). By contrast, at -80 mV, homomeric R201C channels showed an 

almost complete loss of time-dependence in current activation kinetics. While the G/V 

curve of Kv7.2 channels was sigmoidal, R201C currents showed a mostly linear G/V 

between +20 mV and -80 mV (Fig. 26 A), indicative of a significant loss of voltage-

dependent gating. In agreement, another EOEE-mutation on the same residue (R201H, 

Carvill et al, 2013) caused a marked hyperpolarizing shift (about 30 mV) in the voltage-

dependence of current activation of Kv7.2, with a significant fraction of R201H channels 

being open at -80 mV (data not shown). Despite such dramatic changes in voltage-

dependent gating, all mutant channels retained their K+ selectivity; in fact, the reversal 

potential of the currents from Kv7.2 (-79±1mV), R201C (-79±1mV), and R201H (-76±1mV) 

channels was close to that of a K+-selective pore (-83 mV under the present recording 

conditions). Sensitivity to the pore blocker TEA was also unaffected in both mutant 

channels, confirming that these mutations do not alter pore structure. 

 Overall, the data obtained suggest that the mutation R201C or R201H increased 

channel sensitivity to voltage, leading therefore to a gain-of-function effect. In keeping 

with this hypothesis, channels carrying “experimental” mutations R201D, R201E and 

R201Q, also carried time- and voltage-independent currents (data not shown), suggesting 

a crucial role of the second arginine residue (R2, R210) in channel function.   

 In experimental conditions mimicking the genetic balance of affected patient 

(Kv7.2+Kv7.2*+Kv7.3, transfection ratio 0.5:0.5:1), the results obtained show that, when 

compared to wild-type Kv7.2+Kv7.3 channels, mutant Kv7.2+Kv7.2-R201C+Kv7.3 

heteromeric channels showed a significant hyperpolarizing shift in the activation gating 

(Fig. 26 B). These results are similar, although quantitatively smaller, than those described 
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for homomeric R201C mutant channels, suggesting that the extent of the observed 

alterations are proportional to the number of mutant Kv7.2 subunit expressed.  

 

 

 

Figure 26. Functional effects of R201C mutation studied in homomeric or heteromeric channels. A) 
Representative current traces recorded in CHO cells expressing wild-type or mutant (R201C) homomeric 
Kv7.2 channels. The voltage protocol used for these experiments is shown below the Kv7.2 current traces. 

Right, conductance/voltage curves for the indicated channels. Each data point is the meanSEM of 7-20 
cells recorded in at least three separated experimental sessions. B) Representative current traces recorded 
in CHO cells expressing wild-type (Kv7.2+Kv7.3, left) or mutant (Kv7.2+Kv7.2-R201C+Kv7.3, right) 
heteromeric channels. Right, conductance/voltage curves for the indicated channels. Each data point is the 

meanSEM of 6-12 cells recorded in at least three separated experimental sessions. 
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To investigate the molecular 

mechanisms by which the R201 

residue controls gating in Kv7.2 

channels, we used multistate 

molecular modeling to built a three-

dimensional model of a single Kv7.2 

subunit in different configurations. In 

particular, we used the coordinates 

of the six gating states (activated, 

early deactivated, late deactivated, 

resting, early activated, and late 

activated) identified in Kv1.2/2.1 

voltage-gated K+ channels by 

molecular dynamics simulation 

(Jensen et al, 2012); this allowed us to follow each residue in Kv7.2 VSD in its interaction 

with neighboring residues in each of the different structural configurations of the VSD. 

Interestingly, these models highlighted that, in the resting state, the R201 residue forms 

strong ionic interactions with negatively-charged residues E140 (E2) in S2 and D172 (D1) 

in S3; such interactions disappear when the VSD is displaced outwardly upon 

depolarization, to occupy the fully activated state (Fig. 27). Thus, neutralization of the 

R201 residue would preferentially weaken the network of ionic interactions occurring in 

the resting state, thereby destabilizing the resting configuration of the VSD and favoring 

Kv7.2 channel opening. 

 The interaction between R2 and D1 residues predicted by multistate structural 

modeling was therefore investigated by disulphide trapping experiments; by this 

approach, we tested whether the distance between R2 and D1 could allow the formation 

of a disulphide bond between these residues. To this aim, D1, R2 or both were substituted 

by cysteines (C), thus obtaining single mutants (D1C and R2C) as well as D1C/R2C double 

mutant subunits. The occurrence of a disulphide bond could be hypothesized when the 

functional properties of channels carrying cysteines at both D1 and R2 are different from 

those of channels carrying C residues at either D1 or R2. Our results suggest that, while 

Figure 27. Structural modeling of the VSD of a Kv7.2 subunit. 
Three-dimensional structural models of the Kv7.2 VSD in 
the resting (left) or in the activated (right) states. The green 
circle highlights the electrostatic interactions (shown in 
yellow) occurring in the resting state between the R201 
(R2) residue in the S4 segment and E140 (E2) in S2 and D172 
(D1) in S3. 
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single-substituted D1C and R2C channels carried large currents, no measurable currents 

could be detected in double mutant D1C/R2C channels (Fig. 28 A, black trace). To 

evaluate whether this lack of currents was related to a reduced membrane expression of 

D1C/R2C double mutant subunits, surface biotinylation experiments in CHO cells 

expressing either wild-type or double mutant channels were performed. The results 

obtained indicate that no significant difference could be measured in membrane 

expression between Kv7.2 and D1C/R2C mutant subunits (Fig. 28 B), suggesting that the 

lack of function of channels formed by D1C/R2C subunits was not due to an altered 

subunit expression at the plasma membrane. Therefore, we next investigated whether 

the absence of measurable currents in D1C/R2C channels could be due to the formation 

of a disulfide bridge between the inserted C residues, which locked the channels in a 

resting, non-conductive configuration; to this aim, CHO cells expressing D1C/R2C double 

mutant channels were pre-incubated for 1 h with 1 mM of the reducing agent 

dithiothreitol (DTT). DTT treatment led to the expression of small, but measurable 

currents carried by mutant channels (Fig. 28A, red trace); application of the oxidant agent 

hydrogen peroxide (H2O2; 500 M) prevented DTT effects (Fig. 28C). The rescued current 

was almost fully and reversibly blocked by perfusion with 3 mM TEA (Fig. 28A, green 

trace), suggesting that the DTT-induced currents specifically flowed through Kv7.2 

channels. In addition, in wild-type Kv7.2 channels, as well as in D1C and R2C single mutant 

channels, DTT exposure was ineffective (Fig. 28C). Based on these results, we have 

hypothesized that a disulphide bridge formed between the two cysteine residues 

inserted at R2 and D1 locks the VSD in the resting state (Fig. 28D, left); such disulphide 

bond could not be broken by membrane depolarization, but could be at least partially 

reduced by DTT treatment, therefore recovering the mobility of the VSD during voltage-

sensing (Fig. 28D, right). These data provide functional evidence for the occurrence of an 

ionized hydrogen bond between D172 and R201 residues stabilizing the resting state of 

the VSD in native Kv7.2 channels.  
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Figure 28. Functional and biochemical characterization of Kv7.2-D1C/R2C channels. A) Superimposed current 
traces from D1C/R2C channels in control condition (CTL, black trace), after pre-incubation with 1 mM DTT 
(red trace) before and after perfusion with 3 mM TEA (green trace). The bar at the bottom represents the 
duration of TEA exposure. The voltage protocol used for these exposure is indicated at the bottom of the 
current traces. B) Western Blotting performed on total (left) or plasma membrane proteins (right) from 
untrasfected CHO cells (NT) or from cells expressing wild-type (WT) or D1C/R2C mutant Kv7.2 channels. NT 
(t.l.) and WT (t.l.) indicate the lanes corresponding to total lysates from NT or Kv7.2 expressing cells, loaded 
on the same gel together with respective biotinylated proteins to visualize the molecular mass of Kv7.2 and 

-tubulin (tub). In each panel, the higher and lower blots were probed with anti-Kv7.2, to reveal the protein 

of the interest, and with anti--tubulin, to confirm that the biotinylation reagent did not leak into the cell 
and label intracellular proteins, and to check for equal protein loading. C) Quantification of current densities 

of indicated channels in control condition or after treatment with 1 mM DTT and/or 500 M H2O2. *p<0.05, 
significantly different from the control; n=4-10 cells per group recorded in at least three different 
experimental session. D) Three-dimensional structural models of the VSD of a D1C/R2C mutant Kv7.2 
subunit indicating the presence of a disulfide bridge between D1C and R2C residues in control condition 
(left), stabilizing the resting state of the VSD (indicated as locked), or in the presence of the reducing agent 
DTT (right) that, disrupting this bond, allows to VSD to be displaced by changes in transmembrane voltage 
(indicate as mobile). 
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Kv7.2 channels carrying pore mutations show an altered neuronal trafficking 
 
 As described in the Introduction, in neurons Kv7.2/Kv7.3 channels are selectively 

localized at the axon initial segments (AISs) and at nodes of Ranvier in central and 

peripheral nervous system where they control neuronal excitability. To test whether the 

EOEE-associated mutations in kcnq2 gene alter this peculiar subcellular distribution of 

Kv7 subunits, immunocytochemistry experiments in hippocampal neurons were 

performed. For this purpose, Kv7.2 mutations herein investigated were engineered in 

plasmid encoding for Kv7.2 subunit tagged with EGFP (at the N-terminus) and HA (at the 

extracellular S1-S2 loop) (Fig. 29). The use of this double-tagged plasmid has several 

advantages for our purposes; in particular, both tags allow to discriminate the transfected 

Kv7.2 channels from the endogenous counterpart, which are homogeneously distributed 

throughout the length of the AIS since 6 DIV (Sànchez-Ponce et al., 2012). In addition, the 

EGFP tag allows to select transfected neurons as well as to estimate the total channel 

expression, while the extracellular HA tag, being located on an extracellular loop, allows 

the detection only of Kv7.2 channels expressed at the plasma membrane, without the 

need to permeabilize the cells. 

Notably, the presence of these tags, does not interfere with the functional properties of 

Kv7.2 channels, as previously described (Soldovieri et al., 2006).  

 

 

 

 

 

Figure 29. Topology and functional properties of EGFP-Kv7.2-HA construct. A) Schematic representation of 
double tagged EGFP-Kv7.2-HA subunit, containing an EGFP tag at the intracellular N-terminus and an 
extracellular HA tag on the extracellular S1-S2 loop. B) Mascroscopic currents elicitated by CHO cells 
transfected with EGFP-Kv7.2-HA, recorded by using the voltage protocol indicated in the bottom (image 
adapted from Soldovieri et al., 2006). 
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Given that the co-expression of Kv7.3 subunits is an absolute requirement for Kv7.2 

subunits targeting at the AIS (Rasmussen et al., 2007), hippocampal neurons at 8 DIV were 

co-transfected with equal amounts of EGFP-Kv7.2-HA and Kv7.3 cDNAs (transfection ratio 

1:1) and immunostaining experiments were performed 72 h after transfection.  

When expressed in neurons, EGFP-Kv7.2-HA subunits were clearly detected by anti-HA 

antibodies in non permeabilized neurons mainly at the AIS, identified by the AIS-marker 

ankG (Fig. 30) (Devaux et al., 2004; Chung et al., 2006; Pan et al., 2006; Rasmussen et al., 

2007), although the surface signal was less than total signal. To quantify the expression 

of the channel at the AIS, the HA fluorescence intensity measured at the AIS (identified 

by ankG) was divided by the EGFP fluorescence intensity measured at the soma or in 

principal dendrities. The values obtained from average of 13-20 quantified neurons 

revealed that the enrichment at the AIS of EGFP-Kv7.2-HA subunits carrying mutations in 

the VSD (S187F or S195P) (Fig. 31,34) or in the C-terminal domain (R325G or R553G) (Fig. 

33,34) was similar to that observed for wild-type channels; notably, for some of them 

(S187F, R553G) an increase in AIS targeting was measured (Fig. 34). By contrast, the 

presence of the mutations in the pore region (G256R or A265T) (Fig. 32,34) in the EGFP-

Kv7.2-HA subunits completely abolished the trafficking at the AIS, since no HA signal was 

detected in AnkG-positive neurons; the detection of EGFP fluorescence in the same 

neurons suggest that these channels are expressed, although additional experiments 

should be performed to investigate possible alterations in total levels of mutant channels. 
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Figure 30. AIS localization of EGFP-Kv7.2-HA subunits in rat hippocampal neurons. A) Hippocampal 
neurons (DIV 8) were trasfected with EGFP-Kv7.2-HA together with Kv7.3, then immunostained (DIV   11) 
for HA (red) to detect the surface expression of EGFP-Kv7.2-HA and for ankyrinG (blue) to label the AIS. 
The merge is obtained by the superimposition of EGFP, HA and ankG signals. Lower panel are 
magnifications of the AIS region, indicated with white arrows. B) Schematic procedure used for 
immunocytochemistry experiments.  
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Figure 31. AIS localization of EGFP-Kv7.2-HA subunits carrying mutations localized in the VSD (S187F, S195P). 
Hippocampal neurons (DIV 8) were trasfected with EGFP-Kv7.2-HA together with Kv7.3, then 
immunostained (DIV   11) for HA (red) to detect the surface expression of EGFP-Kv7.2-HA and for ankG 
(blue) to label the AIS. The merge is obtained by the superimposition of EGFP, HA and ankG signals. Lower 
panels are magnifications of the AIS region, indicated with white arrows. 
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Figure 32. AIS localization of wild-type EGFP-Kv7.2-HA subunits carrying mutations localized in the pore 
region (G256R, A265T). Hippocampal neurons (DIV 8) were trasfected with EGFP-Kv7.2-HA together with 
Kv7.3, then immunostained (DIV   11) for HA (red) to detect the surface expression of EGFP-Kv7.2-HA and 
for ankG (blue) to label the AIS. The merge is obtained by the superimposition of EGFP, HA and ankG signals. 
Lower panels are magnifications of the AIS region, indicated with white arrows. 



 72 

 
 

Figure 33. AIS localization of wild-type EGFP-Kv7.2-HA subunits carrying mutations localized in the C-terminal 
domain (R325G, R553G). Hippocampal neurons (DIV 8) were trasfected with EGFP-Kv7.2-HA together with 
Kv7.3, then immunostained (DIV   11) for HA (red) to detect the surface expression of EGFP-Kv7.2-HA and 
for ankG (blue) to label the AIS. The merge is obtained by the superimposition of EGFP, HA and ankG signals. 
Lower panels are magnifications of the AIS region, indicated with white arrows. 



 73 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 34. Quantification of AIS/Soma and AIS/Dendrite fluorescence ratios for EGFP-Kv7.2-HA mutant 

channels. The quantification was calculated as described in Materials and Methods. Asterisks indicate 

values significantly different (p<0.05) versus wild-type channels. 

 

 

Although the signals of EGFP-Kv7.2-HA and ankG both colocalized at the AIS, these 

proteins showed a slightly different expression pattern along the axon: in fact, the signal 

of AnkG was stronger at the beginning of the axon and completely disappeared 30 µm 

from the soma, while the EGFP-Kv7.2-HA immunoreactivity steeply increased within the 

more distal regions of the AIS (as also reported for native channels in rat neocortical 

neurons) and its expression was detectable also in the distal region of axon (30-40 µm 

from soma) where the ankG signal was absent. This spatial distribution of EGFP-Kv7.2-HA 
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subunits within the AIS was conserved upon incorporation of the S187F, S195P, R325G 

or R553G mutations. In neurons expressing EGFP-Kv7.2-HA subunits carrying G256R or 

A265T mutations the HA signal at the AIS was undectable although the expression pattern 

of the Ank-G was not different than that measured in neurons expressing EGFP-Kv7.2-HA 

wild-type, suggesting that expressed Kv7.2/Kv7.3 heteromers are not required to form 

the AIS structure (Fig. 31). 
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Figure 35. Spatial quantification of HA and AnkG along the axon. Quantification of the intensity (expressed 
as arbitrary units, A. U.) of the HA (red) and ankG (blue) fluorescence signals for wild-type or mutant EGFP-
Kv7.2-HA subunits, as indicated. The signal was measured on a 40 µm-long axonal region starting from the 
soma, as described in Materials and Methods.  
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STXBP1 restores Kv7.2/Kv7.3 channels mediated currents from syntaxin-1A 
inhibition 
 

The STXBP1 protein (Sintaxin Binding Protein 1), also called MUNC18-1 or N-Sec1 

or p67, is a neuronal protein (primarily expressed in the brain) that binds tightly to 

syntaxins 1A, 2, and 3, but not to syntaxin 4 and has an important role in synaptic vesicle 

exocytosis. Considered that STXBP1 binds tightly to syntaxin 1A and, that this latter 

protein is able to bind and regulate Kv7 channels, a possible modulation of Kv7.2/Kv7.3 

currents by STXBP1 or STXBP1/Syx1A has been investigated.  

To this aim, electrophysiological recordings were performed in CHO cells expressing 

Kv7.2/Kv7.3 channels in absence or presence of these regulatory proteins. 

The co-expression of Kv7.2 with Kv7.3 subunits (transfection ratio 1:1) produced robust 

K+ currents; STXBP1 co-expression together with Kv7.2/Kv7.3 heteromeric channels 

(transfection ratio 1:1:1) failed to modify heteromeric currents size (n=26, p>0.05 versus 

Kv7.2/Kv7.3). By contrast, the co-espression of Syx-1A (transfection ratio 1:1:0.5) 

significantly reduced Kv7.2/Kv7.3 current amplitude (n=28, p<0.05), as previously 

reported (Soldovieri et al., 2014). Interestingly, when the two proteins (STXBP1 and Syx-

1A) were co-expressed, CHO cells elicited Kv7.2/Kv7.3 currents greater than that 

recorded in CHO cells expressing only syx-1A (n=16; p<0.05), suggesting that the STXBP1 

protein was able to significantly restore the loss of currents produced by co-expression 

of syx-1A (Fig. 36). However, the conductance–voltage relationship of Kv7.2/Kv7.3 

currents was not changed when co-expressed with syx and/or STXBP1 (Fig. 36).  
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Figure 36. Functional modulation of heteromeric Kv7.2/Kv7.3 currents by STXBP1/syx-1A. Upper panel, 
representative traces of Kv7.2/Kv7.3 currents recorded in CHO cells co-transfected with STXBP1 and/or syx-
1A cDNAs. In the table, the values of current densities and V1/2 for each experimental group have been 
reported. All values of current densities were measured at 45 mV.  

 

 

 

 

 

 

Plasmids Co-transfected Current Density 
(pA/pF)  

V half (V1/2) 

1. Kv7.2 (1) +Kv7.3 (1) 209±11 -36±0.6 

2. Kv7.2 (1) +Kv7.3 (1) +STXBP1 (1) 229±18 -37±0.8 

3. Kv7.2 (1) +Kv7.3 (1) +Syx1A (0.5) 85±10* -35±0.8 

4. Kv7.2 (1) +Kv7.3 (1) +STXBP1 (1) +Syx1A (0.5) 129±16* -32±1 

* p<0.05 versus Kv7.2(1)+Kv7.3(1) 
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To calculate the “probability” that CHO cells 

incorporated simultaneously all co-transfected plasmids, 

in parallel we have performed immunocytochemistry 

experiments on CHO cells co-transfected with HA-

Kv7.2+Kv7.3+STXBP1+Syx-1A+EGFP. As detailed in 

Materials and Methods section, these cells were then 

incubated with primary antibodies, deriving from 3 

different species (rat, rabbit and mouse). To releave the 

Kv7.2 protein, we have transfected the tagged form HA-

Kv7.2 and detected it by rat anti-HA antibodies while the 

STXBP1 and Syx-1A were releaved by anti-rabbit STXBP1 

protein or by anti-mouse syntaxin-1A, respectively. The 

not availability of a specific Kv7.3 antibodies (in our 

structure) has limited the detection of this protein.  

The results obtained revealed that of 75 green cells 

analyzed, 98% of them expressed both STXBP1 and HA-

Kv7.2, while 90% of them expressed also syx-1A. These 

results suggest that, in our experimental conditions, 90% 

cells incorporated simultaneously all three plasmids (HA-

Kv7.2, STXBP1, Syx-1A) and therefore the functional 

alterations observed was a result deriving from the 

contextual expression of the considered plasmids.  

Additional biochemical experiments could explain the 

molecular mechanisms underlying the functional effects 

of STXBP1 on the restoration of Kv7.2/Kv7.3 currents 

inhibited by syx-1A. In particular, co-

immunoprecipitations experiments should be 

performed to investigate if these effects are due to a 

competitive interaction of STXBP1 and syx-1A with 

Kv7.2/Kv7.3 channels or if the STXBP1 binds to syx-1A, 

reducing the affinity of syx-1A for Kv7.2/Kv7.3 channels.   

Figure 37. Immunocytochemistry 
experiment performed on CHO cells.  
Cells were trasfected with EGFP+HA-
Kv7.2+Kv7.3+STXBP1+Syx-1A, then 
immunostained for STXBP1 
(orange), HA (red) to detect the 
expression of Kv7.2-HA and for syx-
1A (yellow).  
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DISCUSSION 
 

Epilepsy is a disease characterized by an enduring predisposition to generate 

epileptic seizures and by the neurobiological, cognitive, psychological, and social 

consequences of this condition (International League Against Epilepsy, 2014). In the 30% 

of cases, this clinical condition is caused by genetic mutations in different genes encoding 

for ion channels, receptors or other proteins (Gobbi et al., 2014). One of these is 

represented by the kcnq2 gene, which encodes for neuronal Kv7.2 voltage-gated 

potassium subunit, forming heteromeric channels with the homologous Kv7.3 subunits: 

these channels underlie the so-called M-current that inhibits neuronal excitability. 

Structurally, each Kv7.2 subunit is formed by six transmembrane segments (S1-S6) and 

cytoplasmic N- and C-termini; the S1-S4 segments form the voltage-sensing domain (VSD), 

whereas the pore domain is encompassed by the S5-S6 segments and the intervening 

linker.  

Mutations in the kcnq2 gene are responsible for early-onset neonatal seizures with wide 

clinical outcomes, ranging from Benign Familial Neonatal Seizures to severe Neonatal 

Epileptic Encephalopathy. The molecular mechanisms for such phenotypic heterogeneity 

are still debated, but the disease severity and the clinical course in affected patients 

(benign or severe) is likely influenced by the kcnq2 variant, as most mutations associated 

with BFNS are, to date, distinct from those found in EOEE-patients. In vitro studies of 

several kcnq2 variants associated to onset of epileptic encephalopathy reveal more 

severe consequences on Kv7.2 protein (more extensive loss-of-function, dominant-

negative effects, alteration in neuronal subcellular distribution), suggesting a potential 

direct relationship between molecular alterations and clinical severity. This concept may 

allow to establish genotype-phenotype correlations. 

  

In the present work we have characterized the biochemical and functional properties, as 

well as the subcellular distribution in neurons of Kv7.2 subunits carrying EOEE-causing 

mutations localized in the VSD (S187F, S195P, R201C), in the pore (G256R, A265T) or in 

the C-terminus (R325G, R553G). 

The results obtained can be summarized in the following table:
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Based on the results obtained, many considerations may be extrapolated: 

 

All mutations investigated induce a functional alterations of Kv7.2 currents, mainly loss-of-

function effects  

Electrophysiological recordings performed in CHO cells expressing Kv7.2 mutant 

channels, in homomeric or heteromeric configurations, showed that five of seven 

mutations analyzed in the present study induced a loss-of-function of Kv7.2 channels 

(S187F, G256R, A265T, R325G, R553G) while only two was associated to gain-of-function 

effects (S195P, R201C). The epileptic phenotypes observed in patients carrying loss-of-

function variants is understandable given the well-known inhibitory function played by 

subthreshold K+ channels on neuronal excitability (Wang et al., 1998). Many functional 

studies suggest that a decrease of IM of only 25% is sufficient to cause epileptic 

phenotypes in neonates.  

The intriguing issue is how to reconcile that gain-of-funtion mutations, such as mutations 

herein investigated (S195P or R201C), also produce neuronal hyperexcitability? One 

possible hypothesys to explain this apparent counterintuitive result was provided by 

Miceli and coll. (2015a) for the gain-of-function mutation Kv7.2-R201C, whose functional 

alterations have been described in the present thesis. To address this intriguing issue, the 

Authors have modelled an inhibitory microcircuit between interneurons and pyramidal 

cells, incorporating the experimentally-defined values of the kinetic and steady-state 

properties of the M-current obtained from Kv7.2+Kv7.3 or by Kv7.2+Kv7.2-R201C+Kv7.3 

mutant channels. Under control conditions, the interneuron activity blocks more than 

half of action potentials that would be generated in CA1 hippocampal cell after excitatory 

input; by contrast, in the presence of the mutation R201C, the interneurons appear more 

hyperpolarized and this results in an effective disinhibition of the CA1 piramidal cells, 

which appear more excitable (Miceli et al., 2015a). 

However, it should be observed that gain-of-function effects are not uncommon in 

epileptic encephalopathy (V175L, Devaux et al, 2016; R198Q, Millichap et al., 2016), while 

they have never been described for mutations causing BFNS. 

The molecular alterations induced by EOEE-associated mutations, ranging from loss to 

gain-of-function effects, are not a prerogative of Kv7.2-mutations associated to epileptic 
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encephalopathies but have been described also for mutations in other genes associated 

with epileptic disorders (KCNC3, KCNA2, SCN1A, Nav1.1 genes) (Miceli et al., 2015b) or 

other clinical conditions (kcnq1 in QT and short syndrome, Nav1.4 in disorders of skeletal 

muscle, ect). 

 

The pathogenetic mechanisms appear to be dependent on the location of the NEE-

associated mutations in Kv7.2 channels 

The results described in the present work, in agreement with previous data 

described in literature, suggest that distinct pathogenetic mechanisms are associated to 

each Kv7.2 variant: in particular, these appears to be dependent on the location where 

the mutation falls (VSD, pore, C-terminal domain).  

 

Mutations localized in the voltage-sensing domain alter the gating of Kv7.2 channels  

The three mutations affecting the VSD region of Kv7.2 channels herein 

investigated (S187F in S3 segment; S195P and R201C in S4 segment) produce gating 

alterations, with divergent biophysical consequences: in fact, the S187F mutation 

decreases the voltage sensitivity of Kv7.2 homomeric channels and reduces the maximal 

current density of Kv7.2/Kv7.3 heteromeric channels while the S195P and R201C 

mutations increase the voltage-sensitivity, both in homomeric and in heteromeric 

Kv7.2/Kv7.3 channels. As for all Kv channels, the VSD region of Kv7 channel plays an 

important role in activation/deactivation of the channel in response to changes in the 

membrane potential; many studies have highlighted that some residues are involved in 

electrostatic interactions that stabilize different configurations of the channels. 

Therefore, amino acid changes in the VSD could remove these electrostatic interactions, 

leading to alterations in the ability of Kv7.2 channels to correctly switch from a resting to 

activated state in response to changes in membrane potential. For example, previous 

structural studies have demostrated that the S195, R201 residues (also studied in present 

Thesis) and R198 localized in the S4 segment, whose neutralizations are associated to 

gain-of-function effects established interactions with the C106 residue localized in the S1 

segment, contribuiting to the stabilization of the VSD resting state. These electrostatic 

interactions were visible in different resting states of the channel: in fact, the substitution 
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of each amino acid with cysteine residue (S195C, R198C and R201C) induced a dramatic 

reduction in the current amplitude, which could be reverted by exposing cells to the 

reducing agent DTT. This implies that disulphide bonds probably form spontaneously 

between each residue C195, C198, C201 and C106 and stabilize the channels in their 

resting state (Gourgy-Hacohen et al., 2014; Miceli et al., 2015a). In agreement, the results 

described in the present Thesis confirm that the R201 residue forms an intricate network 

of the electrostatic interaction with neighboring negatively charged residues (E130 and 

E140 in S2, D172 in S3) stabilizing the resting state of Kv7.2 channel; therefore, the 

neutralization of R201 residue (R201C) destabilize the resting state, favoring channel 

opening, even at membrane potentials at which normally the channel is closed. 

This molecular mechanism seems to be common to all mutations localized in the S4 of 

Kv7.2 channels prompting gain-of-function effects and found in patients affected by 

epileptic encephalopathy.  

 

Mutations localized in the pore region and in the C-terminal domain reduce maximal 

currents elicited by Kv7 channels  

 

The mutations herein investigated localized in the pore region (G256R, A265T) or 

in the C-terminal domain (R325G, R553G) induce loss-of-function effects on Kv7.2 

channels by significantly reducing current amplitude. In fact, G256R, A265T and R325G 

homomeric mutant channels failed to generate measurable currents although mutant 

subunits were expressed at similar levels than wild-type channels, both in total lysates 

and in plasma membrane-enriched fractions, while the mutant channels Kv7.2-R553G 

showed a very strongly reduction in their maximal currents. When these mutant subunits 

were expressed in heteromeric configuration with Kv7.2/Kv7.3 channels, a significant 

reduction in maximal current densities was measured when compared to Kv7.2/Kv7.3 

wild-type channels, confirming for all these mutations haploinsufficiency as a 

pathogenetic mechanism. In particular, heteromeric channels containing Kv7.2-R325G 

subunits showed more dramatic functional effect on Kv7.2/Kv7.3 channels, which 

currents is reduced by more than the 25% than wild-type heteromeric channel, 

suggesting a possible dominant negative effect. This “dominant negative” effect is 

frequent for mutations causing epileptic encephalopathies: in fact, it has been previously 
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described for other NEE-associated mutations (I205V, R213Q, A265P, T274M, G290D) 

(Orhan et al., 2014) and probably it contributes to the disease severity observed for 

epileptic encephalopathy. The pore region is fundamental to allow the selective transit 

of K+; disease-causing mutations could alter the rearrangment of this region, reducing the 

ion flow. A reduction in currents amplitude has been observed also for the two mutations 

(R325G, R553G) falling in the C-terminal domain; however, the molecular mechanisms 

underlying the reduction in maximal current densities could be different and related to 

the ability of the C-terminus to interact with modulatory molecules, able to regulate Kv7 

currents. In fact, we have recently demostrated that loss-of-function mutation R325G 

severely impaired Kv7.2 channel function by reducing channel affinity for PIP2. Molecular 

modeling studies have revealed that the negatively-charged PIP2 molecule is involved in 

an intricate network of electrostatic interactions with the side chains of residues in the 

S2-S3 linker (F163, R165), in the S4-S5 linker (S223), and in the pre-helix A region (K319, 

E322, R325, and Q326). Based on these structural results, we have next investigated 

whether the loss-of-function of homomeric Kv7.2-R325G channels was due to a reduced 

sensitivity to PIP2-dependent regulation; to this aim, endogenous PIP2 levels were 

increased by co-expression of type 1γ PI(4)P5-kinase (PIP5K), which enhanced current 

density and increased current voltage-sensitivity of Kv7.2 currents. Notably, co-

expression with PIP5K partially recovered the function of homomeric Kv7.2-R325G 

channels. To deplete membrane PIP2 levels, a voltage-sensitive phosphatase (VSP) from 

zebrafish was used: in fact, this enzyme lead to a reduction of the plasma membrane 

concentration of PIP2 and to an inhibition of Kv7 channels. Currents carried by 

heteromeric channels incorporating Kv7.2-R325G subunits were more readily inhibited 

than wild-type channels upon activation of VSP, and recovered more slowly upon VSP 

switch-off. Based on these results, we have proposed that decrease in current sensitivity 

to endogenous PIP2 seems to be the primary pathogenetic mechanism responsable for 

epileptic encephalopathy in patients carrying the R325G variant (Soldovieri et al., 2016). 

Another mutation studied in the present work, the R553G, is localized in the C-terminus, 

in particular at the SID domain. It is possible that this mutation could interfere with the 

proper tetrameric assembly of Kv7.2 subunits; this hypothesis is supported by results 

obtained with TEA experiments, suggesting the inability of mutant subunits to form 
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tetrameric channels with wild-type Kv7.2 subunits. However, the result that Kv7.2-R553G 

subunits are clearly detectable at AIS level in hippocampal neurons, where the interaction 

with Kv7.3 subunits is needed, suggests that these mutant subunits could maintain the 

ability to assemble with Kv7.3 subunits, therefore enriching AIS region. In addition, the 

R553G mutation falls in the binding site for syntaxin-1A (helix-C), a t-SNARE protein able 

to regulate the macroscopic currents of Kv7.2 channels. Future electrophysiological 

experiments will be performed to evaluate the possible alterations in the syx-mediated 

modulation of Kv7.2 currents in the presence of this mutation. Furthermore, based on 

the preliminary functional results herein shown on the ability of the STXBP1 protein to 

revert the inhibitory effects of syx-1A on Kv7.2/Kv7.3 currents, it would be interesting to 

evaluate the effects of the R553G mutation on this functional modulation.  

 

Mutations localized in the pore region abolish the neuronal trafficking of Kv7.2 channels 
to the axonal initial segment 
 

Immunocytochemistry experiments performed in hippocampal neurons have 

revealed that the mutations herein investigated in the VSD or in the C-terminal domain 

of EGFP-Kv7.2-HA subunits did not reduce their abundance at the AIS, although functional 

experiments reveal biophysical alterations (alterations in the voltage-sensitivity or in the 

current amplitude) of these mutant Kv7.2 subunits in a region where these channels are 

crucial regulators of the neuronal activity. By contrast, both mutations localized in the 

pore region appear to abolish neuronal trafficking of EGFP-Kv7.2-HA subunits at the AIS. 

Several hypotheses can be put forward to attempt to explain this result: mutations could 

induce an alteration in the expression at the neuronal plasma membrane, in the retention 

at the endoplasmic reticulum or at the AIS or alternatively induce a folding alteration of 

the protein. The pore region, and in particular defined residues, seems to be crucial for 

plasma membrane expression, for example A315 residue in Kv7.3 (Gómez-Posada et al., 

2010) or A352 and Y379 residues in Kv1.1 (Manganas et al., 2001); however, biotinylation 

experiments performed in non-neuronal cells have shown that mutant subunits (Kv7.2-

G256R, Kv7.2-A265T) are expressed in the plasma membrane at similar levels than wild-

type Kv7.2 subunits. Molecules involved in channel targeting/retention at the AIS, such 

as calmodulin and ankyrin-G, bind to the C-terminus of Kv7.2 subunits, but not to the 
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pore region. Therefore, the most likely hypothesis is that pore mutations could results in 

a misfolding of Kv7.2 subunits, which could interfere with properly assembly with Kv7.3 

subunits and thus with the AIS localization, given that heteromeric assembly of 

Kv7.2/Kv7.3 is required. The entire pore region could play an important role in neuronal 

trafficking, since also other mutations reported in literature alter trafficking at the AIS 

(Y284C, Chung et al., 2006; A294V, Abidi et al., 2015). It would therefore be interesting 

to understand the basis of this altered localization to test molecules that could allow a 

rescue in AIS localization. CaM co-expression could represent a viable strategy, in light of 

the evidence in Devaux and coll. (2014) that CaM plays a role in heteromeric assembly 

and trafficking of these channels in neurons. 

 

Genotype-Phenotype correlations 

Electrophysiological recordings in CHO cells have shown that the mutation A265T 

produces a loss-of-function of Kv7.2 channels, by merely reducing current density; 

functional recordings in oocytes expressing different NEE-mutations but on the same 

residue (A265P) produce more drammatic effects on Kv7.2 currents, namely a dominant-

negative effect (Orhan et al., 2014), probably because proline residue strongly alter the 

folding of proteins.  

The A265 residue is highly conserved among subunits encoded by all kcnq gene members, 

potentially suggesting its crucial functional role: in fact, Kv7.2 substitutions of the alanine 

265 residue with a threonine (A265T), proline (A265P, Weckhuysen et al., 2012) or valine 

(A265V, Saitsu et al., 2012; Kato et al., 2013; Milh et al., 2015) are all associated to 

epileptic encephalopathy. This observation demonstrates that the severe pathogenetic 

mechanism underlying these epileptic encephalopathy cases is probably related to the 

removal of this alanine residue. By contrast, is not rarely that the severity of disease 

appear to be related to the nature of the amino acid replacing the natural residue rather 

than the removal of a particular amino acid. For example, the mutation Kv7.2-R553G 

(namely R581G according to the isoform a) is associated to a severe clinical phenotype, 

whereas the Kv7.2-R553X (R581X; Singh et al., 2003, Grinton et al., 2015) that induces a 

truncation of the channel, is associated to a benign form of epilepsy (BFNS), suggesting 

that in this case missense mutations are associated to more severe clinical phenotypes 
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than those associated to non-sense mutations, probably because truncated proteins are 

more easily degraded, therefore reducing their pathogenetic potential. Similarly, 

divergent phenotypes induced by mutations affecting the same residue has been 

described also for R213 residue (R213Q in NEE, R231W in BFNS; Miceli et al., 2013) or 

A294 residue (A294V, NEE, A294G BFNS; Abidi et al., 2013). All these examples suggest 

that the clinical phenotype is correlate to the typology of amino acid substitution. 

The clinical severity of the disease, thus uncovering genotype–phenotype correlations in 

Kv7.2-linked channelopathies might have relevant impact on disease-management 

procedures, as well as on clinical course prediction and pharmacological treatment.  

 

Pharmacological rescue of Kv7.2 channels carrying NEE-associated mutations 

Most of the mutations herein investigated are associated to loss-of-function 

effects. Our data show that loss-of-function mutant channels are responsive to 

retigabine, which is able to increase their currents at wild-type levels (or more), 

suggesting a potential use of this drug in patients carrying these variants. In agreement 

with in vitro functional studies, one recent clinical report has shown that the 

administration of retigabine to patients carrying the Kv7.2-A265T variant was associated 

with improvement in development, alertness and interactions (Millichap et al., 2016). 

In vitro characterization, by conventional electrophysiological methods, of functional 

consequences prompted by Kv7.2-epileptic encephalopathy mutations could influence 

the choice of antiepileptic drugs: in fact, the use of anti-convulsivant drugs which 

enhance Kv7.2 channel function could represent rational pharmacological treatment in 

those patients carrying loss-of-function mutations, but may be ineffective or even 

detrimental in patients carrying gain-of-function variants, such as the Kv7.2-S195P or 

Kv7.2-R201C variants described in the present Thesis. In agreement, a very recent clinical 

study has shown that the administration of retigabine to a patients carrying gain-of-

functions variant (Kv7.2-R201C or Kv7.2-R201H) did not improve the symptoms and in 

one patient seemed to lead to a worsening of symptoms, suggesting that this molecule 

could exacerbate gain-of-function effects and result in a detrimental clinical effects 

(Mulkey et al., 2017). These observations highlight the need to identify also for Kv7.2 or 
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Kv7.3 channels selective blockers that could be useful for the treatment of EE-affected 

patients carrying gain-of-function Kv7.2 or Kv7.3 variants. 

Another example that highlights the importance of a translational approach between in 

vitro functional characterization and appropriate pharmacological choice is represented 

by de novo mutations found in KCNT1 gene, encoding for a voltage-dependent and Na+-

activated K+ channel, whose mutations are associated to MMPSI. In vitro KCNT1 

mutations cause gain-of-function effects on KCNT1 currents (Barcia et al., 2012). In vitro 

experiments with blockers of this channels, such as quinidine, have been shown to 

reverse the increased conductance induced by the presence of these gain-of-function 

mutations: in agreement, some clinical reports have demonstrated the efficacy of 

quinidine in clinical practise in a few cases of MMPSI caused by gain-of-function KCNT1 

mutations (Milligan et al., 2014).  

The identification of genes and therefore the pathogenetic mechanisms underlying 

epileptogenic phenotypes allows the possibility of directed therapeutic approaches 

(precision medicine). An ideal antiepileptic therapy consists of a drug which is able to 

influence the functional changes caused by a specific pathogenic variant.  

For example, the epileptic phenotypes associated to mutations in the SLC2A1 gene are 

adeguately curated with ketogenic diet. Infact, SLC2A1 gene encodes for glucose 

transporter GLUT1, which is required to transport glucose across the blood brain barrier. 

Mutations in SLC2A1 result in GLUT1 deficiency with reduced cerebral glucose 

availability; therefore the ketogenic diet represents the standard therapy for the classical 

GLUT1 deficiency and is in routine clinical use. It consists of a high fat diet with reduced 

carbohydrates which induces the production of ketone bodies, which cross the blood 

brain barrier independent of GLUT1 and can be used as an energy source by the brain 

(Klepper et al., 2004). Similarly, mutations in GRIN2A/2B genes were described in patients 

with epileptic encephalopathy. These two genes encode for the GluN2A and GluN2B 

subunits of the N-methyl-D-aspartate (NMDA) receptor, that mediate excitatory synaptic 

transmission in the central nervous system. Mutations in GRIN2A which result of greatly 

increased current flow through mutant-GluN2A-containing NMDARs, leading to excessive 

excitatory drive, thereby inducing seizure activity and/or excitotoxicity. The treatment of 
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a patient carrying GRIN2A-mutation with NMDA-receptor antagonist memantine, 

resulted in the substantial reduction in his seizure burden (Pierson et al., 2014). 

 

In conclusion, distinct pathogenetic mechanisms are associated to mutations localized in 

different regions of Kv7.2 channels:  the epileptic phenotypes found in patients carrying 

the mutations localized in the VSD or in the C-terminal domain could be a direct 

consequences of the functional alterations in the M-current, while in patients carrying 

pore mutations the clinical phenotype could be due, not only to the alterations in M-

currents, but also to the abolishment of channel targeting at AIS in neurons, suggesting a 

novel pathogenetic mechanism for Kv7.2-related epileptic encephalopathies. 
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