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SUMMARY 
	

The purpose of this PhD research is to facilitate the development of green and 

successful strategies for the control of undesirable microorganisms in food products. It 

is well known that many stress resistant bacteria are able to contaminate food products 

and produce their spoilage or, worse still, be a potential source of human illness. In the 

last decade, illnesses resulting from food borne pathogens have been higher than in the 

past and have become one of the most widespread public health problems in the world. 

Contextually, contaminations with spoilage microorganisms remain a major threat for 

the industry and food-based market, so much so, that consumers are not only paying 

more attention to the risk of foodborne pathogens but also the safety of chemical 

preservatives that are used to control undesirable microorganisms. It is, therefore, 

essential to find a satisfactory solution and useful strategy to prevent or reduce the 

incidences of pathogens or spoilage microorganisms. In the last two decades, much 

attention has been focused on food bio preservation, a “green strategy” that can assure 

shelf-life extension and food safety using microorganisms or their antimicrobial 

compounds. Lactic acid bacteria could be considered an ideal choice for application as 

protective cultures in food products and, more specifically, Lactobacillus plantarum is 

the most versatile and widespread species.  Several screening processes are developed 

in order to select the most appropriate effective strains to be used as protective cultures, 

including the production of bacteriocins, BLIS, organic acids, hydrogen peroxide as 

well as short chain fat acids. However, these screening programmes are labour intensive 

and a large number of strains isolated from different food matrices are assessed, thereby 

requiring more expensive investments in order to avoid unsatisfactory results. These 

findings call for a more simplified and useful approach when searching for new 

protective strains, taking into account that food stress conditions strongly influence the 

development of specific microbial strains. It would be extremely interesting to ascertain 

the effect of different environments on the selection of strains able to exert 

antimicrobial activities and, therefore, this research looks at the correlation between the 

Lb. plantarum strain isolated from hard environments and the ability to produce 

antimicrobial compounds. In addition, the main antimicrobial compound produced by 

producers Lb. plantarum strains and its mode of action was also investigated. This 
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dissertation assesses the observations and the main significant results were reported in 

six chapters.  

Chapter 1 is an overview of the biocontrol strategies developed.  More specifically, 

advancements in control strategies based on natural compounds and living organisms 

and/or their antimicrobial products (biocontrol, or bio preservation) were highlighted. 

These natural preservation methods are regarded as health-friendly by consumers, and 

are expected to have a lower impact on food nutritional and sensory properties. In 

addition, they may reduce the processing costs and, at the same time, extend the product 

shelf life period. However, until now, several issues, such as the high minimal 

inhibitory concentration levels, the stability of antimicrobial compounds, the knowledge 

of action mode, as well as the relation between microbial growth and compound 

formation kinetics, still remain unclear, making the individuation of a simplified 

screening procedure necessary. In Chapter 2 are reported the objectives of PhD 

research. 

Chapter 3 considers the relation between antimicrobial properties of Lb. plantarum 

strains and their source of isolation. For this purpose, a total of 110 Lb. plantarum 

strains were used as antagonistic strains (producers) against 33 undesirable 

microorganisms (indicators), including both moulds and bacteria. The antimicrobial 

activity exerted by cells, cell free supernatants (CFS), neutralized CFS (nCFS) or CFS 

added with α-chymotrypsin, proteinase K, and trypsin (pCFS) of the producer strains 

was evaluated by the spot-on-the-lawn and by the agar well diffusion assay. Moreover, 

the inhibition effects expressed by cell free supernatant (CFS) and by neutralized cell 

free supernatant of selected strains was evaluated in culture-broth expressed against 

strains belonging to Ps. fluorescens, B. thermosphacta and L. innocua. 

The preliminary results achieved by the evaluation of the antimicrobial effects 

expressed by CFS and the correspondent neutralized CFS support the hypothesis that 

the inhibition was due to the production of extracellular compounds having neither acid 

(such as lactic acid, that represent the principal extracellular metabolites produced by 

Lb. plantarum) nor proteinaceous nature. In addition, the results evidenced that the 

inhibitory effect produced by certain Lb. plantarum strains also remains at higher pH 

values. Therefore, the comparison between the inhibitory effects produced by CFS and 

lactic acid could provide more information on the antimicrobial compound. Moreover, 

in order to better appreciate differences between lactic acid and CFS, the most lactic 

acid resistant strains among the indicators should be chosen. L. innocua strains are well 
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known for their acid stress resistance. The relative results evidenced that the inhibitory 

effect of CFS from Lb. plantarum H_BB1 against L. innocua was due to the synergic 

presence of more than one inhibitory substance. A more in depth, further investigation 

evidenced that in addition to lactic acid, the CFS might also possess another compound 

of acid nature. On the basis of this evidence, PLA in the cells free supernatant from 

strains (able to produce antimicrobial effects), was evaluated. The results highlighted 

significant differences among the assayed strains showing that PLA production is 

strain-dependent. In addition, for the first time, a relation between PLA-producing 

strains and isolation environment of the strains was highlighted. In fact, those 

environments characterised by harsh conditions (high ethanol levels, low pH and high 

sugar levels), such as wines and honey, harboured a higher number of antagonistic 

strains than other fermented matrices (e.g. cheese, sourdoughs or fermented sausages). 

This could be due to selective pressures which are more accentuated in wines and honey 

than in the other food matrices researched.  

The most important scientific enrichment produced by the activities in Chapter 1 is 

attributable to results highlighting that the choice of the source of isolation could be an 

important preliminary tool for the individuation of antagonistic strains. However, the 

correlation between Lb. plantarum PLA formation ability and their isolation sources 

would lead to opening new frontiers in understanding the PLA formation process. 

PLA formation seems to be linked to stress response mechanisms performed by Lb. 

plantarum. However, no information with regards the LAB stress response and PLA 

production is available in literature and little information is reported on the relation 

between the microbial growth phase and PLA formation. Even if the prevailing opinion 

in the scientific community believes that PLA formation is related to LAB growth 

arrest, the linkage to metabolic pathways involved in its stationary phase has not been 

clarified. Little information, if any, can be found on the optimal pH condition of PLA 

metabolic pathway in the Lactobacillus species. 

With this in mind, the research reported in Chapter 4 focuses on the effect of growth 

phase and on the PLA formation by Lb. plantarum H_BB1. Moreover, cultivation 

conditions that were able to assure the highest PLA levels were investigated. The 

production of PLA by Lb. plantarum H_BB1 was preliminarily investigated in MRS 

broth. The comparison between PLA behaviour and growth curves evidenced that the 

PLA accumulation begins immediately after the end of the lag phase and reached the 

highest levels between the exponential and the stationary phase. As far as I know, these 
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results show, for the first time, that the PLA production is strictly related to the growth 

and to the exponential phase of Lb. plantarum. More specifically, the results obtained in 

the present study suggest that the PLA could assume new metabolic meanings. In fact, 

the accumulation from the beginning of the exponential phase highlight typical 

behaviour of a primary metabolite. On the other hand, the highest production rate 

between the exponential and stationary phase suggests that PLA production could 

assume a key role in the acid stress response. In fact, in the transition between 

exponential and stationary phase, pH showed values similar to the pKa of lactic acid. 

On the basis of the above reported statements, the evaluation of ecological factors 

on the PLA formation process appear essential. More precisely, sub-lethal pH could 

positively affect some metabolic pathways in Lb. plantarum. For this purpose, PLA 

production by Lb. plantarum was assayed in different cultural conditions (MRS 

acidified to pH 4.0 and to pH 3.5) and the results suggest that the metabolic pathway 

involved in PLA formation is tied to the energetic metabolism of growing cells. Key 

reactions of PLA formation, such as the regeneration of NAD+ levels, the 

transamination reaction (where the a-ammino group is transferred to a keto acid 

acceptor) and the deamination reactions with NH3 and amino acceptor regeneration, 

found different linkages with typical metabolic activities of growing cells. The results 

evidenced that, in no way, could the PLA formation be related to cell growth arrest. 

Whereas, its formation could represent an adaptation response of growing cells to acid 

stress. In fact, evaluating the behaviour of ratio between PLA (g/L) and biomass (g/L) 

levels, the highest performances were detected when the strain was cultivated in MRS 

pre-acidified to pH 4.0. On the basis of the above reported results, the PLA could be 

considered a “primary-like metabolite” of Lb. plantarum in sub-optimal pH 

condition and may open new horizons to the development of an advanced optimal 

design for maximum PLA production.  

Moreover, the evidences reported in state-of-the-art Chapter 1, together with data 

specified in Chapters 2 and 3 suggest the opportunity to use PLA as anti-Listeria 

compounds. To date, antimicrobial activity of PLA, including anti-Listeria ability, was 

well recognized. Whereas, little information is available on the PLA anti-Listeria 

mechanism. Some results reported in literature suggest that the PLA mode of action 

could be similar to lactic acid. Nevertheless, considering the chemical structure of PLA, 

an action mode which is different from the lactic acid and more similar to phenolic 

acids could also be hypothesized. In Chapter 5, the anti-Listeria mechanism of 3-



	

5	

	

phenyllactic acid was investigated and, hence, the antimicrobial effect of PLA was 

evaluated to different pH. Moreover, the PLA anti-Listeria has been compared with 

those expressed by the lactic acid and the better studied hydroxybenzoic and 

hydroxycinnamic acids. Listeria innocua was chosen as the indicator to investigate the 

antimicrobial mechanism of PLA. Listeria innocua is regarded as a non-pathogenic 

indicator for the presence of Listeria monocytogenes in foods. 

This study has evidenced that PLA, which, for many years, has been considered an 

antifungal metabolite, is also able to inhibit bacteria cells. Moreover, very low 

concentrations were required to produce anti-Listeria activity. MIC values of about 0.47 

or 0.94 mg/mL appear compatible with the maximum PLA production revealed in Lb. 

plantarum cultures. In fact, this PhD research (chapters 2 and 3), recognizes that Lb. 

plantarum strains produced up to 0.12 or 0.23 mg/mL and this production level could be 

increased two or even tenfold when specific cultural strategies were applied. Therefore, 

a resolution to the gap between PLA required to assure antimicrobial activity and the 

PLA levels detected in fermentation batches seems possible. This gap has long proven 

to be a serious obstacle when applying PLA producing bacteria as protective or as anti-

Listeria cultures in food characterized by neutral or sub-acid pH. Moreover, the relation 

between pH values and anti-Listeria activity of PLA was clarified. A relation between 

MICs and pH values was found and a significant reduction in PLA anti-Listeria activity 

was detected at the highest pH values tested.  

In order to understand the PLA mode of action, the anti-Listeria effect produced by 

PLA at pH 5.5 was compared to the effect illustrated by lactic acid to the same pH 

value. Lactic acid was the best choice as its antimicrobial mechanism is well known. 

The results evidenced that the antimicrobial action of PLA was substantially different 

from LA. The different and more successful effect produced by PLA must be due to its 

amphiphilic properties resulting from the hydrophobic group-benzene ring and 

hydrophilic group-carboxy in its chemical structure. These properties would allow an 

interaction with the lipid and protein in cytoplasmic membrane as well as an interaction 

with genomic materials. Therefore, a comparison between PLA and the more studied 

phenolic acids (hydroxybenzoic and hydroxycinnamic) should be researched. 

Furthermore, to better understand the antimicrobial effect of PLA on L. innocua, further 

experiments were conducted using three phenolic compounds (gallic, ferulic and caffeic 

acid). The results generated from both an MIC and MBC survival test, highlighted that 

the gallic acid and PLA showed the most performing anti-Listeria activity. However, 
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the differences between PLA and GA in death kinetic parameters suggest that PLA 

produces anti-Listeria activity through a specific mechanism which is somewhat 

different from those usually adopted by other phenolic compounds. Antimicrobial 

activity of phenolic acids involves several mechanisms of action such as permeability 

destabilization or the rupture of the cytoplasmic membrane as well as enzymes 

inhibition through nonspecific interaction. It is possible to hypothesize that PLA utilizes 

more than one of these pathways but differently from the other phenolic compounds. 

More exhaustive results were obtained by the evaluation of the effect of phenolic acids 

on surface charge and loss of cellular content. In fact, zeta potential measurements 

demonstrated that after phenolic acids exposure, the cells become more (P<0.05) 

negatively charged when exposed to PLA. While in the presence of other phenolic 

compounds (GA, CA, FE) no variation in charge was detected. This fact may open new 

horizons to the understanding of the PLA anti-Listeria mechanism. It is possible to 

surmise that the PLA anti-Listeria action is also associated with the affinity with cell 

surface and the interaction PLA-cell surface could contribute to the damage of cellular 

structures. The rupture of cellular structures was also supported by the results of the 

cellular content loss. The results could help to explain the differences in the anti-

Listeria mechanism of phenolic compounds. Hydroxybenzoic and hydroxycinnamic 

acid seem to induce an alteration in membrane permeability without causing its rupture. 

Whereas, PLA having the main targets in cellular surface and in cytoplasmic 

membrane, leads to a severe rupture of the cellular structures. All these evidences 

contribute to the enrichment of scientific knowledge in the anti-Listeria mechanism of 

PLA and highlighted that PLA effectiveness is superior to that expressed by other 

preservative acids. Finally, in Chapter 6 are reported the general conclusions of PhD 

research.  
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CHAPTER 1 

STATE OF THE ART 

1.1 Quality and safety in food 

The terms “food quality” and “food safety” mean different things to different people. 

Quality has a vast number of meanings and can encompass parameters as diverse as 

organoleptic characteristics, physical and functional properties, nutrient content and 

consumer protection from fraud. Furthermore, it can cover political and social issues 

such as wages paid to farm workers, geographical issues such as controlled appellations, 

and religious issues such as halal and kosher. Safety is more straightforward, relating to 

the content of various chemical and microbiological elements in food (Saraoui et al.,	

2017). Food quality and safety take on greater scope as the global food supply evolves. 

Even the concept of a nutrient has changed in recent years (Fageria, 2016). In the not-

so-distant past, a nutrient was simply defined as a substance that an organism had to 

obtain from its surroundings for growth and sustenance for life. Now, many components 

of foods such as polyphenols, which are not necessary for livelihood, are characterized 

as nutrients (Ozdal et al., 2016). The same is true for isoflavones, coumestrol, non-

provitamin A carotenoids and other phytochemicals. Those who do not characterize 

these compounds as nutrients are inclined to call them beneficial bioactive components. 

Yet there can be too much of a good thing, and benefit can turn to risk, even for 

conventional nutrients. The ever-growing interest in nutrients and related substances, 

and the increasing amounts used in foods (such as fortificants, antioxidants, etc.) and 

supplements, led to develop a model for establishing safe upper levels of intake of 

nutrients and related substances (Yates et al., 2017).  
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1.1.1 Food chain approach  

During the last couple of decades, the credibility of the food industry was heavily 

challenged after a number of food crises, such as Bovine Spongiform Encepha- lopathy 

(BSE) or mad cow disease, Dioxin in chicken feed, Food-and-Mouth Disease (FMD) 

and issues such as the use of Genetically Modified (GM) crops in foods. The outbreak 

of foodborne illnesses such as salmonella, campylobacter and Escherichia coli 

O157:H7 also further increase consumer concerns over the safety and quality of food. 

As a consequence of food scandals and incidents, customers call for high quality food 

with integrity, safety guarantees and transparency (Trienekens and Zuurbier, 2008). 

Therefore, keeping safety and quality along the food supply chain has become a 

significant challenge. In response to growing food safety issues, the laws, policies and 

standards regarding food safety and quality management have been developed for the 

food industry. Quality assurance has become a cornerstone of food safety policy in the 

food industry that started to implement integrated quality and food safety management 

systems. To supply top quality, safe and nutritious foods, as well as rebuild public 

confidence in the food chain, the design and implementation of whole chain traceability 

from farm to end-user has become an important part of the overall food quality 

assurance system (Opara, 2003). FAO (2003) stated managing food safety and quality 

as a shared responsibility of all actors in the food chain including governments, industry 

and consumers. Compositional changes, for better or for worse, can be introduced at 

each and every link in the food chain. Adopting a food chain framework goes beyond 

ensuring the safety of food (Aung and Chang, 2014). It facilitates a more general 

approach to quality in agriculture and food safety and quality systems that will comprise 

government, industry and consumer participation. This implies potential future shifts in 

the agricultural sectors of many countries. For example, plant breeders are using genetic 

resources to increase the nutrient contents of foods at source. Farmers are also exploring 

new farming and technological choices to meet demands for a safe and healthy diet in 

response to new regulations and standards, changing global consumption patterns, 

improved market access and value added opportunities, as well as increasing concerns 

over the sustainability of existing agricultural systems. The FAO’s “Strategy for a Food 

Chain Approach to Food Safety and Quality is a framework document designed to 

encourage the development of future strategic direction” (FAO, 2003) which broadly 

outlines the most important issues in the development of a food chain approach to food 
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safety, while the broader implications of a food chain approach on production and post-

production systems, biosecurity and nutrition are addressed in other Committee on 

Agriculture (COAG) documents. The FAO recognizes the need to more fully 

incorporate a food chain approach in its food quality,	safety and nutrition strategies 

and acknowledges that this revised strategic direction will require an integrated and 

preventative approach to the management of food safety, meeting sustainability 

concerns and building on aspects of the implementation of international commitments. 

While the developments may be largely beneficial, the composition of the foods need 

to be monitored to ensure that no harm comes to the consumers.  

1.1.2 Food safety versus food quality and new requirement 

Food safety and food quality are two important terms which describe aspects of food 

products and the reputations of the processors who produce food. The Codex 

Alimentarius Commission (CAC, 2003) defines food safety as an assurance that food 

will not harm the consumer when it is prepared and/or eaten according to its intended 

use. Food safety refers to all hazards, whether chronic or acute, that may cause food to 

be harmful to the consumer. It is not negotiable and a global issue affecting billions of 

people who suffer from diseases caused by contaminated food. Both developed and 

developing countries share concerns over food safety as international food trade and 

cross-border movements of people and live animals increase (Asian Productivity 

Organisation, 2009). In industries, such as telecommunications, software development 

and airlines, security is the principal driver for traceability, in contrast to the food 

industry where the safety is a genuinely important issue (Opara, 2003).  

Food safety hazards may occur at a variety of stages in the food chain. Therefore, food 

safety is a responsibility to be shared by producers, processors, distributors, retailers, 

and consumers alike. An important preventative approach that may be applied at all 

stages of the food chain regards the traceability of food products and the ability of food 

facilities to provide information about their sources, recipients, and transporters are 

essential to ensure the safety of food supply (Levinson, 2009).  

Quality icdefined by the International Organization for Standardization as “the totality 

of features and characteristics of a product that bear on its ability to satisfy stated or 

implied needs” (Van Reeuwijk, 1998). Quality can also be defined as “conformance to 
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requirements”, “fitness for use” or, more appropriately, in foodstuffs, “fitness for 

consumption” (Kafetzopoulos et al., 2014). Thus, quality can be described as the 

requirements necessary to satisfy the needs and expectations of the consumer (Ho, 

1994; Peri, 2006). However, food quality is very general, implying many expectations 

which can differ from consumer to consumer. Quality includes attributes that influence 

a product’s value to the consumer. Quality does not refer solely to the properties of the 

food itself, but also to the ways in which those properties have been achieved (Morris 

and Young, 2000).  

Many experts have argued that safety is the most important component of quality, since 

a lack of safety can result in serious injury and even death for the consumer. Safety 

differs from many other quality attributes since it is difficult to observe. A product can 

appear to be of high quality (i.e. well coloured, appetizing and flavourful, etc.), 

however, it can be unsafe as it may be contaminated with undetected pathogenic 

organisms, toxic chemicals, or physical hazards (UN, 2007). Rohr et al. (2005), Grunert 

(2005) and Pinto et al. (2006) agreed that food safety has become an important food 

quality attribute.  

Defects and improper food quality may result in consumer rejection and lower sales, 

while food safety hazards may be hidden and go undetected until the product has been 

consumed. If detected, serious food safety hazards may result in market access 

exclusion and major economic losses and costs. Since food safety hazards directly 

affect public health and economies, achieving correct food safety must always take 

precedence over achieving high levels of other quality attributes (UN, 2007). These two 

have obvious links, but food quality is primarily an economical issue decided by the 

consumer, while food safety is a governmental commitment to ensure that the food 

supply is safe for consumers and meets regulatory requirements (Sarig, 2003). Quality 

is seen to lead to taste, health, safety and pleasure. Similarly, safety is seen to be the 

consequence of control, origin, best before date and quality, while resulting in health 

and perceiving a feeling of calm. Both quality and safety are interrelated and linked to 

trust and confidence (Rijswijk and Frewer, 2006).  

On the basis of the above reported statement, in the food safety field, quantitative 

microbial risk assessment (QMRA) has been applied for many years. This approach is 

primarily aimed at assessing the influence of different control measures on level of 

safety, rather than an absolute assessment of risk and, in addition, can thus provide an 

objective and scientific basis for risk management decisions (Guillier et al., 2016).  
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However, an integrated public health assessment also depends on other elements such 

as sustainability of food chains and green label food. Food sustainability is becoming an 

increasingly important issue because food systems are not sustainable in terms of their 

consumption of resources, their impact on ecosystems or their effect on health and 

social equality (Esnouf, 2013). This interest is confirmed by the growing number of call 

for research projects dedicated to the sustainable food production suggesting several 

topic such as carbon labeling and reducing food waste. Is widly reported that the use of 

energy, resources and the emission of Green House Gases (GHG) in the entire food 

cycle, including production, consumption, and transportation is unavoidable. The 

initiatives to use carbon labelling (i.e. carbon footprints of the products) and conception 

of food miles (the distance that food is transported as it travels from producer to 

consumer) indicate that the food chain needs more environmentally friendly solutions to 

reduce the environmental impacts such as pollution and global warming. The wastage 

of food and resources used for growing unused products are also a big issue for the 

environment. In many countries, one of the problems concerning food safety and quality 

is food spoilage. Food spoilage is wasteful, costly and can adversely affect trade and 

consumer confidence (Flores and Tanner, 2008). 

On the basis of the above reported statements, the knowledge of the main spoilage and 

pathogens bacteria as well as the study of advances in food technologies represents a 

crucial step.  

1.1.3 Spoilage and pathogen microrganisms  

Many food products are perishable by nature and require protection from spoilage 

during their preparation, storage, and distribution, in order to give them a desidered 

shelf life. The demand for minimally processed, easily prepared, and ready-to-eat fresh 

food products, the globalization of food trade, and distribution from centralized 

processing, pose major challenges for food safety and quality. Food products can be 

subjected to contamination by bacteria and fungi. Many of these microorganisms can 

cause undesirable reactions that deteriorate the flavor, odor, color, sensorial and textural 

properties of foods. Microbial growth is a major concern because some microorganisms 

can potentially cause food-borne illness. In packaged foods, the growth and survival of 

common spoilage and patoghenic microorganisms such as Listeria monocytognes, 

Escherichia Coli O157, Salmonella, Staphylococcus aureus, Bacillus cereus, 
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Campylobacter, Clostridium perfringens, Aspergillus niger, and Saccharomoyces 

cerevisae are affected by a variety of intrinsic factors, such as pH values and the 

presence of oxygen or by extrinsic factors associated with storage conditions, including 

temperature, time and relative humidity (Singh et al., 2003; Lòpez-Malo et al., 2005) 

1.1.3.1 Spoilage microorganisms 

Many studies have reported the main bacterial species associated with various types of 

spoilage from a large range of foodstuffs. The ability of some species to grow under or 

resist the harsh conditions encountered during processing and storage has been 

described. For various foods of animal origin, Gram-positive bacteria, and especially 

Firmicutes, have often been reported as spoilers (Bron and Kleerebezem, 2011). In 

particular, lactic acid bacteria (LAB), encompassing Lactococci, Lactobacilli, 

Leuconostoc, Weissella, and Carnobacteria species, as well as Enterococci are 

frequently associated with spoilage. In fact, although LAB are generally beneficial for 

food and are used for the fermentation of a variety of food and raw materials, where 

they contribute to flavor, texture and shelf-life (Bron and Kleerebezem, 2011), some 

species can play a significant role in food spoilage and decay. This is the case, for 

instance, of Lactobacillus alimentarius, known as a specific spoilage organism in 

marinated herring (Lyhs et al., 2001), and of Lactobacillus sakei and Lactobacillus 

curvatus, also found in the spoilage microbiota of herring (Lyhs and Bjorkroth, 2008). 

L. sakei was reported as predominant in the spoilage microbiota of sliced, vacuum-

packed, smoked, oven-cooked turkey breast fillets, which developed sour spoilage 

flavors (Samelis et al., 2000). L. curvatus was also found to be one of the specific 

spoilers in cold-smoked salmon (Jørgensen et al., 2000), as was L. sakei (Stohr et al., 

2001; Joffraud et al., 2006). The latter was also isolated in the spoilage microbiota of 

brined and drained shrimp stored under modified atmosphere packaging (Mejlholm et 

al., 2012, 2008). Carnobacterium is another LAB genus commonly involved in the 

spoilage process of food, with notably Carnobacterium divergens and Carnobacterium 

maltaromaticum known to dominate the spoilage microbiota of different meat and 

seafood products, particularly those packed under vacuum or modified atmosphere 

(Laursen et al., 2005; Leisner et al., 2007; Vasilopoulos et al., 2008). Other LAB genera 

and species have also been incriminated in the spoilage process of various food 



	

13	

	

products. Enterococcus faecalis and Enterococcus faecium can be involved in the 

greening of meat products (Foulquié-Moreno et al., 2006).  

In addition to LAB species, other Gram-positive bacteria can play a significant role in 

food spoilage. One of the most prominent is the psychrotrophic species Brochothrix 

thermosphacta, known as an important spoiler bacterium of various food matrixes 

(Rattanasomboon et al., 1999; Russo et al., 2006). B. thermosphacta is a ubiquitous 

microorganism throughout the meat production chain, from animal to food. It was 

isolated from beef carcasses during boning, dressing and chilling. Moreover, lairage 

slurry, cattle hair, rumen content, walls of slaughterhouses, hands of workers, air in the 

chill room, neck and skin of the animals as well as the cut muscle surfaces have all been 

shown to be contaminated by this organism (Nychas et al., 2008). In vacuum, packed 

meat products or modified atmosphere, B. thermosphacta can dominate the spoilage 

microbiota at the expense of other genera, such as Carnobacterium, Lactobacillus or 

Leuconostoc (Borch et al., 1996; Ercolini et al., 2006). B. thermosphacta was also found 

in the spoilage microbiota of raw turkey breasts (Samelis et al., 2000), pork meat 

(Bohaychuk and Greer, 2003) and cooked ham (Samelis et al., 1998). It was identified 

as the dominant spoiler in freshly prepared chicken products (Liang et al., 2012) and 

was responsible for a cheesy/dairy off-odor and discoloration of chilled vacuum-

packaged lamb meat (Gribble and Brightwell, 2013). Seafood products also provide a 

favorable niche for B. thermosphacta development, i.e. neutral pH, high water activity 

(Aw) and high content of low molecular weight compounds such as free amino acids 

and nucleotides (Jeyasekaran et al., 2006). 

More recently, B. thermosphacta was found to be predominant in meat and coral of king 

scallops (Pecten maximus), during storage under air at low temperature (Coton et al., 

2013). The growth of B. thermosphacta in vacuum-packed meat products depends 

largely on the amount of available oxygen remaining in the package. B. thermosphacta 

may become the dominant spoilage species when oxygen is present, but is displaced by 

Lactobacillus species under anaerobic conditions. The spoilage potential of B. 

thermosphacta in vacuum-packed meat products is thus influenced by factors that 

control the level of oxygen in the pack like, for example, the film permeability, the 

residual gas composition and the pack integrity (Gribble and Brightwell, 2013). In 

vacuum packs, there is often enough residual oxygen for B. thermosphacta to 

metabolize offensive off-odors. The anaerobic growth of B. thermosphacta at chill 

temperatures is also reduced by meat pH values of less than 5.8; consequently B. 
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thermosphacta is most often associated with the early spoilage of high pH meat cuts of 

lamb and beef (Bell, 2001; McClure et al., 1993).  

Several species have been reported as responsible for the so-called blown-pack defect of 

vacuum-packed food due to gas production. This defect is mostly associated with 

chilled fresh meat particularly beef, lamb and venison, but was also reported to have 

been found in cooked meat products (Broda et al., 1996). The causative agents include 

psychrotrophic Enterobacteriaceae or Clostridium species such as Clostridium 

estherteticum (Brightwell et al., 2007; Hernandez-Macedo et al., 2012; Yang and 

Badoni, 2013). Other Clostridium species (Clostridium algidixylanolyticum, 

Clostridium frigidicarnis, Clostridium frigoris, Closdridium gasigenes, and Clostridium 

algidicarnis) may also cause blown pack spoilage of vacuum-packed beef (Silva et al., 

2011; Yang and Badoni, 2013). In addition, the acid tolerant species Clostridium 

perfringens, Clostridium barati, and Clostridium butyricum have been reported as the 

causative agents of the spoilage of canned pasteurized mung bean sprouts, stored under 

acidic conditions (de Jong, 1989).  

Gram-negative bacteria with species belonging to the genera Serratia, Hafnia, and 

Pseudomonas have also often been incriminated. Some species like Shewanella baltica 

and Photobacterium phosphoreum, typical of sea water or sediment, have been 

specifically reported in seafood spoilage. Shewanella sp., notably Shewanella 

putrefaciens or S. baltica, are typical spoilers of fresh marine fish (Gram and Huss, 

1996; Broekaert et al., 2011), such as halibut (Hovda et al., 2007b), sea bass 

(Papadopoulos et al., 2003), mullet (Pournis et al., 2005), swordfish (Pantazi et al., 

2008), salmon filets (Macé et al., 2013), and sea bream (Tryfinopoulou et al., 2007). 

Shewanella have also been found on smoked fish such as blue cod or salmon (Penney et 

al., 1994; Joffraud et al., 2001).   

Enterobacteriaceae (Enterobacteria) can also play a key role in food spoilage due to 

their ability to metabolize amino acids to malodorous volatile compounds, such as foul-

smelling diamines and sulphuric compounds (Baylis, 2006; Borch et al., 1996; García- 

López et al., 1998; Samelis, 2006). A range of enterobacteria may grow on chilled 

meats: Hafnia alvei, Pantoea agglomerans, Rahnella spp., Serratia spp., and Yersinia 

enterocolitica are frequently reported at the end of chilled storage (Sade et al., 2013).  

Pseudomonas spp., particularly Pseudomonas fluorescens, Pseudomonas putida, and 

Pseudomonas fragi, also contribute to a large extent to the spoilage process of food. 

These are the predominant spoilers of proteinaceous raw foods stored under aerobic 
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refrigerated conditions (Nychas et al., 2008), especially aerobically chill-stored beef 

(Doulgeraki and Nychas, 2013; Liu et al., 2006), sea-food (Gram and Huss, 1996; Macé 

et al., 2013; Reynisson et al., 2008), poultry (Dominguez and Schaffner, 2007; Mellor et 

al., 2011), and milk (Quigley et al., 2013; Stevenson et al., 2003). In fact, as already 

well described by Arslan et al. (2011), Pseudomonas spp. may cause spoilage of dairy 

products through the production of extracellular enzymes that are heat-stable and can 

therefore remain active during pasteurization or ultra-high-temperature treatments. P. 

fluorescens also plays an important role in the spoilage of aerobically stored chicken 

meat by producing bio-surfactants which provide a competitive advantage to producing 

strains in a number of ways e.g. enhancement of water-immiscible substrate 

bioavailability and of adhesion to surfaces, antibiotic activity or motility facilitation 

(Mellor et al., 2011). P. fragi is involved in the spoilage of fresh food products, such as 

milk, stored under refrigerated aerobic conditions (Ercolini et al., 2007) where it can 

produce thermo-resistant extracellular enzymes, causing spoilage and structural defects 

in pasteurized and ultra-high-temperature-treated milk (De Jonghe et al., 2011; Dogan 

and Boor, 2003; Marchand et al., 2009). Other Pseudomonas species were reported to 

express a significant spoilage potential of milk, such as Pseudomonas gessardii, 

Pseudomonas lundensis, and P. fluorescens-like (De Jonghe et al., 2011; Marchand et 

al., 2009). In vegetables, several species of Pseudomonas have been identified as 

spoilage bacteria, including Pseudomonas chlororaphis, particularly effective on many 

vegetables such as lettuce, red mustard seeds, broccoli, onion, potato, or carrot, by 

producing plant cell wall-degrading enzymes (PCWDEs) like pectate lyase (Lee et al., 

2013). Some Pseudomonas species can also produce biofilm on food and food-

processing equipment (Kerekes et al., 2013). The biofilm-forming bacterial cells can 

communicate through a density-dependent cell-to-cell communication mechanism, 

quorum sensing, notably by releasing signaling molecules, N-acyl homoserine lactones 

(AHLs), into their environment. Gram et al. (2002) reported the widespread occurrence 

of AHLs in fish products, poultry and vacuum-packed meat. AHL production is a 

widespread phenomenon in food-spoiling bacteria.  
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1.1.3.2 Pathogens bacteria 

Many stress resistant bacteria are able to contaminate food products and be a potential 

source of human illness. In the last decade, illnesses resulting from food borne 

pathogens have been higher than in the past and have become one of the most 

widespread public health problems in the world. 	

Escherichia coli  

Escherichia coli are a group of motile, Gram-negative facultative anaerobes that are part 

of the natural microflora in the intestinal tracts of humans and other warm-blooded 

animals (Montville et al., 2012). While most strains are harmless, some are pathogenic 

and cause a diarrheal infection ranging from mild to severe, with complications arising 

in some individuals. These pathogenic strains are largely transmitted via the fecal-oral 

route and have been categorized into groups based on their virulence, pathogenic 

mechanisms, clinical syndromes and serotypes. The diarrheagenic E. coli includes: 

enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC), enteroinvasive E. coli 

(EIEC), diffusely adhering E. coli (DAEC), enteroaggregative E. coli (EAEC) and 

enterohemorrhagic E. coli (EHEC). Combined, strains of diarrheagenic E. coli have 

been estimated to cause over 200,000 cases of foodborne disease each year in the US, 

resulting in close to 2,500 hospitalizations (Scallan et al., 2011). EHEC strains are able 

to produce cytotoxic factors named verotoxins or Shiga toxins (Stx), and infection with 

these strains can lead to serious complications, such as hemorrhagic colitis, kidney 

failure, HUS, thrombotic thrombocytopenia purpura (TTP) and death (FDA, 2012). 

Escherichia coli O157:H7 is the predominant serotype of EHEC implicated in human 

illness, accounting for about 75% of infections globally, and it has a very low estimated 

infectious dose of 10–100 cells (FDA, 2012). E. coli O157:H7 generally grows best 

around 37°C (Doyle and Schoeni, 1984); however, the optimal growth temperature 

varies depending on the strain (Gonthier et al., 2001). Although E. coli O157:H7 is not 

able to maintain growth at reduced temperatures (e.g. 10 °C), it is able to survive 

freezing for long periods of time (Doyle and Schoeni, 1984). Escherichia coli O157:H7 

is also exceptionally tolerant of acidic conditions compared to most other foodborne 

pathogens, with growth occurring as low as pH 4.0–4.5 (Montville et al., 2012). 

Interestingly, sublethal exposure to one type of environmental stress has been shown to 
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increase the overall resistance of this organism to other types of stressors, thereby 

enhancing its survival in these circumstances (Franz and van Bruggen, 2008).  

Early outbreaks of foodborne illness from E. coli O157:H7 were predominantly 

associated with the consumption of undercooked beef products. While beef products 

continue to be implicated in many E. coli O157:H7 infections, there has been an 

increasing trend for contamination of fruit and vegetables as well, such as unpasteurized 

juices, fresh lettuce, sprouts and bagged spinach (FDA, 2012). Fresh produce may 

become contaminated with this pathogen in the pre-harvest environment through 

contact with fecal material from sources such as domestic livestock and wildlife 

(Mandrell, 2009). For example, during a 2006 outbreak investigation of E. coli 

O157:H7 in spinach, matches to the outbreak strain were detected in feral swine feces, 

cattle feces and soil samples collected near the spinach field (Jay et al., 2007). Some 

potential means of dispersal for E. coli O157:H7 into production fields include 

watersheds, aerosols, animal effluents or animal intrusion (Fremaux et al., 2008b; 

Mandrell, 2009). Once in the soil, E. coli can survive for extended periods of time, 

potentially contaminating fruit and vegetables (Fremaux et al., 2008b) and migrating to 

other areas, such as groundwater (van Elsas et al., 2011).  

Listeria monocytogenes  

Listeria monocytogenes is a Gram-positive, non-spore-forming bacterium that is 

ubiquitous in nature and can withstand adverse environmental conditions (Montville et 

al., 2012). This organism is motile, facultatively anaerobic and psychrotrophic, with a 

growth temperature range of between 0–45 °C. Listeria monocytogenes demonstrates 

tolerance to salt, dehydration and acidic conditions, and can survive for extended 

periods in or on food, soil, plants and hard surfaces. Listeria monocytogenes has several 

known animal reservoirs, such as cattle, deer and goats, and can also proliferate in water 

environments, including surface waters of canals and lakes, ditches and sewers. 

Thirteen serotypes of L. monocytogenes have been recorded, but the majority of human 

cases (95%) have been associated with serotypes 1/2a, 1/2b or 4b (Montville et al., 

2012). While human infections with L. monocytogenes are less numerous than those 

with other foodborne pathogens, the effects can be severe and it is one of the leading 

causes of death from foodborne illness in the US (FDA, 2012). Cases of listeriosis range 

from mild, self-limiting gastroenteritis to serious, invasive infections with 
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complications such as meningitis, septicemia and abortion or stillbirth in pregnant 

women. Listeriosis is primarily associated with ready-to-eat-foods, milk products, 

cheeses, meat and poultry products and seafood. As it does not survive most heat 

treatments, L. monocytogenes usually contaminates these foods in the post-processing 

environment, such as through food-contact surfaces or cross-contamination with raw 

materials (Montville et al., 2012). It can also be found in foods that are not heat-treated 

prior to consumption, such as unpasteurized milk and cheeses made from unpasteurized 

milk (Silk et al., 2013). There is an emerging link between L. monocytogenes and fresh 

produce outbreaks. For example, a 2011 outbreak of L. monocytogenes in fresh whole 

cantaloupe represented the deadliest outbreak of foodborne listeriosis in the USA 

(Laksanalamai et al., 2012) and the first outbreak of this pathogen in a whole fruit raw 

agricultural commodity (FDA, 2011). Contamination was found to be most likely due to 

factors associated with the growing environment, the packing facility and the process 

for cold storage. Additional outbreaks linking L. monocytogenes to fresh produce 

include an outbreak of raw sprouts in 2008–2009 and pre-cut celery in 2010 (Gould et 

al., 2011; Silk et al., 2013).  

Salmonella spp. 

Non-typhoidal Salmonella spp. are the leading cause of foodborne illnesses, 

hospitalization and death among bacterial pathogens in the US, with over 1 million 

cases annually (Scallan et al., 2011). Like E. coli, Salmonella are motile, Gram-negative 

facultative anaerobic bacteria that belong to the family Enterobacteriaceae and exhibit 

optimal growth around 37°C (Montville et al., 2012). These organisms are classified 

into over 2,500 serovars of two species: S. enterica and S. bongori. While both species 

are known pathogens, S. enterica is responsible for the majority of Salmonella 

associated foodborne illnesses, with 99% of reported human isolates in the USA 

belonging to S. enterica subsp. enterica (CDC, 2011). Non-typhoidal Salmonella strains 

are widespread in nature, including pond-water sediment, and can colonize the intestinal 

tracts of vertebrate animals, including livestock, wildlife, domestic pets and humans 

(FDA, 2012). These strains exhibit a great deal of diversity, with variations in factors 

such as metabolic properties, survivability and virulence factors (Montville et al., 2012). 

For example, some strains of Salmonella are capable of growth at psychrotrophic 

temperatures (2°C) while others have been found to grow at elevated temperatures (up 
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to 54°C). In general, Salmonella are resilient to environmental conditions and are able 

to persist in the environment outside an animal host, with extended survival times as 

compared to E. coli in terrestrial habitats (Franz and van Bruggen, 2008; van Elsas et 

al., 2011). Similar to E. coli O157:H7, Salmonella has demonstrated an ability to grow 

in acidic environments and increased survival under adverse conditions following 

exposure to acid stress (Montville et al., 2012). Increased temperatures can further 

enhance the ability of Salmonella to demonstrate resistance to environmental stresses 

(Montville et al., 2012). These bacteria are spread to humans through the fecal-oral 

route and cause a gastrointestinal illness called salmonellosis which is usually self-

limiting in healthy individuals. Salmonellosis has traditionally been associated with 

animal products, such as undercooked poultry and eggs; however, more recently other 

food items have also been implicated, including fresh produce, nuts and spices. The 

presence of Salmonella in the outdoor environment and its transmission among animals 

make it a problem in the food supply. Incidences of salmonellosis have been correlated 

to increased ambient temperatures in studies carried out in regions of Australia, Canada 

and Europe (Tirado et al., 2010). For example, a time-series analysis carried out among 

10 European countries found that, for most of the countries analyzed, each 1°C increase 

in temperature above a 6°C threshold corresponded to a 5–10% increase in cases of 

salmonellosis (Kovats et al., 2004). However, these associations may be related to 

seasonal effects on human behavior rather than direct effects of climate on the dispersal 

and persistence of the pathogen in the environment.  

Staphylococcus aureus  

Staphylococcus aureus is a Gram-positive, non-spore-forming facultative anaerobe that 

is ubiquitous in the outdoor environment, including soil, dust, water and air (FDA, 

2012). This organism is also part of the natural microbiota associated with humans and 

animals and is predominately found on the skin, hair or in the nasal passages (Le Loir et 

al., 2003; Madigan et al., 2012). Staphylococcus aureus typically enters foods through 

contamination from humans, animals, or the environment (FDA, 2012). Staphylococcus 

aureus causes a number of human illnesses, including foodborne intoxication due to the 

ingestion of highly heat-stable enterotoxins produced in foods. Staphylococcal 

foodborne illness is associated with acutely intense gastroenteritis, including vomiting 

and diarrhea, which is normally of short duration and self-limiting in healthy 
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individuals. Foods commonly associated with S. aureus intoxication are those that 

require substantial handling for preparation and those that are held at ambient 

temperatures for extended periods, such as dairy products, meat and poultry products, 

ready-to-eat salads, such as egg, tuna and potato and bakery produce. Staphylococcus 

aureus is non-motile and mesophilic, with optimal growth occurring at around 35°C. It 

is among the most highly resistant non-spore-forming human pathogens and is 

exceptionally osmotolerant. For example, it can survive in a dry state for extended 

periods of time and is able to grow in foods with water activity as low as 0.83–0.86 

(FDA, 2012; Montville et al., 2012).  

1.1.4 Advances in Food Preservation Technologies 

Advances in food technologies reflect the changes in market requirement. Food quality 

requirements change constantly and, compared to foods from recent years, they now 

encompass desires for foods that are convenient to store and use and yet are better 

quality, “fresher”, “more natural” and “healthier” than hitherto. At the same time, 

increased awareness of the risks of food poisoning has ensured that a high degree of 

assurance and, indeed improvement, of safety are perceived as key requirements too. 

The main thechnologies that are employed to preserve the quality and microbiological 

safety of foods include: 

1. procedures that prevent the access of microorganisms to foods in the first place; 

2. procedures that inactivate them should they nevertheless have gained access; 

3. procedures that prevent or slow down their growth should they have gained 

access and not been inactivated. 

Whilst the currently used traditional preservation procedures continue to act in one of 

these three ways, there has recently been a reawakening of interest in the modification 

of these technologies, mainly in the direction of reducing the severity of the more 

extreme techniques. These modifications are being sought primarily to improve the 

quality of food products and, principally, in order to meet the requirements of 

consumers through the avoidance of the extreme use of any single technique. In 

addition to the modified techniques, but with the same objective of improving food 

quality, radically new techniques are also being researched and applied. For both the 

modified and the new techniques it is imperative that they deliver, not only the 
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promised improvements in quality, but also an equivalent or preferably an enhanced 

level of safety compared with the procedures that they replace. 

Only some of the existing technologies for food preservation act primarily by restricting 

the access of microorganisms to foods except at the terminal phase of production of 

thermally processed foods, so that packaging restricts access. 

There are more precedures that act via inactivation but still, considering the tonnes of 

foods treated, only heat is used substantially. 

There are currently many more procedures available to slow down or prevent the 

growth of microrganisms in foods, including those that rely on control of the 

environment (e.g. temperature control), those that result from particular methods of 

processing (e.g. microstructure control) and those that depend on the intrinsic properties 

built in to particular formulated foods (e.g. control by the adjustment of water activity 

or pH value).  

1.1.4.1 New and improved techniques 

With regards procedures that restrict the access of microorganisms to foods, the use of 

aseptic packaging techniques for thermally processed foods has expanded greatly in 

recent years, both in the numbers of applications and the numbers of alternative 

techniques that are commercially available. 

With regards to the improvement of techniques for the inactivation of microrganisms in 

foods, most effort and new application has concerned thermal processing. A particular 

aim has been to minimise damage to product quality. This is being pursued in two, often 

complementary, ways. Firstly, by the wider application of more high temperature-short 

time processing, with associated aseptic packaging where relevant. Secondly, by 

delivering heat in new ways, e.g. by microwaves or by electrical resistance (“ohmic”) 

heating of foods, which allow better control of heat delivery and minimise over-cooking 

that commonly occurs in more conventional thermal processes. An important safety 

consideration that must be borne in mind is the overall reduction in total heat delivery to 

foods that will result from the wider application of these techniques, as target F0 values 

are more and more stringently achieved. 

The use of ionising radiation to preserve foods or to eradicate pathogens from them, is 

already well established. In addition to its value as a preservation technique, it offers a 

very effective route for the reduction in food poisoning, e.g. via the irradiation of the 
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often Salmonella and Campylobacter contaminated foods such as poultry and other 

foods of animal origin. Whilst the use of radiation continues to grow worldwide, 

negative consumer reaction in many countries holds back its wider use. 

Radically new procedures for the inactivation of microrganisms in foods include two 

other physical procedures that offer alternatives to heat: the use of high hydrostatic 

pressure and the use of high voltage electric pulses. Both techniques are highly effective 

in inactivating vegetative cells of bacteria, yeasts and filamentous fungi, at pressures 

and at voltage gradients that are compatible with the retention of high quality in some 

foodstuffs. However, bacterial spores remain more difficult to control with these 

procedures, and their use for the preservation of foods other than relatively short shelf-

life or products in which spores are not a problem because they are inhibited by the 

intrinsic properties of the food (e.g. low pH or low water activity) must await further 

research. 

Finally, concerning novel inactivation procedures, the effectiveness of ultrasonic 

radiation in inactivating the vegetative forms of microorganisms has been well known 

for many years. However, recent research showing that its efficacy can be enhanced by 

the simultaneous application of, relatively low, hydrostatic pressure, is leading to a re-

evaluation of its potential as a food preservation aid. 

A particularity is that an important new inactivation technique has been developed from 

surface decontamination procedures that can be applied to meat and poultry carcasses, 

and to other animal-derived foods which are known to be potentially contaminated with 

enteric pathogens. In many countries, unacceptably high levels of enteric infection in 

the human population still occur, and the situation is getting worse rather than better. 

Many food microbiologists have come to realise that although improved hygiene 

education and the application of Hazard Analysis and Critical Control Point techniques 

etc. may all help to improve food poisoning statistics, a major reduction will only be 

achieved if such new elimination techniques are employed. If the organisms concerned 

did not enter the home or the catering establishment etc. in the first place, then the 

momentary lapses of hygiene that always occur, at some frequency or other, would be 

of little consequence. 

With regards procedures that slow down or prevent the growth of microorganisms in 

foods, major successes have been accomplished and new applications are steadily being 

introduced, through the use of “combination preservation” techniques or “hurdle 

technology”. This has been supported by a greatly improved understanding of the 
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principles underlying the stability and safety of an enormous number of combination-

preserved foods that are traditional and indigenous to different parts of the world. It has 

also been supported by the beginning of an understanding of how many of these 

combination procedures act at the cellular level, which often seems to involve 

“multitarget” interference with the various homeostatic mechanisms that are 

fundamental to the reaction of microrganisms to the stresses to which the food 

technologist exposes them in foods. 

Though still a relatively new technology, modified atmosphere packaging has grown 

rapidly in use in some countries, particularly for the extension of the high-quality shelf-

life of certain chill-stored foods. It remains, however, seldom used in other countries. 

Again, considering its wide use, it is surprising that a full understanding of how 

modified atmospheres (particularly the carbon dioxide component that most of them 

contain) that exert their inhibitory effects at the level of cell biochemistry, have not yet 

been worked out. Elucidation of the mechanisms of action could lead to improved 

means for effective application. 

To some extent, interest in naturally occuring antimicrobial systems has expanded in 

recent years, in response to consumer requirements for fresher, more natural additive-

free foods. With a few notable exceptions, very few of these systems have yet been 

taken through to application. However, the substantial research efforts underway on 

animal derived, plant derived and microorganism derived antimicrobial systems, are 

demonstrating the efficacy of a wide range of natural mechanisms, many of which have 

potential for use in food preservation. So far, few such natural systems have been 

included as components in combination studies, i.e. such as additional “hurdles”. This is 

a pity, because the food technologist would have many opportunities to use these 

systems in a wide range of combinations with other potential inhibitors. Furthermore, it 

is arguable that although in vitro studies are necessary to investigate mechanisms of 

action and for intense genetical and biochemical studies, too few studies of natural 

systems have yet to be undertaken using actual foodstuffs. Sound and extensive food 

studies are essential prerequisites for food manufacturers before they commit to 

expending efforts or making the necessary investment to bring new preservation 

systems into successful application. 
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1.2 Biocontrol 

Foodborne diseases are among the most serious and costly public health concerns 

worldwide, being a major cause of morbidity. In spite of modern technologies, good 

manufacturing practices, quality control and hygiene and safety concepts, the reported 

numbers of foodborne illnesses and intoxications have nevertheless increased over the 

past decade. The most common foodborne infections in the European Union (EU) are 

caused by bacteria, namely Campylobacter, Salmonella and Listeria, and viruses. They 

are reported to affect over 380,000 EU citizens each year (EFSA, 2009).  

Food market globalization, the introduction of novel foods, new manufacturing 

processes and the growing demand for minimally processed, fresh-cut and ready-to-eat 

products may require a longer and more complex food chain, increasing the risk of 

microbiological contamination. Thus, novel and complementary food preservation 

technologies that comply with these demands from “farm to fork” are continuously in 

demand. Among alternative food preservation technologies, particular attention has 

been paid to biopreservation to extend the shelf-life and enhance the hygienic quality, 

minimizing the impact on the nutritional and organoleptic properties of perishable food 

products. Biopreservation rationally exploits the antimicrobial potential of naturally 

occurring (micro-) organisms in food and/or their metabolites with a long history of safe 

use.  
Microbes elicit a variety of mechanisms that facilitate colonization and prevalence in 

ecological niches. These include adherence, competition for available nutrients, 

production of toxic metabolites, and secretion of dedicated antimicrobial substances 

such as antibiotics and bacteriocins. The wise exploitation of these mechanisms of 

microbial interference can be beneficial to both human and animal health as well as the 

economy. The transmission of foodborne pathogens through the food chain is still an 

unresolved issue. The globalization of the food market, and the new trends in food 

production and distribution, together with changes in consumer habits and population 

susceptibility (such as the elderly or immuno-compromised people) are always 

highlighted as being the main contributing factors. In addition, the substantial economic 

losses because of spoilage of raw materials or processed products and the costly recalls 

because of microbial contamination are matters of concern in a world that periodically 

faces economic crisis and increasingly suffers from population overgrowth, malnutrition 

and overexploitation of natural resources. In developing countries, the incidence of 
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illnesses caused by foodborne pathogens in younger people also has a clear influence on 

malnutrition, which in turn has a negative impact on health status and cognitive 

potential.  

Among the wide array of strategies currently being used or proposed for food 

preservation, control strategies based on natural compounds and living organisms 

and/or their antimicrobial products (biocontrol, or biopreservation) have been used 

since ancient times (such as in food fermentation) and are becoming increasingly 

popular for several reasons: firstly, natural preservation methods are regarded as health-

friendly by consumers, and are expected to have a lower impact on the food nutritional 

and sensory properties (as opposed to chemical or physico-chemical treatments); 

secondly, they may decrease the processing costs while at the same time extending the 

product shelf life period, they do not require advanced technological equipment or skills 

and therefore can be exploited by smaller economies; thirdly, they may offer new 

opportunities to solve emerging issues such as the increase of antibiotic resistance in the 

food chain, the need to improve animal productivity by natural means, or the control of 

emerging pathogens.  

1.2.1 Natural substances 

In recent years, aromatic plants and their extracts have been examined for their 

effectiveness for food safety and preservation applications (Fisher and Phillips, 2008; 

Gyawali and Ibrahim, 2014; Prakash et al., 2015) and have received attention as growth 

and health promoters (Brenes and Roura, 2010). Most of their properties are due to their 

essential oils (EOs) and other secondary plant metabolite components (Brenes and 

Roura, 2010). Phytochemicals, such as EOs, are naturally occurring antimicrobials 

found in many plants that have been shown to be effective in a variety of applications 

by decreasing growth and survival of microorganisms (Callaway et al., 2011). In 

addition, EOs exhibit antimicrobial properties that may make them suitable alternatives 

to antibiotics (Chaves et al., 2008). These potential attributes and an increasing demand 

for natural food additive options have led to an interest in the use of EOs as potential 

alternative antimicrobials (Fisher and Phillips, 2008; Solórzano-Santos and Miranda-

Novales, 2012). There has been an extensive search for potential natural food additive 

candidates that retain a broad spectrum of antioxidant and antimicrobial activities while 

possessing the ability to improve the quality and shelf life of perishable foods (Fratianni 
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et al., 2010). Moreover, the emergence of bacterial antibiotic resistance and negative 

consumer attitudes toward food preservatives has led to an increased interest in the use 

of plant components that contain EOs and essences as alternative agents for the control 

of food spoilage and harmful pathogens (Burt, 2004; Fisher and Phillips, 2008; Nostro 

et al., 2004; Shelef, 1983; Smith-Palmer et al., 1998; 2001; Tremonte et al. 2016).  

Natural compounds with animal, plant or microbiological origins have been used in 

order to kill or at least prevent the growth of pathogenic microorganisms (Juneja et al., 

2012; Li et al., 2011; Muthaiyan et al., 2011; Roller and Lusengo, 1997; Tiwari et al., 

2009). A number of naturally occurring antimicrobial agents are present in animal and 

plant tissues, where they probably evolved as part of their hosts defense mechanisms 

against microbiological invasion and exist as natural ingredients in foods (Sofos et al., 

1998; Dias et al., 2012).  

1.2.1.1 Plant extracts  

Plant extracts have shown considerable promise in a range of applications in the food 

industry and several plant extracts enjoy GRAS status. The antimicrobial activities of 

plant extracts may reside in a variety of different components, and several extracts, 

owing to their phytochemical constituents, have been shown to have antimicrobial 

activity. The antibacterial activity is most likely due to the combined effects of 

adsorption of polyphenols to bacterial membranes with membrane disruption and 

subsequent leakage of cellular contents (Ikigai et al., 1993; Otake et al., 1991), and the 

generation of hydroperoxides from polyphenols (Akagawa et al., 2003).  

Plant extracts also showed antimicrobial activity against a wide range of fungi 

(Davidson and Parish, 1989; Grange and Ahmed, 1988; Jayaprakasha et al., 2001; Negi 

et al., 2002; Tremonte et al.; 2016); antioxidant and antimutagenic activities (Boubaker 

et al., 2011; Cherdshewasart et al., 2009; Horn and Vargas, 2003; Jayaprakasha et al., 

2002, 2006, 2007; Negi et al., 2003b, 2010) and inhibited lipid oxidation in foods (Shan 

et al., 2009).  

Dietary herbs and spices have been traditionally used as food additives throughout the 

world not only to improve the sensory characteristics of foods but also to extend their 

shelf life by reducing or eliminating the survival of pathogenic bacteria. Many herbs 

and spices extracts possess antimicrobial activity against a range of bacteria, yeast and 

molds (Beuchat 2001; Friedman et al., 2002, 2004; Raybaudi-Massilia et al., 2009; 
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Tajkarimi et al., 2010). Herbs and spices are rich in phenolic compounds and besides 

exerting an antimicrobial effect, they can preserve foods by reducing lipid oxidation as 

they are reported to have significant antioxidant activity (Scwarz et al., 2001; Shahidi et 

al., 1997; Shan et al., 2009; Tanabe et al., 2002; Yanishlieva et al., 2006). A wide 

variety of phenolic substances derived from herbs and spices possess potent biological 

activities, which contribute to their preservative potential (Surh, 1999; Careaga et al. 

(2003; Ahn et al., 2007; Lee et al., 2009; Tornuk et al., 2011;) reported that a range of 

plant extracts were useful in reducing pathogens associated with cooked beef.  

Although numerous studies have been done in-vitro to evaluate the antimicrobial 

activity of plant extracts, very few studies are available for food products, probably 

because plant extracts did not produce as marked inhibitions as many of the pure 

compounds in foods did. The reduced effectiveness may be attributed to the use of 

crude extracts in most studies. The crude extracts generally contain flavonoids in 

glycosidic form, where the sugar present in them decreases effectiveness against some 

bacteria (Kapoor et al., 2007; Parvathy et al., 2009; Rhee et al., 1994).  

1.2.1.2 Essential oils 

These naturally occurring antimicrobials have extensive histories of their use in foods 

and can be identified from various components of the plants leaves, barks, stems, roots, 

flowers and fruit (Erasto et al., 2004; Rahman and Gray, 2002; Zhu et al., 2004). 

Essential oils are not strictly oils, but are often poorly soluble in water like oils. 

Essential oils often have a pleasant odor and sometimes a distinctive taste and are 

therefore used in significant amounts in the flavoring and perfume industries (Burt, 

2004). Essential oils are usually prepared by fragrance extraction techniques such as 

distillation (including steam distillation), cold pressing, or extraction (maceration) 

(Burt, 2004; Edris, 2007; Faleiro, 2011; Kelkar et al., 2006; Shannon et al., 2011a; 

Solórzano-Santos and Miranda-Novales, 2012). Typically, EOs are highly complex 

mixtures of often hundreds of individual aroma compounds. Herbs and spices 

commonly used in foods have provided most of the EOs that have been studied for their 

antimicrobial activity (Cueva et al., 2010; Negi, 2012; Tajkarimi et al., 2010).  

Essential oils have been documented to be effective antimicrobials against several 

foodborne pathogens including E. coli O157:H7, Salmonella Typhimurium, S. aureus, 

L. monocytogenes, Campylobacter and others (Callaway et al., 2011). Friedman et al., 
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(2002) tested 96 EOs and 23 oil compounds against Campylobacter jejuni, E. coli 

O157:H7, L. monocytogenes and Salmonella enterica and found that 27 EOs and 12 

compounds had some activity against all 4 bacterial genera. The oils with the most 

activity included ginger root, jasmine, carrot seed, celery seed, and orange bitter oils (C. 

jejuni); oregano, thyme, cinnamon, bay leaf, clove bud, lemon grass, and allspice (E. 

coli O157:H7); bay leaf, clove bud, oregano, cinnamon, allspice and thyme (L. 

monocytogenes); thyme, oregano, cinnamon, clove bud, allspice, bay leaf, and 

marjoram (Soković et al., 2010; Cherrat et al., 2014; Sangwan et al., 2008; Callaway et 

al., 2011; Chalova et al., 2010; Fisher and Phillips, 2008; Di Pasqua et al., 2006; 

Chikhoune et al., 2013; Settanni et al., 2012; Li and Chiang, 2012; Sun, 2007).  

1.2.1.3 Phenolic compounds  

Phenolic compounds secondary plant metabolites, are important determinants in the 

sensory and nutritional quality of fruit, vegetables and other plants. (Tomas-Barberan et 

al., 2000; Lapornik et al., 2005). Phenolic compounds are widely distributed in plants, 

such as fruit, vegetables, tea, olive oil, tobacco and others. The plant kingdom offers a 

wide range of natural antioxidants. Consequently, antioxidants have become an 

essential part of the preservation technology and contemporary health care. The 

potential toxicity of some synthetic antioxidants, however, has intensified research 

efforts to discover and utilise antioxidants from natural sources, such as fruit and 

vegetables (Popa et al., 2007; Zhang et al., 2009).  

These compounds possess an aromatic ring bearing one or more hydroxyl groups and 

their structures may range from that of a simple phenolic molecule to that of a complex 

high-molecular mass polymer (Balasundram et al., 2006).  

As a large group of bioactive chemicals, they have diverse biological functions and may 

act as phytoalexins (Popa et al., 2008), antifeedants, attractants for pollinators, 

contributors to plant pigmentation, antioxidants and protective agents against UV light, 

amongst other things (Naczk and Shahidi, 2006). These bioactive properties allow these 

compounds to play an important role in plant growth and reproduction, providing an 

efficient protection against pathogens and predators (Popa et al., 2002; Bravo, 1998), 

besides contributing to the colour and sensory characteristics of fruit and vegetables 

(Alasalvar et al., 2001).  
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In particular, natural phenols were reported to have excellent properties as food 

preservatives (Valenzuela et al., 1992) as well as playing an important role in the 

protection against a number of pathological disturbances, such as atherosclerosis, brain 

dysfunction and cancer (Gordon, 1996). Moreover, polyphenols have many industrial 

applications, for example, they may be used as natural colourants and preservatives for 

foods, or in the production of paints, paper, and cosmetics.  

Phenolic compounds comprise a wide variety of molecules that have a polyphenol 

structure (i.e. several hydroxyl groups on aromatic rings), but also molecules with one 

phenol ring, such as phenolic acids and phenolic alcohols. Polyphenols are divided into 

several classes according to the number of phenol rings they contain and to the 

structural elements that bind these rings to one another. The main groups of polyphenols 

are: flavonoids, phenolic acids, tannins (hydrolysable and condensed), stilbenes and 

lignans.  

1.2.1.3.1. Flavonoids  

More than 8,000 polyphenolics, including over 4,000 flavonoids have been identified, 

and the number is still growing (Harborne et al., 1999). Flavonoids can be further 

classified into anthocyanins, flavones, isoflavones, flavanones, flavonols and flavanols 

(Tsao and Yang, 2003).  

Flavonoids are low molecular weight compounds, consisting of fifteen carbon atoms, 

arranged in a C6–C3–C6 configuration. Essentially the structure consists of two 

aromatic rings, A and B, joined by a 3-carbon bridge, usually in the form of a 

heterocyclic ring, C. The aromatic ring A is derived from the acetate/malonate pathway, 

while ring B is derived from phenylalanine through the shikimate pathway (Merken and 

Beecher, 2000).  

Variations in the substitution patterns of ring C result in the major flavonoid classes, 

i.e., flavonols, flavones, flavanones, flavanols (or catechins), isoflavones, flavanonols, 

and anthocyanidins (Hollman and Katan, 1999), of which flavones and flavonols are the 

most widely occurring and structurally diverse (Harborne et al., 1999). Substitutions to 

rings A and B give rise to different compounds within each class of flavonoids (Pietta, 

2000). These substitutions may include oxygenation, alkylation, glycosylation, 

acylation, and sulphonation (Balasundram et al., 2006).  
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Flavonoids are especially important antioxidants due to their high redox potential, 

which allows them to act as reducing agents, hydrogen donors, and singlet oxygen 

quenchers. In addition, they have a metal chelating potential (Tsao and Yang, 2003).  

Flavonoids are the most commonly found phytochemicals and typically these chemicals 

help to protect the plant against UV light, fungal parasites, herbivores, pathogens and 

oxidative cell injury (Cook and Samman, 1996). When consumed regularly by humans, 

flavonoids have helped cause a reduction in the incidences of diseases such as cancer 

and heart disease (Beecher, 2003; Cook and Samman, 1996; Liu et al., 2008). There is 

currently great interest in flavonoid research due to the possibility of improved public 

health through diet, where preventative health care can be promoted through the 

consumption of fruit and vegetables (Caridi et al., 2007).  

1.2.1.3.2 Phenolic acids  

Phenolic acids constitute about one-third of the dietary phenols, which may be present 

in plants in both free and bound forms (Robbins, 2003). Bound-phenolics may be linked 

to various plant components through ester, ether, or acetal bonds (Zadernowski et al., 

2009). The different forms of phenolic acids result in varying suitability to different 

extraction conditions and different susceptibilities to degradation (Ross et al., 2009). 

Phenolic acids consist of two subgroups, the hydroxybenzoic and hydroxycinnamic 

acids. Hydroxybenzoic acids include gallic, p-hydroxybenzoic, protocatechuic, vanillic 

and syringic acids, which have the C6–C1 structure in common. Hydroxycinnamic 

acids, on the other hand, are aromatic compounds with a three-carbon side chain (C6– 

C3), caffeic, ferulic, p-coumaric and sinapic acids being the most common 

representatives (Bravo, 1998).  

 

Ferulic acid. Ferulic acid (4-hydroxy-3-methoxycinnamic acid) is a phenolic acid 

ubiquitously existing in the plant kingdom, which can be absorbed by the small 

intestines and excreted through urine. It is one of the most abundant phenolic acids in 

plants, varying from 5 g kg−1 in wheat bran to 9 g kg−1 in sugar-beet pulp and 50 g kg−1 

in corn kernel (Kroon et al., 1997; Rosazza et al., 1995). In plants, ferulic acid is rarely 

found in the free form. It is usually found as ester cross-links with polysaccharides in 

the cell wall, such as arabinoxylans in grasses, pectin in spinach and sugar beet and 

xyloglucans in bamboo (Iiyama et al., 1994). It can also cross-link with proteins 
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(Figueroa-Espinoza et al., 1999). The cross-linking property of ferulic acid with both 

polysaccharides and proteins suggests that it can be used in the preparation of complex 

gels in food applications.  

In recent years, there have been an increasing number of reports on the physiological 

functions of ferulic acid and its derivatives in humans. Many applications of ferulic acid 

in the food industry have also been discovered.  

Ferulic acid can be used to preserve food because of its antioxidant and antimicrobial 

activities and it can also inhibit the growth of bacteria, fungi and yeasts. Ferulic acid is 

an active ingredient of extracts of some plants showing antimicrobial activity.  

 

Gallic acid. Gallic acid (3,4,5-trihydroxybenzoic acid) and its structurally related 

compounds are found widely distributed in fruits and plants. Gallic acid, and its 

catechin derivatives are also present as one of the main phenolic components of both 

black and green tea. Esters of gallic acid have a diverse range of industrial uses, as 

antioxidants in food, in cosmetics and in the pharmaceutical industry. In addition, gallic 

acid is employed as a source material for inks, paints and colour developers. Studies 

utilising these compounds have found them to possess many potential therapeutic 

properties including anti-cancer and antimicrobial properties. 

Tannins. Tannins are relatively high molecular compounds which constitute the third 

most important group of phenolics and may be subdivided into hydrolysable and 

condensed tannins (Porter, 1989). Proanthocyanidins (condensed tannins) are polymeric 

flavonoids. Although the biosynthetic pathways for flavonoid synthesis are well 

understood, the steps leading to condensation and polymerisation have not been 

elucidated. The most widely studied condensed tannins are based on flavan-3-ols (-)-

epicatechin and (+)-catechin. Hydrolysable tannins are derivatives of gallic acid (3,4,5 

trihydroxyl benzoic acid). Gallic acid is esterified to a core polyol, and the galloyl 

groups may be further esterified or oxidatively crosslinked to yield more complex 

hydrolysable tannins (Hagerman, 2002). Tannins have diverse effects on biological 

systems since they are potential metal ion chelators, protein precipitating	 agents	 and	

biological	 antioxidants.	 Because	 of	 the	 varied	 biological	 roles	 that	 tannins	 can	 play	 and	

because	of	the	enormous	structural	variation,	it	has	been	difficult	to	develop	models	that	

would	 allow	 an	 accurate	 prediction	 of	 their	 effects	 in	 any	 system.	 An	 important	 goal	 of	
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future	work	on	the	biological	activities	of	tannins	is	the	development	of	structure/activity	

relationships	so	that	biological	activities	can	be	predicted	(Hagerman, 2002).	 

Stilbenes	 and	 lignans. Low quantities of stilbenes are present in the human diet, and 

the main representative is resveratrol, that exists in both cis and trans isomeric forms, 

mostly in glycosylated forms (Delmas et al., 2006). It is produced by plants in response 

to infection by pathogens or to a variety of stress conditions (Bavaresco, 2003). It has 

been detected in more than 70 plant species, including grapes, berries and peanuts.  

Lignans are produced by the oxidative dimerisation of two phenylpropane units; they 

are mostly present in nature in the free form, while their glycoside derivatives are only a 

minor form. Interest in lignans and their synthetic derivatives is growing because of 

potential applications in cancer chemotherapy and various other pharmacological effects 

(Saleem et al., 2005).  
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1.3 Microbial cell factories for biocontrol  

Microbes may produce a wide spectrum of antimicrobial substances. Most studies have 

focused on antimicrobials produced by lactic acid bacteria (LAB) and associated 

bacteria such as the propionic acid bacteria and the bifidobacteria. The decreased pH 

value and antibacterial activities of organic acids produced by LAB are the main 

mechanisms for biopreservation of fermented foods. Specific strains of LAB may also 

produce other inhibitory substances (such as diacetyl, reuterin, reutericyclin), antifungal 

compounds (such as propionate, phenyl-lactate, hydroxyphenyl-lactate, cyclic 

dipeptides, and 3-hydroxy fatty acids), bacteriocins and bacteriocin-like inhibitory 

substances (BLIS), which can be exploited against foodborne pathogens and spoilage 

bacteria (Figure 1.1). 

 

Figure 1.1. Biocontrol of pathogenic bacteria through the food chain using microbial antagonistic 
bacteria and/or their antimicrobial products. Antagonistic strains can be applied: (1) as living cultures 
on livestock and fresh produce; (2) as protective cultures on ready-to-eat food products; (3) as starter 
or protective cultures in fermented foods. They are expected to grow and produce antimicrobial 
substances in situ, displacing unwanted bacteria. Alternatively, food-grade preparations containing 
antimicrobials produced at industrial scale by antagonistic strains can be applied as biopreservatives 
or as food additives to inhibit transmission of food-borne and/or spoilage bacteria through the food 
chain (1–4). Since the food microbiota may change considerably from farm to fork, biocontrol 
strategies must be designed specifically for each type or category of food product.  

LAB are the most widely used bacteria as starter cultures for the industrial processing of 

fermented dairy, meat, vegetable and cereal products. Despite the starter culture 

addition, non-starter lactic acid bacteria (NSLAB), originating from the raw material 

and environment, grow out during fermentation and may reach higher numbers than the 

starters. Reduction of pH and conversion of sugars to organic acids are the primary 
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preserving actions that these bacteria provide to fermented food. However, many kinds 

of food are still fermented naturally, without the use of starter cultures, by 

autochthonous lactic acid bacteria, which form the characteristic properties of the 

products. These natural isolates of lactic acid bacteria from spontaneous fermentations 

could be used as specific starter cultures or as adjunct strains, after phenotypic and 

genotypic characterisation, and they represent a possible source of potentially new 

antimicrobial metabolites (Maric, 1984; Wouters et al., 2002; Topisirovic et al., 2006). 

In addition, the application of lactic acid bacteria and their antimicrobial metabolites in 

the prevention of food spoilage and the extension of the shelf life of food that is ready 

to eat, fresh-tasting, nutrient and vitamin rich, minimally processed and biopreserved 

are the major challenges for the current food industry (Gálvez et al., 2007). The use of 

bacteriocin-producing lactic acid bacteria as protective strains or bacteriocins in form of 

purified or concentrated compounds as biopreservatives to control undesirable bacteria 

remains a primary focus of researches related to food safety and quality (Havelaar et al., 

2009).  

In the concept of functional food, especially in the dairy industry, there is an increasing 

interest for probiotic products that contain lactic acid bacteria of intestinal origin. 

Probiotic lactic acid bacterial strains must be chosen according to accurate selection 

criteria in order to survive the transition through gastrointestinal tract and preferably 

colonize the intestinal tract for a sufficiently long period to achieve the desired healthy 

effect (Suskovis et al., 2001). One of the most important properties of probiotics is its 

protection against pathogens in the intestinal tract of the host. The role of antimicrobial 

compounds produced by probiotic strains such as prophylactic agents against enteric 

infections is crucial and well documented (Kos et., 2008; Frece et al., 2009; Saulinier et 

al., 2009).  

The antimicrobial activity of starter cultures and probiotic bacteria has been attributed 

to the production of metabolites such as organic acids (lactic and acetic acid), hydrogen 

peroxide, ethanol, diacetyl, acetaldehyde, other low molecular mass compounds with 

antimicrobial activity and bacteriocins (Vanderbergh, 1993; Brkić et al., 1995). 

Industrial potential of antimicrobials from lactic acid bacteria is illustrated in Figure 1.2. 
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Figure 1.2 Industrial potential of antimicrobials from lactic acid bacteria 

1.3.1 Antimicrobials from Lactic Acid Bacteria 

The metabolites of LAB with antimicrobial activity are accumulated in their 

environment at the levels and proportions that depend on the species of LAB and 

chemical composition of the growth media. Fermentation of hexoses by lactic acid 

bacteria is characterized by homofermentative production of lactic acid or by 

heterofermentative production of equimolar amounts of lactate, acetate/ethanol and 

carbon dioxide. Pentoses are fermented by many heterofermentative and 

homofermentative LAB in the same way since phosphoketolase of homofermentative 

LAB is generally inducible by pentoses. Fermentation of pentoses yields the equimolar 

amounts of lactic and acetic acid.  

Most of heterofermentative species have flavoprotein oxidases, which catalyse the 

reduction of oxygen, resulting in the accumulation of hydrogen peroxide. During 

heterofermentations, products such as formic acid, acetoin, acetaldehyde and diacetyl, 

which possess antimicrobial activity, can be accumulated. Malic, lactic and citric acid 

can be further metabolised to other antimicrobial products such as acetic acid, formic 

acid and CO2 (Lindgren and Dobrogosz, 1990).  

origin. Probiotic lactic acid bacterial strains must be
chosen according to accurate selection criteria in order
to survive the transition through gastrointestinal tract and
preferably colonize the intestinal tract for a sufficiently
long period to achieve the desired healthy effect (7). One
of the most important properties of probiotics is protec-
tion against pathogens in the intestinal tract of the host.
The role of antimicrobial compounds produced by pro-
biotic strains as prophylactic agents against enteric in-
fections is crucial and well documented (8–10).

The antimicrobial activity of starter cultures and
probiotic bacteria has been attributed to the production
of metabolites such as organic acids (lactic and acetic acid),
hydrogen peroxide, ethanol, diacetyl, acetaldehyde, other
low molecular mass compounds with antimicrobial acti-
vity and bacteriocins (11,12). Industrial potential of anti-
microbials from lactic acid bacteria is illustrated in Fig. 1.

Antimicrobials from Lactic Acid Bacteria

Antimicrobial substances produced by lactic acid bac-
teria can be divided into two main groups: low mole-
cular mass substances with molecular mass <1000 Da
and high molecular mass substances with molecular
mass >1000 Da, such as bacteriocins. All non-bacteriocin
antimicrobial substances from LAB are of low molecular
mass (13).

Low molecular mass antimicrobials
The metabolites of LAB with antimicrobial activity

are accumulated in their environment at the levels and
proportions that depend on the species of LAB and chem-
ical composition of the growth media. Fermentation of

hexoses by lactic acid bacteria is characterized by homo-
fermentative production of lactic acid or by heterofer-
mentative production of equimolar amounts of lactate,
acetate/ethanol and carbon dioxide. Pentoses are ferment-
ed by many heterofermentative and homofermentative
LAB in the same way since phosphoketolase of homo-
fermentative LAB is generally inducible by pentoses. Fer-
mentation of pentoses yields the equimolar amounts of
lactic and acetic acid.

Most of heterofermentative species have flavoprotein
oxidases, which catalyse the reduction of oxygen, result-
ing in the accumulation of hydrogen peroxide. During
heterofermentations, products such as formic acid, acet-
oin, acetaldehyde and diacetyl, which possess antimicrob-
ial activity, can be accumulated. Malic, lactic and citric
acid can be further metabolised to other antimicrobial
products such as acetic acid, formic acid and CO2 (14).
The main low molecular mass metabolites of LAB and
their antimicrobial spectra are shown in Table 1 (11,14–19).

Organic acids

The most important and best characterised antimi-
crobials produced by LAB are lactic and acetic acid. The
amount and type of acids produced during fermentation
influence the subsequent microbial activity in the fer-
mented material. Acetic acid, for example, is more anta-
gonistic against yeasts compared to lactic acid. Some
oxidative yeasts are able to utilize organic acids as a car-
bon and energy source and consequently cause spoilage
through deacidification in fermented, especially plant
material where they are naturally present (20). The in-
hibitory effect of organic acids is mainly caused by un-
dissociated form of the molecule, which diffuses across
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1.3.1.1 Organic acids  

The most important and best characterised antimicrobials produced by LAB are lactic 

and acetic acid. The amount and type of acids produced during fermentation influence 

the subsequent microbial activity in the fermented material. Acetic acid, for example, is 

more antagonistic against yeasts compared to lactic acid. Some oxidative yeasts are able 

to utilize organic acids as a carbon and energy source and consequently cause spoilage 

through deacidification in fermented, especially plant material where they are naturally 

present (Daechel et al., 1987). The inhibitory effect of organic acids is mainly caused by 

undissociated form of the molecule, which diffuses across the cell membrane towards 

the more alkaline cytosol and interferes with essential metabolic functions. The toxic 

effects of lactic and acetic acid include the reduction of intracellular pH and dissipation 

of the membrane potential (Kashket, 1987; Lorca and de Valdez, 2009).  

1.3.1.2 Hydrogen peroxide  

Antimicrobial activity of hydrogen peroxide is attributed to its strong oxidizing effect 

on the bacterial cell and to the destruction of basic molecular structures of cell proteins 

(Lindgren and Dobrogosz, 1990). In raw milk, hydrogen peroxide produced by lactic 

acid bacteria can, after being catalysed by lactoperoxidase, oxidise endogenous 

thiocyanate. The oxidized intermediary products are toxic to different bacteria (Daechel, 

1989). Hydrogen peroxide production has been considered as the main metabolite of 

LAB that could protect against urogenital infections, especially in the case of bacterial 

vaginosis (Reid, 2008).  

1.3.1.3 Diacetyl, acetaldehyde and acetoin  

Heterofermentative LAB produce active acetaldehyde by decarboxylation of pyruvate. 

This product then condenses with pyruvate, forming a-acetolactate and it is converted 

by a-acetolactate synthases to diacetyl. The product of decarboxylation of a-acetolactate 

and reduction of diacetyl is acetoin (Collins et al., 2009; Jyoti et al., 2003). Diacetyl 

(2,3-butanedione) is best known for the buttery aroma that it imparts to fermented dairy 

products, but this property as well as high concentration needed to provide preservation 

of food limit the use of diacetyl as food preservative. Similarly, an acetaldehyde, 

usually present in fermented dairy products in concentrations smaller than necessary for 
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inhibition of undesired microorganisms, also plays a role in controlling the growth of 

contaminants, together with other antimicrobial metabolites of lactic acid bacteria 

(Vanderbergh, 1993).  

1.3.1.4 Carbon dioxide 

The influence of carbon dioxide on product preservation is twofold. Namely, except for 

its own antimicrobial activity, it creates an anaerobic environment by replacing the 

existent molecular oxygen. The antifungal activity of CO2 is due to the inhibition of 

enzymatic decarboxylations and to its accumulation in the membrane lipid bilayer 

resulting in dysfunction in permeability (Lindgren and Dobrogosz, 1990).  

1.3.1.5 Reuterin and reutericyclin  

Selected isolates of Lactobacillus reuteri produce two compounds, reuterin and 

reutericyclin, both active towards Gram-positive bacteria. Reutericyclin is a tetramic 

acid derivative and reuterin is a mixture of monomeric, hydrated monomeric and cyclic 

dimeric forms of b-hydroxypropionaldehyde with a broader spectrum of inhibitory 

activity, including Gram-negative bacteria, fungi and protozoa (Kuleasan and 

Çakmakçi, 2002; Gänzle and Vogel, 2003; Leroy et al., 2006).  

1.3.1.6 Other low molecular mass antimicrobials  

Other low molecular mass compounds with antimicrobial activity against Gram-positive 

and Gram-negative bacteria, moulds and yeasts have been described, including 

antifungal cyclic dipeptides, phenyllactic acid, 4-hydroxyphenyllactic acid and 3-

hydroxy fatty acids (Ström et al., 2002; Sjögren et al., 2003; Valerio et al., 2004). Niku-

Paavola et al. (Niku-Paavola et al., 1999) discovered new types of antimicrobial 

compounds produced by Lactobacillus plantarum (benzoic acid, methylhydantoin and 

mevalonolactone) active against fungi and some Gram-negative bacteria.  

1.3.1.6.1 Fatty acids  

Using the bioassay-guided isolation protocol described above, we discovered several 3-

hydroxylated fatty acids with antifungal activity from Lactobacillus plantarum MiLAB 
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14 (Sjögren et al., 2003). No previous reports on the antifungal activity of hydroxylated 

fatty acids produced by LAB are available. The 3-hydroxylated fatty acids from MiLAB 

14 were all isolated from the supernatant.  

Lipolytic LAB can produce significant amounts of antimicrobial fatty acids that also 

contribute to the sensory quality of fermented foods (Earnshaw, 1992). Rao and Reddy 

(1984) found several fatty acids from cultures of LAB in fermented milk. While 

investigating straight- chained fatty acids, Woolford (1975) observed that antimicrobial 

activity increases with chain length. Caprylic (C8) acid and longer fatty acids are 

generally the most effective (except undecanoic, C11). Woolford (1975) noted that 

acids longer than 10 carbons were difficult to solve in water solutions. Baird-Parker 

(1980) also concluded that the antimicrobial activity of organic acids generally 

increased with chain length, but due to low solubility in water, aliphatic acids longer 

than C10 or C11 were not as effective as antimicrobial compounds. Kabra (1983) on the 

other hand found that fatty acids with 12–16 carbons were most effective and exhibited 

detergent-like properties. We observed that a hydroxylated fatty acid with 12 carbons 

had the strongest antifungal activity (Sjögren et al., 2003).  

Bergsson et al., (2001) investigated the effect of fatty acids and mono-glycerides on the 

growth of C. albicans. They found that when yeast cells were treated with 10 mM of the 

fatty acids, it was only capric (C10) and lauric (C12) acid that inhibited the yeast, which 

agrees with the data of Woolford (1975). Corsetti et al. (1998) discovered that a 

Lactobacillus sanfranciscensis isolate from sourdough produced a mixture of organic 

acids with antimould activity. Caproic (C6) acid played a key role, but propionic, 

butyric and valeric acids also contributed to the inhibitory effect.  

We found that the hydroxylated fatty acids had strong antifungal activity against a 

broad spectrum of yeasts and moulds (Sjögren et al., 2003). Yeasts were generally more 

sensitive to the fatty acids than moulds. The minimum inhibitory concentrations (MIC) 

of the hydroxylated fatty acids against moulds and yeasts ranged between 10 and 100 

µg/mL (Sjögren et al., 2003). This could be compared with standard antifungal drugs, 

e.g. amphotericin B that inhibits fungal growth at concentrations in the µg/mL range 

(McGinnis and Rinaldi, 1991).  

Production of hydroxylated fatty acids followed bacterial growth, indicating that they 

do not result from cell lysis (Sjögren et al., 2003). The metabolic role of these 
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hydroxylated fatty acids is not clear, and their potential antifungal activities in natural 

ecosystems are not known.  

1.3.1.6.2 Phenyllactic acid  

Lavermicocca et al. (2000) reported the production of phenyllactic acid and 4-hydroxy-

phenyllactic acid from L. plantarum 21B, a sourdough isolate with antifungal activity 

against several species of filamentous fungi, Gram-positive and Gram-negative bacteria. 

Phenyllactic acid has also been identified from culture supernatants of L. plantarum 

MiLAB 393 (Ström et al., 2002), L. coryniformis strain Si3, and strains of Pediococcus 

pentosaceus and L. sakei (Magnusson et al., 2003). Phenyllactic acid is only active 

against yeasts and moulds at mg mlK1 concentrations. However, this metabolite will 

most certainly contribute to the overall antifungal effect in synergy with other 

compounds produced by LAB. Indeed, in sourdough bread started with L. plantarum 

21B the onset of growth of the mould Aspergillus niger was delayed 7 days, compared 

to bread started with a Lactobacillus brevis that did not produce phenyllactic acid 

(Lavermicocca et al., 2000).  

1.3.1.6.3 Bacteriocins of lactic acid bacteria  

Some of LAB produce bacteriocins, antibacterial proteinaceous substances with 

bactericidal activity against related species (narrow spectrum) or across genera (broad 

spectrum of activity) (Rogelj and Bogovic-Matijasic, 1994; Cotter et al., 2005). 

Bacteriocin biosynthesis is a desirable characteristic for strain selection as it serves as 

an important mechanism of pathogen exclusion in fermented foods as well as in the 

gastrointestinal environment.  

Bacteriocins are ribosomally synthesized peptides or proteins with antimicrobial 

activity produced by many Gram-positive and Gram-negative bacteria; however, those 

produced by food grade LAB have received considerable attention due to their potential 

application in food industry as natural preservatives (biopreservatives). LAB 

bacteriocins are small antimicrobial peptides or proteins that possess activity towards 

closely related Gram-positive bacteria, whereas producer cells are immune to their own 

bacteriocins (Klaenhammer, 1988; De Vuyst and Vandamme, 1994; Chen and Hoover, 

2003). There are several proposed bacteriocin classifications divided into 3 or 4 classes: 
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(i) lantibiotics or small, heat-stable, lanthionine-containing, single- and two-peptide 

bacteriocins (class I), whose biologically inactive prepeptides are subjected to extensive 

post-translational modification; (ii) small, heat-stable, non-lanthionine-containing 

bacteriocins (class II), including pediocins like or Listeria-active bacteriocins (class 

IIa), two-peptide bacteriocins (class IIb) and circular bacteriocins  (class IIc); and (iii) 

bacteriolysins or large, heat-labile, lytic proteins, often murein hydrolases (class III) 

(Cotter et al., 2005; Klaenhammer, 1988; De Vuyst and Leroy, 2007). Some authors 

(Klaenhammer, 1993; Nes et al., 1996) also proposed (iv) class IV bacteriocins that 

require non-proteinaceous moieties (lipid, carbohydrate) for their activity (Cotter et al., 

2005; De Vuyst and Leroy, 2007; Klaenhammer, 1993; Nes et al., 1996).  

1.3.2 The protective culture approach  

LAB represent the microbial group most commonly used as protective cultures, as they 

are present in all fermented foods and have a long history of safe use (Franz et al., 2010; 

Schillinger et al., 1996). Safety for the consumers is an aspect of great importance, in 

particular for foods which are not cooked before consumptions, but also for other types 

of foods since cross-contaminations, both at the retail and consumer level, are possible. 

The absence of pathogenic traits should be demonstrated for cultures suggested for use 

in foods (Maragkoudakis et al., 2009). Beside safety, protective cultures should 

guarantee the absence of detrimental effects on the target food; since LAB may 

contribute to spoilage in several types of foods, it is essential to study their effect on 

food texture and quality, with particular emphasis on the nutritional value of the product 

(Castellano et al., 2010). Furthermore, the capability of surviving to industrial 

processing conditions is of great importance for industries producing protective cultures 

at the large scale (Santini et al., 2010). LAB have historically been used as preserving 

agents in a number of fermented foods, as reviewed by many Authors (Caplice and 

Fitzgerald, 1999; Giraffa et al., 2010; Settanni and Moschetti, 2010). However, the role 

of LAB as protective cultures has also been evidenced in several non-fermented foods. 

This section will focus on recent applications of protective cultures to non-fermented 

foods, including meat, plant and seafood products, aimed at the increase of microbial 

safety and quality. 
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1.3.2.1 Meat products  

Meat and meat products are excellent substrates for microorganism growth (Galvez et 

al., 2010). Refrigeration is the technology of choice to extend the shelf-life of retailed 

meat, often applied in combination with vacuum-packaging. Refrigeration can 

contribute to the selection of spoilage psycotrophic bacteria, mainly Enterobacteriaceae, 

Pseudomonas spp. and Brochothrix thermosphacta (Katikou et al., 2005). Moreover, 

some mesophilic species, such as Salmonella spp. and pathogenic E. coli, are capable of 

growing in slightly temperature-abused refrigerated foods and seriously compromise the 

safety of the meat. In addition, Listeria monocytogenes has caused several outbreaks in 

recent years linked to meat products. Although several studies have focused on the in 

vitro selection and characterization of LAB strains to be used as protective cultures on 

meat, there has been relatively little application on meat products, which mainly regards 

chicken meat, beef meat and ham. The work of Maragkoudakis et al. (2009) is the first 

successful application of live protective LAB on chicken meat. Two strains 

(Enterococcus faecium PCD71 and Lactobacillus fermentum ACADC179) were applied 

to raw chicken meat, resulting in a reduced growth rate of L. monocytogenes and 

Salmonella enteriditis. Interestingly, the selection of the strains was performed among 

600 LAB of food origin, with regards to desirable functional properties such as 

antimicrobial activity against the target pathogens and spoilage microorganisms, 

survival to food processing and gastrointestinal tract conditions and basic safety 

properties. Moreover, no spoilage effect and reduction of the nutritional values were 

evidenced. The bacteriostatic effect against Listeria has been ascribed to the action of 

bacteriocins; however, the Authors concluded that a complex array of factors not yet 

completely elucidated could be involved in the antimicrobial action. Protective cultures 

have a long description of application on sliced beef meat mainly against spoilage 

bacteria (Galvez et al., 2010). Lactobacillus sakei and Lactobacillus curvatus of meat 

origin are the most common applied strains (Castellano et al., 2010). L. sakei CETC 

4808, known to produce bacteriocin-like molecules, was successfully applied against 

spoilage bacteria on the surface of vacuum-packaged sliced beef without affecting 

chemical and sensory quality (Katikou et al., 2005). L. curvatus CRL705 strain was 

inoculated on the surface of vacuum-packaged refrigerated beef steaks stored for 60 

days; the strain became the dominant population and was able to control the growth of 

spoilage microorganisms naturally present on the meat (Castellano et al., 2010). Tissue 



	

42	

	

degradation was delayed with respect to non-inoculated samples and sensory alterations 

could not be appreciated. In addition, the same strain was potentially active against 

Listeria spp. strains due to the action of a specific bacteriocin. Protective cultures have 

also been used for shelf-life prolongation of cooked meat products such as ham. L. sakei 

10A, isolated from turkey meat, possessed antagonistic activity against Leuconostoc 

mesenteroides and B. thermosphacta (Vermeiren et al., 2006).  

1.3.2.2 Vegetables and fruits  

The increasing importance of minimally processed vegetables and fruits, such as pre-

washed and pre-cut salads, and prepared fruit salads, has initiated many studies for mi- 

crobial safety of these products, which are sold in a ready-to-use form and do not 

generally contain preservatives (Trias et al., 2008). However, the high humidity as well 

as the high number of cut surfaces with a resultant release of nutrients can provide ideal 

conditions for microbial growth, including pathogens. Classical treatments, employing 

chlorine or ozone, very often fail to remove pathogens (Trias et al., 2008). An 

indigenous Pseudomonas putida strain was found to possess relevant pathogen 

antagonistic efficacy as well as a favorable effect on the quality of the inoculated, 

packaged and stored lettuce (Wei et al., 2006). The strain possessed no risk potential; it 

can be applied post-harvest or at a process step in the production line anteceding the 

final washing. However, the majority of the strains applied as protective cultures in 

vegetable and fruit are LAB. Three L. mesenteroides strains, isolated from fresh fruit 

and vegetables (Trias et al., 2008) have been applied as bioprotective cultures in 

wounded Golden Delicious apples and Iceberg lettuce leaf cuts and found to reduce the 

amount of Salmonella enterica serovar Typhimurium and E. coli and to completely 

inhibit the growth of L. monocytogenes without sensory or visual modifications of the 

product. A L. curvatus strain possessing antimicrobial activity against L. 

monocytogenes was isolated from non-fermented and not heat processed refrigerated 

pickles and used as biopreservative agent (Reina et al., 2005).  
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1.3.2.3 Seafoods  

Biopreservation is of extreme interest to ensure safety and quality of minimally 

processed seafood, whose demand has sensibly increased in recent years (Calo-Mata et 

al., 2008). Salt or sugar are often added to reduce the water activity (aw) and a mild 

processing, such as cold-smoking, is frequently applied. Nevertheless, spoilage or 

pathogenic microorganisms can grow on these foods. The major microbial risks 

associated with seafood are Clostridium botulinum type E and L. monocytogenes. 

Whereas C. botulinum type E can be adequately controlled by the combination of salt 

and low temperatures, L. monocytogenes can grow at 0°C and tolerate low aw usually 

lethal for bacteria. Safety and spoilage control of seafood can be improved by applying 

protective cultures, mainly LAB, as reviewed by Leroi (2010). Some LAB strains are 

known to secrete active bacteriocins also at high salt concentration and low 

temperatures, both in aerobic and anaerobic atmospheres (Tomé et al., 2008). In spite of 

the high number of in vitro studies, very few commercial applications have appeared in 

seafood products, as the organoleptic and nutritional quality of the food is often 

compromised and several bacteria that gave in vitro promising results proved to be 

ineffective in products (Leroi, 2010). Carnobacterium divergens V41 strain was applied 

to sterile cold-smoked salmon co-inoculated with a mixture of L. monocytogenes strains 

(Brillet et al., 2005). In samples possessing a high initial natural microbiota (>104 e 105 

CFU/g), inoculated and autochthonous LAB quickly became dominant over potentially 

spoilage and pathogenic bacteria. The anti-listerial activity of 3 LAB strains used 

individually or as co-cultures was assayed on cold-smoked salmon artificially 

contaminated with L. innocua and stored under vacuum at 4°C (Vescovo et al., 2006). 

The association of Lactobacillus casei T3 and Lactobacillus plantarum PE2 was the 

most effective, probably due to a competition mechanism against the pathogen. Ready-

to-eat seafoods such as cooked and peeled shrimps are highly susceptible to the 

colonization of pathogens and spoilage bacteria. The growth of these microorganisms 

can be contrasted by psycotrophic LAB, which are capable of delaying the sensory 

spoilage of the products, beside inhibiting the growth of L. monocytogenes and 

Staphylococcus aureus.  
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1.3.3 Phenyllactic acid 

Phenyllactic acid (PLA) has broad and effective antimicrobial activity against both 

bacteria and fungi and can therefore be employed and developed as a new type of 

natural antiseptic agent to extend the shelf life of food and feed (Dieuleveux et al., 

1998; Lavermicocca et al., 2003; Schnürer and Magnusson, 2005). It is also a useful 

precursor for the synthesis of many important drugs, including Danshensu (3,4-

dihydroxyphenyllactic acid) which can inhibit platelet aggregation and coronary artery 

disease, hypoglycemic reagents, protease inhibitors, and anti-HIV reagents (Zhou et al., 

2005; Yang et al., 2010; Budt et al., 1991; Kano et al., 1998; Urban and Moore, 1992; 

Morita and Mori, 1996). Because of its wide use in food and pharmaceutical industries, 

PLA production has attracted the attention of biotechnologists.  

Chemical and biotechnological routes have been developed for PLA production. The 

chemical transformation strategy has some disadvantages, including a complex 

technology route, excessive by-products, and environmental pollution (Xiao et al., 

2010). Regarding the requirement for environmental protection and sustainable 

development, biotransformation has emerged as a powerful strategy for the production 

of this valuable compound. 

Phenyllactic acid was rarely reported except for the medicine plants, and it was only 

found in honey and sourdough (Kuś et al., 2014; Isidorov et al., 2015). In fact, has been 

commonly found in honey, a food product characterized by very hard environmental 

features and populated by specific population of lactic acid bacteria (Tuberoso et al., 

2011). Moreover, the PLA presence and its antimicrobial activity was widely studied in 

sourdoughs (Van der Meulen et al., 2007; Ryan et al., 2009).  In detail, in honey, its 

content is commonly much higher than that of other phenolic acids. So, it has even been 

suggested as a chemical marker for some honeys (Tuberoso et al., 2011).  

PLA was proven to be a regular metabolite from lactic acid bacteria (LAB) and was 

produced by a wide range of LAB species (Valerio et al., 2004). The microbial 

biotransformation based on metabolic engineering is one of avail- able biological 

approaches for production of PLA (Vermeulen et al., 2006; Zheng et al., 2013). 

In the last two decades, several microorganisms, including Geotrichum candidum, 

propionibacteria, and lactic acid bacteria (LAB) were found to be PLA producers (Lind 
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et al., 2005; Magnusson et al., 2003; Ström et al., 2002; Thierry and Maillard, 2002; 

Valerio et al., 2004).  

Many studies have focused on the ability of LAB to produce PLA because LAB have 

GRAS (generally recognized as safe) status. LAB, especially Lactobacillus strains, 

yielded PLA at the low level of 0.05–0.57 mM via the phenylalanine (Phe) metabolic 

pathway (Li et al., 2008; Vermeulen et al; 2006).  

1.3.3.1 PLA biosynthesis pathway 

The PLA biosynthesis pathway in LAB is well characterized (Mu et al., 2012b). 3-

Phenyllactic acid production is a side pathway of phenylalanine metabolism, in which 

phenylalanine is transaminated to phenylpyruvic acid by aminotransferase and 

phenylpyruvic acid is further reduced to PLA by a dehydrogenase (Figure 1.3). 

Phenylalanine supplementation may thus increase PLA biosynthesis. Conversely, the 

transamination reaction of phenylalanine is catalyzed by aromatic aminotrans- ferase, 

which has a broad substrate spectrum, including tyrosine (Yvon et al., 1997). Therefore, 

tyrosine inhibits the transamination of phenylalanine and tyrosine supplementation thus 

decreases PLA production. Many studies have shown that tyrosine supplementa- tion 

strongly inhibits PLA production, but it did not completely inhibit the PLA production 

of LAB strains in flask fermentation (Valerio et al., 2004; Mu et al., 2012a). 

 

 
Figure 1.3. Possible pathway of 3-phenyllactic acid (PLA) production by Pediococcus pentosaceus 

SK25 in fermented milk.  
 

The transamination reaction in the Phe pathway was the bottleneck for PLA formation 

(Vermeulen et., 2006), and the use of phenylpyruvic acid (PPA) as a substitute substrate 

led to a 14-fold increase in PLA production (Li et al., 2007). PPA showed obvious 



	

46	

	

inhibitory effects in the biotransformation process, and therefore, fed-batch 

fermentation could be conducted for producing a high amount of PLA. It should be 

noted that PPA powder must be dissolved beforehand because of its slow dissolution 

rate at the biotransformation temperature (Li et al., 2007). PLA concentration was 

significantly increased with the application of this strategy (Mu et al., 2009).  

PLA is the acknowledged reduction product of PPA, but the enzymes responsible for 

this reaction remain unclear. In previous studies, hydroxyisocaproate dehydrogenase 

(HicDH), phenyllactic acid dehydrogenase (PLDHase), and D-lactate dehydrogenase 

(D- LDH) of Lactobacillus were assumed to be involved in PLA production from PPA. 

1.3.3.2 PLA antimicrobial activity 

Phenyllactic acid (PLA) is an organic acid with broad-spectrum antimicrobial activity 

(Mu et al., 2012b). It inhibits not only, but also foodborne pathogenic bacteria, 

including Listeria monocytogenes (Dieuleveux and Gueguen, 1998; Ning et al., 2017), 

Staphylococcus aureus, and Escherichia coli O157:H7 (Ohhira et al., 2004). 

Lavermicocca et al. (2000) reported first the production of PLA by Lactobacillus 

plantarum that was effective against the main genera that affect the baked goods: 

Penicillum, Aspergillus and Fusarium. In subsequent year, several LAB have been 

screened for their antifungal potential and their ability to produce PLA (Prema et al., 

2010; Ryan et al., 2011; Gerez et al., 2013).  

In addition, the antimicrobial potential of PLA could be enhanced when the organic 

acids co-existed due to the synergistic effect (Rodríguez et al. 2012). 

Due to its broad inhibitory activity against a variety of foodborne microorganisms, PLA 

has interesting potential as an antimicrobial agent in the food industry. Laboratory 

research has suggested that PLA could be produced in fermented foods using LAB as 

starter, such as sourdoughs (Van der Meulen, et al., 2007; Ryan et al., 2009). During the 

sourdough fermentation process, fungal growth was significantly delayed in the 

presence of PLA-producing LAB strain, Lactobacillus plantarum 21B, in coculture with 

Saccharomyces cerevisiae (Lavermicocca et al., 2000).	  



	

47	

	

1.4 Antimicrobial activity and mode of action 

The antimicrobial activity of phenolic compounds -occurring in vegetable foods and 

medicinal plants-, organic acids as well as other microbial compounds has been 

extensively investigated against a wide range of microorganisms.  

The range of natural substances and their action against bacteria may achieve values 

that only inhibit the bacterial growth (bacteriostatic) or may be used at either high 

concentrations or are inherently more aggressive and their action results in a decline in 

the number of bacterial cells (bactericide). The bacteriostatic action has a reversible 

character since, after neutralization of the agent, the microbial cells will recover their 

reproductive capacity. In contrast, the bactericidal effect has a permanent effect; as even 

after the neutralization of the agent, the microbial cells are not capable of growth and 

reproduction (Bloomfield et al., 1991).   

Usually, the antimicrobial action is determined by using microbial populations and not 

individual cells. In these circumstances, we are dealing with a dynamic situation: some 

cells are reproducing whereas others may have already been dead and, for this reason, 

sometimes the difference between the microbiostatic and microbiocidal values is 

difficult to establish.  

The determination of these effects on microbial growth is based on the growth curve 

analysis done under standard conditions; this means that the agent is absent and the 

nutritional, temperature and atmospheric conditions are optimal for the microorganism 

under study. Generally, the discontinuous system of microbial growth is adopted. In 

Figure 1.4 (A and B) the characteristic growth curves under a (A) or microbiocide (B) 

effect are shown.  

 

 
Figure 1.4.  A. Growth curves. a) normal growth curve b) and c) inhibitory effect 
(bacteriostatic); B. Survival curves, d, e and f) bactericidal effect with increasing 
concentrations from d to f (adapted from Bloomfield (1991)).  
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The normal growth curve is represented under a) and can be divided in:  

• the exponential phase during which cell division occurs according to a 

logarithmic or exponential relationship;  

• the stationary phase during which the total number of viable cells remains 

constant. This phase occurs due to several factors such as nutrient exhaustion, 

oxygen, decrease in pH value and toxic products accumulation. 

• the bacteriostatic effect may be understood as an increase of the lag phase 

accompanied by a decline on the specific growth rate (m ) which may be partial, 

as in b) or total as in c).  

The kinetics of the bactericidal effect is usually determined from the survival (dead) 

curves (Fig. 3 B). The characteristic survival curve is represented by d), the curves of 

the type e) and f) are associated with an increased death rate.  

Different types of tests for evaluation of the antimicrobial activity of natural substances 

in vitro are in use and the selection of each technique seems to be done according to 

several characteristics, namely technical demand and cost. Usually three types of 

methods are distinguished: diffusion, dilution and the bioautographic techniques (Burt, 

2004; Kalemba and Kunicka, 2003; Scorzoni et al., 2007). The agar diffusion is one of 

most frequently used and is characterized by a great simplicity and cost-effectiveness. 

In this technique, several reservoirs of the natural substance can be employed. The most 

common technique uses filter paper disks (Kim et al., 1995; Chorianopoulos et al., 

2007) or stainless steel cylinders which are distributed on the agar medium surface, and 

also holes punched into the agar medium may be used as reservoirs of the natural 

substance (Baratta et al., 1998; Dorman and Deans, 2000). In any case, the natural 

substance quantity and the reservoir diameter are crucial parameters.  

The reservoir containing the natural substance to be evaluated, and after being in 

contact with the inoculated medium and the required incubation period, then the 

diameter of the transparent zone around the reservoir (inhibition zone) is measured. 

This method was first designed to evaluate the antibiotic properties from crude 

extracts. Whereas the agar diffusion method may be considered very precise on the 

essential oil antimicrobial activity determination, several less favourable aspects can be 

pointed out, such as the volatile characteristics of the essential oil components will 

result, on their loss, simultaneously with the solvent during incubation, whereas the less 

soluble compounds may not diffuse appropriately across the culture medium (Burt, 
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2004; Kalemba et al., 2003; Scorzoni et al., 2007; Janssen et al., 1987). The parameters 

to consider include the disk or cylinder/hole diameter, the quantity of the oil and the 

solvent or emulsifier used. This last factor seems to differ significantly between studies 

and several substances have been used, including ethanol (Deans and Svoboda, 1989; 

Sivropoulou et al., 1996; Ouattara et al., 1997; Marino et al., 2001; Tullio et al., 2006; 

Valero et al., 2006; Becerril et al., 2007; Burt et al., 2007); Tween-20 (Hammer et al., 

1999; Pol and Smid, 1999; Griffin et al., 2000; Tzortzakis and Economakis, 2007); 

Tween-80  (Cosentino et al., 1999; Mourey and Canillac, 2002; Hood et al., 2003; 

Knowles et al., 2005), methanol (Rasooli et al., 2006; Bajpai et al., 2007), dimethyl 

sulfoxide (DMSO) (Hili et al., 1997; Firouzi et al., 1998; Blanc et al., 2006). Particular 

importance must be given to the use of safe concentrations of solvent or emulsifier in 

order to not disturb microbial growth. Another aspect to take in account is to have a 

negative control (such as sterile water or solvent) and a positive control (usually a 

reference antibiotic) in each assay.  

The degree of the essential oil activity is revealed by the size of inhibition zone that is 

expressed by the diameter of the referred inhibition zone (in mm or cm) and usually the 

diameter of the disc/hole/cylinder is included. Due to the simple nature of this assay 

and the reduced amount of natural substance required, the use of this technique is 

generally recommended for the evaluation of numerous natural substances, and 

highlight the ones that present the highest activity allowing them to be subjected to 

more in depth characterization. This technique is also used to determine the 

susceptibility of a significant range of microbial species to a particular natural 

substance. However, this technique is less suitable for quantification purposes, such as 

the determination of the MIC and MBC values.  

The techniques that require a homogeneous dispersal in water (dilution method; in agar 

or in liquid medium) are usually applied in order to determine the values of Minimum 

Inhibitory Concentration (MIC) and the Minimum Bactericidal Concentration (MBC) 

through growth curve analyses by comparison with the culture grown in the absence of 

the natural substance (control culture). The MIC and MBC parameters are largely used 

in the evaluation of the natural substance antimicrobial activity but significantly 

differences have been found on their precise definition (Burt, 2004; Lambert et al., 

2001; López et al., 2007). Other than this controversial aspect constituting an obstacle 

to the appreciation of the different studies, it seems that standardization is required.  
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The dilution method in agar or liquid medium is used for both bacteria and fungi. The 

volumes of culture broth supplemented with different natural substance concentrations 

vary substantially but presently the tendency is to use reduced volumes varying from 1-

5ml (Valero et al., 2006; Rasooli et al., 2006; Dimitrijević et al., 2007) to 10ml (Ghalfi 

et al., 2006). The use of methods based on microdilutions is more intense (Burt and 

Reinders, 2003; Chorianopoulos et al., 2007; Mann and Markham, 1998; Lambert et al., 

2001; Shapiro et al., 1994; Avato et al., 1997) and appear to be very appropriate for the 

determination of MIC and CMB values. The efficacy of the antimicrobial activity when 

this method is applied both using tubes or microplates is verified by the change on 

optical density (OD) (Kalemba and Kunicka, 2003), by colorimetry (Hammer and 

Carson, 1999; López et al., 2007; Chandrasekaran and Venkatesalu, 2004; Feng and 

Zheng, 2007; Dimitrijević et al., 2007) or by viable determination (Sivropoulou et al., 

1997), the latter being a very demanding technique. A combination of agar dilution and 

viable counts using the drop method (Chen et al., 2003) may constitute a good 

alternative technique for bacteria that have a reduced growth in broth. Because growth 

is measured by change in OD it is crucial to assure that no changes in the OD are due to 

the natural substance itself or the dispersing agent in use. In case this is not possible, the 

viable count must be done.  

The use of methods based on microdilutions is mainly recorded in the determination of 

the susceptibility to antibiotics and they supply an important amount of information 

principally at present where the need for new and effective antimicrobial agents is very 

challenging, especially for natural products such as essential oils and plant extracts. 

Additionally, these methods can rapidly discriminate the resistant strains that emerge at 

very high frequency even among the foodborne pathogens (White et al., 2002; 

Mayrhofer et al., 2004).  

Other non-conventional methods such as the microatmosphere, bioautographic and 

impedance or conductance measurements can also be used in the evaluation of 

antimicrobial activity of the natural substances (Burt, 2004; Kalemba and Kunicka, 

2003).  

1.4.1 Target Sites in Antimicrobial Action 

The target site and mode of action of most natural substance is still not well understood, 

especially in yeast. Commercial applications of essential oils would benefit from deeper 
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insight into the mode of action behind individual compounds, as this could facilitate the 

exploitation of, e.g., synergistic combinations with more powerful antimicrobial 

properties. 

Many different techniques have been applied to elucidate the mode of action of essential 

oils and their constituents. After establishing the killing or inhinibition activity of a 

compound, an array of experiments can be performed to identify how a compound 

interacts with the cell to cause the observed effects. In this context, it is important to 

distinguish between experiments that identify the target site from those that eluicisate 

the mode of action. The site of action refers to the part of the cell which interacts with 

the compound, e.g., the cell membrane, cell wall, or intracellular proteins, enzymes, 

nucleic acids, or metabolites. The mode of action, however, yields more elaborate 

knoledge about the molecular mechanisms or intermolecular interactions behind the 

inhibition or killing effects. An overview of methods adressing the site or mode of 

action of antimicrobial compounds is following provided. 

1.4.1.1 Locating the site of action 

High-resolution microscopy, such as electron microscopy or atomic force microscopy 

(AFM), can reveal the most extreme consequences of exposure to an antimicrobial 

compound, i.e., deformation of cells occuring from lysis or from damages to the cell 

wall. An advantage of TEM is that ultra-thin cross sections can reveal ultrastructural 

changes in the interior of the cell. Scanning electron microscopy (SEM) and AFM only 

image the cell suface. AFM has one important advantage over electron microscopy, in 

that it allows measurements in liquid under physiological conditions, avoiding difficult 

sample preparation and the artifacts associated herewith (Alessandrini and Facci, 2005). 

A limitation of both AFM and electron microscopy is, however, that specific cellular 

structures must be identified according to morphology unless some form of labeling can 

be applied. While antibodies conjugated to metal nanoparticles have been used with 

TEM in few studies (Romero et al., 2010), no labeling techniques have been reported 

for SEM and AFM. It is, however, possible to combine AFM with optical microscopy 

and thus take advantage of the numerous options for fluorescent labeling of 

biomolecules. 

An important site of action is the cell membrane, and indeed, many essential oil 

constituents have been prosed to act on the bacterial membrane. Interaction of 
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antimicrobial compounds with the membrane can affect the transport of nutrients and 

ions, the membrane potential, and the cell. These effects are investigated by measuring 

the efflux of intracellular ions like K+ and H+ (Ultee et al., 1999; Lambert et al., 2001). 

Efflux of small ions is not necessarily indicative of complete loss of membrane 

function, and can be observed in viable cells where growth is inhibited because the cell 

uses energy for repair or survival rather than cell proliferation (Bouhdid et al., 2010). 

Effects on the cell membrane that lead to cell death is more accurately predicted by 

detecting the efflux of larger molecules like ATP or carboxyfluorescein diacetate 

(cFDA) after esterase reaction (Xu et al., 2008), or by influx of large polar organic 

DNA-binding stains like ethidium bromide (Lambert et al., 2001) and propidium iodide 

(Bouhdid et al., 2010). It should be pointed out that it is always good practise to validate 

the observed effects by combining several techniques. Monitoring the release of calcein 

encapsulated in membrane vesicles can, for example, be used as a complimentary 

technique to confirm the membrane as the site of action (Miron et al., 2000). 

If no effects are observed on cell structure and membrane functionality, it is assumed 

that the site of action is intracellular. The target can be proteins and enzymes is general, 

or it can be esential cellular processes involved in biosynthesis or energy generation. An 

intracellular site of action can for example be determined by incorporation of 

radioactively labeled substrates used in particular biosynthesis pathways (Schneider et 

al., 2010). Lack of or decreased incorporation is then taken as an indication of the 

process being affected by the antimicrobial compound. For example, radiolabeled 

nucleotides or amino acids can be used to detect if DNA replication or protein synthesis 

takes place, respectively (Schneider et al., 2010). 

Some compounds have multiple sites of action, and in that case, it can be difficult to 

pinpoint which one is ultimately responsible for cell death. For example, a compound 

that affects membrane permeability will also affect the membrane potential and thereby 

energy generation by respiration. It is thus difficult to distinguish direct effects on 

energy-generating processes from the indirect effect a permeable membrane has on 

these processes. At sublethal concentrations, changes to the transcriptome and proteome 

during exposure can reveal how the cell responds to the compound, and upregulation of 

genes involved in certain metabolic or biosynthesis pathways can be indicative of which 

cell structures or processes that are affected (Burt et al., 2007; Rao et al., 2010). 
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1.4.1.2 Elucidating the mode of action 

The probably most comprehensive approach to investigate the mode of action of a 

particular compound is to perform random transposon mutagenesis in order to search 

for mutations that compensate for the antimicrobial effect of a particular compound. In 

this way, it is possible to identify the mode of action of compounds that interact 

specifically with, e.g., a single enzyme or with particular proteins or lipids in the 

membrane (Shapira and Mimran, 2007; Van Hoang et al., 2011). The approach is, 

however, not suited for investigating antimicrobial compounds that act simultaneously 

on several components in the cell, as a single mutation is unlikely to facilitate 

compensation for the antimicrobial effect on the cella s a whole. 

Antimicrobial compounds that act on the membrane can cause depolarization or 

increased permeability through various mechanisms. For example, some antimicrobial 

peptides form pores (Cotter et al., 2005; Fantner et al., 2010) while other compounds, 

such as certain essential oil constituents, have a fluidifying effect on the membrane 

(Trombetta et al., 2005; Cristani et al., 2007). Membrane properties like lipid packing 

can be investigated in membrane vesicles by LAURDAN staining combined with 

spectrofluorometry (Nielsen and Rios, 2000), and membrane fluidity can be ivestigated 

directly in bacteria by differential scanning calorimetry (Trombetta et al., 2005) or 

fluorescense anisotropy measurements of DPH using a spectrofluorometer (Liao et., 

2010). AFM imaging has also in recent years allowed for the high-resolution 

visualization of native membranes on a solid support. Structural changes resulting from 

the integration of an antimicrobial compound into the membrane can thus be visualized 

directly (Brasseur et al., 2008), and the effect on membrane rigidity can be quantified by 

AFM force spectroscopy (Sullan et al., 2010). Functionalizing the AFM tip with the 

antimicrobial compound of interest furthermore allows investigation of interaction 

forces between the compound and its target. This approach was, for example, used to 

map binding events of vancomycin on the surface of bacteria and confirmed that 

binding occured at the site of cell wall synthesis in dividing cells (Gilbert et al., 2007).  

1.4.1.3 Bacterial cell targets  

The number of studies conducted on the action mechanisms of plant essential oils has 

been increasing (Dorman and Deans, 2000; Burt et al., 2007; Rasooli et al., 2006; 
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Lambert et al., 2001; Rhayour et al., 2003; Turgis et al., 2009). There are still enormous 

differences when comparing the high number of studies on natural substance 

characteristics and their components, to the number of studies performed on the 

investigation of the specific targets of the antimicrobial action of natural substances and 

their components. Acquiring knowledge about the cell targets of natural substances and 

their components is crucial in order to understand which cell targets are affected.  The 

survival of the pathogen in a food matrix or in a living tissue depend on this knowledge 

or the host infection process can be impaired. Ultimately a proper application system 

can be elaborated based on more accurate information.  

The antimicrobial actions of natural substances are linked to their hydrophobicity 

resulting in increased cell permeability and consequent leaking of cell constituents 

(Dorman and Deans, 2000; Lambert et al., 2001; Turgis et al., 2009; Ultee et al.). It is 

important to comprehend that a disturbed cell structure may affect other cellular 

structures in a cascade type of action (Carson and Mee, 2002).  

1.4.1.3.1 Cell wall and membrane disturbance  

The evaluation of the loss of cell constituents contributes to elucidate the severity of the 

cell membrane damage and a significant number of studies have used this approach to 

clarify the antibacterial action of natural substances (Bouhdid et al., 2009; Cox et al., 

2000; Carson and Mee, 2002) and they indicate that the tested natural compound effect 

the bacterial cell on the same target, the cytoplasmic membrane.  

Bouhdid et al (Bouhdid et al., 2009) investigated the cellular damage by Origanum 

compactum EO on Pseudomonas aeruginosa ATCC 27853 and Staph. aureus 

ATCC29213 by evaluating the cell viability, potassium leakage using flow cytometry 

and transmission electron microscopy. The treatment of Ps. aeruginosa at the MIC 

value and at 1.5x of the MIC value resulted in a series of physiological injuries, namely 

the growth was totally inhibited, the respiratory activity significantly diminished, the 

cell membrane permeability was affected and the membrane potential failed. By 

contrast, the cell damage in Staph. aureus was not so pronounced at the MIC value, in 

particular both the membrane potential and the permeability were not significantly 

affected, but when the MIC value was increased to 1.5x the viability and the membrane 

potential go through a significant reduction. The differences registered between the two 
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bacteria are mainly due to differences in the membrane and cell wall composition and 

structure (Bouhdid et al., 2009). 

The observation done by scanning electron microscopy (SEM) of the two Gram 

negative foodborne bacteria, E. coli 0157:H7 strain EDL 933 and Salmonella enterica 

subsp enterica serovar Typhi strain ATCC 19430 when exposed to mustard EO (allyl 

isothiocyanate is the main component) evidence an imperfect and unfinished cell shape 

(Turgis et al., 2009). The treatment of E. coli 0157:H7 with Spanish oregano causes 

alterations on the cell wall, the presence of white spots or holes on the cell wall were 

observed (Gaunt et al., 2005). However, the use of Spanish oregano against L. 

monocytogenes cells did not caused the production of white spots or holes, but the 

production of an imperfect L. monocytogenes cell (Oussalah et al., 2006). It seems 

evident that E. coli 0157:H7 cells treated with Chinese cinnamon EO were able to keep 

the energy sufficiently high to repair and maintain the cell surface which was apparently 

not damaged. This type of injury can be related with the differences on the cell wall 

structure. Such differences on cell damage were also verified with other bacterial 

pathogens, namely Bacillus subtilis (strain APL 87/35) and E. coli (strain APL 87/1) 

cells treated with oregano and clove EOs (Rhayour et al., 2003). E. coli cells treated 

with both EOs showed a more evident damage: holes at cell surface whereas in B. 

subtilis the damage just resulted on cell surface malformation (Rhayour et al., 2003).  

Enriched thymol EO such as Thymus erocalyx and T. x-porlock (thymol content ranged 

from 63.8 to 31.7%, respectively) can cause injury to L. monocytogenes by disrupting or 

inducing the formation of a very thick and rough cell wall and even at lowest thyme oil 

concentration used the disruption of the cell membrane and lack of cytoplasm was 

observed (Rasooli et al., 2006).  

The treatment of Staph. aureus with Inula graveolens (rich in bornyl acetate (43.3%) 

and borneol (26.2%)) and Santolina corsica (rich in myrcene (34.6%) and santolina 

triene (13.5%)) EOs at MIC values (5 mg/ml) for both EOs) produces invaginations of 

the cytoplasmic membrane accompanied by the formation of a thicker cell wall and 

aggregation of the cytoplasmic contents (Guinoiseau et al., 2010). 

A possible indirect action of EOs on the membrane is the secretion of toxins. This 

aspect is particularly important to the control of S. aureus and B. cereus. The exposure 

of B. cereus to carvacrol resulted on inhibition of diarrheal toxin production (Ultee and 

Smid, 2001) and the use of Oregano at 0.3 and 15 µl/ml completely abolish the 

enterotoxin production of S. aureus (De Souza et al., 2010). Structural modifications 
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and energy limitation may explain the inhibition of toxin production. The secretion of 

toxins may be prevented by modifications in the bacterial membrane due to the 

attachment of the essential oil that may disturb the phospholipid bilayer with 

consequences to the trans-membrane transport process limiting in this way the release 

of toxins to the contiguous environment (Okubo et al., 1989). By other hand the 

limitation of intracellular ATP and proton motive force will restrict the secretion of 

toxins.  

Combined treatments may also act synergistically degenerating the bacterial cells. The 

cells of Ps. flourescens treated with C. citratus oil vapour and negative air ions 

experience a complete relapse, the cytoplasmic material is spilled out of the cells 

whereas the cells treated with negative air ions alone only experience a restricted cell 

surface deformation (Tyagi and malik, 2010).  

1.4.1.3.2 Zeta potential 

The charge properties of the cell surfaces can play a vital role in the microbial 

homeostasis and resistance to antimicrobial agents (Ferreira et al., 2011). Under 

physicological conditions, bacterial cells have normally negative surface charge, due to 

presence of anionic groups (e.g. carboxyl and phosphate) in their membranes (Gilbert et 

al., 1991; Lerebour et al., 2004; Palmer et al., 2007). However, the magnitude of the 

charge varies from species to species and can be influenced by various conditions, 

namely age of the culture, ionic strength and pH (Ahimou et al., 2002; Palmer et al., 

2007).  

The surface charge of cells is frequently determined based on their zeta potential, which 

is calculated from the mobility of cells in the presence of an electrical field under 

defined pH and salt concentrations. Zeta potential measurements demostrated that after 

phenolic acid exposure, the cells become less negatively charged. 

1.4.1.3.3 Leakage of cytoplasmic material 

According to Carson et al. (2002), marked leakage of cytoplasmic material is 

considered indicative of gross and irreversible cytoplasmic membrane damage. Some 

phenolic products are recognized as having membrane active properties against 

microorganisms, causing leakage of cell costituents (Johnston et al., 2003). These 
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products could diffuse through the cytoplasmic membrane, increasing its permeability 

and, consequently, leakage of bacterial cell constituents including proteins, nucleic 

acids, and inorganic ions such as potassium or phosphate. Additionally, it was found by 

Ota et al. (2011) that ferulic acid, p-coumaric acid and caffeic acid, affects the cell 

membrane structure by rigidity and alteration of the dynamics of phospholipid chains. 

Moreover, Tamba et al. (2007) verified that (-)-epigallocatechin gallate induced large 

pore formation in lipid membranes resulting in leakage of the fluorescent probe calcein. 

The concomitant phenomena after the pore formation were the decrease in the diameter 

of vesicles and their transformation into small lumps due to the attractive interaction 

between neighboring lipid membranes. These authors also concluded that the binding of 

this flavonoid to the external monolayer of the lipid membranes increases its membrane 

area decreasing the intermembrane distance that induces an increase in its surface 

pressure. Other authors also referred the strong interaction between polyphenols and 

lipid membranes (Sun et al., 2009; Yu et al., 2011). These phenomena explain the 

antimicrobial activity of this compound. Kajiya et al. (2004) in a study performed with 

(+)-catechin derivatives demonstrated that the activity of these phytochemicals 

depended on the number of hydroxyl groups on the B-ring. On the other hand, the 

affinity for lipid bilayers was aumented with elongation of the alkyl chain lengths of the 

derivatives. Similar to the referred studies we can hypothesize that the antibacterial 

activity of phenolic acids is associated with both the affinity for the lipid bilayer and the 

disruption of the membrane structure. Also, the phenolic acid–lipid interaction can help 

to explain the higher susceptibility of the Gram-negative bacteria. In fact, the lipid 

content of the cell walls of the Gram-negative bacteria is substantially higher than that 

of the Gram-positive cell wall.  

1.4.1.3.4 ATP production  

The disruption of the cell membrane by any antimicrobial agent, including the EOs and 

phenolic compounds will compromise a series of vital functions, namely the energy for 

conversion processes, nutrient processing, synthesis of structural macromolecules, and 

the secretion of many growth key enzymes. The production of ATP in prokaryotes 

occurs both in the cell wall and in the cytosol by glycolysis. Therefore, it is expected 

that alterations on intracellular and external ATP balance will be affected due to the 

action of the phenolic compounds on the cell membrane. The correlation between the 
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intracellular and extracellular ATP concentration has been found (Turgis et al., 2009; 

Helander et al., 1998; Oussalah et al., 2006). ATP losses are supposed to occur through 

the disturbed membrane (Turgis et al., 2009; Oussalah et al., 2006). The treatment of E. 

coli 0157:H7 strain EDL 933 and Salmonella enterica subsp enterica serovar Typhi 

strain ATCC 19430 with mustard EO causes a significant loss of intracellular ATP, in 

particular when the essential oil is used at the determined MIC value (0.2%, v/v) 

(Turgis et al., 2009). The addition of carvacrol at 2mM or 1mM results on a decrease of 

intracellular ATP to 0 after 10 and 14 min., respectively (Ultee et al., 1999). The use of 

oregano EO at 0.020 and 0.025% (w/v) against L. monocytogenes cause a decrease on 

intracellular ATP (Caillet and Lacroix, 2006) and at 0.010% and 0.013% (w/v) also 

produces a decline on the intracellular ATP content of Staph. aureus (Caillet et al., 

2009). In both L. monocytogenes and Staph. aureus a combined treatment with oregano 

EO and irradiation caused a more significant reduction on the intracellular ATP quantity 

(Caillet and Lacroix, 2006; Caillet et al., 2009).  

Other intracellular events may contribute to the intracellular ATP decrease 

accomplished with a minor ATP release, namely the intracellular ATP may suffer a 

significant reduction by hydrolysis which can be due to the loss of inorganic phosphate 

across the compromised high permeable membrane (Turgis et al., 2009; Oussalah et al., 

2006; Abee et al., 1994) or in virtue of the efforts made by the cell to recover the 

electrochemical gradient by proton extrusion driven by the ATP as an increased 

hydrolysis is established. This last mechanism was verified when L. monocytogenes 

cells were eliminated by the treatment with the bacteriocin pediocin PA-1 (Chen and 

Montville, 1995).  

1.4.1.3.5 Protein synthesis  

Burt et al. (Burt et al., 2007) first reported the action of EO components on protein 

synthesis. The EO components, carvacrol and p-cymene induced the synthesis of heat 

shock proteins (HSPs) when bacterial cells were treated with these two EO components 

(Burt et al., 2007). The HSPs are molecular chaperones involved in the different 

processes of assembly and release of newly synthesized polypeptides that, in general, 

increases when bacterial cells contact with toxic substances or other stress conditions. 

The cells of E. coli O157:H7 incubated overnight in the presence of carvacrol at 1mM 

produced significant amounts of heat shock protein 60 (HSP60) (GroEL) and the 
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synthesis of flagellin is inhibited resulting in non-motile cells. In contrast, p-cymene at 

1mM or 10mM did not affect the production of HSP60 or flagellar synthesis (Burt et al., 

2007). The approach to evaluate the effect of EO or its components on protein synthesis 

that can contribute with a more comprehensive view is the proteomic approach, namely 

the use of two-dimensional electrophoresis (2-DE) coupled with MALDI-TOF MS and 

this type of approach as used in the study of Di Pascua et al. (Di Pasqua et al., 2010) to 

evaluate the modifications on the protein expression of Salmonella enterica ser. 

Thompson treated with a sub lethal concentration of thymol. Di Pascua et al. (Di Pasqua 

et al., 2010) found that Salmonella cells treated with 0.01% over expressed a set of 

molecular chaperone proteins, namely DnaK, GroEL, HTpG and the Trigger factor Tf, 

outer membrane associated proteins (OmpX and two OmpA) and proteins involved 

directly or indirectly in the citrate metabolism and ATP synthesis were also affected 

evidencing the action of thymol as a large-scale stressor and acting in different 

pathways.  

1.4.1.3.6 pH disturbance  

The pHin in bacterial cells exposed to EOs and phenolic coumponds has been 

monitored and a significant reduction has been found (Turgis et al., 2009; Oussalah et 

al., 2006). The pH homeostasis may be impaired by the action of EOs on the membrane 

that loses its capacity to block protons (Lambert et al., 2001; Turgis et al., 2009; 

Oussalah et al., 2006). In the study of Turgis et al. (Turgis et al., 2009) a significant 

decrease on the intracellular pH (pHin), the initial pHin (no EO) changed from 6.23 to 

5.20 for E. coli 0157:H7 and from 6.59 to 5.44 for S. Typhi when the bacterial cells 

were treated with the MIC value of the mustard EO.  

The pHin of E. coli 0157:H7 was affected by the use of the Spanish oregano at 0.025% 

(v/v), Chinese cinnamon at 0.025% (v/v) and savory EOs at 0.05% but the E. coli 

0157:H7 pHin was more affected by Chinese cinnamon EO. At concentration 0.025% 

(v/v) the Chinese cinnamon EO caused a decrease of the pHin from 7.25 ± 0.20 to 5.16 

± 0.05 whereas the Spanish oregano at this same concentration caused a decrease from 

7.25 ± 0.20 to 6.68 ± 0.37 (Oussalah et al., 2006). This effect is similar to the mustard 

EO described by Turgis et al. (Turgis et al., 2009). 

The addition of oregano EO to Staphylococcus aureus and Pseudomonas aeruginosa 

cultures caused a rapidly pH gradient dissipation (Knoles et al., 2005). In B. cereus the 
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addition of 0.25mM to 0.5mM of carvacrol causes a decrease in the pH gradient and at 

1mM the pH gradient is completely dissipated (Ultee et al., 1999). 

The maintenance of the pHin at appropriate levels to achieve the various crucial cellular 

processes (DNA transcription, protein synthesis and enzymatic activity) is critical when 

the cell is exposed to severe injury (Patterosn et al., 1997; Kneen et al., 1998; Iwani et 

al., 2002). Even the neutrophile E. coli is capable to overcome acid stress and do this by 

activating four different acid resistance mechanisms (Foster, 2004; Iver et al., 2003). 

These systems function on the basis of amino acid decarboxylases (glutamate, arginine 

and lysine) and antiporters1. The reduction of the pHin by the EO treated cells is 

compared to the action of weak organic acids, namely benzoic in the yeast 

Saccharomyces cerevisae, as the weak acids also EOs are lipophilic and as weak acids it 

is possible that due to their lipid permeability a subsequent release of protons occurs 

(Turgis et al., 2009; Hirshfield et al., 2003; Ricke, 2003; Carpenter and Broadbent, 

2009). If the intracellular proton release goes over cytoplasmic buffering capacity or the 

capacity of proton efflux systems, the intracellular pH value starts to decrease and vital 

cellular functions may be broken (Booth, 1985; Axe and Bailey, 1995).  

1.4.1.3.7 Intracytoplasmic changes  

In the study conducted by Becerril et al. (Becerril et al., 2007) E. coli cells treated with 

oregano EO exhibited intracytoplasmic changes, where coagulated material appeared in 

specific areas located to the cell wall and apical ends. When E. coli cells were treated 

with cinnamon EO, the periplasmic space showed significant changes, in particular they 

became larger and irregular. The investigators also noted the absence of fimbriae in the 

altered (larger) periplasmic space. Staph. aureus cells treated either with oregano or 

cinnamon EO exhibited the same cell malformations as E. coli but in a less pronounced 

manner.  

1.4.1.3.8 DNA  

Once the bacterial DNA is physically attached to the bacterial cell membrane it is 

expected that EO may act on DNA and this fact has been used to measure the 

genotoxicity and antimutagenic effects of EOs and other agents (Ames et al., 1973; 

Laouer et al., 2009; Burdock and Carabin, 2008; Mezzoug et al., 2007). The most used 
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tests are the Ames test (Ames et al., 1973) and the SOS-Chromotest (Quillardet et al., 

1982). The Ames test is based on the use of different sets of Salmonella enterica 

subspecies enterica serovar Typhimurium strains (four strains) that have different 

mutations in the histidine operon, becoming auxotrophic for histidine. The strains sets 

have a deletion on the uvrB region of the chromosome removing the DNA repair system 

(Maloy et al., 1994). The other mutations are on gal2 and rfa3 that affect, to different 

levels, the polysaccharide side chain of the lipopolysscharide (LPS) that covers the 

bacterial surface. These mutations confer a high rough appearance to the bacterial cells 

and such bacteria are highly permeable and fully nonpathogenic. The TA1535 set (TA 

1535, TA1536, TA1537 and TA1538) which have mutation on rfa and uvrB is the most 

susceptible to mutagenesis, so is subject to regular testing for mutagens and 

carcinogens, in vitro. The TA1975 set (TA 1975, TA1976, TA1977, TA1978) only have 

the rfa mutation, so it is suggested to analyze the effect of the repair system on 

mutagenesis and eradication. Quillardet et al. (Ames et al., 1973) mounted a 

colorimetric assay based in the SOS response (Maloy et al., 1994) and called it SOS-

chromotest. This test is based on an operon fusion that putted the lacZ4 under the 

control of the sfiA gene5 (sfiA::lacZ) in E. coli K-12 (denominated PQ37 uvrA strain). 

The mutagenic activity of an agent at a given concentration C(R(C)) can be expressed 

by the ration of b-galactosidase activity to alkaline phosphatase activity. In this strain, 

alkaline phosphatase synthesis is constitutive and is not inducible by DNA damaging 

agents being determined in simultaneously with b-galactosidase. The SOS induction 

factor I(F)=R(C)/R(0) in which R(0) is the mutagenic activity calculated in the absence 

of the agent. The mutagenic and anti-mutagenic effects are useful whenever the safety 

aspect of the EO use is required and several studies are covering this aspect (Mezzoug 

et al., 2007; Burdock and Carabin, 2008; De Martino et al., 2009).  

1.4.1.3.9 Quorum sensing  

Bacteria produce and use small signalling molecules to evaluate their external 

environment and their internal physiological status i.e. to cell-cell communication 

(quorum sensing) modulating their populations. These molecules are generally known 

by autoinducers. The Gram-negative bacteria use acyl homoserine lactones (HSLs) 

whereas the Gram-positive bacteria use modified oligopeptides (Camilli and Bassler, 

2006). Quorum sensing (QS) is involved in biofilm production, motility, swarming, 
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stress resistance and virulence (Kjelleberg and Molin, 2002). The participation of QS on 

so many essential aspects of the bacterial life makes this process an interesting target to 

control infections, diminish antimicrobial resistance and food spoilage (March and 

Bentley, 2204). The investigation of the anti-QS activity of EOs or its components is in 

progress (Niu et al., 2006; Brackman et al., 2008; Khan et al., 2009; Szabó et al., 2010; 

Brackman et al., 2011). 

The effect of cinnamaldehyde on transcription of two HSLs, the 3-oxo-C6 and the 3-

oxo-C12-HSL was evaluated by using a green fluorescent protein bioreporter system 

and the effect on the bioluminescence mediated by the 3-hydroxy- C4-HSL and the 

autoinducer-2 (AI-2) of Vibrio harveyi was followed by using two bioluminescent 

reporters V. harveyi strains (BB886 and BB170) (Niu et al., 2006). At 200 µmol/L 

cinnamaldehyde reduced in 70% the transcription of LuxR66 led by the PluxI promotor, 

which is induced by the 3-oxo-C6-HSL. In contrast, the effect of cinnamaldehyde on 

LasR6, whose transcription is lead by PlasR promoter and induced by 3-oxo-C12-HSL 

was not significant (Niu et al., 2006). The exposure of V. harveyi BB886 (the 

bioluminescence of this strain is led by 3-hydroxy-C4-HSL) to 60µmol/l of 

cinnamaldehyde resulted in a 55% reduction of bioluminescence and the near 60% of 

the bioluminescence of the BB170 strain (mediated by AI-2) was reduced at 100µmol/L 

(Niu et al., 2006). Virulence of V. harveyi to Artemia shrimp can be reduced by the use 

of cinnamaldehyde and its derivative 2-NO2-cinnamaldehyde when used in combination 

(Brackman et al., 2008). Using the nematode model Caenorhabditis elegans Brackman 

and colleagues (Brackman et al., 2011) demonstrated the efficacy of 3,4-dichloro-

cinnamaldehyde on the reduction of the virulence of V. anguillarum, V. harveyi, V. 

vulnificus by mainly affecting the DNA ligand ability of LuxR.  

The EO of rose, geranium, lavander, rosemary and clove seem to be very effective on as 

QS inhibitors whereas orange and juniper EO seem to have no anti-QS properties (Khan 

et al., 2009; Szabó et al., 2010). 
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Figure 1.5. Identified bacterial cell structures and cellular processes disrupted 
by the action of EOs or their components. Omp (Outer membrane protein), QS 
(quorum sensing). EO treated cells are more permeable to protons, experience an 
ATP imbalance and induce the synthesis of chaperones. Metabolic pathways can 
be injured.  

1.4.2 Antimicrobial mechanisms of natural compounds  

1.4.2.1 Lactic acid 

Lactic acid is the major LAB metabolite, causing pH reductions that inhibit many 

microorganisms (Eklund, 1989). The undissociated, more hydrophobic form of the acid diffuses 

over the cell membrane and dissociates inside the cell, releasing H+-ions that acidify the 

cytoplasm (Axelsson, 1990; Piard and Desmazeaud, 1991). In addition to the pH effect, the 

undissociated acid collapses the electro-chemical proton gradient, causing bacteriostasis and 

finally death of susceptible bacteria (Eklund, 1989). Therefore, the main toxic effects of lactic 

include the reduction of intracellular pH and dissipation of the membrane potential (Kashket, 

1987; Lorca and de Valdez, 2009).  

As an effective antibacterial, lactic acid has a broad spectrum of both gram-positive bacteria and 

gram-negative bacteria (Qiao et al., 2008). 

Lactic acid, the characteristic fermentation product of LAB may reduce pH to a level where 

putrefactive (e.g. clostridia and pseudomonads), pathogenic (e.g. salmonellae and Listeria spp.) 

and toxinogenic bacteria (Staphylococcus aureus, Bacillus cereus, Clostridium botulinum) will 

either be inhibited or destroyed. Moreover, the undissociated acid, on account of its fat 

solubility (Brown and Booth, 1991), will diffuse into the bacterial cell, thereby reducing the 
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intracellular pH and slowing down metabolic activities. Growth of Escherichia coli (e.g.> is 

inhibited at pH 5.1 by lactic acid, as compared to pH 4.5 in presence of hydrochloric acid 

(Gudkow, 1987). The rapid reduction of pH below 5.3 during raw sausage fermentation is 

sufficient to inhibit growth of salmonellae (Schillinger and Liicke, 1988) and Staphylococcus 

aureus (Hechelmann et al., 1988).  

Salmonella and E. coli exposure to lower concentration of lactic acid (0.25%) exhibited higher 

susceptibility, compared with that of Listeria. The type of microorganisms and their cell 

membrane structure and composition could also play an important role in the susceptibility to 

antimicrobials (Borges et al., 2013; Hayrapetyan et al., 2008). In general, S. Enteritidis, E. coli 

and L. monocytogenes could be completely inactivated after exposure to 0.5% lactic acid for 2 

h.  

The cell wall was generally not the sole antibacterial target, while cell membrane was the 

principle action site for organic acids as previously reported (Wang et al., 2014), due to the 

disruptive action of organic acid on cytoplasmic membrane by altering the hydrophobic 

property and polarity. In this respect, Wang et al. (2015) demonstrated that lactic acid induced 

the damage of membrane permeability and integrity (Wang et al., 2015). However, the 

antibacterial mechanism of organic acid may be different, since the antibacterial activity was 

not only dependent on the pH produced by organic acid, but also was closely related with their 

chemical structures (Hismiogullari et al., 2008). 

1.4.2.2 Phenolic compounds  

The antimicrobial activity of phenolic compounds occurring in vegetable foods and 

medicinal plants has been extensively investigated against a wide range of 

microorganisms. Among polyphenols, flavan-3-ols, flavonols, and tannins received 

most attention due to their wide spectrum and higher antimicrobial activity in 

comparison with other phenolic compounds, and due to the fact that most of them are 

able to suppress a number of microbial virulence factors (such as inhibition of biofilm 

formation, reduction of host ligands adhesion, and neutralization of bacterial toxins) and 

show synergism with antibiotics. The antimicrobial properties of certain classes of 

polyphenols have been proposed either to develop new food preservatives (Rodríguez et 

al., 2010), due to the increasing consumer pressure on the food industry to avoid 

synthetic preservatives, or to develop innovative therapies for the treatment of various 

microbial infections (Jayaraman et al., 2010; Saavedra et al., 2010), considering the 

increase in microbial resistance against conventional antibiotic therapy.  
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Considering flavan-3-ols, the antibacterial activity of catechins has been known since 

the 1990s, when it was demonstrated that these compounds, largely present in oolong 

tea and, above all, green tea (Camellia sinensis), inhibited the in vitro growth of several 

bacterial species, such as Vibrio cholerae, Streptococcus mutans, Campilobacter jejuni, 

Clostridium perfringes, and Escherichia coli (Borris, 1996; Sakanaka et al., 1992; Diker 

et al., 1991; Ahn et al., 1991; Isogai et al., 1998).  

More recently, it was demonstrated that some tea catechins, such as (-)-gallocatechin-3-

gallate, (-)-epigallocatechin-3-gallate, (-)-catechin-3-gallate, and (-)-epicatechin-3-

gallate, are active at nanomolar levels against some other food-borne pathogenic 

bacteria, such as Bacillus cereus. Most of these compounds were found to be more 

active than antibiotics, such as tetracycline or vancomycin, at comparable 

concentrations: this suggested that the tested tea catechins could exert a positive effect 

against gastrointestinal diseases (Friedman et al., 2006).  

Among tea catechins, epigallocatechin gallate (EGCG) has received the most attention 

and has been investigated more thoroughly in its antibacterial, antiviral, and antifungal 

activities. As far as the antibacterial activity is concerned, 56 clinical isolates of 

Helicobacter pylori, a urease producing gastric pathogen that may contribute to the 

formation of ulcers and gastric cancer in humans, including 19 isolates, highly resistant 

to metronidazole and/or clarithromycin, were used to determine in vitro EGCG 

sensitivity. The minimum inhibitory concentration (MIC) required to inhibit the growth 

of 90% of organisms was found to be 100 mg/ml. It is interesting to underline that those 

clinical isolates which were highly resistant to antibiotics also showed a similar EGCG 

sensitivity (Yanagawa et al., 2003).  

As reported above, tea catechins are active against E. coli. In particular, EGCG at sub-

MIC (25 mg/mL) did not affect E. coli O157:H7 growth rate, but showed significant 

antipathogenic effect because it decreased some virulence factors such as biofilm 

formation and bacterial swarm motility (Lee et al., 2009).  

Also, EGCG antiviral activity was discovered in the 1990s.  EGCG was found to 

prevent infection caused by the flu virus by binding to the viral hemagglutinin, thereby 

preventing the attachment of viral particles to the target receptor cells (Nakayama et al., 

1993). Other studies showed that modifications of viral membrane properties 

contributed to tea catechin’s antiviral effect against the flu virus while, at the same time, 

structure–activity studies showed that the 3-galloyl side chain potentiates the parent 

catechin molecule antiviral activity. In fact, both EGCG and epicatechin gallate (ECG) 
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were found to be 10–15 times more active against the flu virus than epigallocatechin 

(EGC) (Song et al., 2005). Other investigations confirmed EGCG antiviral activity 

against adenovirus and enterovirus infections (Weber et al., 2003; Ho et al., 2009).  

EGCG also exhibited variable time-dependent and concentration-dependent fungicidal 

activities. Several fungi, including Candida albicans, proved sensitive to this 

compound, suggesting that flavan-3-ols may be useful in the treatment of C. albicans 

superinfections of the oral cavities, intestine, and vagina, which may result from an 

excessive use of antibiotics (Hirasawa et al., 2004).  

1.4.2.2.1 Flavonol antimicrobial activity  

As far as flavonols are concerned, we can see a remarkable activity against several 

Gram-positive bacteria, such as Staphylococcus aureus, Lactobacillus acidophilus, and 

Actinomyces naeslundii and Gram-negative bacteria, such as Prevotella oralis, 

Prevotella melaninogenica, Porphyromonas gingivalis, and Fusobacterium nucleatum, 

probably due to different mechanisms of action, among which the most convincingly 

identified is the aggregatory effect on all bacterial cells (Cushnie et al., 2007).  

It is worth mentioning the following investigation which reported that rhamnetin, 

myricetin, morin, and quercetin showed high activity against Chlamydia pneumoniae, 

an obligate intracellular Gram-negative pathogen, which is a common cause of acute 

upper and lower respiratory infections, including pharyngitis, sinusitis, and pneumonia. 

In this study, the pretreatment of a human cultured cell line (HL cells), which is 

conventionally used in C. pneumoniae cultivation, with flavonols, decreased the 

infectivity of C. pneumoniae by 50% compared to the percentage seen in untreated 

controls, at polyphenol concentrations ranging from 0.5 to 50 mM (Alvesalo et al., 

2006). When the compounds were continuously present in cell cultures, infectivity was 

clearly lower, varying from 0 to 32%. All compounds also decreased the infective 

yields, and the most chlamydiosidic compound was found to be rhamnetin, which killed 

C. pneumoniae at the tested concentrations. As the opportunity to use polyphenols as 

therapeutic agents is often limited by their bioavailability (Manach et al., 2004), it is 

interesting to highlight that due to their hydrophobicity, flavonols are capable of 

penetrating cell phospholipid membranes, and therefore they are also able to exert their 

antibacterial activity inside the cell. Moreover, rhamnetin resulted to be more active 
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than quercetin and morin, probably because of the methoxy group in the A-ring, which 

makes this molecule more hydrophobic (Alvesalo et al., 2006). 

Recent investigations also pointed out the fungicidal activity of flavonols. It was shown 

that propolis, which is recommended worldwide for external topical use as it relieves 

various types of bacterial and fungal dermatitis, possessed antifungal activity (against 

Microsporum gypseum, Trichophyton mentagrophytes, and Trichophyton rubrum), and 

the main responsible agents for this activity were identified as flavonols (galangin, 

izalpinin, and rhamoncitrin) (Agüero et al., 2010). Among the other propolis that 

polyphenols found active, were flavanone (pinocembrin and pinostrobin) and chalcones 

(2,4-dihydroxychalcone and 2,4-dihydroxy-3-methoxychalcone), that other studies 

reported to show antimicrobial activity (Avila et al., 2008; Batovska et al., 2009).  

1.4.2.2.2 Tannin antimicrobial activity  

Tannins are subclassified into proanthocyanidins (condensed tannins) and gallotannins 

and ellagitannins (hydrolyzable tannins).  

The proanthocyanidins occur in fruits, barks, leaves, and the seeds of many plants. They 

are dimers, oligomers, and polymers of catechins that are bound together by links 

between C4 and C8 (or C6) and are composed of a myriad of oligomeric products that 

differ first, in region and stereochemical configuration of the flavanol interlinkages, 

second, in the phenolic hydroxylation pattern, and third, in the configuration of the 

hydroxylated C-ring C3 center of the flavan-3-ol building block. These oligoflavanols 

are further subdivided into two basic types, A-type and B-type, which are characterized 

by the occurrence of either a double or a single linkage connecting two flavanol units 

(Quideau et al., 2011). These differences in the chemical structures make investigations 

directed towards their biological properties, or to their structure–activity relationships, 

quite challenging. The most studied proanthocyanidins are those derived from berries 

that inhibit the growth of several pathogenic bacteria, such as uropathogenic E. coli, 

cariogenic S. mutans, and oxacillin-resistant S. aureus (Côté et al., 2010). The cranberry 

proanthocyanidins, consisting primarily of epicatechin tetramers and pentamers with at 

least one A-type linkage, were found to be active against the reported pathogenic 

bacteria. Several mechanisms could explain the effect of the A-type proanthocyanidin in 

the bacterial growth inhibition, such as the destabilization of the cytoplasmic 

membrane, the permeabilization of the cell membrane, the inhibition of extracellular 
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microbial enzymes, direct actions on microbial metabolism, or the deprivation of the 

substrates required for microbial growth, especially essential mineral micronutrients 

such as iron and zinc (via proanthocyanidin chelation with the metals), whose depletion 

can severely limit bacterial growth (Heinonen, 2007; Dixon et al., 2005).  

Besides antibacterial activity, proanthocyanidins showed antiviral effects against 

influenza A virus and type-1 herpes simplex virus (HSV). In this case the mechanism of 

action seems to consist in preventing the entry of the virus into the host cell, which is 

the first critical step in primary HSV-1 infection (Geschera et al., 2011).  

Gallotannins and ellagitannins derived from the metabolism of the shikimate-derived 

gallic acid (3,4,5-trihy-droxybenzoic acid) follow through various esterification and 

phenolic oxidative coupling reactions to yield numerous (near 1000) monomeric and 

oligomeric polyphenolic galloyl ester derivatives of sugar, mainly D- glucose (Quideau 

et al., 2011). The antimicrobial activity of hydrolysable tannins is well known. 

Ellagitannins, the main phenolic compound of the Rubus and Fragaria genus (raspberry, 

cloudberry, and strawberry) show very interesting properties because they inhibit, to 

different extents, the growth of selected Gram-negative intestinal bacteria (strains of 

Salmonella, Staphylococcus, Helicobacter, E. coli, Clostridium, Campylobacter, and 

Bacillus), but they are not active against Gram-positive beneficial probiotic lactic acid 

bacteria (Puupponen-Pimia et al., 2001). Unfortunately, Listeria monocytogenes, a 

common bacterium found in the environment and associated with animals that may 

cause meningitis, sepsis, or abortion, is not affected by these berry compounds 

(Puupponen-Pimiä et al., 2005).  

As far as gallotannins are concerned, penta-O-galloylglucose, hexa-O-galloylglucose, 

hepta-O-galloylglucose, octa-O-galloylglucose, nona-O-galloylglucose, and deca-O-

galloylglucose isolated from mango kernels showed antibacterial activity against food-

borne bacteria. Gram-positive bacteria were generally more susceptible than Gram-

negative, in fact the MICs against Bacillus subtilis, B. cereus, Clostridium botulinum, C. 

jejuni, L. monocytogenes, and S. aureus were 0.2 mg/mL or less; enterotoxigenic E. coli 

and Salmonella enterica were inhibited by 0.5–1 mg/mL. Also, in this case, lactic acid 

bacteria exhibited strong resistance (Engels et al., 2011).  

The activity of gallotannins is attributable to their strong affinity for iron and it is also 

related to the inactivation of membrane-bound proteins.  
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Considering the antifungal activity of ellagitannins, the discovery of this property 

derives from the observation that the durability of hardwoods, such as oaks and chest- 

nuts is thought to owe much to the deposition of ellagi-tannins which are able to 

precipitate protein and/or remove metal cofactors through their strong affinity for metal 

ions, acting as a microbial barrier. A recent investigation showed that ellagitannins 

isolated from Ocotea odorifera, a medicinal plant commonly used in Brazil, have potent 

activity against Candida parapsilosis at a concentration level of 1.6 mM (Yamaguchi et 

al., 2011). Ellagitannins possess anti- viral activities, in particular against HIV infection 

(Martino et al., 2004; Notka et al., 2004) and manifest inhibitory effects on HSV-1 

and/or HSV-2 replication, as well as Epstein-Barr virus (Notka et al., 2004). 

Ellagitannins activity against Herpes virus seems due to a marked inhibitory effect on 

the replication of both HSV-1 and HSV-2, including acyclovir-resistant strains, with 

acyclo-vir being the first effective specific drug against the Herpes virus made available 

(Ito et al., 2007).  

1.4.2.2.3 Phenolic acids antimicrobial activity  

Phenolic acids have one functional carboxylic acid and are hydroxylated derivatives of 

benzoic (e.g., gallic, protocatechuic, and p-hydroxybenzoic acids) and cinnamic acids 

(e.g., caffeic, p-coumaric, and ferulic acids) (Robbins, 2003; Stalikas, 2007; Wang et 

al., 2011). Although the basic skeleton remains the same, the numbers and positions of 

the hydroxyl groups on the aromatic ring, and the type of substituents, cause significant 

changes on the properties of the phenolic products (Robbins, 2003; Sroka and Cisowski, 

2003; Stalikas, 2007). The site and the number of hydroxyl groups on the phenol group 

are thought to be related to their relative toxicity to microorganisms, and are the 

principal structural features influencing the antioxidant capacity of phenolics, with 

evidence that increasing hydroxylation results in toxicity increase. In addition, some 

authors have found that more highly oxidized phenols have higher antimicrobial 

properties (Cowan, 1999; Samy and Gopalakrishnakone, 2010; Scalbert, 1991). The 

hydroxycinnamic acids have significantly higher antioxidant activity than the 

hydroxybenzoic acids, which can be attributed to the presence of the CH=CH-COOH 

group in the hydroxycinnamic acids and the COOH group in the hydroxybenzoic acids. 

The presence of the CH=CH-COOH groups in hydroxycinnamic acids provide higher 
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H-donating capability and subsequent radical stabilization than the carboxylate group in 

hydroxybenzoic acids (Kim et al., 2006; Rice-Evans et al., 1996).  

Phenolic acids show weaker antimicrobial activity in comparison with flavonoids; 

nevertheless, some investigations are worth mentioning. Some phenolic acids (gallic, 

caffeic, and ferulic acids) showed antibacterial activity against Gram-positive (S. aureus 

and L. monocytogenes) and Gram-negative bacteria (E. coli and Pseudomonas 

aeruginosa). These compounds were found to be more efficient against the reported 

bacteria than conventional antibiotics such as gentamicin and streptomycin. Differently, 

chlorogenic acid showed no activity against Gram-positive bacteria (Saavedra et al., 

2010).  

Considering another nonflavonoid class of compounds, lignans, a recent investigation 

showed that the hexane extract obtained from Aristolochia taliscana roots, a plant used 

in traditional Mexican medicine, contains neolignans, among which Licarin A was 

found to be the most active, with MICs ranging from 3.12 to 12.5 µg/ml against four 

mono-resistant variants and 12 clinical isolates of Mycobacterium tuberculosis strains 

(León-Dìaz et al., 2010). These results confirm previous investigations on lignans 

biological properties (Saleem et al., 2005) and suggest that these compounds represent a 

potentially active agent to fight tuberculosis, a pathology that, in recent years, has 

become more of a worldwide concern as one-third of the world’s population is currently 

infected with M. tuberculosis.  

1.4.2.3 Bacteriocins  

Bacteriocins are ribosomally synthesized peptides or proteins with antimicrobial activity 

produced by many Gram-positive and Gram-negative bacteria; however, those produced by 

food grade LAB have received considerable attention due to their potential application in food 

industry as natural preservatives (biopreservatives). LAB bacteriocins are small antimicrobial 

peptides or proteins that possess activity towards closely related Gram-positive bacteria, 

whereas producer cells are immune to their own bacteriocins (Klaenhammer et al., 1988, De 

Vuyst et al, 1994, Chen et al., 2003). There are several proposed bacteriocin classifications 

divided into 3 or 4 classes: (i) lantibiotics or small, heat-stable, lanthionine-containing, single- 

and two-peptide bacteriocins (class I), whose biologically inactive prepeptides are subjected to 

extensive post-translational modification; (ii) small, heat-stable, non-lanthionine-containing 

bacteriocins (class II), including pediocins like or Listeria-active bacteriocins (class IIa), two-

peptide bacteriocins (class IIb) and circular bacteriocins (class IIc); and (iii) bacteriolysins or 
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large, heat-labile, lytic proteins, often murein hydrolases (class III) (De Vuyst et al., 2007)). 

Some authors (Klaenhammer et al., 1993; nes et al., 1996) also proposed (iv) class IV 

bacteriocins that require non-proteinaceous moieties (lipid, carbohydrate) for their activity.  

Bacteriocins that are produced by LAB can be of broad or narrow spectrum, but in general, the 

activity is directed against low G+C Gram-positive species (Klaenhammer et al., 1988). The 

antibacterial spectrum includes spoilage organisms and foodborne pathogens such as Listeria 

monocytogenes and Staphylococcus aureus. Wide ranges of mode of action have been described 

for bacteriocins, such as enzyme activity modulation, inhibition of outgrowth of spores and 

formation of pores in cell membrane. Most bacteriocins interact with anionic lipids that are 

abundantly present in the membranes, and consequently initiate the formation of pores in the 

membranes of susceptible cells (Chen et al., 2003; Moll et al., 1999). However, generalized 

membrane disruption models cannot adequately describe the mode of action of bacteriocins. 

Rather, specific targets seem to be involved in pore formation and other activities. For the nisin 

and epidermin family of lantibiotics, the membrane-bound cell wall precursor lipid II has been 

identified as target (Héchard and Sahl, 2002). Most of class II bacteriocins dissipate the proton 

motive force (PMF) of the target cell via pore formation (Venema et al., 1995). The subclass IIa 

bacteriocin activity depends on a mannose permease of the phosphotransferase system (PTS) as 

a specific target. The subclass IIb bacteriocins (two-component) also induce dissipation of the 

PMF by forming cation- or anion-specific pores; specific targets have not yet been identified. 

Finally, subclass IIc comprises miscellaneous peptides with various modes of action such as 

membrane permeabilisation, specific inhibition of septum formation and pheromone activity 

(Klaenhammer et al., 1988).  

1.4.2.3.1 Factors affecting bacteriocin efficiency  

The activity of bacteriocins produced by different LAB is not uniform and constant and depends 

on the chemical composition and physical conditions of food; it mainly depends on pH and is 

reduced by bacteriocin binding to food components, adsorption to cell or protein, activity of 

proteases and other enzymes (Schillinger et al., 1996). A correlation between nisin degradation 

and extent of proteolysis in pasteurized cream was found by Phillips et al. (1983). Buyong et al. 

(1998) ascribed the reduction in pediocin activity from 64,000 to 2,000 U/g after six months of 

maturation of Cheddar cheese to the action of proteases and peptidases. NaCl at certain 

concentrations can reduce the growth of LAB and consequently the production of bacteriocins, 

besides protecting the target bacteria such as L. monocytogenes from their action (Hugas et al., 

2002). Sarantinopoulos et al. (2002) observed reductions in bacteriocin activity and E. faecium 

FAIR-E 198 growth rate after addition of 2% NaCl to MRS broth. Nilsen et al. (1998) ascribed 
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this phenomenon to the interference of NaCl in the production factor binding the inductor to the 

receptor.  

Aside from interacting with food components, bacteriocins may be adversely affected by 

processing and storage conditions such as pH and temperature of the product. According 

Drosinos et al. (2005), the optimal pH for bacteriocin production (5.5) does not match that for 

microbial growth (6.5). Because of their maximum stability under acidic conditions, nisin 

activity is increased when used in acidic foods. Therefore, effective applications of nisin require 

that the pH of food is less than 7 to ensure satisfactory solubility, stability during processing and 

storage period (Hernandez et al., 1993). Leroy and De Vuyst (1999) reported that bacteriocin 

activity decreases with increasing temperature owing to increased activity of proteases.  

The inhibitory efficiency of bacteriocins is also related to the level of food contamination by the 

target organism. If the initial contamination is too high, bacteriocin activity is low and unable to 

prevent the development of contaminating microorganisms. Rilla et al. (2004) investigated the 

action of Lc. lactis subsp. lactis IPLA 729 against S. aureus at two different concentrations, 

specifically 1.8x104 and 7.2x106 CFU/mL: after 24 h of incubation, they did not detect S. aureus 

in the more dilute sample, while the other showed a still high count (5.0x104 CFU/mL). 
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1.5 Incorporation of antimicrobials in food systems  

Antimicrobials in foods can be added in different forms to control the growth of 

pathogenic and spoilage microorganisms. These can be either added directly or through 

slow release from packaging materials. In this section, we highlight three major 

methods of incorporating antimicrobials in food systems. These methods could play an 

important role in reducing harmful microorganisms, thus extending product shelf-life.  

1.5.1. Direct applications  

Researchers have demonstrated the antimicrobial activity of different natural 

compounds against a wide range of pathogenic microorganisms. There have been a 

number of studies conducted in culture media and tested in food products. These 

antimicrobial compounds have been directly applied in food systems either in the form 

of a powder or a liquid. However, only a few natural antimicrobials have found 

practical application in the food industry and their use in foods as preservatives is often 

limited due to the strong smell and taste they impart to these foods. In addition, natural 

antimicrobial solubility in complex food matrices is another limitation (Soković et al., 

2010).  

Budka and Khan (2010) demonstrated the effect of EOs from basil, thyme, and oregano 

against B. cereus in rice-based foods. Carvacrol (EO of oreganum and thyme) at 0.15 

mg/g inhibited the growth of B. cereus on rice (Ultee et al., 2000). Freshly ground garlic 

at a concentration of 1% was shown to reduce the Salmonella count when added to 

mayonnaise (Leuschner and Zamparini, 2002). The antimicrobial activitiy of phenolic 

compounds from several plant species has been shown to inhibit S. aureus in chicken 

soup (Hadzifejzovi et al., 2013). Yuste and Fung (2002) reported 6 log CFU/ml 

reductions of L. monocytogenes in pasteurized apple juice with 0.1 e 0.3% (w/v) of 

ground cinnamon after 1h of incubation, and no further growth of the microorganism 

occurred during 7 days of storage. Cava Nowak et al., (2007) evaluated the efficacy of 

EOs of cinnamon bark, cinnamon leaf, and clove against L. monocytogenes in semi 

skimmed milk incubated at 7°C for 14 days. They observed that the MIC was 500 ppm 

for cinnamon bark EO and 3000 ppm for the cinnamon leaf and clove EOs. These 

results indicated the possibility of using these EOs in milk beverages as natural 

antimicrobials. Similarly, Smith-Palmer et al., (2001) reported the inhibition of L. 
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monocytogenes and S. Enteritidis in both low fat and full fat cheese in the presence of 

1% clove, cinnamon, thyme, and bay oil. The antimicrobial effect of rosemary extract 

against L. monocytogenes was assessed by Munõz et al. (2009). When rosemary extract 

at 0.1 ml/100 ml concentration obtained by using the super critical fluid extraction 

method was tested against L. monocytogenes at 30°C in broccoli juice and incubated for 

30 days, a bactericidal effect was observed.  

The use of natural antibacterial compounds such as extracts of spices, herbs, and EOs, 

has been reported in literature to improve the shelf-life of meat. The shelf-life of meat 

based products increased when products were dipped in thyme and oregano oil at 0.1 

and 0.3% (Karabagias et al., 2011). The combination of thyme EO at 0.6% with nisin at 

1000 IU/g significantly decreased the population of L. monocytogenes in minced beef 

during storage at 4 and 10 °C (Solomakos et al., 2008). A synergistic effect of rosemary 

extracts with pre-freezing was shown to reduce C. jejuni populations by more than 2.0 

logs in chicken meat (Piskernik et al., 2011). Xi et al., (2011) investigated the effect of 

cranberry powder against L. monocytogenes growth in meat model system. The results 

showed a 2-4 log CFU/g reduction in bacterial population at concentrations of 1-3% 

when compared to the control sample treated with nitrite. This showed a possibility of 

using natural ingredients such as cranberry powder instead of sodium nitrite to enhance 

the antibacterial quality and shelf-life of naturally cured meat.  

Overall, plant extracts could be used as natural antimicrobial additives to prolong the 

shelf-life of foods. However, the level of these preservatives required for sufficient 

inhibition of microorganisms in foods may be considerably higher in comparison to 

laboratory media. Because this higher concentration may negatively impact the 

organoleptic properties of food, the use of natural compounds in combination with other 

natural preservatives or with other technologies could produce synergistic effects 

against foodborne pathogens.  

1.5.2. Edible films and coatings  

In recent years, food-packaging industries have shown an interest in edible films and 

coatings from natural antimicrobials. Edible films also improve food quality by 

providing barriers to moisture, and oxygen, and could serve as a barrier to surface- 

contaminating microorganisms (Cao et al., 2009; Jang et al., 2011; Joerger, 2007). In 

addition, edible films and coatings help reduce environmental concerns created by 
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conventional plastic packaging. Various approaches have been proposed and 

demonstrated for the use of edible films and coatings to deliver antimicrobial 

compounds to a variety of food surfaces, including fruits, vegetables, and meat products 

(Devlieghere et al., 2008).  

Ayala-Zavala et al. (2013) demonstrated the antimicrobial activity of an edible film 

formulated with cinnamon leaf oil that can be useful in preserving the quality of fresh-

cut peaches. Similarly, Raybaudi-Massilia et al. (2008) reported the reduction of E. coli 

O157:H7 population by >4 logs on fresh cut Fuji apples with cinnamon, clove, and 

lemongrass oils at 0.7%, or their active compounds, cinnamaldehyde, eugenol, and 

citral, at 0.5% incorporated into alginate films. In another study, the addition of 

grapefruit seed extract to the rapeseed proteinegelatin film inhibited the growth of E. 

coli O157:H7 and L. monocytogenes in strawberries (Jang et al., 2011). The 

antimicrobial activity of the polypropylene/ethylene-vinyl alcohol copolymer 

(PP/EVOH) films with 5% oregano EO against pathogenic microorganisms E. coli, S. 

enterica and L. monocytogenes and natural microflora was recently investigated by 

Muriel-Galet et al. (2012) on packaged salads. The author’s findings showed a 

reduction in spoilage flora as well as inhibition of the growth of pathogens on 

contaminated salads. The antimicrobial activity of apple-based edible films containing 

plant antimicrobials (cinnamaldehyde and carvacrol) was also investigated by 

Ravishankar et al. (2009). These films were shown to be effective against S. enterica 

and E. coli O157:H7 on poultry, and against L. monocytogenes on ham.  

Similarly, chitosan based films have proven to be very effective in food preservation. 

The shelf-life of carrot sticks coated with chitosan was evaluated. An edible coating 

containing 0.005 mg/mL chitosan applied to carrot sticks under modified atmospheric 

packaging over 12 days at 4 °C was shown to maintain quality and prolong the shelf-life 

(Simões et al., 2009). The antimicrobial effects of edible chitosan films containing 

nisin, peptide P34, and natamycin were investigated by Cé et al. (2012) against L. 

monocytogenes, B. cereus, S. aureus, E. coli, S. Enteritidis, C. perfringens, Aspergillus 

phoenicis, and Penicillium stoloniferum. These chitosan films were effective in 

controlling microbial growth in minimally could thus be a feasible method for the 

biopreservation of food. Chitosan was also shown to possess a film-forming property, to 

decrease water vapor and oxygen transmission, diminish respiration rate, and increase 

the shelf-life of fruit (Jiang and Li, 2001). Incorporation of chitosan-coated films with 

green tea extracts (4%) inhibited the growth of L. monocytogenes on ham steak during 
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storage at room and refrigerated temperature (Vodnar, 2012). Similarly, Leleu et al. 

(2011) reported the use of chitosan coatings to reduce bacterial contamination of egg 

contents resulting from trans-shell penetration by S. Enteritidis and other bacteria, such 

as Pseudomonas spp., E. coli, and L. monocytogenes.  

The antibacterial activity of soy protein edible films incorporated with oregano or 

thyme EOs was tested on fresh ground beef patties at 4 °C. Films with 5% of EOs 

significantly inhibited the growth of Pseudomonas spp. and coliform counts (Emiroglu 

et al., 2010). Increased concentrations of catechin in a film used during storage of 

sausages resulted in a decrease in E. coli O157:H7 and L. monocytogenes populations 

(Ku et al., 2008). Nisin-incorporated polymer films have shown to control the growth of 

undesirable bacteria, thereby extending the shelf-life and enhancing the microbial safety 

of meats (Cutter et al., 2001). The effectiveness of active films using antibacterial 

peptides of Bacillus licheniformis Me1 against L. monocytogenes in dairy products was 

recently demonstrated by Nithya et al. (2013). Their results showed that antimicrobial 

peptide from films diffused slowly into the foodmatrix (paneer) during the storage 

period, thereby extending the shelf-life of the product.  

The incorporation of antimicrobials in food packaging such as films and coatings could 

prevent surface growth in foods where a large portion of spoilage and contamination 

occurs. This approach also reduces the addition of larger quantities of antimicrobials 

that are usually incorporated into the bulk of the food. The gradual release of an 

antimicrobial compound from packaging films and coatings to the food surface could 

have an advantage over direct application of antimicrobials in food systems. Franssen et 

al., (2003) reported that food packaging prepared from edible antimicrobial coatings 

containing polypeptides, such as lysozyme, peroxides, and lactoferrins have been shown 

to extend the shelf-life of food products and make them safer for human consumption, 

in addition to providing physical protection for the food. These studies suggest that the 

food industry and consumers could use these films and coatings to control surface 

contamination by foodborne pathogenic microorganisms.  

1.5.3. Nanoparticles  

Nanotechnology has been developing rapidly as one of the most significant 

technological advances of our time. Nanoscience and nanotechnology have already been 

applied in various fields including medicine and the food industry (Sozer and Kokini, 
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2009). In the last few years, the application of nanotechnology to food safety has 

attracted the attention of many researchers due to its considerable potential for the 

development of antimicrobial delivery systems (Zou et al., 2012). This technology 

could be used to improve antimicrobial stability and could be applied directly or as a 

coating or packaging in different food systems to inhibit the growth of foodborne 

pathogens. Applications of nanotechnology to deliver antimicrobials have been reported 

in several studies. However, the study of nanoparticles as antimicrobials in food models 

is very limited due to the complexity of food components. Some of the recent studies 

that have been effectively applied in food models using natural compounds are 

discussed in this section.  

Zou et al. (2012) demonstrated the potential use of liposomal nanoparticles for 

enhancing the antimicrobial efficacy of nisin against L. monocytogenes and S. aureus in 

food systems. The antimicrobial activity of free nisin and nisin loaded solid lipid 

nanoparticles was also studied by Prombutara et al. (2012). The results of their study 

showed stable and longer antimicrobial activity of nisin loaded nanoparticles against L. 

monocytogenes DMST 2871 compared to free nisin, indicating that the nisin was 

released from nanoparticles throughout the storage period. In raw and cooked chicken 

meat systems, naturally occurring phenolic compounds delivered by nanoparticles were 

proven to be more effective against S. typhimurium and L. monocytogenes at much 

lower concentrations than when delivered individually without nanoparticles 

(Ravichandran et al., 2011). These findings demonstrate the potential for nanoparticles 

to be used for food safety applications such as the delivery of phenolic compounds for 

pathogen reduction.  

EOs are widely used natural compounds of plant origin. However, the poor water-

solubility of EOs makes it difficult to incorporate them into foods and reduces 

antimicrobial action (Weiss et al., 2009). Therefore, a higher concentration of EOs is 

required to achieve higher antimicrobial efficacy which could alter the sensory 

properties of foods. In a recent study, Shah et al., (2012a, 2012b) reported a 

nanodispersion method to overcome this challenge. A follow-up study by Shah et al. 

(2012b) reported improved antimicrobial activity of nanodispered eugenol against E. 

coli O157:H7 and L. monocytogenes in bovine milk. Thymol-containing nano-

dispersions are also effective against pathogens in food applications. Shah et al. (2012a) 

also investigated the efficacy of thymol dispersed in whey protein isolate and 

maltodextrin nanocapsules to inhibit E. coli O157:H7 and L. monocytogenes in apple 
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cider and 2% reduced fat milk. More recently, Xue et al. (2013) demonstrated the higher 

antilisterial activity of nanoemulsified thymol in milk compared to free thymol. In this 

study, authors reported the reduction of L. monocytogenes from ~5 log CFU/ml to 

below the detection limit in 6h by nanoemulsified thymol in skim and 2% fat milk. In 

full fat milk, the bacterial population was reduced to undetectable limits after 48 h of 

incubation at room temperature. In all tested food systems, nano-encapsulated EOs were 

more evenly distributed even at higher concentrations above the solubility limit than 

free EOs, thus resulting in higher antimicrobial efficacy.  

The application of antimicrobial compounds that have been widely applied to microbial 

control in food products and processing environments has met with several limitations 

including undesirable flavor, low solubility, and instability (Zou et al., 2012). The 

efficacy of such antimicrobial properties is exhausted due to interactions with food 

components (proteins and lipids), inactivation by enzymatic degradation or uneven 

distribution of antimicrobial compounds within the complex food systems (Prombutara 

et al., 2012). Nanoscale antimicrobial delivery systems could enhance the efficacy of 

antimicrobials by improving their solubility and dispersibility and thus improve the 

quality of food products. Nanotechnology is also being developed in the areas of food 

packaging. The incorporation of nanomaterials into food packaging has been shown to 

improve food quality in fresh fruits and vegetables, bakery products and confectionery 

by protecting food from moisture, lipids, gases, off-flavors and odors (Sozer and 

Kokini, 2009). Despite all of the potential applications, nanotechnology is still a new 

subject in the field of food safety. The specific properties and characteristics of 

nanomaterial used in food applications need to be carefully examined for any potential 

health risks.  

1.5.4 Perspectives and limitations in the application of essential oils and phenolic 
compounds in food 

A range of essential oil components have been accepted by the European Commission 

for their intended use as flavorings in food products and include linalool, thymol, 

eugenol, carvone, cinnamaldehyde, vanillin, carvacrol, citral, and limonene, all of which 

are considered to present no risk to the health of the consumer. The United States Food 

and Drug Administration (FDA) also classifies these substances as generally recognized 

as safe (GRAS). The crude essential oils classified as GRAS by FDA include amongst 
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others clove, oregano, thyme, nutmeg, basil, mustard, and cinnamon. There are 

regulatory limitations on the accepted daily intake of essential oils or essential oil 

components, so before they can be used in food products, a daily intake survey should 

be available for evaluation by FDA. 

Despite the demonstrated potential of essential oils and their constituents in vitro, their 

use as preservatives in food has been limited because high concentrations are needed to 

achieve sufficient antimicrobial activity. In many food products, the hydrophobic 

essential oil constituents are impaired by interactions with food matrix components, 

such as fat (Cava-Roda et al., 2010; Rattanachaikunsopon and Phumkhachorn, 2010), 

starch (Gutierrez et al., 2008), and proteins (Cerrutti and Alzamora, 1996; Kyung, 

2011). Furthermore, the antimicrobial potency of essential oil constituents also depends 

on pH (Juven et al., 1994), temperature (Rattanachaikunsopon and Phumkhachorn, 

2010), and the level of microbial contamination (Somolinos et al., 2010). Extrapolation 

of results from in vitro tests to food products is thus difficult at best, and a lower 

performance of the antimicrobial compound must be expected. For example, Cilantro 

oil had significant antibacterial activity at 0,018% in vitro, but when applied to a ham 

model, even 6% cilantro oil had no antimicrobial activity (Gill et al., 2002). Before 

being added to food products, it is therefore useful to investigate how essential oils or 

their constituents interact with food components in vitro. Food matrix interactions with 

the essential oils or their constituents can be investigated by measuring the growth of 

microrgansms in culture medium containing a range of concentrations of fat, protein, or 

starch as well the antimicrobial compound of interest. Such experiments have been 

performed using a so-called food model media (Gutierrez et al., 2009), and can be used 

to provide quick answers to which kind of food products the compound in question can 

be used in. 

The intense aroma of essential oils, even low concentrations, can cause negative 

organoleptic effects exceeding the threshold acceptable to consumers (Lv et al., 2011). 

Having to increase the concentration of essential oils to compensate for their 

interactions with food matrix components is therefore highly unfortunate and limits 

their application to spicy foods where the accpetable sensory threshold is relatively 

high. Different strategies can be used to circumvent this problem. One option is to use 

essential oils in active packaging rather than as an ingredient in the product itself. 

Essential oils can be encapsulated in polymers of edible and biodegradable coatings or 

sachets that provide a slow release to the food surface or to the headspace of packages 
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of, e.g., fruit, meat, and fish (Pelissari et al., 2009; Sànchez-Gonzàles et al., 2011). 

Sachets that release volatile essential oils into the headspace environment are simply 

placed within an enclosed food package (Ahvenainen, 2003). The advantage of 

incorporating volatile components of essential oils in films or edible coatings is that the 

diffusion rate of the agents away from the food product can be reduced, thereby 

maintaining the active compounds in the headspace or no the product surface for 

extended periods of time (Phillips and Laird, 2011; Sànchez-Gonzàles et al., 2011). A 

way to minimize organoleptic effects of essential oils into nanoemulsions. This 

approach increases the stability of volatatile components, protecting them from 

interacting with the food matrix, and increases the antimicrobial actvity due to increased 

passive cellular uptake (Donsí et al., 2011). 

Lowering the concentration of essential oils without compromising their antimicrobial 

activity can also be obtained by applying them in combination with other antimicrobial 

compounds that provide a synergistic effect. Synergies are known to occur for essential 

oil combinations, and it is therefore a field with countless opportunities to find potent 

antimicrobial blends, which may be the key to implementing essential oils in food 

preservation without simultaneous organoleptic effects.	 	
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CHAPTER 2 

OBJECTIVES 

PhD research aims to facilitate the development of green strategies for the control of 

undesirable microorganisms in food products. In the last two decades, much attention 

has been focused on “green strategies” that using microorganisms or their antimicrobial 

compounds can assure shelf-life extension and the control of more and more dangerous 

microorganisms such as Listeria monocytogenes. So far, several screening processes are 

developed in order to select the most appropriate effective strains to be used as 

protective cultures. Lactobacillus plantarum is surely the most versatile and widespread 

species and the production of 3-phenyllactic acid seem the most effective and 

interesting bio-preservative compounds. However, these screening programmes are 

labour intensive and a large number of strains isolated from different food matrices are 

assessed, thereby requiring more expensive investments in order to avoid unsatisfactory 

results. In addition, until now, several issues, such as the high minimal inhibitory 

concentration levels, the stability of antimicrobial compounds, the knowledge of action 

mode, as well as the relation between microbial growth and compound formation 

kinetics, still remain unclear. These findings call for a more simplified and useful 

approach when searching for new protective strains, taking into account that food stress 

conditions strongly influence the development of specific microbial strains. It would be 

extremely interesting to ascertain the effect of different environments on the selection of 

strains able to exert antimicrobial activities. Nevertheless, the correlation between strain 

resistance to stress conditions and the ability to produce antimicrobial effects was 

poorly investigated. Therefore, the present PhD research looks at the correlation 

between the Lb. plantarum strain isolated from hard environments and the ability to 

assure inhibitory action against undesirable microorganisms as well as the ability to 

produce a specific antimicrobial compound (3-phenyllactic acid). With the above-

mentioned aim, this research focuses on the antimicrobial activity expressed by Lb. 

plantarum isolated from five different sources. 
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In addition, the present PhD research focuses the attention on the effects of growth 

phase on the 3-phenyllactic acid (PLA) formation by Lb. plantarum. Moreover, the 

cultivation conditions that are able to assure the highest PLA levels are investigated. In 

fact, the enhancement and the improving of PLA formation represents an actual and 

crucial topic to assure a better PLA development in food industry. PLA formation could 

be linked to stress response mechanisms performed by Lb. plantarum. However, no 

information on relation between LAB stress response and PLA production is available 

in literature as well as very few information is reported on the relation between 

microbial growth phase and PLA formation. Even if the prevailing opinion in scientific 

community believes that PLA formation is related to LAB growth arrest has not been 

explained the linkage to metabolic pathways involved in stationary phase. Moreover, 

little information, if not any, can be also found on the optimal pH condition of PLA 

metabolic pathway in Lactobacillus species.  

Finally, the anti-Listeria mechanism of 3-phenyllactic acid was investigated. For this 

purpose, the antimicrobial effect of PLA is evaluated to different pH and, hence, the 

PLA anti-Listeria is compared with those expressed by the lactic acid and the better 

studied hydroxybenzoic and hydroxycinnamic acids. 
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CHAPTER 3 

ANTIMICROBIAL ACTIVITY OF LACTOBACILLUS 

PLANTARUM STRAINS ISOLATED FROM DIFFERENT 

ENVIRONMENTS 

3.1 Introduction  

In the last two decades, great attention has been focused on the food biopreservation 

(Stiles, 1996; Rodgers, 2001; Corsetti et al., 2008; Saris, 2014), a “bio-strategy” that 

assure the extension of shelf-life and food safety through the use of microorganisms or 

their antimicrobial compounds (Lucke, 2000). Lactic acid bacteria (LAB) should be 

considered as the ideal choice for application as protective cultures in food products 

(Maragkoudakis et al., 2009). Their antagonism refers to inhibition through competition 

for nutrients or to production of one or more antimicrobial active metabolites (Ray and 

Bhunia, 2008). The long tradition of using in food substantiated with scientific 

understanding on their antimicrobial and enhanced health effects suggest them as 

perfect alternatives to chemical preservatives. The use of LAB for their antimicrobial 

properties is well known and has been extensively studied (Leroy and De Vuyst, 2004; 

Corsetti et al., 2014; Sorrentino et al., 2013). LAB have been reported to produce wide 

range of microbial growth inhibiting substances. Selected LAB strains or the bioactive 

compounds purified from the culture medium can be exploited as efficient alternatives 

for food preservation. Lactobacillus plantarum is the most versatile and widespread 

species among LAB.  In fact, it’s found in different food-matrices and environments 

ranging from vegetables, dairy, and meat products, to the human gastrointestinal (GI) 

tract. Some strains of Lb. plantarum are known for their ability to produce several 

natural antimicrobial substances, such as bacteriocins, BLIS, phenyllactic acid, organic 

acids and hydrogen peroxide. The versatility of Lb. plantarum is linked to its natural 

genomic architecture (Siezen et al., 2011) and is at the root of its success in the 
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industrial applications not only as starter culture but also as bio-protective agent 

(Sorrentino et al., 2013, Sakaridis et al., 2012). In this last field, the in vitro screening of 

bacterial protective properties is labour intensive and a large number of strains isolated 

from different food matrices is required. Lactobacillus strains isolated from different 

sources as plant material, food products or human and animal can be screened for their 

antimicrobial activity and it is very important to screen a large number of strains in 

easy, rapid and reliable way. A simplified approach may be useful in the search of new 

protective strains, taking into account that food stress conditions strongly influence the 

development of specific microbial strains (Ricciardi et al., 2012; Filannino et al., 2014; 

Heunis et al., 2014). Therefore, it would be very interesting to ascertain the effect of 

different environments on the selection of strains able to exert antimicrobial activities. 

Nevertheless, the correlation between strain resistance to stress conditions and the 

ability to produce antimicrobial effects was poorly investigated. The present research 

seeks more in depth knowledge of the relation between antimicrobial properties of Lb. 

plantarum strains and their source of isolation. With the above-mentioned aim, the 

antimicrobial activity expressed by Lb. plantarum isolated from five different sources 

was evaluated and the nature of the compounds determining the inhibition was 

investigated. 

3.2 Materials and methods 

3.2.1 Producer and indicator strains  

One hundred and ten Lb. plantarum strains (producers), belonging to the 

Department of Agriculture Environment and Food (DIAAA), were isolated from 

different fermented foods (sourdoughs, wines, cheese, fermented sausages and 

honey). The main features of food matrices, as well as the number of Lb. plantarum 

strains isolated from each source, are reported in Table 3.1.  
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Table 3.1. Producer strains and food matrices 

 

All the strains were tested for their antimicrobial activity against 33 undesirable 

microbial strains (indicators), listed in Table 3.2. 

 
 

Table 3.2. Indicator strains 

 
 

Number 
of strains 

Short IS Strains Isolation source References

pH aw alcohol (%vol) NaCl %

17 C_

C_11; C_12; C_21; C_25; C_29-
30; C_35-36; C_43; C_54; C_56; 
C_63; C_66; C_68; C_71; C_74; 

C_78

cheese (Caciocavallo)
5.55 - 
5.75

0.96-0.97 n.d.
1.9 - 
2.2 

Coppola et al., 
2003

13 FS_ 
FS_8; FS_14; FS_22; FS_24; 

FS_28; FS_32; FS_36; FS_39; 
fermented sausage 

(Soppressata)
5.75 - 
5.80

0.94 - 
0.97

n.d.
2.8 - 
3.1

Coppola et al., 
1998

9 FS_ 
FS_CV11; FS_CV21; FS_CV25; 

FS_CV28; FS_CV30; FS_IV2; 
FS_IV29; FS_IV38; FS_IV87

fermented sausage 
(Ventricina)

5.15 - 
5.18

0.93 - 
0.94

n. d. 
3.0 - 3. 

5

Tremonte et al., 
2007; Pannella, 

2010

5 W_ W_A1-A5 red wine (Aglianico) 3.71 - 
3.88

n.d. 13.6 n.d. Testa et al., 2014

12 W_ W_M2; W_M5; W_M11-12; 
W_M14; W_M16-20; W_M23; 

red wine 
(Montepulciano)

3.60 - 
3.80

n.d. 11.8 - 13.5 n.d. Testa et al., 2014

2 W_ W_P2; W_P5 red wine (Piedirosso) 3.62 - 
3.65

n.d. 12.4 - 12.8 n.d. Testa et al., 2014

3 W_ W_P16; W_P18; W_P19 red wine (Pentro 
d'Isernia)

3.66 - 
3.77

n.d. 11.3 - 11.6 n.d. Testa  et al., 2014

3 W_ W_R1; W_R2; W_R4
red wine (Rosso 

Molise)
3.62 n.d. 12.5 n.d. Testa et al., 2014

5 W_ W_T1; W_T4; W_T13-14; W_T17 red wine (Tintilia) 3.66 n.d. 14 n.d. Testa et al., 2014

6 W_ W_TA1; W_TA4-8 red wine (Taurasi) 3.68 n.d. 14.2 n.d. Testa et al., 2014
4 H_ H_BB1-4 honey (bee bread) 3.5 - 3.8 0.57 n.d. n.d. DiAAA collection

6 S_ S_9-10; S_20; S_24; S_29; S_33 sourdough from 
Campania Region

3.7 - 4.0 0.98 n.d. 0.8 - 
1.2

Pannella, 2010

18 S_ 
S_B1; S_D2; S_D3; S_L4; S_M1; 

S_M2; S_M3; S_M4; S_N1-N2; 
S_Q1-Q4; S_R1-R4

sourdough from Molise 
Region

3.6 - 4.1
0.97 - 
0.98

n.d. 
0.7 - 
1.1

Reale et al., 2011

7 S_ 
S_J14; S_J22; S_J35; S_SEP11; 

S_SEP16; S_W1-W2
sourdough from Molise 

Region
3.6 - 4.2 0.98 n.d. 

0.9 - 
1.0

Reale et al., 2005

Features of isolation source

Species Strains Origin Collection Cultivation References 
Lactobacillus brevis A4, B2 sourdough  DIAAA MRS broth, 28 °C REALE et al. 2011 
Lb. casei  SERB108, SERB69 wine DIAAA MRS broth, 28 °C SORRENTINO 2010 
Listeria innocua  ATCC 33090 - DSMZ BHI, 37 °C  
Brochotrix thermosphacta  DSM 20171T - DSMZ Corin broth, 28 °C  
Clostridium sporogenes DSM 795T - DSMZ RCM, 28 °C  
Pseudomonas fluorescens DSM 50090T - DSMZ Nutrient broth, 28 °C  
P. fragi  DSM 3456T - DSMZ Nutrient broth, 28 °C  
P. putida DSM 291T - DSMZ Nutrient broth, 28 °C  
Acetobacter aceti DSM 3508T - DSMZ MYP broth, 28 °C  
A. aceti 111, 111E, ASRT, ASC winegar DIAAA MYP broth, 28 °C PANNELLA 2010 
A. pasteurianus DSM 3509T - DSMZ MYP broth, 28 °C  
A. tropicalis DSM 15551T - DSMZ MYP broth, 28 °C  
Gluconacetobacter hansenii DSM 5602T - DSMZ MYP broth, 28 °C  

Ga. hansenii 194BV, ASAC4, ASR, 
ARLA, AC1, 141A wine DIAAA MYP broth, 28 °C PANNELLA 2010 

Ga. hansenii 203B1 fruit DIAAA MYP broth, 28 °C PANNELLA 2010 
Ga. liquefaciens DSM 5003T - DSMZ MYP broth, 28 °C  
Gluconobacter oxydans 146B, AC6 wine DSMZ MYP broth, 28 °C  
Penicillium spp. T1, T2, T3, T4, T5 black truffle DIAAA MYP broth, 28 °C SORRENTINO et al. 2013 
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Producer and indicator strains were propagated twice for 16 h at 28°C in proper 

media before their use. 

3.2.2 Detection of antimicrobial activity exerted by growing cells 

The spot-on-the-lawn technique was performed against each indicator to detect growing 

cells (GC) of producers having inhibitory properties. The method used was described by 

Moraes et al., (2010), and the presence of a distinguishable inhibition zone around the 

spots, evaluated after 24 h incubation at 28°C, was considered as positive antagonistic 

effect. The degree of inhibition was defined as low (5 mm < Æ <15 mm), moderate (15 

mm ≤ Æ < 25 mm), strong (25 mm ≤ Æ < 35 mm), and very strong (35 mm ≤ Æ < 45 

mm). A calibrated-densitometer (GS-800, Bio-Rad, Hermles CA, USA) was used 

for imaging acquisition and Adobe Photoshop CS6 Extended software was used for 

the measurement of clearing zones. Each experiment was carried out in triplicate. 

3.2.3 Detection of antimicrobial activity exerted by cell free supernatants 

The antimicrobial activity of cell free supernatants (CFS) was detected by the agar well 

diffusion assay described by Moraes et al. (2010), following the modifications of 

Tremonte et al. (2007; 2010). After 24-48 h of incubation at 28°C, dishes were 

investigated for zones of inhibition. Inhibition halos were normalized using the 

following formula: 

 

Inhibition Score (IS) = 	"#$%&'&(	#)*#+#'#,)	*$-,	(%%)	
"#$%&'&(	0&--	(%%)

 

 

On this basis, the antimicrobial effect was considered as low (1 < IS < 3), moderate (3 ≤ 

IS < 5), strong (5 ≤ IS < 7), and very strong (7 ≤ IS < 9). 

Dishes inoculated with each indicator strain and without CFS were used as control. To 

detect the presence of acids or proteins with inhibitory effect produced by Lb. 

plantarum, the agar-well diffusion assay was also performed including two 

additional tests: 

1) nCFS: filter-sterilized CFS of each Lb. plantarum strain, neutralised with 1N 

NaOH (Sigma-Aldrich, St. Louis, MO) up to pH 7; 

2) pCFS: filter-sterilized CFS of each Lb. plantarum strain added with α-
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chymotrypsin, proteinase K, and trypsin (Moraes et al., 2010) to a final 

concentration of 1 mg/mL each. All proteases were supplied by Sigma-Aldrich. 

Each experiment was carried out in triplicate. 

3.2.4 Effect of pH influence of CFS in the inhibitory process  

According to the results of the agar well diffusion assay, the CFS from 23 producer 

strains and 3 indicator strains (Brochothrix thermosphacta DSM 20171T, Pseudomonas 

fluorescens DSMZ 50009T and Listeria innocua DSM 20649T) were used. In detail, 12 

CFS were screened vs Ps. fluorescens, 20 vs B. thermosphacta and 7 vs L. innocua 

(some CFS were used in all the 3 tests, other in only 1 test). For this purpose, overnight 

cultures of each indicator strain were centrifuged (8000 rpm for 15 min at 4°C), the 

pellet was washed with PBS and then suspended in Muller-Hinton (MH) medium. The 

experimental test was set up by adding 3 mL of each CFS to 3 mL of MH containing the 

indicator strain. To establish the role of low pH (characterizing those CFS with 

inhibitory activity) on the inhibitory process, the CFS, having a proper pH value, was 

also neutralised (CFSn) to pH 6.5 with NaOH 1N. As a control, a test was performed by 

adding 3 mL of MRS (the medium used for the growth of producers) to 3 mL of 

inoculated MH (the medium used for the growth of indicators). After incubation for 50 

h at the proper temperatures allowing the growth of the indicators (28°C for B. 

thermosphacta and Ps. fluorescens and 37°C for L. innocua), the absorbance (OD) at 

620 nm was determined with a microplate reader (Multiskan FC, Thermo Scientific). 

The inhibitory activity of CFS or of CFSn on indicator strains was expressed by the 

following ratios: 

 

rCFS =
𝑂𝐷	𝑡9:

;<= − 𝑂𝐷	𝑡:
;<=

𝑂𝐷𝑡9:
;?@AB?C − 𝑂𝐷𝑡:

;?@AB?C 	; 	rCFSn =
𝑂𝐷	𝑡9:

;<=F − 𝑂𝐷	𝑡:
;<=F

𝑂𝐷𝑡9:
;?@AB?C − 𝑂𝐷𝑡:

;?@AB?C  

 

where 𝑂𝐷	𝑡9:
;<=

 and 𝑂𝐷	𝑡:
;<=  represent the absorbance values of indicator cultures 

added with CFS at 50 h and at 0 h of incubation, respectively, and 

𝑂𝐷	𝑡9:
;<=F 	and	𝑂𝐷	𝑡:

;<=F  represent the absorbance values of indicator cultures added 

with CFSn at 50 h and at 0 h of incubation, respectively. 

The following ranges were arbitrarily considered to define the inhibitory activity of both 
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CFS and CFSn: 0.0-0.2, very strong; 0.2-0.4, strong; 0.4-0.6, moderate; 0.6-0.8, low; 

0.8-1.0, very low-absent. 

3.2.5 Assessment of the survival of indicators in different conditions  

On the basis of previous results, the assays were performed using Lb. plantarum 

H_BB1 as producer, and B. thermosphacta, Ps. fluorescens and L. innocua as 

indicators. 

Each test was performed using CFS, CFSn (prepared as above), or MRS acidified 

(MRS-AL) with lactic acid (88-92% extra pure, Riedel-de Haen, USA) at the proper pH 

value of each CFS. Five mL of each medium were then added to 5 mL of MH 

containing each indicator strain. As control, 5 mL of MRS were added to 5 mL of each 

indicator in MH. Bacterial suspensions were incubated at 28-37°C for 48 h, and the 

survival of each indicator strain was assessed by plate counts in proper media at 4 h 

regular time intervals. Experimental data were then modelled with the software DMFit 

(Web Edition) in order to construct models of the kinetic parameters. 

The concentration of total lactic acid in the CFS from producer strains was determined 

by enzymatic assay (Megazyme Kit), following the manufacturer’s procedure. 

3.2.6 Screening of phenyllactic acid (PLA)-producing Lb. plantarum strains   

The content of PLA in CFS was determined by HPLC analysis according to Armaforte 

et al. (2006). The assay was performed using CFS of ten Lb. plantarum (W_TA8, 

W_T4, W_TA5, H_BB1, H_BB2, H_BB3, H_BB4, S_20, FS_IV29, C_56), which 

were showed different intensity of antimicrobial activity in previous assays.  

In order to obtain CFS, LAB cultures were propagated twice for 24 h at 28 °C in 10 mL 

of MRS broth. An aliquot (200 µL) of activated cultures were then inoculated into fresh 

sterile MRS broth (20 mL) and allowed to grow at 28 °C without shaking for 24 h. 

Finally, cells were removed by centrifugation (8000 rpm for 15 min at 4°C; Centrifuge 

5415 R; Eppendorf, Germany), and the CFS obtained were filter-sterilized (Filter Unit 

Red rim FP 30⁄0.2 CA-S, 0.22µm pore size; Schleider & Schuell, Germany).  

A Varian ProStar 230 instrument (Mulgrave, AUS) supplied with UV–VIS detector set 

to 210 nm and a column Kinetex 5u C18 100A (150 mm x 4.6 mm) (Phenomenex, 

USA) were used for determination of PLA. The mobile phases were acetonitrile (eluent 
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A) and 0.005 N H2SO4 (eluent B) at the following gradient (A/B): 0-3 min 25/75%; 4-

6min 50/50%; 8-12 min 100/0 %. PLA concentration was quantified through a 

corresponding standard (Sigma-Aldrich Co, St. Louis, MO, USA) calibration curve 

derived from a plot of area counts versus concentration. Analytical assay was carried 

out in three replicate. 

3.2.7 Statistical analysis  

Mean values and standard deviations were determined with the OriginPro 7.5 

software (OriginLab Corporation, Northampton, MA, USA). Calculation of 

similarities in the profiles of antimicrobial activity of producers, as well as of 

antimicrobial susceptibility of indicators, were obtained with the software Genesis 

through a hierarchical cluster analysis based on the Euclidean distance metric and 

the Unweighted Pair Group Method using Arithmetic Average (UPGMA) clustering 

algorithm. Data were shown in a pseudo-heat map with producer strains reported in the 

rows and indicator strains in the columns. 
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3.3 Results and Discussion 

3.3.1 Antimicrobial activity expressed by Lb. plantarum growing cell 

The spot-on-the-lawn test evidenced different effects of Lb. plantarum growing cells 

(GC) vs undesirable microorganisms. As general consideration, the antimicrobial 

activity expressed by Lb. plantarum was strain-dependent, confirming what reported by 

other Authors (Engelhardt et al., 2015). In fact, out of 110 tested GC, 42 produced a 

strong or a strong/moderate inhibitory activity against all the assayed Gram-negative 

bacteria, except for A. pasteurianus type strain. Thirty-six of them were isolated from 

wines, 4 from honey and only 2 from sourdoughs. The remaining 29 GC of strains 

isolated from sourdough and those isolated from fermented sausages showed a 

moderate or a low inhibitory activity vs Gram-negative bacteria. GC of Lb. plantarum 

strains isolated from cheese had no or low antimicrobial activity. Among Gram negative 

bacteria, acetic acid bacteria (except A. pasteurianus type strain) showed the highest 

sensitivity to the action of Lb. plantarum GC.  

The assay vs Gram-positive bacteria showed 20 GC (16 from wine- and 4 from honey- 

strains) with a strong inhibitory action. Other 57 GC (31 from sourdough strains, 21 

from wine strains and 5 from fermented sausage strains) produced a strong inhibition vs 

C. sporogenes and B. thermosphacta type strains, while 33 GC (16 from fermented 

sausages and 17 from cheese) had no or low inhibition. Generally, B. thermosphacta 

and C. sporogenes showed the highest sensitivity, while a moderate inhibition vs L. 

innocua type strain was observed. 

Results obtained vs moulds evidenced that the majority of Lb. plantarum GC (82%) 

were unable to inhibit Penicillium spp. Only 9 GC (5 from wine- and 4 from honey- 

strains) showed a very strong inhibitory activity, while 10 GC (9 from wine- and 1 from 

sourdough- strains) caused a moderate or a low inhibition.  

3.3.2.1 Antimicrobial activity expressed by Lb. plantarum cell free supernatants 
against Gram-negative strains 

The agar well diffusion assay was used to evaluate the activity of Lb. plantarum cell 

free supernatants (CFS), as well as to assess the involvement of proteinaceous and/or 

acid compounds in the inhibitory process (nCFS and pCFS). Overall, CFS exerted a 

lower antimicrobial activity on both bacteria and moulds than that exhibited by growing 
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cells (Figure 3.1). Results also highlighted that a considerable number of CFS exerted a 

remarkable antimicrobial activity vs several indicator strains. In detail, producer strains 

were grouped into 6 clusters according to the inhibitory action expressed by their CFS 

against Gram-negative strains (Figure 3.1 A).  

Cluster A grouped 5 CFS, 3 from wine- and 2 from honey- strains, producing a strong 

inhibitory activity against all the assayed Gram-negative bacteria, with the exception of 

Acetobacter pasteurianus type strain. Cluster B grouped 21 CFS - 19 from wine- and 2 

from honey- strains - showing a strong or a moderate antimicrobial activity vs numerous 

indicator strains and no action vs A. pasteurianus. Eleven CFS (9 from wine- and 2 

from sourdough-strains), grouped in cluster C, strongly inhibited A. aceti and A. 

tropicalis type strains, exerted a moderate inhibition against Gluconoacetobacter 

hansenii strains, and showed a low action vs the other assayed indicators. Forty CFS, 

grouped in cluster D (5 from wine-, 6 from fermented sausage- and 29 from sourdough-

strains), showed a strong or a moderate inhibition vs A. aceti and A. tropicalis type 

strains, and a low inhibition vs all the other bacteria grouped in cluster 1, 2 and 3. The 

remaining 33 CFS, all resulting from cheese- and fermented sausage- strains, were 

grouped in clusters E and F and were characterized by a moderate, low, or no inhibitory 

action against all the assayed Gram-negative bacteria. 
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Figure 3.1A. Heat map, using Hierarchical clustering and Euclidean distance (Software Genesis), 
obtained by the analysis of results from the agar well diffusion assay conducted on 110 Lb. plantarum 
cell free supernatants (CFS) vs Gram-negative strains. 
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2.3.2.2 Antimicrobial activity expressed by Lb. plantarum cell free supernatants 
against Gram-positive strains 

The results of the CFS activity against Gram-positive bacteria are reported in Figure 3.1 

B.  

 
Figure 3.1B. Heat map, using Hierarchical clustering and Euclidean distance (Software Genesis), 
obtained by the analysis of results from the agar well diffusion assay conducted on 110 Lb. plantarum 
cell free supernatants (CFS) vs Gram-positive strains. 
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Producer strains were grouped into 4 clusters. Cluster A was composed by 6 CFS (4 

from wines- and 2from honey- strains) showing the largest spectrum of inhibition and 

the highest inhibitory activity. Twenty-seven CFS (25 from wines- and 2from honey- 

strains) were grouped in cluster B and caused a strong or a very strong inhibition 

against Listeria innocua, Clostridium sporogenes and Brochothrix thermosphacta. 

Cluster C collected 48 CFS of Lb. plantarum strains isolated from all the different 

investigated matrices, and having a lower spectrum of antagonism than that showed by 

CFS from clusters A and B. This datum was particularly marked vs B. thermosphacta 

and C. sporogenes type strains. The lowest spectrum and intensity of antimicrobial 

activity was detected for 29 CFS belonging to cluster D. This last cluster grouped the 

CFS of strains isolated only from fermented sausages and cheese.  

3.3.2.3 Antimicrobial activity expressed by Lb. plantarum cell free supernatants 
against moulds 

The behaviour of indicator CFS vs moulds is reported in Figure 3.1C. 

As general consideration, tested moulds showed the lowest sensitivity to the CFS than 

that highlighted vs both Gram-positive and Gram-negative bacteria. Only 8 CFS, 4 from 

wine- and 4 from honey-strains, produced a strong inhibitory activity against 

Penicillium spp. The CFS of the remaining 102 strains exhibited a moderate, a low or 

no inhibitory activity.  
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Figure 3.1C. Heat map, using Hierarchical clustering and Euclidean distance (Software Genesis), 
obtained by the analysis of results from the agar well diffusion assay conducted on 110 Lb. plantarum 
cell free supernatants (CFS) vs moulds. 
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antimicrobial activity of almost all assayed Lb. plantarum strains was mainly due to the 

low pH of supernatants. 

However, 9 nCFS of Lb. plantarum strains, five isolated from wine and four isolated 

from honey, evidenced the ability to inhibit all (producer strains W_TA8 and H_BB1) 

or more (producer strains W_T4, W_TA1, W_T1, W_TA5, H_BB2, H_BB3 and 

H_BB4) (Figure 3.2).  

 

 
Figure 3.2. Lb. plantarum nCFS and pCFS vs indicators 

 

Remarkably, the same antimicrobial activity persisted also when the CFS was exposed 

to proteinases (pCFS). 

3.3.3 Influence of pH on CFS inhibitory action assayed in culture-broth 

On the basis of these last results combined with those from heat map analyses, 21 

producer strains were selected to evaluate in culture-broth the inhibition effects 

expressed by cell free supernatant (CFS) and by neutralized cell free supernatant against 

strains belonging to Ps. fluorescens, B. thermosphacta and L. innocua.  

Data reported in Figure 3.3 highlights the inhibitory action exerted by 12 CFS or CFSn 

vs Ps. fluorescens. Results evidenced that the CFS and the CFSn from three strains 

(W_T13, W_TA5 and W_T1) produced a low inhibition action against Ps. fluorescens.  

While CFS from the other strains showed a very strong (W_TA1, W_T4, W_TA8 and 

H_BB1), a strong (H_BB2) or a moderate (H_BB3, H_BB4, W_TA6; W_TA4) 

inhibitory activity. However, also in these cases the inhibition appeared generally lower 

(low or very low) when the CFSn was used, evidencing that the inhibitory activity for 

the majority of the strains was essentially due to the low pH of the CFS.  
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Figure 3.3. Inhibitory activity exerted by 12 CFS and 12 CFSn vs Ps. fluorescens. 
rCFS and rCFSn are ratios calculated through the formula reported in the section of 
Materials and Methods. Ranges: 0.0-0.2, very strong inhibition; 0.2-0.4, strong 
inhibition; 0.4-0.6, moderate inhibition; 0.6-0.8, low inhibition; 0.8-1.0, very low-
absent inhibition. 

 

Only two strains (W_TA8 and H_BB1) produced a relevant inhibitory effect (moderate) 

also when the neutralized CFS (CFSn) were used. 

The results concerning the inhibitory effect of 20 CFS and 20 CFSn vs B. 

thermosphacta are reported in Figure 3.4. 

CFSs from 15 Lb. plantarum (W_A1, W_M26, W_TA4, H_BB4, H_BB3, H_BB2, 

W_T1, W_TA1, W_T4, H_BB1, W_TA8, W_TA6, W_M16, W_T17 and W_A5) 

evidenced a very strong antimicrobial activity vs B. thermosphacta; however, the effect 

was different when the CFSn was used. In detail, the activity expressed by 8 CFSn 

(W_T4, H_BB4, W_T1, H_BB1, W_TA8, H_BB3, W_TA1, H_BB2) was slightly 

lower than that produced by the corresponding CFS, and they were considered as strong 

inhibitors.  

The inhibitory effect of the remaining 7 CFSn was strongly lower than that previously 

described. In fact, a moderate inhibition was produced by CFSn from 4 strains 

(W_TA4, W_M26, W_M16 and W_TA6) and a low inhibition was evidenced by other 
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CFSn from 3 strains (W_A1, W_A5 and W_T17). In this case, it can be assumed that 

the inhibitory effect of CFS was mainly due to the low pH. 

 

 
Figure 3.4. Inhibitory activity exerted by 20 CFS and 20 CFSn vs B. thermosphacta. 
rCFS and rCFSn are ratios calculated through the formula reported in the section of 
Materials and Methods. Ranges: 0.0-0.2, very strong inhibition; 0.2-0.4, strong 
inhibition; 0.4-0.6, moderate inhibition; 0.6-0.8, low inhibition; 0.8-1.0, very low-
absent inhibition. 

 

The antimicrobial activity expressed by the remaining 5 strains was of lesser interest. In 

detail, 2 CFS (W_TA7 and W_A4) showed a strong inhibitory activity. The 

corresponding CFSn showed a moderate (W_TA7) or low (W_A4) inhibition. Other 3 

CFS and CFSn (W_M12, W_TA5 and W_A3) showed a low inhibition. 

Finally, the inhibitory effect of CFS and CFSn from 7 strains (H_BB1, H_BB2, 

HBB_3, H_BB4, W_TA8, W_TA5, W_T4) vs L. innocua is reported in Figure 3.5. The 

results evidenced that the effects of CFSn was substantial similar to that expressed by 

the CFS.  In fact, a low inhibition was evidenced by both CFS and CFSn from the strain 

WTA5. CFS from W_TA8 and W_T4 showed a strong and a moderate inhibition action 

when used as CFS and CSFn respectively. Likewise, the inhibitory action (strong) 

exhibited from CFSn from H_BB2, H_BB3, H_BB4 was only slightly lower than that 

(very strong) produced by the correspondent CFS. Lastly, the effect produced by the 
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strain HBB_1 was very strong when used as both CFS and CFSn. 

The results achieved by the evaluation of the antimicrobial effects expressed by CFS 

and the correspondent neutralized CFS support the hypothesis that the inhibition was 

due to the production of extracellular compounds having neither acid (such as lactic 

acid, that represent the principal extracellular metabolites produced by Lb. plantarum) 

nor proteinaceous nature. Other Autors (Garofalo et al., 2012) stated that the 

antimicrobial activity of same Lactobacillus strains, including strains of Lb. plantarum, 

was due to the combination of lactic acid and one or more hitherto unknown, non-

proteinaceous compounds which are active only at low pH. The results obtained in our 

study evidenced that the inhibitory effect produced by certain Lb. plantarum strains also 

remains at higher pH values.  

 

 
Figure 3.5. Inhibitory activity exerted by 2 CFS and 2 CFSn vs L. innocua. rCFS and 
rCFSn are ratios calculated through the formula reported in the section of Materials 
and Methods. Ranges: 0.0-0.2, very strong inhibition; 0.2-0.4, strong inhibition; 0.4-
0.6, moderate inhibition; 0.6-0.8, low inhibition; 0.8-1.0, very low-absent inhibition. 

 

Therefore, the comparison between the inhibitory effects produced by CFS and lactic 

acid could be providing more information on the antimicrobial compound. Moreover, in 
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resistant strains among the indicators should be chosen. L. innocua strains are well 

known for their acid stress resistance. In fact, L. innocua is frequently found in several 

foodstuffs (Kovacevic et al., 2012; Jami et al., 2014; Ebner et al., 2015; Melo et 

al., 2015) also in those characterized by pH values lower than 5.0 (CAC, 2009). Acid 

stress response in Listeria species has been the subject of several investigations, which 

documented the induction of a number of molecular mechanisms involving the F1F0-

ATPase complex, the arginine deaminase (ADI), the glutamate decarboxylase (GAD) 

pathways (Cotter et al., 2001; Ryan et al., 2009; Karatzas et al., 2012) as well as a new 

type of universal stress protein (Tremonte et al. 2016). 

3.3.4 Effect of Lb. plantarum CFS and lactic acid on L. innocua behaviour   

On the basis of the previous results the strain H_BB1 was choice as producer. Figure 

3.6 shows the survival of L. innocua in the presence of the CFS and the CFSn from Lb. 

plantarum H_BB1. 

As expected, the behaviour of L. innocua showed an increase in the control batch with a 

maximum specific growth rate of 0.04 h-1 (Table 3.3). While, a strong reduction was 

observed when the CFS or the lactic acid was added to the culture-broth. However 

significant differences were observed also between these two last batches.  

 

 
Figure 3.6 Survival of L. innocua in presence of cell free supernatant 
(CFS) from Lb. plantarum H_BB1, in presence of MRS acidified with 

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20 25 30 35 40 45 50

Lo
g 

C
FU

/m
L

hours

Control CFS MRS-LA



	

129	

	

lactic acid (MRS-LA) and in presence of MRS (control). Symbols 
represent the experimental date and the curves represent the D-model. 

 

The CFS from Lb. plantarum H_BB1 produced a reduction of L. innocua of 

approximately 4.0 Log CFU/mL already after 4 hours of incubation with a specific 

death rate of -0.93 h-1. Whereas, in presence of lactic acid (batch MRS-LA), L. innocua 

undergone a reduction of 3.5 Log CFU/mL only after 24 hours of incubation showing 

very low values of maximum specific death rate (µmax of about -0.14 h-1). In fact, this 

value was significantly lower than that recorded in the presence of CFS (-0.93 h-1). This 

finding evidenced that the inhibitory effect of CFS from Lb. plantarum H_BB1 against 

L. innocua was due to the synergic presence of more than one inhibitory substance. In 

fact, the lactic acid cannot be the only compound with growth inhibition properties 

against L. innocua, very likely showing synergism with other compounds from LAB 

metabolism. 

 
Table 3.3 Survival kinetic parameters of L. innocua in presence CFS from Lb. plantarum H_BB1, 
in presence of MRS acidified with lactic acid (MRS-LA) and in presence of MRS (control). 

 
 

Lactic acid in the batches CFS and MRS-LA was determined. Even if the CFS and the 

MRS-LA were characterized by the same pH values, the results evidenced that the 

concentration of lactic was higher than the batch MRS-LA. Therefore, in addition to 

lactic acid the CFS might possess also another compound of acid nature. Phenyllactic 

acid (PLA) is a phenolic acid, likely produced from phenylpyruvate via the action of 

lactate dehydrogenase. In detail, PLA is a by-product of phenylalanine metabolism in 

LAB, where the first step involves its transamination by a non-specific 

aminotransferase. The α-amino group is then transferred to a suitable acceptor such as 

α- ketoglutarate, yielding phenyl pyruvic acid (PPA) and the corresponding amino acid. 

Finally, PPA can then be reduced by hydroxyl acid dehydrogenases to PLA (Mu et al., 

2012). In recent years, great attention was focused on this metabolite due to its 

antimicrobial properties. In fact, PLA is known as an antimicrobial compound with a 

wide activity spectrum against yeast such as Candida spp., Rhodotorula spp., and 

y_0 y_end µ max R-square SE of Fit

(Log CFU/mL) (Log CFU/mL) (h -1 )

Control 7.6 ± 0.1a 9.1 ± 0.2a 0.04 ± 0.01a 0.968 0.099

CFS 7.6 ± 0.1a 3.6 ± 0.1b -0.93 ± 0.06b 0.993 0.121

MRS-LA 7.5 ± 0.1a 4.0 ± 0.1b -0.14 ± 0.01c 0.998 0.077  
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against moulds including Aspergillus and Penicillium species (Valerio et al., 2004; 

Prema et al., 2010). In addition, several Authors has been showed that PLA was able to 

inhibit both Gram-positive and Gram-negative bacteria (Ning et al., 2017). 

3.3.5 Screening of phenyllactic acid (PLA)-producing Lb. plantarum strains  

Data reported in Table 3.4 evidenced that in the cells free supernatant from all the 

assayed strains (able to produce antimicrobial effects) significant levels of PLA was 

found.  Moreover, the results highlighted significant differences among the assayed 

strains showing that PLA production is strain-dependent. This finding is in accordance 

with those exposed by author Authors (Ryan et al., 2009). However, for the first time, a 

relation between PLA-producing strains and isolation environment of the strains. 

Strains H_BB1 and H_BB2 have recorded the highest PLA-producing ability reaching 

levels of about 129.93 and 128.21 mg/mL respectively, in the cell-free supernatant after 

24 h incubation.  

 
Table 3.4 PLA production Lb. plantarum strains 

 
 

Lb. plantarum strains Isolation source PLA (mg/mL) pH References
W_TA8 red wine (Taurasi) 99.32±0.02a 3.68 Testa et al., 2014 
W_T4 red wine (Tintilia) 98.88±0.02a 3.66 Testa et al., 2014 

W_TA5 red wine (Taurasi) 90.69±0.01b 3.68 Testa et al., 2014 
H_BB1 honey (bee bread) 129.93±0.01c 3.50 DiAAA collection
H_BB2 honey (bee bread) 128.21±0.01c 3.53 DiAAA collection
H_BB3 honey (bee bread) 112.94±0.02d 3.62 DiAAA collection
H_BB4 honey (bee bread) 116.66±0.02d 3.57 DiAAA collection

FS_IV29
fermented sausage 

(Ventricina)
49.84±0.03c 5.15

Tremonte et al., 2007; 
Pannella, 2010 

C_56 cheese (Caciocavallo) 31.67±0.02f 5.55 Coppola et al., 2003

S_20
sourdough from 

Campania Region
88.41±0.03g 4.00 Pannella, 2010 
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Figure 3.7. Correlation between PLA product (mg/mL) and pH values 

of source (food matrices) of isolation 
 

The analysis of these data clearly suggests the existence of a relation (Figure 3.7) 

between the antimicrobial properties expressed by assayed strains and their isolation 

source depending on the specific physic-chemical features of each isolation source (see 

Table 3.1).  

In fact, those environments characterised by harsh conditions (high ethanol levels, low 

pH and high sugar levels), such as wines and honey, harboured a higher number of 

antagonistic strains than other fermented matrices (e.g. cheese, sourdoughs or fermented 

sausages). This fact could be due to selective pressures more accentuated in wines and 

honey than in the other investigated food matrices. Consequently, a relation between the 

antimicrobial activity expressed by strains of Lb. plantarum and their isolation 

environment was also discovered. The relation between environmental conditions and 

antagonistic properties of Lb. plantarum is further strengthened by examining the 

results of the antimicrobial activity expressed by strains isolated by the same matrice, 

still having different physico-chemical features. In fact, strains from wines with higher 

ethanol content (e.g. Taurasi and Tintilia, Table 3.1) evidenced a stronger antimicrobial 

activity than those isolated from wines characterised by lower ethanol content (e.g. 

Pentro d’Isernia and Montepulciano, Table 3.1). 

In conclusion, data reported in this study indicate that specific food conditions are able 

to influence the occurrence of certain strains able not only to respond to specific adverse 
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conditions, but also to compete with other bacterial populations. A similar remark was 

made by Cao et al. (2013), which found an association between antibacterial activity in 

Bacillus amyloliquefaciens and the presence of gene expression that is crucial for 

bacterial cells to adapt to environmental stress.  

Surely, the most important scientific enrichment produced by this study is ascribable to 

results highlighting that the choice of the source of isolation could be an important 

preliminary tool for the individuation of antagonistic strains. However, the correlation 

between Lb. plantarum PLA formation ability and their isolation sources would lead to 

open new frontiers in understanding the PLA formation process. 
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CHAPTER 4: 

EFFECT OF GROWTH PHASES AND CULTIVATION 

CONDITION ON PHENYLLACTIC ACID PRODUCTION BY 

LACTOBACILLUS PLANTARUM  

4.1 Introduction  

Lactobacillus plantarum strains are known for their ability to produce numerous natural 

antimicrobial substances (Prema et al., 2010; Rumjuankiat et al., 2015). As highlighted 

in literature, great attention was also focused on a specific metabolite represented by the 

phenyllactic acid (PLA), a phenolic acid characterized by an interesting antimicrobial 

activity (Valerio et al., 2004; Dallagnol et al., 2011; Mu et al., 2012; Corsetti et al., 

2014; Russo et al., 2017). PLA inhibits not only food-spoiling fungi (Valerio et al., 

2004; Schwenninger et al., 2008) but also food-borne pathogenic bacteria, including 

Listeria monocytogenes (Ohhira et al., 2004; Dieuleveux et al., 1998). Moreover, the 

antimicrobial activity of PLA is greater than other organic acid such as acetic acid, 

lactic acid (Gerez et al., 2009), and its smell is realy compatible with food product. Its 

amphiphilic properties and the hydrophobic group-benzene ring could play a key role in 

the antimicrobial activities. In addition, due to its good hydrophilicity, PLA diffuses in 

foodstuffs better than other preservative agents. Thus, PLA is a promising candidate for 

the development of food preservative. 

However, this compound is produced in low amounts that do not reach the minimum 

concentration necessary to inhibit the microbial growth (Vermeulen et al., 2006; Ryan 

et al., 2009). In fact, the antimicrobial activity of PLA producer strains could be also 

justified as a synergic effect among different compounds (Corsetti et al., 1998; 2014; 

Schnürer and Magnusson, 2005). Many LAB have been used to produce PLA showing 

maximum PLA production of about 0.1 g L-1 (Valerio et al., 2004; Strom et al., 2005).  



	

136	

	

PLA is a by-product of phenylalanine metabolism in LAB, where the first step involves 

its transamination by a non-specific aminotransferase. The α-amino group is then 

transferred to a suitable acceptor such as α-ketoglutarate, yielding phenyl pyruvic acid 

(PPA) and the corresponding amino acid. Finally, PPA can then be reduced by hydroxyl 

acid dehydrogenases to PLA (Mu et al., 2012). Some Authors (Vermeulen et al., 2006) 

have been reported that the rate-limiting step in PLA formation was represented by 

Phenylalanine (Phe) transamination. Li et al. (2007; 2008) reported that the blockage 

due to Phe could be overcome using PPA as substrate and an increase of 14-fold in PLA 

content was obtained. However, it must also be considered that aminotransferase 

enzyme is active with other amminoacids, such as tryptophan, methionine and leucine 

(Yvon et al., 1997; Rijnen et al., 1999). Therefore, this enzyme catalyses the 

transference of ammonium from an R-amino group to a keto-acid acceptor being alpha-

ketoglutarate (a-KG) the favourite acceptor in most LAB. Because of this, the 

bioavailability of a-KG becomes a limiting factor for all transamination reactions and 

amino acid catabolism (Yvon et al., 1998; Rijnen et al., 2000). The amino acid 

degradation in LAB may be increased by glutamate dehydrogenase (GDH), enzyme that 

catalyses the reversible oxidative deamination of glutamate (Glu) to a-KG and 

ammonium (Rijnen et al., 2000; Tanous et al., 2002). Thus, the a-KG formation through 

GDH activity would be an indirect way to increase PLA. Moreover, Dallagnol et al. 

(2011) stated that the synthesis of PLA by Lb. plantarum can be improved with higher 

amounts of Phe. On the other hand, the same Authors reported that production of both 

PLA can be increased by cometabolism of glucose with Citrate. Finally, in order to 

increase PLA production, statistical experimental design techniques were also applied. 

In detail, Mu et al., (2009) putting in place an optimal medium to produce PLA 

evidenced that using corn steep liquor as the main nitrogen source instead of peptone in 

MRS as the main nitrogen source giving a maximum yield of 2.30 g L-1.  

Therefore, the enhancement and the improving of PLA formation represents an actual 

and crucial topic to assure a better PLA development in food industry. Results reported 

in the previous chapter has been evidenced that PLA production by Lb. plantarum could 

be also positively influenced by environment pressures such as low pH values. On the 

bases of these last statement, PLA formation seems to be linked to stress response 

mechanisms performed by Lb. plantarum. However, no information on relation between 

LAB stress response and PLA production is available in literature as well as very few 

information is reported on the relation between microbial growth phase and PLA 
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formation. Even if the prevailing opinion in scientific community believes that PLA 

formation is related to LAB growth arrest (Coloretti et al., 2007; Cortés-Zavaleta et al., 

2014) has not been explained the linkage to metabolic pathways involved in stationary 

phase. In addition, the discovering of PLA presence also in the first hour of 

fermentation (Valerio et al., 2004) makes further nebulous the relation between PLA 

production and LAB growth phase. Little information, if not any, can be also found on 

the optimal pH condition of PLA metabolic pathway in Lactobacillus species. 

In this light, the research reported herein focused the attention on effect of growth phase 

on the PLA formation by Lb. plantarum H_BB1. Moreover, cultivation conditions able 

to assure highest PLA levels, was investigated. 
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4.2 Materials and methods  

4.2.1 Microorganism  

The strain Lb. plantarum H_BB1 was previously isolated from honey (bee bread), and 

belonging to Food Microbiology Culture Collection of the DIAAA (Dept. of 

Agricultural, Environmental and Food Science, University of Molise), was used. The 

strain was maintained at -80 °C and propagated twice in MRS broth (Oxoid, Milan, 

Italy) at 28°C prior of use.  

4.2.2 Growth conditions 

Three batch fermentations were carried out at 28 °C in Erlenmeyer flaks containing 500 

mL of MRS broth at initial pH of 6.5, 4.0 and 3.5. For this purpose, 1% of overnight 

culture was inoculated into two sterile MRS broth previously acidified with chloride 

acid (HCl) 4M at pH 4.0 and 3.5. A fermentation in MRS broth without HCl adding was 

performed as control.  

4.2.3 Growth kinetic parameters, Cell dry weight and pH evaluation 

During the fermentation period of each batch, samples were collected at regular time 

interval and assayed to evaluate the growth kinetic parameters, cell dry weight and pH 

values. In detail, microbial growth was detected by viable cell counts method in MRS 

agar plate.  

The maximum specific grow rate (µmax), lag phase, initial load values (y_0) and final 

load values (y_end), were estimated with the D-model of Baranyi and Roberts (1994) 

using the software DMFit web edition. 

Cell dry weight (CDW) was determined gravimetrically. For this purpose, 10 mL of cell 

cultures were collected by centrifugation at 5500 rpm for 8 min at 4°C. The pellet was 

washed with PBS1x, re-suspended in the same buffer and filtered through nitrocellulose 

filters (pore size, 0.45 µm, previously dried at 105°C for 2h). Filters were dried at 

105°C for 24 h and CDW was calculated based on differences between the initial and 

final filter weights.  

Finally, the pH values were determined by pH-meter (Hanna Instruments HI 2002-02 

edge).  
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4.2.4 D-glucose consumption and lactic acid production  

The consumption of D-glucose and the D- and L-lactic acid production were evaluated 

during the entire fermentation time.  

In detail, residual D-glucose, D-lactic and L-lactic acid concentration were determined 

enzymatically using an automated chemistry analyzer (iCubio iMagic-M9 r-biopharm 

AG) in accordance with the manufacturer instructions. 

4.2.5 3-phenyllactic acid production curves 

PLA levels in cell free supernatants were determined by high-performance liquid 

chromatography (HPLC) according to Armaforte et al. (2006). For this purpose, a 

Varian ProStar 230 instrument (Mulgrave, AUS) supplied with UV–VIS detector set to 

210 nm and a column Kinetex 5u C18 100A (150 mm x 4.6 mm) (Phenomenex, USA) 

were used. The mobile phases were acetonitrile (eluent A) and 0.005 N H2SO4 (eluent 

B) at the following gradient (A/B): 0-3 min 25/75%; 4-6min 50/50%; 8-12 min 100/0 

%. PLA concentration was quantified through a corresponding standard (Sigma–Aldrich 

Co, St. Louis, MO, USA) calibration curve derived from a plot of area counts versus 

concentration. Analytical assay was carried out in three replicates. 

4.2.6 Statistical analysis  

Three independent replicates of each experiment were performed, and their results were 

expressed as mean values ± standard deviation. Analysis of variance (ANOVA) and the 

Tukey's pairwise comparisons were performed to test differences in Lb plantarum 

behaviour and to describe relation between growth conditions and metabolites 

production. 
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4.3 Results and discussion 

4.3.1 PLA production  

The production of PLA by Lb. plantarum H_BB1 was investigated in MRS broth. The 

results are reported in Figure 4.1 and showed that detectable PLA levels were found 

already after two hours. However, the maximum specific PLA production rate was 

observed between the 8th and the 11th hour of fermentation. The comparison between 

PLA behaviour and growth curves evidenced that the PLA accumulation begins 

immediately after the end of the lag phase and reached the highest levels between the 

exponential and the stationary phase. As far as I know, these results show for the first 

time that the PLA production is strictly related to the growth and to the exponential 

phase of Lb. plantarum. So far, the prevailing scientific opinion retain that PLA is 

related to the stationary phase and the highest production was detected to the end of this 

phase. In detail, Cortés-Zavaleta et al. (2014) reported that PLA appeared after 48 hours 

of fermentation -corresponding to the middle of stationary phase- and progressively 

increased thereafter. Also, Vermeulen et al. (2006), studying the growth kinetic and 

PLA production in Lb. plantarum, stated that PLA formation proceed when growth has 

ceased highlighting that the conversion is not related to the exponential phase. 

However, some Authors have expressed doubts in the relation between the stationary 

growth phase and the PLA formation. In detail, Coloretti et al. (2007) studying 

antifungal activity of Lactobacillus discovered the presence of PLA in early 

fermentation phase.  Moreover, Valerio et al. (2004) even if had found the maximum 

production of PLA after 72 hours, evidenced detectable PLA levels already after 6 

hours of incubation.  

The results obtained in the present study suggest that the PLA could be assume new 

metabolic meanings. In fact, the accumulation from the beginning of the exponential 

phase highlight typical behaviour of a primary metabolite. On the other hand, the 

highest production rate between the exponential and stationary phase suggests that PLA 

production could be assume a key role in the acid stress response. In fact, in the 

transition between exponential and stationary phase, pH showed values similar to the 

pKa of lactic acid (Figure 4.1). 

As evidenced by several Authors (Li et al., 2008; Dallagnol et al., 2001) NADH and its 

oxidation to NAD+ are essential for the enzymatic production of PLA from PPA. The 
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resulting NAD+ regeneration represent a beneficial strategy for Lb. plantarum to react to 

acid stress condition during growing phase (Pieterse et al., 2005). 

 
Figure 4.1 Behaviour of PLA formation, pH values and microbial growth of Lb. plantarum 

H_BB1 in control conditions (MRS broth) 
 

On the basis of the above reported statements, the evaluation of ecological factors 

on the PLA formation process appear essential. In detail, sub-lethal pH could 

positively affect some metabolic pathways in Lb. plantarum. The interaction 

between lactic acid bacteria strains and their environments has gained increase 

interest in the last decade (Redon et al., 2005; Di Cagno et al., 2007; Filannino et 

al., 2014), as it is essential to achieve an optimal production of PLA (Rodriguez et 

al., 2012; Cortés-Zavaleta et al., 2014).  

 

4.3.2 Effect of cultural conditions on the growth and primary metabolites 
production  

Growth kinetics of Lb. plantarum H_BB1 cultivated in MRS or in pre-acidified 

MRS are illustrated in Figure 4.2.  
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Figure 4.2. Growth kinetic curves of Lb. plantarum H_BB1 cultivated in MRS (triangle), in MRS 

pre-acidified to pH 4.0 (diamond) or to pH 3.5 (circle). 
 

The statistical analysis highlighted that the different cultural conditions affected the 

growth parameters of tested strain (Table 4.1). In detail, the strain evidenced a very 

short lag phase (1.1 h) and a maximum specific growth rate (µmax) of about 0.3 h-1 

when cultivated in MRS broth with initial pH of about 6.0. Conversely, MRS pre-

acidified with HCl to pH 4.0 or 3.5 caused an increase (P<0.05) in the lag phase 

and a strong decrease in the µmax values. No significant differences (P>0.05) in lag 

phase and µmax values were detected between the two batches pre-acidified at 

different pH values (pH 4.0 or pH 3.5). Whereas, significant differences were found 

in final count levels (y_end) among the different samples. Specifically, the highest 

values were reached by the strains cultivated in control conditions (MRS with 

initial pH 6.0) while the lowest were observed in the MRS culture-broth previously 

acidified to pH 3.5. Intermediate values were detected when the strain was 

cultivated in MRS pre-acidified to pH 4.0. 
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Table 4.1. Growth kinetic parameters of Lb. plantarum H_BB1 cultivated in MRS (triangle), in 
MRS pre-acidified to pH 4.0 (diamond) or to pH 3.5 (circle) 

 
 

These results obtained in this study confirmed the data reported in literature (Pieterse et 

al., 2005) highlighting a strong tolerance to acid conditions in the assayed Lb. 

plantarum strain. The acid stress resistance of strains belonging to Lb. plantarum has 

been widely reported and elucidated in literature (McDonald et al., 1990; Cotter and 

Hill, 2003). Singular and specific strategies were often implemented by Lb. plantarum 

strains in response to acid stress. Russel and Diez-Gonzalez (1997) reported that Lb. 

plantarum strains react to stress acidity by lowering the intracellular pH. In fact, Lb. 

plantarum can grow at intracellular pH values as low as 4.6-4.8 (Mc Donald et al., 

1990). On the other hand, Heunis et al. (2014) reported that acid-stressed Lb. plantarum 

strains produced specific compounds and supplied the cell with energy to ensure their 

survival. In detail, the production and/or accumulation of basic compounds, more 

specifically ammonia, seem to be a central strategy to survive. 

4.3.3 Effect of cultural conditions on primary metabolites production  

The residual glucose behaviour, the lactic acid production and the evolution of pH 

values during the growth of Lb. plantarum H_BB1 were reported in Figures 4.3-4.5. 

Regardless to the cultural conditions, a decrease in glucose content was observed 

concurrently to the exponential growth phase and to the beginning of stationary phase. 

Consequently, the highest glucose consumption was detected during the first ten hours 

in the control fermentation batch (Figure 4.3) and within the 30th and the 40th hour in the 

other two fermentation batches pre-acidified to pH 4.0 (Figure 4.4) or to pH 3.5 

respectively. However, differences in residual glucose content were observed 

among the batches. In detail, the glucose was completely metabolized in control 

condition while a partial consumption was detected both in the batch pre-acidified 

at pH 4.0 and in those pre-acidified to pH 3.5. The predominant metabolites 

biosynthesized during the fermentation were the D-lactate and L-Lactate, which 

were formed as the end-product of glycolysis and secreted in the culture medium. 

y_0 Lag y_end µ max R-square SE of Fit

(Log CFU/mL) (h) (Log CFU/mL) (h -1 )

pH 6.0 7.2 ± 0.1a   1.1 ± 0.4a 9.5 ± 0.0a 0.31 ± 0.01a 0.991 0.082

pH 4.0 7.1 ± 0.0a 10.1 ± 0.9b 9.0 ± 0.0b 0.12 ± 0.01b 0.948 0.182

pH 3.5 6.9 ± 2.1b 10.5 ± 2.1b 8.6 ± 0.1c 0.09 ± 0.02b 0.999 0.032  
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Surprisingly, regardless to growth capacity and amount of glucose consumption, no 

significant differences in D-lactic acid final accumulation were detected among the 

batches. Only the batch pre-acidified at pH 3.5 showed a L-lactic production 

significant lower than that observed in the other batches. The resulting increase in 

extracellular lactic acid produced a decrease of pH values highlighting significant 

differences among the different batches. A decrease in pH values more than two 

units was observed in the control batch (Figure 4.3), while a decrease of only about 

0.8 or 0.5 units was detected in the batches pre-acidified to pH 4.0 or to pH 3.5 

respectively (Figures 4.4-4.5).  

 

 
Figure 4.3 Residual glucose behaviour, the lactic acid production the evolution of pH values 

 

Due to their low initial pH, the pre-acidified batches showed growth and metabolic 

parameters lower than those detected in the control condition. In fact, in these 

batches, the lactic acid, because its pKa (3.86) value, was predominantly found as 

undissociated lactic acid. It is widely known that the undissociated form, diffusing 

across the cell membrane towards the more alkaline cytosol produce the highest 

inhibitory effect on bacterial growth (Shelef et al., 1994; Axe and Bailey, 1995). 

Pieterse et al. (2005) studying the effect of dissociated and undissociated lactic acid 
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on Lb. plantarum evidenced that dissociated lactate affected the expression of a 

relatively low numbers of genes. Whereas, the gene expression and the transcription 

profile of the cultures were strongly influenced in presence of the undissociated 

form. In detail, not only genes encoding stress protein but also genes associated to 

other enzymes and stress protein were found. Therefore, undissociated lactic acid in 

Lb. plantarum induces several changes in metabolic activities and a more general 

stress response.  

 

 
Figure 4.4 Residual glucose behaviour, the lactic acid production the evolution of pH values 
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Figure 4.5 Residual glucose behaviour, the lactic acid production the evolution of pH values 

 

It’s well-known that low extracellular pH values and the high presence of undissociated 

lactic acid lead to the pyruvate accumulation and to low NAD+ levels (as a consequence 

of end-product inhibitory) with consequently inhibitory effects on the growth (Ferain et 

al. 1996). Strategies that aim to avoid pyruvate accumulation or to NAD+ regeneration 

could produce beneficial effects on Lb. plantarum growth. 

4.3.4 Effect of cultural conditions on PLA production 

The production of PLA by Lb. plantarum H_BB1 was also investigated MRS pre-

acidified to pH 4.0 and to pH 3.5.  

The behaviours of PLA formation, pH and microbial growth in MRS pre-acidified to 

pH 4.0 or to pH 3.5 are reported in Figure 4.6-4.7 respectively. The results clearly 

highlighted a relation between the PLA formation and the exponential growth phase. In 

details, when the strain was cultivated in MRS pre-acidified to pH 4.0 the highest 

specific PLA production rate was appreciated during the transition lag-exponential 

phase and during the late exponential phase. 
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While in MRS pre-acidified at pH 3.5 a constant increase was detected during the entire 

exponential phase.  

 
Figure 4.6-4.7 Behaviour of PLA formation, pH values and microbial growth of Lb. plantarum 

H_BB1 in MRS pre-acidified to pH 4.0 or to pH 3.5 
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So, it is fair to assume that the metabolic pathway involved in PLA formation is tied to 

the energetic metabolism of growing cells. Key reactions of PLA formation, such as the 

regeneration of NAD+ levels, the transamination reaction (where the a-ammino group is 

transferred to a keto acid acceptor) and the deamination reactions with NH3 and amino 

acceptor regeneration, found different linkages with typical metabolic activities of 

growing cells. The results evidenced that in no case the PLA formation should be 

related to cell growth arrest. Whereas, its formation could be representing an adaptation 

response of growing cells to acid stress. This last statement is well represented in the 

Figure 4.8 where the behaviour of ratio between PLA (g/L) and biomass (g/L) levels 

was reported. Significant difference in ratio values was found among the different 

cultural conditions. The highest values were recorded when the strain was cultivated in 

MRS pre-acidified to pH 4.0. While the lowest ratio values were detected for the strain 

cultivated in normal condition. In detail, in the batch pre-acidified to pH 4.0 an increase 

in ratio values of about 40% respect to the control batch was revealed. Also in the batch, 

pre-acidified to pH 3.5, were detected ratio values higher than that revealed in the 

control batch. However, the behaviour registered in the batch to pH 3.5 was less 

performing than that highlighted in the batch pre-acidified to pH 4.0. So, sub-optimal 

pH (4.0) enhanced the PLA formation by a specific Lb. plantarum strain. Several 

Authors (Bron et al., 2012; Filannino et al., 2014) reported that the acidic environment 

altered the transcriptomic profile in Lb. plantarum during the late exponential phase, 

which positively reflected on several metabolism pathways. In detail, Filannino et al. 

(2014) stated that these pathways include D-alanine and histidine metabolism, as well 

as aromatic amino acid synthesis (phenylalanine, tyrosine and tryptophan, which are 

involved in the up-regulation of the shikimate pathway). Moreover, the same Authors 

reported that these pathways may also be involved in redox balancing and NAD+ 

regeneration. 
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Figure 4.8 Behaviour of ratio between PLA (g/L) and biomass (g/L) 

 

On the basis of the above reported results, the PLA could be considered a “primary-

like metabolite” of Lb. plantarum in sub-optimal pH conditions. This fact may open 

new horizons in the development of a new optimal design for the maximum PLA 

production. 
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CHAPTER 5: 
 

 

ANTI-LISTERIA MECHANISM OF 3-PHENYLLACTIC ACID  

5.1 Introduction 

3-Phenyllactic acid (PLA) has been reported as an antimicrobial compound able to 

produce an interesting anti-Listeria activity (Dieuleveux et al., 1998; Manu, 2012; Liu 

et al., 2017; Ning et al., 2017). The antagonistic effect expressed by PLA against 

Listeria was defined for the first time by Dieuleveux et al. (1998), which had identified 

PLA in Geotrichum candidum cultures. Thanks to this specific antimicrobial-activity, 

the PLA is really becoming an interesting preservative compound in food industry. 

Though is not the most dangerous bacteria, L. monocitogens represents the most feared 

bacteria in the food industry. Many reports have demonstrated the interaction 

between L. monocytogenes and food matrices, showing the high adaptive capacity of 

these bacteria to survive in extreme environmental conditions (Gandhi and Chikindas, 

2007). Organic acids, such as the lactic acid, have long been used as food additives and 

preservatives for inhibiting the microbial growth and much of their inhibitory 

mechanism can be attributed to the pH (Jo et al., 2007). Protons are released from un-

dissociated molecules in the cytoplasm to decrease the intracellular pH, inhibiting 

essential microbial metabolic reactions (Olasupo et al., 2004). Therefore, the 

antimicrobial activity is ascribed to the ability to freely cross the cytoplasmic membrane 

(Brul and Coote, 1999) and to the ability to induce damage of membrane permeability 

(Wang et al., 2015). Unfortunately, in the case of several food types, sub-lethal pH 

values may induce resistance mechanisms to acid stress, which make the Listeria cells 

more resistant to severe acid conditions (Gandhi and Chikindas, 2007). In literature has 

been widely described the Listeria acid stress resistance. One of the most important and 

well-studied systems in acid resistance of L. monocytogenes is the glutamate 

decarboxylase (GAD) system (Cotter et al., 2001). An extracellular glutamate molecule 

is imported by an antiporter in exchange for an intracellular γ-aminobutyrate (GABA) 

molecule. Each molecule of glutamate is decarboxylated by a decarboxylase to produce 

a molecule of GABA. During this process, a proton is consumed and as result an 
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increase of the cytoplasmic pH is produced. These events protect the cell against the 

acidic environmental conditions (Feehily and Karatzas, 2013). Moreover, more recently 

a new universal stress protein involved in acid stress response in Listeria has been 

discovered (Tremonte et al., 2016). On the basis of these evidences, the individuation of 

an alternative anti-Listeria compounds and the investigation of its mode of action 

represent a crucial step in quality and safety preservation of food. To date, antimicrobial 

activity of PLA, including also anti-Listeria ability, was well recognized. Whereas, little 

information is available on PLA anti-Listeria mechanism. In fact, only one in-depth 

report (Ning et al., 2017) has been published highlighting the membrane as the principal 

target site. However, in a preliminary and less recent study (Dieuleveux et al., 1998) the 

cell wall was as main action site. It might to assume that the PLA mode of action is 

similar to lactic acid. Nevertheless, considering the chemical structure of PLA could be 

also hypothesize an action mode different from the lactic acid and more similar to 

phenolic acids. 

Therefore, the present research aimed to evaluate the antimicrobial effect of PLA to 

different pH. Moreover, the PLA anti-Listeria has been compared with those expressed 

by the lactic acid and the better studied hydroxybenzoic and hydroxycinnamic acids. 

5.2 Materials and methods 

5.2.1 Chemicals 

Phenyllactic (PLA, 3-phenyllactic acid), a benzoic acid represented by gallic acid (GA, 

3,4,5-trihydroxybenzoic acid) and two hydroxycinnamic acid such as ferulic (FA, 3-

methoxy-4-hydroxycinnamic acid) and caffeic acid (CA, 3,4-dihydroxycinnamic acid) 

were obtained from Sigma-Aldrich. For each phenolic compound, stock solution was 

prepared by dissolving an appropriate amount in dimethyl sulfoxide (DMSO) at a final 

concentration of 100 mg/mL. The stock solution was sterilized by filtration through a 

Millipore filter, and it was stored at 4°C before use. Moreover, to comparative purpose 

an organic acid represented by lactic acid (Sigma, Italy) was used.  
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5.2.2 Bacterial strains and growth media 

Listeria innocua DSM 20649T was used as model microorganism for antimicrobial 

tests. The strain, stored at -80°C in 20% (v/v) glycerol, was activated by transferring 20 

µL in 10 mL of Mueller Hinton Broth (Oxoid) and incubated for 18-24 h at 37°C.  

5.2.3 Determination of the minimum inhibitory concentration (MIC) and 
minimum bactericidal concentration (MBC) of PLA  

MIC and MBC values of PLA and of other phenolic acids (gallic, ferulic and caffeic 

acid) on Listeria innocua cells, were evaluated. For this purpose, the effect of a range of 

concentrations (between 0.35 and 30.00 mg/mL) of each phenolic compound was tested 

on Listeria innocua DSM20649 using the macrobroth dilution method. In detail, the 

effect was evaluated on cells inoculated at final concentration of about 105 CFU/mL in 

Mueller–Hinton broth (MHB) and incubated at optimal growth temperature (37°C). 

Tube of MHB without phenolic compound and inoculated with L. innocua cells as 

above described was used as control. After 24 h, the turbidity of each tube was 

evaluated at 600 nm using a spectrophotometer (Bio-spectrometer basic, Eppendorf-

Italy). The MIC was considered as the lowest dose where no increase in optical density 

(600 nm) was observed (CLSI, 2012).  Samples (100 µl) from clear tubes were plated 

on Mueller-Hinton agar (MHA) plates. The MBC was defined as the lowest 

concentration that can completely kill the bacteria. The studies were conducted in 

triplicate. 

5.2.4 Decimal reduction time 

The antimicrobial activity of all phenolic compounds (PLA, GA, FA and CA) against L. 

innocua cells was evaluated by measuring the reduction in numbers (Log CFU/mL) 

over 48h as described by Carson et al. (2002) with some modifications. Briefly, 

bacterial suspensions were prepared by centrifuging 150mL MHB overnight cultures 

(grown 37°C for 15h) at 8000 rpm for 10 min at 4°C. The pellets were washed gently 

using MES buffer, and then resuspended in 150 mL of MES buffer in order to obtained 

a final cell density of about 105 or 108 CFU/mL. The L. innocua MES suspension was 

divided into three aliquots each of which was treated as follows: 
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• MIC: each phenolic compound was added at the MIC concentration to 50 mL of 

L. innocua suspension; 

• MBC: each phenolic compound was added at the MBC concentration to 50 mL 

of L. innocua suspension; 

• Control: cell suspension without phenolic compound added. 

Moreover, cells suspended in MES buffer, added with lactic acid (PC Laboratory 

Reagents, Malaysia), at the same concentration of the PLA, was used as other control. 

The pH of each suspension was maintained at values of about 5.5.   

At regular time intervals (2h) aliquots of 1 mL were removed from the suspension and 

then were serially diluted and plated on MHA. Finally, the plates were incubated at 

37°C for 48h before enumeration. Three replicates were made for each experiment. The 

experimental data were used to estimate the death kinetic parameters through the D-

model of Baranyi and Roberts (1994) using the software DMFit (Web Edition). 

5.2.5 Bacterial surface charge: zeta potential  

The zeta potential of bacterial suspensions containing PLA at the 2xMIC concentration, 

in ultrapure water (pH 6), was determined using a Nano Zetasizer (Malvern 

Instruments). Cell suspensions, without phytochemical, were used as controls. The zeta 

potential was measured by applying an electric field across the bacterial suspensions. 

The experiments were repeated at least three times.  

5.2.6 Loss of cellular content 

The release of cell constituents into the supernatants was measured according to the 

method described by Rhayour et al. (2003). Cells from the working culture (15 mL) 

were collected by centrifugation (5500 rpm for 15 min), washed three times, and 

resuspended in MES buffer. Cell suspension was incubated at 37 °C for 5 h in the 

presence of PLA at MBC concentration or without PLA (control). Then, 10 mL samples 

were taken and filtered through a 0.22 µm-pore-size filter (Carson et al., 2002). The 

concentration of the constituents released was determined by UV absorption 

measurements of each filtrate using an UV-spectrophotometer (Bio-spectrometer basic, 

Eppendorf-Italy) at 260 nm.  
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5.2.7 Statistical analysis  

Three independent replicates of each experiment were performed, and their results were 

expressed as mean values ± standard deviation. Analysis of variance (ANOVA) and the 

Tukey's pairwise comparisons were performed. 
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5.3 Results and discussion 

5.3.1 Minimum Inhibitory Concentrations and Minimum Bactericide 
Concentrations  

Listeria innocua was chosen as the indicator to investigate the antimicrobial mechanism 

of PLA. Listeria innocua is regarded as a non-pathogenic indicator for the presence of 

Listeria monocytogenes in foods (Rosimin et al., 2016). In the last years, great attention 

was focused on these two species which had showed several mechanisms of acid stress 

adaptation (Tremonte et al., 2016). So far, only two reports (Dieuleveux et al., 1999; 

Ning et al., 2017) have been investigated the antimicrobial activity of PLA on L. 

monocytogenes. Dieuleveux et al. (1999) reported that cell wall represents the action 

target of PLA, whereas the recent results published by Ning et al. (2017) suggested that 

PLA can damage the integrity of cytoplasmic membrane.  

The results obtained in the present study also confirm the MIC values detected by Ning 

et al. (2017) regard to L. monocytogenes (1.25 mg/mL). In detail, the macro-dilution 

assay carried out to pH 5.5 or to pH 5.0 highlighted that MIC value for L. innocua was 

0.94 and 0.47 mg/mL respectively. Other Authors (Lavermicocca et al., 2003; Perma et 

al., 2010; Cortés-Zavaleta et al., 2014), studying the effect of PLA on fungi, reported 

MIC values much higher than that revealed in the present study against L. innocua. This 

finding evidenced that PLA, which has been considered for many years an antifungal 

metabolite (Lavermicocca et al., 2003; Vermeulen et al., 2006), is able to inhibit also 

bacteria cells. Moreover, very low concentrations were required to produce anti-Listeria 

activity. MIC values of about 0.47 or 0.94 mg/mL appear compatible whit the 

maximum PLA production revealed in Lb. plantarum cultures. In fact, as reported in 

literature (Rodrìguez et al., 2012; Cortéz-Zavaleta et al., 2014; Corsetti et al., 2014), and 

also detected in the present PhD research (chapter 3 and 4), Lb. plantarum strains 

produced up to 0.12 or 0.23 mg/mL and this production level could be increased two or 

even tenfold when specific cultural strategies were applied (Mu et al. 2009; Dallagnol 

et. al. 2011; Zhang et al., 2014). So, a resolution to the gap between PLA required to 

assure antimicrobial activity and the PLA levels detected in fermentation batches seems 

possible. This gap has for a long time a serious obstacle to apply PLA producing 

bacteria as protective or as anti-Listeria cultures in food characterized by neutral or sub-

acid pH.   
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In the present study, the relation between pH values and anti-Listeria activity of PLA 

was clarified. In Figure 5.1 were reported the MIC values detected at different pH.  

 

 
Figure 5.1 Correlation between anti-Listeria activity of PLA (MIC) and pH values. 

 

A relation between MICs and pH values was found and a significant decrease in PLA 

anti-Listeria activity was detected at the highest pH values tested. In detail, PLA anti-

Listeria activity was shown pH dependent highlighting the typical behaviour of 

activities of other weak acid preservatives and organic acid (lactic acid, citric acid, 

acetic acid, etc.). Therefore, it’s possible to assume that the PLA (pKa 3.46) mode of 

action is related to its undissociated form able to cross the microbial membrane (Wang 

et al., 2015).  

5.3.2 Effect of Phenyllactic and Lactic Acid on L. innocua decay 

In order to understand the PLA mode of action, the anti-Listeria effect produced by 

PLA at pH 5.5 was compared to the effect explicated by lactic acid to the same pH 

value. Lactic acid was choice because its antimicrobial mechanism is well known. The 

cell membrane is the main antibacterial target for lactic (Wang et al., 2015). 
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The survival kinetic curves of L. innocua in presence of PLA (2 x MIC), of LA used at 

same concentration of PLA as well as the kinetic curves of the bacterium without 

preservative agents addition (control condition) are reported in Figure 5.2. The 

corresponding survival kinetic parameters (shoulder, maximum death rate and y_end 

values) are reported in Table 5.1. As expected, a significant decrease (P<0.05) of L. 

innocua cells was observed during the incubation time in presence of preservative 

agents (PLA and LA), while a behaviour substantially constant or a weakly decreasing 

was detected in the control condition.  

 

 
Figure 5.2 Survival of L. innocua in MSE buffer containing PLA (2xMIC), LA at same concentration 
of PLA or without preservative agents (Control). Symbols represent the experimental date and the 
curves represent the D-model. DL is the detection limit. 

 

 

Table 5.1 Survival kinetic parameters estimated in L. innocua after exposure PLA (2xMIC), LA at 
same concentration of PLA or without preservative agents (Control). 
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y_0 Shoulder y_end µ max R-square SE of Fit

(Log CFU/mL) (h) (Log CFU/mL) (h -1 )

Control 5.0 ± 0,1a 0.0 ± 0.0a 4.9 ± 0.0a 0.00 ± 0.01a 0.304 0.036

PLA 5.1 ± 0.1a 3.3 ± 0.6b 1.0 ± 0.1b -0.43 ± 0.04b 0.987 0.036

LA 5.1 ± 0.1a 4.1 ± 0.5c 1.0 ± 0.1b -0.13 ± 0.01c 0.998 0.049  
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In detail, the behaviour of L. innocua, in absence of preservative agents, was described 

by a linear model, whereas the survival in presence of LA or PLA was well represented 

by a complete Baranyi and Robert model (shoulder + linear decrease + asymptote). 

However, significant differences were also detected between the two kinetic curves 

describing the effect of PLA and LA on L. innocua. PLA was able to induce maximum 

death rate values (-0.43 h-1) significantly higher respect to the LA which produced µmax 

values of about -0.13 h-1. Moreover, a higher resistance (shoulder) in L. innocua strains 

was appreciated in presence of LA than that in presence of PLA.   

On the basis of these results, it’s possible to assert that antimicrobial action of PLA was 

substantially different from LA. The different and more efficacious effect produced by 

PLA could be due to the its amphiphilic properties resulting from the hydrophobic 

group-benzene ring and hydrophilic group-carboxy in its chemical structure. These 

properties would allow an interaction with lipid and protein of membrane cytoplasmic 

as well as an interaction with genomic materials. Therefore, a comparison between PLA 

and more studied phenolic acids (hydroxybenzoic and hydroxycinnamic) should be 

investigated.  

5.3.3 Effect of phenolic acids on L. innocua decay      

To better understand the antimicrobial effect of PLA on L. innocua, further experiments 

were conducted using three phenolic compounds (gallic, ferulic and caffeic acid), 

widely studied. The mechanism of action expressed by hydroxybenzoic acid (gallic 

acid, GA) and hydroxycinnamic acid (ferulic and caffeic acids, FA and CA) against 

different undesirable microorganisms, including both Gram negative and Gram positive 

bacteria, was already study by several Authors (Guitiérrez-Larrainzar et al., 2012; 

Borges et al., 2013; Fernandez-Alvarez et al., 2014; Chen et al., 2017). On the basis of 

the result reported by these Authors, hydroxybenzoic and hydroxycinnamic acids seem 

to led to irreversible changes in membrane properties (charge, intra and extracellular 

permeability), to a decrease of negative surface charge, as well as to rupture or pore 

formation in the cell membranes with consequent leakage of intracellular constituents.  

Figures 5.3-5.4 report survival kinetic curves of L. innocua in presence of PLA or 

phenolic acid (GA, FE, CA) used at MIC or MBC concentration (Table 5.2) 

respectively. The corresponding survival kinetic parameters (shoulder, maximum death 

rate and y_end values) are reported in Table 5.3-5.4. 
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Table 5.2 MIC and MBC values of PLA, GA, CA, and FA on Listeria innocua cells in 
MH broth at pH 5.5. 

 
 

 
Figure 5.3 Survival of L. innocua in MSE buffer containing GA, CA, FA and PLA at MIC 
concentration or without preservative agents (Control). Symbols represent the experimental date and 
the curves represent the D-model. 

 
 
As expected, a linear model well describes the slight and constant decrease of L. 

innocua in control conditions. Regardless to the type of phenolic acid, when used at 

MBC concentration a completely decay in L. innocua count levels was observed. 

Whereas, the use of phenolic compounds at MIC concentration produce a reduction of 

about 1 or 5 log UFC/mL depending on the type of phenolic acid.  
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Table 5.3 Survival kinetic parameters estimated in L. innocua after exposure GA, CA, FA and PLA at 
MIC concentration or without preservative agents (Control). 

 
 

In detail, the highest inhibition was appreciated in presence of PLA and GA which 

produced a strong inhibition showing a reduction about 5 Log CFU/mL already at 12th 

and 18th hour of incubation, respectively. However, PLA was able to induce maximum 

death rate values (-1.86 h-1) significantly higher respect to the GA which produced -µmax 

values of about -0.34 h-1. Moreover, significant differences between GA and PLA was 

found also in the shoulder parameters which were estimated in 1.3 hours in presence of 

GA and reached 8.7 hours when the PLA was used. The effects produced by the 

hydroxycinnamic acids (CA and FE) were less performing respect both PLA and GA. 

The use of caffeic and ferulic acids produced maximum specific death rate values in L. 

innocua decay similar to those observed in presence of gallic acid. However, the highest 

shoulder values detected in presence of hydroxycinnamic acids than that registered in 

the batch added with GA leads a lower decay of L. innocua. 

Significant differences among the batches were appreciated also when the phenolic acid 

was used at MBC concentrations. Albeit in all cases a complete decay in L. innocua was 

observed within the 6th hour significant differences were found both in shoulder and in 

maximum specific death rate.  

y_0 Shoulder y_end µ max R-square SE of Fit

(Log CFU/mL) (h) (Log CFU/mL) (h -1 )

Control 8.5 ± 0.1 6.8 ± 0.2 7.9 ± 0.1 -0.02 ± 0.01 0.777 0.105

GA MIC 8.3 ± 0.1 1.3 ± 0.1 3.0 ± 0.2 -0.34 ± 0.05 0.977 0.262

FA MIC 8.2 ±  0.1 3.5 ± 0.4 6.9 ±  0.1 -0.32 ± 0.04 0.978 0.090

CA MIC 8.4 ±  0.1 2.8 ± 0.7 5.1 ± 0.1 -0.33 ± 0.03 0.985 0.147

PLA MIC 8.0 ±  0.1 8.7 ± 0.2 2.8 ± 0.2 -1.86 ± 0.41 0.986 0.236  
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Figure 5.4 Survival of L. innocua in MSE buffer containing GA, CA, FA and PLA at MBC 
concentration or without preservative agents (Control). Symbols represent the experimental date 
and the curves represent the D-model. DL is the detection limit.  

 

As reported in Table 5.4 the use of hydroxycinnamic and hydroxybenzoic acids 

produced in the assayed strain very low shoulder values, ranging from 0.97 (GA) to 

1.70 (FA), and maximum death rate values ranging from -3.82 to -2.80 h-1.  

 
Table 5.4 Survival kinetic parameters estimated in L. innocua after exposure GA, CA, FA and PLA at 
MBC concentration or without preservative agents (Control). 

 

The use of PLA at MBC concentration induced in the assayed strain the shoulder 

extension and a strong increase in maximum specific death rate.  

The data set generated from both MIC an MBC survival test highlighted that the GA 

and the PLA showed the most performing anti-Listeria activity. However, the 

differences between PLA and GA in death kinetic parameters suggest that PLA 
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Control 8.5 ± 0.1a 6.8 ± 0.2a 7.9 ± 0.1a -0.02 ± 0.01a 0.777 0.105

GA MBC 8.4 ± 0.1a 1.0 ± 0.0b 1.0 ± 0.0b -3.82 ± 0.01b 1.000 0.001

FA MBC 8.2 ± 0.2a 1.7 ± 0.1c 1.7 ± 0.1c -2.80 ± 0.09c 0.994 0.234

CA MBC 8.3 ± 0.3a 1.5 ± 0.2c 1.5 ± 0.3c -3.50 ± 0.01d 1.000 0.005

PLA MBC 8.2 ± 0.2a 4.0 ± 0.0d 1.0 ± 0.0b -6.91 ± 0.02e 0.999 0.085
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produces anti-Listeria activity through a specific mechanism somewhat different from 

those usually adopted by other phenolic compounds. Antimicrobial activity of phenolic 

acids involves several mechanisms of action such as permeability destabilization or the 

rupture of cytopalsmatic membrane as well as enzymes inhibition through nonspecific 

interaction (Ota et al., 2011; Borges et al., 2013). It’s possible to suppose that PLA 

utilize more than one of these pathways but differently from the other phenolic 

compounds.  

5.3.4 Effect of phenolic acids on surface charge and loss of cellular content 

Membrane has been proposed as one of the most important action targets of phenolic 

compounds (Hayrapetyan et al., 2012; Borges et al., 2013). Therefore, information in 

surface charge change or in loss of cellular content could provide important clarification 

on antimicrobial mechanisms. Due to the presence of anionic groups (e.g., carboxyl and 

phosphate), the surface charge of bacterial cells is generally negative. Data obtained by 

zeta potential measurement (Figure 5.5) showed the charge change in the assayed L. 

innocua strain after exposure to the different phenolic compounds. Zeta potential 

measurements demonstrated that after phenolic acids exposure, the cells become more 

(P<0.05) negatively charged when exposed to PLA. While in presence of other phenolic 

compounds (GA, CA, FE) no variation in charge was detected.  This result confirm data 

reported in literature (Borges et al., 2013) which attributed no effect to 

hydroxycinnamic (FA) and hydroxybenzoic (GA) in Gram-positive charge change.  
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Figure 5.5 Zeta potential of L. innocua cells exposed to ultrapure water containing GA, CA, FA and 
PLA at 2xMIC concentration or without phenolic compounds (Control).  

 

On the other hand, surprising results obtained by PLA use. In fact, so far change in 

charge surface by phenolic acid was observed only in Gram negative bacteria.  This fact 

may open new horizon in the understanding of PLA anti-Listeria mechanism. It’s 

possible to suppose that the PLA anti-Listeria action is also associated with the affinity 

with cell surface and the interaction PLA-cell surface could contribute to the damage of 

cellular structures. The rupture of cellular structures was also supported by the results of 

the cellular content loss (Figure 5.6). 

The release of cell constituents was determined by the measurement of the absorbance 

at 260nm of the filtrates of L. innocua cultures. The treatment with PLA at 2xMIC 

concentrations induced a significant (P < 0.05) increase in cell constituent’s release. 
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Figure 5.6 Cellular content loss of L. innocua to ultrapure water containing GA, CA, FA and PLA at 
2xMIC concentration or without phenolic compounds  

 

Whereas, when L. innocua cultures were exposed to the 2xMIC concentrations of the 

other phenolic acids (GA, FE and CA) only a weak variation in OD values was 

detected. This finding integrated with results from zeta potential demonstrate that at pH 

5.5 PLA strongly interact with the surface of Listeria innocua strain promoting 

membrane damage, release of intracellular content and the consequent cell death.  

Therefore, the results might help in explaining the differences in anti-Listeria 

mechanism of phenolic compounds. Hydroxybenzoic and hidroxycinnamic acid seem to 

induce an alteration in membrane permeability without causing its rupture. Whereas, 

PLA having the main targets in cellular surface and in cytoplasmic membrane, leads to 

a severe rupture of the cellular structures. All these evidences contribute to the 

enrichment of scientific knowledge in anti-Listeria mechanism of PLA and evidenced 

that PLA effectiveness is superior than that expressed by other preservative acids. 
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CHAPTER 6: 

CONCLUSIONS  

In the preliminary step, the PhD research, analyzing the advancements in control strategies 

based on natural compounds and living organisms and/or their antimicrobial products, 

highlighted that so far, several issues such as the high minimal inhibitory concentration levels, 

the stability of antimicrobial compounds, the knowledge of action mode, as well as the relation 

between microbial growth and compound formation kinetics, still remain unclear, making the 

individuation of a simplified screening procedure necessary. In this light, the PhD research 

preliminarily focuses the attention on the effects of different environments on the selection of 

strains able to exert antimicrobial activities and to produce specific antimicrobial compounds 

such as 3-phenillactic acid (PLA). The results highlighted significant differences among the 

assayed strains showing that PLA production is strain-dependent. In addition, for the first time, 

a relation between PLA-producing strains and isolation environment of the strains was 

highlighted. In fact, those environments characterised by harsh conditions (high ethanol levels, 

low pH and high sugar levels), such as wines and honey, harboured a higher number of 

antagonistic strains than other fermented matrices (e.g. cheese, sourdoughs or fermented 

sausages). This could be due to selective pressures which are more accentuated in wines and 

honey than in the other food matrices researched.  

The most important scientific enrichment produced by first step of PhD activities is attributable 

to results highlighting that the choice of the source of isolation could be an important 

preliminary tool for the individuation of antagonistic strains. However, the correlation between 

Lb. plantarum PLA formation ability and their isolation sources would lead to opening new 

frontiers in understanding the PLA formation process. PLA formation seems to be linked to 

stress response mechanisms performed by Lb. plantarum. However, no information with 

regards the LAB stress response and PLA production is available in literature and little 

information is reported on the relation between the microbial growth phase and PLA formation. 

Even if the prevailing opinion in the scientific community believes that PLA formation is 

related to LAB growth arrest, the linkage to metabolic pathways involved in its stationary phase 

has not been clarified. Little information, if any, can be found on the optimal pH condition of 

PLA metabolic pathway in the Lactobacillus species. 
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The present study, comparing the PLA behavior with growth curves of Lactobacillus, 

highlighted that the PLA accumulation begins immediately after the end of the lag phase and 

reached the highest levels between the exponential and the stationary phase. As far as I know, 

these results show, for the first time, that the PLA production is strictly related to the growth 

and to the exponential phase of Lb. plantarum. More specifically, the results obtained in the 

present study suggest that the PLA could assume new metabolic meanings. In fact, the 

accumulation from the beginning of the exponential phase highlight typical behaviour of a 

primary metabolite. On the other hand, the highest production rate between the exponential and 

stationary phase suggests that PLA production could assume a key role in the acid stress 

response. In fact, in the transition between exponential and stationary phase, pH showed values 

similar to the pKa of lactic acid. On the basis of the above reported statements, the 

evaluation of ecological factors on the PLA formation process appear essential. More 

precisely, sub-lethal pH could positively affect some metabolic pathways in Lb. plantarum. 

The results suggest that the metabolic pathway involved in PLA formation is tied to the 

energetic metabolism of growing cells. Key reactions of PLA formation, such as the 

regeneration of NAD+ levels, the transamination reaction (where the a-ammino group is 

transferred to a keto acid acceptor) and the deamination reactions with NH3 and amino acceptor 

regeneration, found different linkages with typical metabolic activities of growing cells. The 

results evidenced that, in no way, could the PLA formation be related to cell growth arrest. 

Whereas, its formation could represent an adaptation response of growing cells to acid stress. In 

fact, evaluating the behaviour of ratio between PLA (g/L) and biomass (g/L) levels, the highest 

performances were detected when the strain was cultivated in MRS pre-acidified to pH 4.0. On 

the basis of the above reported results, the PLA could be considered a “primary-like 

metabolite” of Lb. plantarum in sub-optimal pH condition and may open new horizons to 

the development of an advanced optimal design for maximum PLA production. The results of 

this study have evidenced that PLA is able to inhibit bacteria cells and very low concentrations 

were required to produce anti-Listeria activity. MIC values of about 0.47 or 0.94 mg/mL appear 

compatible with the maximum PLA production revealed in Lb. plantarum cultures. In fact, this 

PhD research, recognizes that Lb. plantarum strains produced up to 0.12 or 0.23 mg/mL and 

this production level could be increased two or even tenfold when specific cultural strategies 

were applied. Therefore, a resolution to the gap between PLA required to assure antimicrobial 

activity and the PLA levels detected in fermentation batches seems possible. This gap has long 

proven to be a serious obstacle when applying PLA producing bacteria as protective or as anti-

Listeria cultures in food characterized by neutral or sub-acid pH. Moreover, the relation 

between pH values and anti-Listeria activity of PLA was clarified. A relation between MICs 

and pH values was found and a significant reduction in PLA anti-Listeria activity was detected 

at the highest pH values tested.  
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Regarding to the understanding of PLA mode of action, useful information was obtained by the 

comparison of anti-Listeria effect produced by PLA at pH 5.5 with those explicated by lactic 

acid to the same pH value. In detail, the results evidenced that the antimicrobial action of PLA 

was substantially different from lactic acid. The different and more successful effect produced 

by PLA must be due to its amphiphilic properties resulting from the hydrophobic group-

benzene ring and hydrophilic group-carboxy in its chemical structure. These properties would 

allow an interaction with the lipid and protein in cytoplasmic membrane as well as an 

interaction with genomic materials. Studying the anti-listeria action of PLA and other phenolic 

acids (hydroxybenzoic and hydroxycinnamic), differences between PLA and GA in death 

kinetic parameters were detected. These evidences suggest that PLA produces anti-Listeria 

activity through a specific mechanism which is somewhat different from those usually adopted 

by other phenolic compounds. Antimicrobial activity of phenolic acids involves several 

mechanisms of action such as permeability destabilization or the rupture of the cytoplasmic 

membrane as well as enzymes inhibition through nonspecific interaction. It is possible to 

hypothesize that PLA utilizes more than one of these pathways but differently from the other 

phenolic compounds. It is possible to surmise that the PLA anti-Listeria action is also 

associated with the affinity with cell surface and the interaction PLA-cell surface could 

contribute to the damage of cellular structures. Hydroxybenzoic and hydroxycinnamic acid 

seem to induce an alteration in membrane permeability without causing its rupture. Whereas, 

PLA having the main targets in cellular surface and in cytoplasmic membrane, leads to a severe 

rupture of the cellular structures. All these evidences contribute to the enrichment of scientific 

knowledge in the anti-Listeria mechanism of PLA and highlighted that PLA effectiveness is 

superior to that expressed by other preservative acids. 

	

 


