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Abstract 

The research has been divided into two step: the first one concerning the evaluation 

of ventilation in cattle and broilers houses, the second one concerning the study of a new 

experimental device for pigs breeding. 

Ventilation flow in livestock buildings can determine the indoor climate and air 

quality and so it affects directly the welfare of the reared animals. The realization of the 

animal houses in many cases, has not allowed the correct activation of the plants caused by 

the objective difficulty of testing and the absence of regulations with fixed numerical 

parameters. Studies were carried out in a typical dairy farm and in a broiler house in Molise 

region (central Italy). It was set up a control procedure and the planning of the ventilation 

using the measured carbon dioxide concentration in animal houses as basis for estimation of 

ventilation flow (as the ventilation flow is a key parameter of aerial emissions from animal 

houses). 

In dairy farm, after the evaluation of the air quality trough the analysis of temperature, 

humidity and CO2  production, it was installed a fan to improve ventilation rates and air 

quality and then we evaluated climate conditions by mean of temperature distribution in space 

and time and carbon dioxide in two given points inside the building in order to highlight not 

so good air mixing and renewing.  

In the experimental study carried out in poultry house different configurations of the 

ventilation system were tested to find the optimum ventilation system to improve the rearing 

conditions in broiler house. In broilers breeding the contact with gaseous emissions produced 

by different factors is continuous, so it is necessary an appropriate ventilation in order to 

discharge them. Climate conditions were evaluated by mean of temperature, relative humidity 

and carbon dioxide concentration. During experimental trials the tested different 

configurations of the ventilation system showed a little influence on CO2 average 

concentration and an irregular distribution was detected due to a wrong activation of the fans 

in the ventilation system. A more homogeneous condition of temperature and R.H. in the farm 

could be reached working on smoother ventilation and testing the cooling The optimization of 

the ventilation system could be done changing the ON-OFF working with the VFD working. 

The VFD system, thanks to the opportunity to control the speed, guarantees a better 

ventilation control and a higher energy saving. 

 

 

 



Experimental device for pigs breeding 

Many studies have indicated the large effect that good vs. poor handling and housing 

systems can have on pig physiology, behavior, and pork quality. Ease of routine moving and 

handling of pigs can affect the final outcome of meat quality and overall welfare of pigs. 

Despite the need for pork producers to move large numbers of farm animals, little is published 

about how best to move animals based on scientific evaluations. The broad objective of this 

case study was to evaluate the efficacy of a new moving devices for pigs. Considering the 

animal well-being concept and the rules that regulate it, the ethology and the behavior of pigs, 

it was investigated a “more appropriate” handling method, both from the ethological and 

operative point of view; it was planned and assembled a new tool, to be used inside the pens, 

to support the pigs during the handling and transfer procedures limiting the stress phenomena. 

The use of the tool during the trial showed a positive effect on the time requested by pigs to 

go out of pens; in fact, when the tool was used fewer stops were observed. Moreover, the tool 

requires the presence of one worker only in order to move the animals. Consequently, the 

animals are calmer and no squirrels/vocalizations have been recorded during the 

experimentation; that is why they did not require of any external stimuli for going on and, 

additionally, they were less dangerous for workers also. Finally, the need of one worker only 

is an important factor even for the economic efficiency. 
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Riassunto 

Valutare correttamente la progettazione dei ricoveri e la funzionalità degli 

impianti in essi presenti è il primo passo da fare per salvaguardare il benessere degli 

animali. L’isolamento termico, il riscaldamento e la ventilazione devono consentire di 

mantenere entro limiti non dannosi per gli animali, la circolazione dell’aria, la quantità 

di polvere, la temperatura, l’umidità relativa dell’aria e la concentrazioni di gas 

(anidride carbonica, ammoniaca, ecc.). Al sistema di ventilazione è affidato il compito 

di ricambiare l’aria all’interno dei locali di allevamento; esso deve essere in grado di 

controllare la temperatura ambiente, l’umidità relativa e la velocità dell’aria all’altezza 

degli animali e, inoltre, deve mantenere tollerabile la concentrazione dei gas, della 

polvere e dei microorganismi nell’aria. In Italia la norma non fornisce limiti ai suddetti 

parametri, ma dispone che le condizioni microclimatiche siano tali da non essere nocive 

agli animali allevati. La quantità di aria di ricambio, necessario al benessere degli 

animali, dipende dalle dimensioni degli stessi, dalla densità di allevamento, dal tipo di 

animale, e dalla temperatura dell'aria in entrata. Il controllo della ventilazione si può 

attuare monitorando la temperatura, l’umidità relativa e la presenza di anidride 

carbonica. Quest’ultima grandezza si presta molto bene sia per il calcolo della portata 

minima di ventilazione sia per il controllo del sistema adottato per realizzare il ricambio 

d’aria (Pedersen et al, 2002). La produzione di CO2 dipende dalla specie, dalla massa 

corporea e dal livello di alimentazione, variando da circa 0,16 a circa 0,21 m
3
h 

-1
hpu

-1
. 

Per quanto riguarda le valutazioni operative derivanti dal monitoraggio 

dell’anidride carbonica occorre predisporre un abaco di calcolo della portata di 

ventilazione collegato alle dimensioni del ricovero e alle caratteristiche dimensionali, e 

di specie, degli animali ospitati. Nella sperimentazione effettuata all’interno della 
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struttura per l’allevamento di vacche da latte, dopo la valutazione della qualità dell’aria 

mediante lo studio della temperatura, dell’umidità relativa e dell’Anidride Carbonica è 

stato installato un ventilatore per migliorare il ricambio d’aria ed è stata verificata 

nuovamente la qualità dell’aria. I risultati ottenuti hanno evidenziato un “microambiente” 

generalmente ottimale all’interno della struttura anche se non sempre uniforme. 

In merito alla valutazione del microclima nell’allevamento avicolo, sono stati 

rilevati i valori di temperatura, umidità, velocità dell’aria e anidride carbonica. Le 

misurazioni sono state effettuate durante un intero ciclo di allevamento, con cadenza 

settimanale, durante la tarda mattinata. Al fine di valutare il corretto funzionamento 

dell’impianto di ventilazione, i rilievi sono stati eseguiti nel periodo estivo, quando è 

richiesta la massima portata di aria. I risultati ottenuti hanno dimostrato che la 

temperatura e l’umidità presenti all’interno della struttura potrebbero essere distribuite 

in modo più omogeneo mediante un sistema di ventilazione in grado controllare la 

velocità dell’aria e garantendo allo stesso tempo anche risparmio in termini energetici. 

 

Realizzazione e sperimentazione di un nuovo strumento per la movimentazione dei suini. 

Diversi studi hanno dimostrato che una buona od una cattiva manipolazione 

può influenzare la fisiologia, il comportamento ed anche la qualità della carne dei suini. 

Considerando da un lato il concetto di benessere animale e le leggi che lo 

regolamentano e, dall’altro, l’etologia ed il comportamento dei suini è stato progettato e 

realizzato uno strumento, da utilizzare all’interno dei box, per movimentare in maniera 

più agevole i suini e limitarne lo stress. Per verificare l’efficacia dello strumento è stata 

predisposta una sperimentazione con l’obbiettivo di valutare il tempo che gli animali 

impiegavano per uscire fuori dai propri box. Gli animali movimentati con l’ausilio dello 
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strumento hanno fatto registrare un tempo inferiore rispetto agli animali movimentati 

senza di esso e, inoltre, non hanno richiesto sollecitazioni per proseguire il percorso. Si 

vuole precisare, infine, che lo strumento richiede la presenza di un solo operatore per il 

suo utilizzo. 
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1. Introduction 

Social and political interest in animal welfare and welfare management has 

increased substantially in recent years (Bayvel and Cross 2010, Ingenbleek and Immink, 

2010) but, in any case, every definition of animal welfare is influenced by the moral or 

ethical standards of society. Welfare as a biological function, embracing the continuum 

between positive and negative welfare, should take into account the dynamics of the 

individuals’ adaptive capacity. Positive welfare implies that the animal has the freedom 

and capacity to react appropriately (i.e. adaptively) to both positive and potentially 

harmful (negative) stimuli (Ohl and Van der Staay 2012). In 2012, the World 

Organization for Animal Health adopted 10 ‘General Principles for the Welfare of 

Animals in Livestock Production Systems’ to guide the development of animal welfare 

standards. The General Principles draw on half a century of scientific research relevant 

to animal welfare: (1) how genetic selection affects animal health, behavior and 

temperament; (2) how the environment influences injuries and the transmission of 

diseases and parasites; (3) how the environment affects resting, movement and the 

performance of natural behavior; (4) the management of groups to minimize conflict 

and allow positive social contact; (5) the effects of air quality, temperature and humidity 

on animal health and comfort; (6) ensuring access to feed and water suited to the 

animals’ needs and adaptations; (7) prevention and control of diseases and parasites, 

with humane euthanasia if treatment is not feasible or recovery is unlikely; (8) 

prevention and management of pain; (9) creation of positive human–animal 

relationships; and (10) ensuring adequate skill and knowledge among animal handlers 

(Fraser et al., 2013). Animal breeding and the use of breeding technologies is a dynamic 

and growing field that has the potential to influence animal welfare in a positive, as well 
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as negative, way (MacArthur Clark et al., 2006) and the behavior can be a very useful 

indicator to assess animal welfare (Absmanner et al., 2009). To assess welfare 

systematically and target insurance of good welfare, it is essential to be able to interpret 

species-specific normal behavior combined with clinical symptoms. Health and welfare 

are entangled concepts and cannot be discussed independently (Søndergaard et al., 

2011). One important clinical aspect of animal welfare is pain (Weary et al., 2006) 

being an unpleasant sensory and emotional experience associated with actual or 

potential tissue damage or described in terms of such damage (IASP, 1994). Per 

definition the existence of pain will always lead to reduction in animal welfare (Moberg 

et al., 2000). In humans, the best evaluation of pain is self-report, on the basis of oral or 

written communication (Herr et al., 2006). In animals, it is necessary to use indicators 

that can be detected by external observers. Consequently, pain assessment in animals is 

difficult. The numerous reviews of literature or guidelines that have been written 

focused mainly on mammalian species (Molony and Kent 1997, Holton et al., 2001) 

and more recently on birds (Gentle 2011). Indicators used for animals are often similar 

to those described for humans. Most of them are based on physiological or behavioral 

reactions aiming at stopping the cause or reducing the consequences of the noxious 

stimuli (Molony and Kent 1997, Mellor et al., 2000). Indicators of injuries and lesions 

may be used additionally as they often cause pain. Finally, pain can lead to a decrease in 

production performance, such as growth rate (Earley and Crowe 2002) or milk 

production (Fourichon et al., 1999), which may also be used as a pain indicator. 

Numerous postural and behavioral indicators of pain have been described in mammals. 

They can be distinguished in five main categories. Four of these aim directly or 

indirectly to avoid or alleviate the painful stimulus:  
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(1) Avoidance and defensive behaviors (the nociceptive withdrawal reflex, leg and body 

movements) as if animals were trying to avoid or escape the painful stimuli, were 

observed during castration (Marx et al., 2003), teeth resection and tail docking in young 

piglets (Noonan et al., 1994; Torrey et al., 2009). Similarly, dairy cows or growing 

calves jumped or kicked when subjected to hot-iron or liquid-nitrogen branding (Lay et 

al., 1992; Schwartzkopf- Genswein et al., 1998). 

(2) Vocalizations. Vocalizations are often used to identify pain in pigs, sheep and cattle. 

Many studies found that the number and features of these vocalizations (peak frequency, 

pureness and entropy of the sound) were modified in case of painful situations (Watts 

and Stookey 2000; Manteuffel et al., 2004). For example, during painful interventions, 

the number or duration of vocalizations increased in lambs (Molony et al., 1997), cattle 

(Schwartzkopf-Genswein et al., 1997) and pigs (Weary et al., 1998). Detailed studies on 

pigs found that high-frequency screams (>1000 Hz) were more frequent, lasted longer 

and were more powerful when piglets were castrated than when they were just handled 

to simulate castration, and the high-frequency screams were much reduced when piglets 

received a local anesthetic before castration (White et al., 1995; Marx et al., 2003). 

Anyway there is a strong goal conflict as castration is painful and should be avoided to 

improve welfare (Rault et al., 2011). Watts and Stookey (1999) observed that, compared 

with controls, calves subjected to hot-iron branding showed a greater frequency range in 

the fundamental or lowest harmonic of the audio spectrogram of their vocalizations, a 

higher maximum frequency and a higher peak sound level. However, many animals also 

vocalize during non-painful handling. Consequently, sometimes, no differences are 

found between the control and painful situation (Lay et al., 1992; Schwartzkopf- 

Genswein et al., 1998). It was further shown in ruminants that after the acute response 
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to a painful intervention, monitoring of vocalizations was of little efficacy to detect pain 

(Molony et al., 2002; Grant, 2004). 

(3) Behaviors directed towards the painful areas. Licking or scratching are probably 

performed to relieve the pain, as simultaneous activation of non-nociceptive sensory 

receptors of the skin inhibits the transmission of nociceptive signals. When licking is 

not possible for anatomical reasons, animals may scratch the painful area. For example, 

calves scratched their head with the hind foot after heat cauterization of the horn-

producing area (i.e. disbudding; Morisse et al., 1995). Similarly, the days following 

surgical castration, pigs displayed scratching of the scrotum against the floor (Hay et al., 

2003; Llamas Moya et al., 2008) or dog-sitting postures (Llamas Moya et al., 2008). 

Other specific movements directed to the painful area may involve head movements 

towards the painful area after castration and/or tail docking in lambs (Molony et al., 

2002), teeth champing (opening and closing of the mouth not associated to feeding) 

after teeth clipping in pigs (Noonan et al., 1994) and head shaking after disbudding in 

calves (Morisse et al., 1995). 

(4) Postures and behaviors aiming to reduce stimulation of the painful area. Postures 

and behaviours to reduce stimulation of the painful area can also indicate the presence 

of pain. The most common example is lameness. Foot lesions frequently stop the animal 

putting weight on the affected leg (O’Callaghan et al., 2003; Flower and Weary 2006). 

Pigs (Hay et al., 2003), lambs (Molony et al., 1993) and calves (Robertson et al., 1994) 

were more often lying on their sides with their legs extended after castration than before. 

Abnormal ventral lying also occurred in lambs after castration combined or not with tail 

docking (Molony et al., 1993, 2002). Animals that suffer from pain may lie with legs 
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tucked under the body. Being motionless or agitated may both occur after a painful 

procedure and can be a pain indicator. For example, ‘statue standing’ (standing still for 

more than 10 s) and being awake without any activity were more frequent after rubber-

ring castration in lambs (Molony et al., 2002) and after surgical castration in pigs (Hay 

et al., 2003), respectively, compared with non-castrated controls. Jumping, foot 

stamping and kicking, rolling from one side to the other side and restlessness measured 

by the frequency of alternating standing and lying postures were also more frequent 

after rubber-ring castration and/or tail docking (Molony et al., 1995; Grant 2004). Pain 

may influence other behaviors such as those related to feeding, drinking, social and 

grooming. For example, less suckling or feeding behaviour, social isolation, behavioural 

desynchronization with littermates and/or less social interactions with the dam were 

observed in pigs after surgical castration (Hay et al., 2003; Llamas Moya et al., 2008) or 

tail docking (Torrey et al., 2009). Similarly in calves, reduction in feed intake was 

observed after castration (Fisher et al., 1996).  

(5)The fifth category is related to general changes in activity, being motionless or 

agitated, feeding, drinking, social and grooming behaviours (Prunier et al., 2013) .  
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2. Concepts and the measurement of welfare 

2.1  Welfare measurements 

The scientific evaluation of animal welfare is a fast-progressing science, based 

on different indicators (pathological, emotional, physiological, behavioral, as well as 

immunological parameters) which should be considered in an integrated system 

(Scipioni et al., 2009). The major categories of indicators of how good or how poor the 

welfare of an animal are behavioral, physiological, injuries, other aspects of health, 

growth, reproduction and life expectancy (Scientific Veterinary Committee 1997). The 

majority of indicators of good welfare, which we can use, are obtained by studies 

demonstrating positive preferences by animals (Dawkins, 1990). Methods of assessing 

the strengths of positive and negative preferences have become much more 

sophisticated in recent years (EFSA 2007). Behavioral and physiological measures have 

been used for many years to evaluate the ability of domestic animals to cope in the 

systems in which they are reared. Both types of measure are useful but care must be 

taken in data collection and in the interpretation of the results for the assessment of 

animal welfare (Scientific Veterinary Committee 1997). Welfare is poorer when there is 

an injury or a disease condition than when there is not but there is a range of effects 

from the trivial to the severe. If growth or reproduction are prevented or impaired, or if 

life expectancy is reduced, welfare is poorer than if there is no such effect. Whenever 

possible, when using all of these indicators, the feelings of the individual are assessed 

but all indicators of good or poor welfare should be used. Since animals use a wide 

range of methods of trying to cope with adversity and there are various consequences 

when individuals are not coping, it is important that a wide range of indicators be used 

when assessing welfare (Scipioni et al., 2009). An individual which shows no clinical 
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signs of disease and no behavioral abnormality may be showing physiological changes 

which indicate that it is having much difficulty coping with its environment so its 

welfare is poor. Another individual might grow well but be clearly abnormal in its 

behavior so its welfare is poor (Scientific Veterinary Committee 1997). 

 

2.1.1 Physiological measurements 

Hypothalamic-pituitary-adrenocortical activity 

Adrenal cortex response occurs in diverse difficult situations and is useful in 

welfare assessment. The function of cortisol or corticosterone (glucocorticoid) 

production is to provide extra energy for forthcoming activity. Hence production of 

these hormones can occur in situations which are not harmful to the individual as well 

as in situations which are potentially or actually harmful. (Broom 1993). Because 

elevation of adrenal cortex hormones can sometimes indicate a substantial problem for 

the animal and on other occasions do not indicate poor welfare or the likelihood of 

stress, care must be taken in interpreting such hormone level elevations. If cortisol 

levels increase when animals are, for example, hit, chased, forced to climb a steep 

loading ramp, or confined, there can be no doubt that this is a response to difficulty 

(Mason and Mendl 1993). If there is a larger increase in cortisol in one difficult 

condition than in another, then it may be concluded that the first condition is more 

taxing for the individual than the second. On all occasions when adrenal cortex 

measures are taken it is essential that other information about the animal, especially its 

behavior, is obtained (Rushen 1991). Other considerations when measurements of 

glucocorticoid levels in body fluids are made in order to assess animal welfare are: 1) 

the duration of the response; 2) the extent of daily fluctuations in normal adrenal cortex 
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activity; 3) the variation in the magnitude of the response to different kinds of problems.  

1) Duration of the response. When an animal is disturbed sufficiently by an event for an 

adrenal cortex response to occur, in most domestic animal species the elevation of 

glucocorticoid in the blood takes approximately two minutes to become evident. It then 

rises to a peak after 5 to 20 minutes and starts to decline after 15 to40 minutes, the 

larger figures referring to more extreme responses. Further responses may occur 

subsequently. Hence the effects of short term experiences such as handling, or brief 

transport can be assessed readily by measuring the magnitude of the glucocorticoid 

increase in blood, saliva or, after a longer time lag, urine. Tests of adrenal function are 

capable of revealing whether animals have frequently used adrenal cortex responses 

because frequent use results in greater synthetic enzyme activity. The major test used is 

to challenge with an injection of sufficient adrenocorticotrophic hormone (ACTH) to 

produce maximal glucocorticoid secretion. In some circumstances it appears that 

animals do show a greater response to ACTH after experiencing difficult conditions 

over a long period. For example, sows which have often been in fights but have lost 

have a larger cortisol response to ACTH challenge than sows which have avoided 

conflicts or have won most of their contests (Mendl et al., 1992). If the conditions are 

prolonged and very severe in their effects, adrenal function may be impaired and a 

reduced response to ACTH challenge may result. Hence while an increased cortisol 

response to ACTH challenge indicates poor welfare, the lack of such a response does 

not necessarily indicate that the conditions posed no problem for the animal (Scientific 

Veterinary Committee 1997). 

2) Extent of daily fluctuations in normal adrenal cortex activity. For exact measurement 

of corticosteroid levels the frequency and amplitude of endogenous secretory episodes 
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must be considered as well as the plasma concentration of corticosteroids that is not 

only dependent upon the rate of hormone secretion, but also upon its rate of clearance 

from the blood (Scientific Veterinary Committee 1997). 

3) Variation in the magnitude of the response to different kinds of problems. The nature 

of the aversive stimulus may influence the animal's reaction to it (Mason and Mendl 

1993). Rushen (1992) observed that increased glucocorticoid levels have been 

associated with states of fear and anxiety, while pain does not always affect plasma 

glucocorticoid concentration. Prolonged pain can result in a reduced corticosteroid 

concentration (Lay et al., 1992).  

Heart rate 

When animals are disturbed by a situation they often substantially change their 

heart rate in preparation for action, so heart rate measurement is also of value in 

assessing welfare (Broom 1991). As with glucocorticoids, heart rate is influenced by 

factors other than fear and anxiety. The level of heart rate reflects the animal's general 

metabolic demands, and is also influenced by circadian rhythms. In order to avoid 

conflicting and equivocal results it is important to distinguish between metabolic and 

emotional effects and to ensure that the measurement itself does not cause much 

disturbance to the animal (EFSA 2007). Heart rate changes provide useful information 

about the effects of short-term problems on animals, but the measure gives little 

information about the long term effects of housing on animals.  

Immune response 

The plasma white blood cell count is responsive to stress-induced changes in 

corticosteroid levels, but it can also be influenced by a number of factors unrelated to 

stress. Other immunological indices are more reliable, such as the ratio of eosinophils to 
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lymphocytes and the activity of certain populations of lymphocytes such as T helper 

cells and T suppressor cells (EFSA 2007). Levels of suppression of lymphocyte division 

have proved to be more sensitive indices of welfare than alternative measures, such as 

the total lymphocyte count, the proportion of different types of lymphocyte in the 

plasma and delayed hypersensitivity (Broom 1993).  

 

2.1.2 Behavioral measurements 

Behaviour is one of the most commonly used and sensitive indicators of animal 

welfare (Haley et al., 2001; Krohn and Munksgaard, 1993) but many of the behaviors 

that we would like to use to assess welfare occur only for short periods and do not occur 

equally throughout the day (Rushen et al., 2011) .The time spent lying down, the 

number of lying bouts, the average bout duration (Haley et al., 2000), and the laterality 

of lying behaviour (Tucker et al., 2009) can indicate underlying changes in cow comfort 

and welfare (Fregonesi and Leaver, 2001). Cows with mild clinical mastitis present 

behavioral changes in lying behavior and at milking time, which could be associated 

with discomfort (Medrano-Galarza et al., 2011). As for other intensively kept species, it 

is often difficult to distinguish the pig’s adaptive behaviors caused by intensive rearing 

conditions from its inner species-linked behavior; the latter is indeed also influence by 

rearing conditions and management Furthermore, the behavior of domestic pigs is 

influenced by bio-rhythms which affect the sleeping/waking sequence and other 

important moments of its life: e.g., time of farrowing which, similarly to man and horse, 

mainly occurs during the night, when the maximum peacefulness is achieved. The 

social behaviors, including sexual and maternal behaviors, are the most important fields 

of study for pig welfare evaluation, since pigs often express within this framework the 

http://www.ncbi.nlm.nih.gov/pubmed?term=Medrano-Galarza%20C%5BAuthor%5D&cauthor=true&cauthor_uid=23040015
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abnormal behaviors indicating a state of distress (Scipioni et al., 2009). Changes in 

behavior patterns are among the first readily detectable responses of an animal to 

perceived changes in its environment. Behavior occurs as a consequence of the animal's 

motivational state and therefore the quantification of behavior patterns is in fact a 

measure of motivation (Dellmeier 1989). A wide variety of behavioral parameters have 

been used to assess welfare, and the validity of particular behavioral indices has been 

the subject of several discussion (Barnett and Hemsworth 1990, Rushen and de Passillé 

1992, Mason and Mendl 1993). Stereotypes have a great importance in pigs since their 

frequency is high. A stereotypy is a repeated, relatively invariate sequence of 

movements that has no obvious purpose. Stereotypes generally appear in conditions 

such as lack of motivation, restriction and fighting; they may be seen as compensatory 

reactions to a lack of stimuli, as defense mechanisms by which the pig ceases its higher 

nervous functions, and as cathartic reactions to emotional tension or frustration. 

Together with abnormal postures (the best known is the dog-sitting posture), stereotypes 

are included among somatic abnormalities. Many of these are represented by abnormal 

feeding behaviors (vacuum chewing, bar biting, drinker playing, polydipsia, etc...), 

often linked to frustration of oral and feed-related needs (Scipioni et al., 2009). Recent 

studies investigated the indicators of emotions in pigs, for which it is not only relevant 

what an individual pig feels but also the extent to which its pen mates are affected by its 

distress or pleasure (emotional contagion), and they showed play, barks and tail 

movements for positive emotions while freezing, defecating, urinating, escape attempts, 

high-pitched vocalizations (screams, squeals or grunt-squeals), tail low, ears back and 

ear movements for negative emotions (Reimert et al., 2013). 
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Preference tests 

Preference tests present the animal with choices and are only capable of 

providing relative information about the welfare problems or benefits of the treatments 

tested. For example, they cannot indicate whether a particular housing design actually 

causes the animal stress or suffering (Rushen and de Passillé 1992). Moreover, the 

behavioral choices that an animal makes following brief exposure to a stimulus may be 

distinguished from its choices following prolonged exposure. However, preference tests 

are very useful when designed to answer a specific question as they enable the question 

to be put directly to the animal. The strength of an animal's preferences and thus 

whether they can be said to constitute needs, can be assessed by monitoring the 

incidence of abnormal behaviour patterns and physiological indicators of stress when 

the animal's preference is denied (Scientific Veterinary Committee 1997). It is also 

possible to quantify the strength of preferences by measuring how hard the animal is 

prepared to work in order to have them met. 

Tests of aversion 

Measurements of the animal's aversion to a stimulus are the most direct indices 

of short-term suffering (Rushen and de Passillé 1992), although it is not known whether 

they are of use in the assessment of chronic suffering owing to a lack of studies on this 

subject. They may therefore be of limited value in assessing the effect of housing 

systems upon welfare. Moreover, the results of aversion tests may be confounded by 

factors affecting memory or learning ability (Scientific Veterinary Committee 1997). 

Behaviour deprivation and measures of motivation 

Animals remain motivated to perform certain behaviors even if they are 

prevented from doing so by their physical environment. It is possible to identify 
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behavior patterns which the animal is highly motivated, but unable to perform, from the 

occurrence of abnormal behavior patterns. For example, the animal may perform the 

motivated behavior in an altered form or in an unusual context. The occurrence of 

apparently unrelated activities may also be indicative of behavioral frustration (Dawkins 

1990). Some of these activities are termed redirected behaviors because their 

performance, or the excessive degree to which they are performed, is a consequence of 

an inability to perform some other highly motivated behavior pattern. The identity of 

the motivated behavior pattern may not be clear from the morphology of redirected 

activities. However, it may be deduced by comparing the extent to which the redirected 

behaviors are performed in experimental environments which differ only in respect to 

their suitability for the expression of particular behavior patterns. An additional 

technique may be used to assess the strength of an animal's motivation to perform a 

particular behavior pattern. The amount that an animal is prepared to "pay" for the 

opportunity to perform the behavior can be measured in terms of its cost to the animal 

in energy or time expended (Dawkins 1990). The possibility that animal welfare is 

reduced because animals cannot perform behavior that they normally would perform is 

one of the enduring concerns the public has about the welfare of animals in modern 

husbandry systems. However, problems with the concept of natural behavior have been 

discussed many times (Špinka 2006). Briefly, there is no reason to think that an animal 

will inevitably suffer simply because it does not perform all the behavior patterns shown 

by its wild ancestors. Indeed, allowing animals to perform some natural behaviors, such 

as aggressive behaviors or infanticide, may lead to reductions in animal welfare 

(Rushen et al., 2011). Furthermore, a multitude of detailed studies on different species 

have revealed how much artificial selection has altered the behavior of domestic 
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animals (Jensen 2006), so we are uncertain about how much of the behavioral repertoire 

of their wild ancestors domestic animals have retained. 

Abnormal behaviors 

Broom (1993) described abnormal behaviors as those which differ in pattern, 

frequency or context from those which are shown by most members of the species in 

conditions which allow a full range of behavior. There can be abnormalities of feeding, 

grooming, sexual behavior, gait etc. One category of abnormal behavior is the 

stereotypy. Stereotypies are repeated, relatively fixed sequences of movements which 

have no obvious purpose (Fraser and Broom 1990). A considerable amount of 

discussion is focused upon stereotypies and their causes, function and consequences for 

animal welfare. Regardless of the function of stereotypies (as a coping mechanism or 

otherwise), their presence in an animal's behavior helps to pinpoint the specific 

problems of the animal's environment for its welfare (Rushen and de Passillé 1992). 

Stereotypies develop when the animal is severely or chronically frustrated. Hence their 

development indicates that the animal is having difficulty in coping and its welfare is 

poor. Other abnormal behaviors include those which are directly attributable to a 

physical restriction and those which are responses, perhaps as part of attempts to cope 

with problems (Scientific Veterinary Committee 1997). KilBride et al., (2009) reported 

the prevalence of abnormal gait in finishing pigs from a representative cross-section of 

indoor and outdoor herds in the United Kingdom to be 19.7%. The lowest prevalence of 

abnormal gait in finishing pigs occurred in pigs housed outdoors. However, the 

difference was not significant because only three farms in the study housed finishing 

pigs outdoors. In indoor-housed finishing pigs, there was an increased risk of abnormal 

gait in pigs housed on solid concrete floors with sparse bedding, partly-slatted floors or 
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fully-slatted floors compared with those housed on solid concrete floors with deep 

bedding in all areas. There was an increased risk of abnormal gait associated with 

increasing callus, bursitis and capped hock score on the limbs of finishing pigs (EFSA 

2007). 
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3. Housing and management  

Housing system designs are affected by a number of factors including, climate, 

legislation, economics, farm structure and ownership, research and traditions. Recent 

EU legislation, combined with certain socio-economic issues, has had a great impact on 

housing systems in Member States. For example Council Directive 91/630 (EEC, 1991), 

as amended by the Council Directives 2001/88/EC (EC, 2001a) and 2001/93/EC (EC, 

2001), dealing with animal welfare and Council Directives 1996/61/EC (EC, 1996) and 

2003/87/EC (EC, 2003), covering environmental concerns. And, in addition to the 

legislation, changes have also come about because of retailing standards applied in 

certain State Members that have had a major effect on the production methods used by 

some producers. All livestock houses represent a compromise between cost and animal 

performance, defined as productivity, health and welfare (Webster, 1994). The modern 

housing systems, as well as the development of intensive animal production, have 

gained the attention of scientists on the effects of microclimate inside the animal houses, 

the management practices and animal welfare. Housing systems may offer improved 

welfare and health of livestock by protecting animals from heat- or cold-stress and by 

supplying adequate feeding (Caroprese 2008).  

 

3.1 Cattle 

Basically, cattle can be kept indoors, or outdoors feeding (grazing or being fed) 

or exercising. Housing can be used because land conditions do not allow grazing, to 

allow for structured feeding under controlled management conditions, or to protect 

animals from adverse weather conditions. During the grazing period, animals can 

sometimes choose between being indoors or at pasture. Dairy cows can be kept indoors 
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during part of the day. A number of housing options are available. When housed 

indoors dairy cattle can be loose, tied or confined to group or single pens or crates. 

Loose animals are kept in groups in straw yards (deep packs) or cubicle systems. 

Husbandry might vary considerably between different stages in the productive cycle, 

keeping for instance dry and lactating cows separately. In cold climates, housing 

facilities can be cold (uninsulated), temperate (partly insulated) or warm (insulated). 

Floors can be solid or slatted, with varying amounts of litter. Herd size spans from a few 

individuals to thousands of head, which relates to differences in e.g. grouping, feeding, 

reproductive management, calving and milking. Furthermore, breeding, housing, feed 

composition, grazing practices, production strategy and production levels vary between 

regions, due to differences in geography, climate, tradition and legislation. Grazing is 

usually seasonal, depending on climatic conditions, but is sometimes practiced all year 

round. Some cattle are kept indoors all year round (zerograzing). Variations in 

husbandry are seen in all cattle categories, both replacements, adult dairy cattle and beef 

cattle. In short, cattle husbandry varies between European countries and regions in a 

number of ways, almost on a farm-to-farm basis. Due to unfavourable climatic 

conditions, lack of grass or other forage, or poor conditions of the sward, European 

dairy cattle are kept indoors for the main part of the year, roughly 5-7 months, during 

the winter season. The length of the housing period differs between regions in Europe, 

with variations in climatic condition as the primary reason. In addition, dairy cows are 

likely to be indoors during a part of the day in the summer season. This is because of 

milking, water supply, supplementary feeding or even protection against extreme 

weather such as hot sunshine or heavy rainfall. Loose housing of cows in cubicle barns 

is presently the most common housing in intensive dairy farming. The cubicle system 
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focuses both on saving labor and on the increase of production, developed as part of a 

process of rationalization and intensification of dairy production. The cows move 

themselves to the necessary commodities and facilities in the system, so that a 

substantial step in mechanization and automation is made. The cubicle house consists of 

a number of specific facilities. The cubicles or free-stalls for lying and resting are 

arranged in one or more rows within the available building space. Each cubicle is a 

rectangle floor area made of concrete (or soil, in some instances), usually covered with a 

rubber mat, a mattress or bedding material. Various alternatives of cubicle flooring exist 

and/or are still under development, but in all cases the aim is to provide the cow with a 

stable, even and somewhat soft lying surface for comfortable resting. Cubicles are 

around 1.15 to 1.25 m wide and separated from each other by a metal, wooden or textile 

framework that also guide the cows‘ movements. The type of partition has undergone 

many changes in the course of time, with the aim to allow cows maximum freedom of 

motion within the available space. The cubicle length is around 2.20-2.30 m, but rails in 

the front of the cubicle can restrict the actual space of the cow. According to 

recommendations and legislation, there should be at least as many cubicles as cows but, 

in practice, higher rates of occupation are often applied, especially when roughage is fed 

ad libitum. If cubicles are also used for feeding, they are called feeding cubicles, which 

is a less common housing system, applied e.g. when a tie-stall system is restructured 

and the old feeding platform and stalls are kept intact while a new milking parlour is 

constructed. The floor in walking areas of a loose-housing system has two main 

functions, it is the area where cows stand and perform most locomotive, social, sexual, 

eliminative and grooming behaviors, and it provides a means for collecting manure. In a 

cubicle system, walkways are usually located between cubicle rows and along the 



28 

 

feeding platform (typically two main walkways in a system with three cubicle rows). 

The walkway floor is usually made of concrete, presumably because of its durability, 

low cost and ease of cleaning, and it can be either solid or slatted. To offer a more 

yielding and comfortable surface, both solid and slatted floors can be coated with e.g. 

rubber or, less frequently, mastic asphalt (EFSA 2010). 

 

3.2 Poultry 

The poultry building's main role is to protect animals against climatic 

conditions. The major problems encountered are cold weather and hot weather, and high 

humidity. Broilers can be very sensitive to excess temperature if they become unable to 

lose and regulate heat effectively due to high ambient temperatures combined with high 

humidity. The standard broiler house in Europe is window-less, artificially lighted and 

actively ventilated. Walls and roof are well insulated and the floors are concrete and 

covered with litter. The vast majority of broilers is kept in floor systems with 100% 

litter floors. Under conventional production systems in Europe the used litter is usually 

completely removed after each batch, and the house is cleaned and disinfected. Litter-

bedded floor systems are common for raising broiler chickens used for meat production. 

In contrast, the egg industry has relied heavily on battery cages—small, wire enclosures 

that typically hold five to ten laying hens. Although cages for broiler chicken 

production have been available for many years, they were not widely adopted because 

heavy broiler chickens are prone to leg deformities, breast blisters and other skin 

imperfections such as enlarged feather follicles due to abrasion against the wire cage 

floor. Another problem is the comparatively short time period that broiler chickens are 

confined to cages before they reach market weight, and the concomitant labor 
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requirements associated with moving chickens into and out of cages (Shields et al., 

2013). Light usually is provided by means of fluorescent light. According to EU-

Directive 2007/43 light intensity should be at least 20 lux. Water is provided by means 

of nipples or cups. About 12 birds per nipple or 1000 birds per bell drinker are advised. 

Feed usually is provided in pans or in tracks (4 cm track length per bird or 1,6 cm per 

bird for round feeders is advised). The first days feed is also scattered on paper on top of 

the litter, to facilitate a quick start of the chicks. Stocking density is regulated by EU-

Directive 2007/43; the maximum permitted stocking density in the European Union is 

33 kg/m
2
, with derogations permitting up to 42 kg/m

2
 if specific air quality, temperature 

and humidity requirements are met and in 7 consecutive flocks mortality should not 

exceed 1% + 0.06% times age at slaughter (in days). Mortality in broilers can be divided 

in mortality at young age, usually as a result of poor chick quality, and mortality at later 

age, usually due to metabolic disorders. Apart from feeders, drinkers and litter, no other 

items are provided in broiler housing (EFSA 2010) . The Directive 2007/43/ EC  

regulates the characteristics of: drinkers, litter, ventilation and heating, noise and light. 

The same directive gives indications on the management of housing to guarantee good 

level of animal welfare (inspections, cleaning, etc.). 

 

3.3 Pigs 

The most important regulation on welfare of pigs is the EU Directive 

2008/120/EC (adopted in Italy through Legislative Decree 122/2011), which lays down 

minimum standards for the protection of the pigs. The above mentioned directive 

regulates every aspect of the animal life: starting from the place where the pigs live 

(right light intensity, adequate heating and ventilation conditions, absence of disturbing 



30 

 

and sudden noise, smooth floors so as to prevent injury or suffering to the pigs, lying 

area physically and thermally comfortable as well as adequately drained and clean 

which allows all the animals to lie at the same time, etc.) to the diet. Even the social life 

of the pigs is safeguarded: animals shall have the possibility to get together and take 

care of the piglets without any difficulties. In Italy the attention to the welfare of the 

pigs is even higher due to the specialization in keeping heavy pigs for farming purposes. 

Adult pigs belonging to this race can reach a weight of 156/176 Kg and, given to their 

meat characteristics, they are particularly suitable for the production of Protected 

Designation of Origin (PDO) and Protected Geographical Indication (PGI) products; 

Heavy pigs represent over 90% of the whole Italian pig production. Most pigs in the EU 

are raised indoors under intensive farming conditions. Intensive systems include mainly 

four separate phases of production (breeding, farrowing, rearing, and, growing and 

finishing), with different feeding and housing conditions (EFSA 2010). Weaner pigs 

and fattening pigs are typically housed indoors, although there are housing systems that 

provide indoor housing with access to an outside area. In few cases, these pigs are also 

kept outdoors during the whole rearing period. Different climatic conditions and the 

availability of bedding material in various European regions also greatly influence the 

type of housing chosen (EFSA 2007). Housing with fully or partly-slatted flooring is the 

accommodation for fattening pigs that predominates within the EU. Traditionally, 

fattening pigs are housed in groups of 10-15, but recently the number of fattening units 

with large group sizes (24 pigs up to 40 and more) on perforated floors is increasing. 

Accommodation for fattening pigs may be fully-slatted, partly-slatted, minimally 

bedded with scraped dunging area or deep bedded with straw or straw dust. Slatted 

floors show a great variation in choice of construction materials such as concrete, cast 
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iron, steel, aluminum or plastics, or other polymer materials, as well as combinations of 

materials. The design may be slatted, perforated, meshed or expanded, all with a great 

variation of surface design and treatment. 

 

3.3.1 Handling  

The general public, livestock producers and research scientists have shown an 

increasing interest in assuring proper animal care and handling. There is a 

corresponding increase in effort by research and educational institutions, government 

agencies, enterprise managers, health care providers and others in developing and 

accessing information that assists in creating appropriate management procedures and 

humane conditions for handling and transportation (Von Borell and Schaffer 2005). 

Animals handling inside the barns is always a critical phase both for animals and for 

employees so management methods and selection of the appropriate animals are being 

studied to minimize handling problems and the negative consequences for the handlers 

and the animals (Le Neindre et al., 1996). Many studies have demonstrated the 

importance of a positive human–animal relationship for reducing stress and facilitating 

high productivity in farm animals (Waiblinger et al., 2006; Hemsworth and Coleman, 

2011). Negative handling, for example using physical force, electric shock, shouting and 

rapid movement, can also affect the health of animals (Fraser et al., 2013). The majority 

of negative effects of handling on animal performance and health are likely due to fear. 

Animals can be stressed by either psychological stress (restraint, handling or novelty) or 

physical stresses (hunger, thirst, fatigue, injury or thermal extremes) (Grandin, 1997); 

thus, reducing stress during handling will provide advantages of increasing productivity 

(Grandin, 1998). The stress of handling can be reduced by using well-maintained 
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systems (Goddard et al., 2006), consequently, the development of appropriate systems 

should be guided by the requirement to ensure high standards of animal welfare 

(Yardimci et al., 2013). In pigsties we can observe many operations during which 

animals are moved, and it can depend on different physiological state and on 

organization’s requirements. Usually the handling of animals is carried out through 

traditional methods: the operator drives the group or the single animal, remaining 

behind it and using frequently goads and blows. It’s known that the handling of pigs can 

cause a stress response in pigs and ultimately affects the meat quality. Studies 

investigating the influence of pig handling on subsequent meat quality have examined 

the handling of pigs during transportation from the farm to the abattoir and at the 

abattoir itself. The major pre-slaughter stressors that can affect meat quality are 

transportation, loading and unloading of pigs, mixing of unfamiliar pigs, and use of an 

electrical goad (Warriss et al., 1995; Küchenmeister et al., 2005). Most of the effects 

have been attributed to alterations in the rate and extent of pH decline postmortem 

which in turn are related to muscle glycolytic potential (an estimate of muscle glycogen 

in vivo) and a stress induced increase in glycolysis (Hambrecht et al., 2005). Moreover, 

in pigs, a myriad of both animal-related and environmental factors that can affect 

muscle metabolism, pH and temperature and that predispose to the development of the 

PSE syndrome have been observed (Hambrecht et al., 2003). Among such factors are 

genotype (Sellier 1988), nutrition (Coma 2001), feed withdrawal (Eikelenboom et al., 

1991), transport and lairage (Geverink, et al., 1998). Handling and processing in 

slaughter plants is well-known to have a large impact on meat quality (Hambrecht et al., 

2003); stress immediately prior to slaughter (van der Wal et al., 1999; Warris et al., 

1994), stunning method (Channon et al., 2000) and chilling rate (Offer, 1991) play 
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important roles in the conversion of muscle to meat. Also the equipment used to handle 

animals can have important effects (Fraser et al., 2013). The most common hand-held 

moving devices used for pigs are electric prods, paddles, boards and flags (McGlone et 

al., 2004). Overuse of electric prods when pigs are moved can cause severe stress, 

leading to increased lactate and glucose levels, and poorer pork quality if negative 

handling occurs just before slaughter (Hambrecht et al., 2005b; Edwards et al., 2010). 

Studies have shown that negative handling of pigs by stock handlers (i.e. use of electric 

prodders) on-farm can result in marked reduction of growth and reproductive 

performance (Hemsworth et al. 1986, 1987; Hemsworth and Barnett 1991; D’Souza et 

al., 1998) and, at the slaughterhouses, the use of a nose snare or electrical goad during 

preslaughter handling can affect meat quality (Küchenmeister et al., 2005). Both 

aversive and minimal handling of pigs can have adverse consequences on their 

behaviour and productivity (Hemsworth and Coleman, 1996). Conversely, sympathetic 

handling and provision of a more varied environment can have beneficial effects 

(Beattie et al., 1996). Abbott et al observed that a combination of sympathetic handling 

and novelty in the environment in the weeks before slaughter can greatly improve the 

ease with which pigs can be moved, and may make them better able to cope with the 

stressors they inevitably encounter during the preslaughter period (Abbott et al., 1997). 

The novelty of an object is important for initiating exploration (Gifford et al., 2007) and 

has been reported to be intrinsically rewarding to pigs (Kittawornrat and Zimmerman 

2010). Normally when an animal, such as man, see something unknown, it becomes a 

reason of meditation that, if the animal is moving, implies a momentary stop 

(Hemsworth et al., 1996). Researchers observed that pigs, when stimulated, 

immediately look for the border lines of place in which they are and, if the stimulus 
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persists, they move along walls and partitions and only sporadically they go toward the 

stressor source. They also observed that in many cases blows or goads on animals did 

not cause any movement probably because of pigs don’t connect stimulus to the 

movement and so, instinctively, they wait. McGlone et al., (2004) observed that the use 

of electric prod and paddle often cause the pigs to vocalize and some pigs became also 

aggressive. During handling the most common behavioral indicators of stress are: open 

mouth breathing (panting), vocalization (squealing or barking), blotchy skin 

(reddish/purple color), stiffness, muscle tremors (animals begin shaking) increased heart 

rate and increased body temperature (Anderson et al., 2002). In a research on the 

efficacy of moving devices for finishing pigs the authors showed that the use of the 

board was the most efficacious moving device when compared to electric prod, paddle 

or flag. A handler using a board required less time (P<0.05) to move pigs compared with 

an electric prod or paddle and, moreover pigs vocalizations were similar after being 

touched with either the paddle or electric prod, but these devices caused more pigs 

vocalizations than the board (McGlone et al., 2004). 
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4. Air quality 

4.1 Cattle  

Main gases in livestock buildings that may affect animal health are ammonia, 

carbon dioxide, carbon monoxide, hydrogen sulphide and methane. Decomposing 

wastes give off odorous gases such as amines, amides, mercaptans, sulphides, and 

disulphides. In a properly designed and managed naturally ventilated building, noxious 

gases usually do not reach harmful concentrations but also low levels of these gases 

could be contributed to chronic diseases. 

Ammonia (NH3) is released during anaerobic decomposition of urine. Anaerobic 

decomposition of nitrogen containing compounds in manure is also possible. Ammonia 

levels tend to be high in buildings with litter, solid floors, or scrapers because manure 

spread over the floor area increases ammonia release. Concentrations above 30 ppm 

may increase the incidence rate of respiratory diseases. The threshold limit for NH3 is 

20 ppm, in some countries 10 ppm.  

Carbon dioxide (CO2) is mainly from animal respiration and manure 

decomposition. C02 concentration in well-ventilated rooms may be 2000 ppm (0.2%). 

Without ventilation in a closed building, the level can rise rapidly. Carbon dioxide 

triggers breathing, but at high concentrations contributes to oxygen deficiency. The 

threshold limit for CO2 is 3000 ppm. 

Hydrogen sulphide (H2S) is the most toxic gas from liquid manure storage. 

Hydrogen sulphide is produced by anaerobic decomposition of organic wastes. 

Concentrations are usually negligible in well-ventilated buildings except during 

agitation and pumping of liquid wastes. High ventilating rates can help reduce 

dangerous conditions during agitation and pumping of stored manure. At low 
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concentration, hydrogen sulphide smells like rotten egg. H2S can rapidly destroy the 

sense of smell; lack of H2S odour is not an adequate warning. CIGR-report (1992) 

recommendations for threshold limit were 0.5 ppm. 

Methane (CH4). Ruminant animals exhale a little methane, but most come from 

manure decomposition. Methane is lighter than air. It dissipates rapidly with some 

ventilation. Methane is not usually considered toxic. Accumulations in stagnant areas 

can be asphyxiating. Methane is explosive at concentrations of 5%–15% in the air. 

Carbon monoxide (CO) can be produced from incomplete combustion of fuels 

inside buildings (for example, if a tractor is used for feeding and manure removing). 

The gas is toxic for humans and animals. The threshold limit for CO is 10ppm. (Praks et 

al., 2009).  

Temperature 

The maintenance of a comfortable indoor climate with respect to temperature, 

humidity, noxious gases (ammonia, hydrogen sulphide, carbon dioxide) and protection 

from draught is an important part of cattle management. Air temperature, relative 

humidity and air velocity are important factors of animal heat exchange. Cattle are more 

temperature tolerant than other farm animals. Their thermo-neutral zone is generally 

wide, and often extends to much lower temperatures; exceptions are neonate and young 

animals, sick or underfed animals, animals exposed to high air speeds or which have 

wet coats The range of thermal neutrality is variable between breeds and between cows 

with different productivity. When environmental temperatures move out of the thermo-

neutral zone (or comfort zone) dairy cattle begin to experience either heat stress or cold 

stress. Either stress requires the cow to increase the amount of energy used to maintain 

the body temperature and there is less energy available to produce milk. Thermo-neutral 
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zone is the range of environmental temperatures where normal body temperature is 

maintained and heat production is at the basal level. The ranges of thermo-neutral zone 

are from lower critical temperature (LCT) to upper critical temperature (UCT). LCT is 

the environmental temperature at which an animal needs to increase metabolic heat 

production to maintain body temperature. UCT is the environmental temperature at 

which the animal increases heat production as a consequence of a rise in body 

temperature resulting for inadequate evaporative heat loss. Thermo-neutral zone 

depends on the age, breed, feed intake, diet composition, previous state of temperature 

acclimatization, production, housing and stall conditions, tissue (fat, skin) insulation 

and external (coat) insulation, and the behaviour of the animal. UCT is given as 25-26 

ºC, LCT as a range from -16 to -37 ºC for dairy cows . LCT for newborn calves is 10 ºC 

in dry and draught-free environment. LCT decreases to 0 ºC by the time the calf is 1 

month old. The lower critical temperature is affected by: 

1. The rate of heat production (feed intake, digestibility of the feed, the level of 

production, the efficiency of utilization of ME), the amount of activity and 

locomotion. 

2. The rate of heat loss. Heat loss is affected by coat thickness, coat thermal 

insulation, tissue insulation, the minimal rate of evaporative heat loss, irradiative 

environment. Coat insulation is affected by wetness and air speed (Praks et al., 

2009).  

The common opinion is that the neutral air temperature for European breeds of dairy 

cows is about –5 ˚C to 25 ˚C (Management and Welfare of Farm Animals, 1999) and the 

ooptimum ambient temperature for dairy cows is 0-15 °C (EFSA 2010);  
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Humidity 

The recommended relative humidity in cowsheds is 70 10% (Management and 

Welfare of Farm Animals, 1999) while optimum relative humidity for EFSA (2010) 

is between 50-80%. Relative humidity is important, inside cowshed, to determine 

the Temperature Humidity Index, a common method for heat stress evaluation in 

animals and could be used as an indicator of thermal climatic conditions. THI is 

determined by equation from the relative humidity and the air temperature and is 

calculated for a particular day according to the following formula (Kadzere et al., 

2002): 

THI=0.72 (W+D) +40.6 

W:  wet bulb temperature ºC  

D: dry bulb temperature ºC 

The principle of THI is that as the relative humidity at any temperature increases, it 

becomes progressively more difficult for the animal to cool itself. (RCI). THI values 

of 70 or less are considered comfortable, 75 – 78 stressful, values greater than 78 

cause extreme stress (Praks et al. ,2009). Several studies documented negative 

relationships between THI and productive and reproductive performances in dairy 

cows (Bouraoui et al., 2002; García-Ispierto et al., 2007). Conversely, the 

relationships between THI and mortality in dairy cows have not been established 

previously. Yet, even if experimental evidence supporting categorization of THI 

values in hazard levels were not clear, Silanikove (2000) reported that a THI of 80 

would be the upper critical THI above which most domestic ruminants enter in a 

noxious stage, which was defined as a stage compromising their survival. Vitali et 

al., (2009) in their research observed that summer was the season with the highest 
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risk of death for dairy cows, and THI of 80 and 70 were the values of maximum and 

minimum THI, respectively, above which the number of deaths starts to increase 

significantly. Furthermore, THI of 87 and 77 should be considered the upper 

maximum and minimum critical THI values, respectively, above which the risk of 

death for dairy cows under intensive management conditions becomes maximum. 

4.2 Poultry 

The environment in the poultry house is a combination of physical and 

biological factors which interact as a complex dynamic system of interactions 

between birds, husbandry system, light, temperature and the aerial environment 

(Sainsbury 2000). Aerial environment (air quality) including temperature, humidity, 

dust level and concentrations of carbon dioxide, carbon monoxide and ammonia 

should be controlled and kept within limits where the welfare of the birds is not 

negatively affected (DEFRA 2002). The EU Broiler Directive (Commission, 2007) 

advises 20 ppm for ammonia, 3,000 ppm for carbon dioxide and 70% for relative 

humidity as upper limits. Pollutants include organic and inorganic dust, pathogens 

and other micro-organisms as well as gases such as ammonia, nitrous oxide, carbon 

dioxide, hydrogen sulphide and methane or other compounds like endotoxins and 

even residues of antibiotics (Kristensen and Wathes, 2000; Saleh, 2006). Gases, dust 

and micro-organisms form bio-aerosols and there is strong epidemiological evidence 

that bioaerosols cause directly infectious and allergic diseases in farm workers and 

animals. Chronic exposure to some types of aerial pollutants may exacerbate multi-

factorial environmental diseases (Saleh 2006). In addition, air contaminants may 

depress the growth of the birds (Wathes 1998). The main sources of aerial pollutants 

are the feed, the litter and the chickens themselves. They are indirectly or directly 
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influenced by season, diseases, nutrition and the management (Wathes 2004). It is 

remarkable that broiler chickens tolerate the high burden of aerial pollutants, and yet 

there are reasons for concerns that their welfare may be compromised by chronic 

exposure (Wathes 2004). Wathes (2004) suggested that the current guidelines for air 

quality should be revised and lower limits considered (EFSA 2012). Indoor poultry 

units often have high levels of ammonia and dust. High levels of atmospheric 

ammonia can cause keratoconjunctivitis in poultry, as well as damage to the lungs 

and trachea (Fraser et al., 2013). Ammonia is a colourless gas with a pungent odour, 

produced in the litter by microbial decomposition of nitrogen-containing substances. 

Ammonia can irritate eyes, throat and mucous membranes in humans and farm 

animals. Its excessive concentration in the air may cause blindness, skin burns and a 

decreased weight gain in broilers. The smell of ammonia can be detected by humans 

at concentrations of less than 10 ppm. Ammonia levels of 10 ppm or more in the 

broiler house can damage the lung surface and increase the susceptibility for 

respiratory diseases. Damage to the mucous membranes of the respiratory system 

increases the susceptibility of birds to bacterial respiratory infection, especially E. 

coli infection. High levels of ammonia have a negative impact on overall livability, 

weight gain, feed conversion, condemnation rate at processing and the immune 

system of the birds. Ammonia concentrations at 25 and 50 ppm induced eye lesions 

after 7 days after initial exposure. The growth rate of broilers is reduced at ammonia 

levels higher than 50 ppm (ROSS 2010). In broiler houses, the most important 

factors influencing ammonia production are air temperature, ventilation rate, 

humidity, feed composition, age of the litter, litter pH, moisture content, litter type, 

stocking density and age of birds (EFSA 2012). Considering the behavioural and 
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physiological responses of broilers to increased levels of ammonia (DEFRA 2002) 

recommended a maximum ammonia concentration of 20 ppm. N2O and CH4 do not 

occur in broiler houses in concentrations which may influence health or welfare of 

animals. Other gases, such as CO and H2S, are potential risk factors for broiler 

welfare, but there are little data available on commonly occurring concentrations or 

on risk levels. Carbon dioxide (CO2) is a non-reactive gas, which is removed only 

by ventilation contrary to a reactive gas like ammonia which may interact 

chemically, for example, by absorption on wet building surfaces or dust particles. 

CO2 is a metabolic by-product of both broiler chickens and litter processes. Levels 

of CO2 of 1% do not, by itself, cause any harm for animals. However, an increase in 

CO2 levels is usually accompanied by increased levels of other detrimental air 

pollutants such as ammonia, dust and micro-organisms. Therefore CO2 is used as an 

air quality indicator and the minimum ventilation rate is calculated on the basis of 

CO2 production by the chickens and the litter (EFSA 2012). 

Temperature 

Broiler houses are heated as young chicks cannot maintain their body 

temperature. Sometimes floor heating systems are used, but in the majority of the 

houses local or central heating systems are used. If the temperature is too low, birds 

increase their feed intake but have to use more of that feed energy to keep their 

bodies warm. If temperature is too high, they reduce feed intake to limit heat 

production. At each stage of a bird’s development, there is one narrow temperature 

range where maintenance energy requirements are lowest and the bird can make 

maximum use of feed energy for growth. If temperature goes just a few degrees 

outside the optimum performance zone, cooler or warmer, birds will be using a 
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higher proportion of their feed energy for body maintenance and less for growth For 

example, university research in the United States showed that exposing day-old 

chicks to an air temperature of 13°C for only 45 minutes reduced 35 day weights by 

about 110 grams (ROSS 2010). The first day the temperature on chick level should 

be 30C
o
. During the rearing period the temperature is lowered according to the 

guidelines of the breeding companies. At 27 days of age the temperature should be 

around 20
o
C. (EFSA 2010). The target temperature for best broiler performance 

changes during a grow-out, typically from around 30°C on day one to near 20°C or 

lower at harvest time, depending on bird size and other factors. (ROSS 2010).  

Humidity 

Humidity depends mainly on factors within the building but also on outside 

humidity. Examples of important factors in the building are stocking density, live 

weight of the birds, ventilation rate, indoor temperature, number, type and 

management of drinkers, water consumption and water spillage. Birds are basically 

air-cooled. That is, air moving over the birds picks up their body heat and transfers it 

to the environment. Birds do not sweat, they do get some evaporative cooling effect 

through breathing and panting (ROSS 2010). Temperature and relative humidity 

influence the thermal comfort of the birds. A relative humidity of 60-70% in the 

house is necessary in the first three days (ROSS 2009). Relative humidity above 

70% can occasionally be reached with high stocking densities in winter time when 

the ventilation rate may be reduced to retain heat and save energy (ROSS 2009). At 

later ages high relative humidity causes wet litter and its associated problems. 

During summer, broilers may often experience discomfort due to the combined 

effect of high humidity and high temperature. Relative humidity below 50% leads to 
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an increase in dust and micro-organisms, which increase the susceptibility to 

respiratory diseases. This situation is not very common and normally occurs only in 

the first or second week of life. Adequate ventilation rates provide the most effective 

method of controlling temperature within the house and also allows for control of 

relative humidity and can play a key role in alleviating the negative effects of high 

stocking density and of wet litter. Litter moisture is positively correlated with the 

incidence of foot pad dermatitis, one of the most important welfare indicators 

(EFSA 2012). 

4.3 Pigs 

It is known that inside piggery one of the most dangerous compound for pig’s 

health is the ammonia. Acute and prolonged effects of 35 and 50 ppm concentrations of 

atmospheric ammonia (NH3) were associated with an increase in absolute monocyte, 

lymphocyte and neutrophil counts, as well as in serum cortisol and haptoglobin 

concentrations, but no effect was found on pig growth performance (EFSA 2011). 

Atmospheric ammonia at commonly experienced concentrations may undermine social 

stability of groups of finishers, particularly in the presence of low lighting, though the 

mechanisms are currently unknown (Parker et al., 2010). Banhazi et al., (2008) 

reviewing the likely benefits that might be gained from air quality improvements and 

the factors affecting airborne pollutants and environmental parameters, identified 

ammonia, carbon dioxide, viable bacteria, endotoxins, and inhalable and respirable 

particles as major airborne pollutants which could compromise the health, welfare and 

production efficiency of animals. In buildings housing pigs, ammonia and other gases 

released from feces stored under slatted floors can irritate the respiratory tract, and 

sudden releases of hydrogen sulphide, especially when manure is agitated for pumping 
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out, can prove fatal (Fraser et al., 2013). 

Temperature 

Pigs are homoeothermic animals that cannot lose heat by sweating and rely on 

behavioural measures such as a reduction in physical contact with pen mates, lying 

laterally, panting and reducing general activity, as well as evaporation by making the 

skin wet through wallowing (EFSA 2005). Amongst the several environmental variables 

that can potentially affect the welfare of pigs, temperature is certainly the most 

important (EFSA 2007). Pigs have great difficulty adapting to both low and high 

temperatures, especially modern and genetically improved genotypes, which in the 

majority of cases have white bristles and pink skin, and are therefore very sensitive to 

direct exposure to the sun (Scipioni et al., 2009). The domestic pig, in contrast to most 

domesticated species, has very sparse thermal protection offered by hair. The sparse hair 

cover allows ready evaporation from the skin but, as swine do not sweat when exposed 

to heat, body cooling is based on skin wetting or wallowing (EFSA 2007). Climate is 

actually the main factor responsible for the high incidence of new born mortality and for 

the low indexes of fertility which are often reported for outdoor farming (Guégen et al., 

2000; Waller and Bilkei, 2002; Akos and Bilkei 2004). It is well known that pigs do not 

seem to suffer greatly from being exposed to rain or sunshine, although they often get 

their skin burnt when exposed to sunshine for a long time in summer and, in contrast, 

pigs greatly dislike to remain exposed to wind and, consequently, look for a convenient 

shelter and, if in a group, huddle to conserve warmth (EFSA 2007). In response to cold, 

perceived as a consequence of a low temperature or high air velocity, pigs require less 

space for lying, as they prefer to lie in body contact with pen mates and show huddling 

behavior (Hillmann et al., 2004). In pig production the lower threshold, i.e. the lower 
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critical temperature, is obviously of interest because pigs maintained at ambient 

temperature below thermal neutrality will have lower food conversion efficiency. As the 

pig increases in size, its critical temperature decreases. Although it is difficult to 

generalize the thermo neutral temperature for each stage of production, it is likely to be 

around 34°C for newborns (which have little subcutaneous fat), 25-30°C for 4-6 kg 

piglets, 25°C for piglets aged 8 to 14 weeks, and 20°C for growers (EFSA 2005). 

Bockisch, et al., (1999) recommend the following air temperatures (if two values are 

mentioned, the lower one refers to pens providing the pigs with litter): more than 30°C 

for piglets up to 10 days, 16°C (20°C) for piglets up to 10 kg, 14°C (18°C) from 10-20 

kg, 12°C (16°C) above 20 kg, 17°C for non-pregnant sows kept single, 15°C for 

pregnant sows kept in groups and 12°C (16°C) for fattening pigs. Investigating the lying 

behaviour and the adrenocortical response (by taking saliva samples for the analysis of 

cortisol concentration), the results of Hillmann et al., (2004) indicate temperature ranges 

within the thermal tolerance of pigs to be19-21C for pigs weighing 25-35 kg, 10-17C 

for pigs between 50 and 70 kg and 5-17C for pigs of more than 85 kg (all kept in pens 

with partially slatted floor. Maintaining pigs at low temperature has both health and 

behaviour-related adverse effects: the frequency of coughing, diarrhea, and tail biting 

increase with temperature reduction. On the other side, pigs maintained at high 

temperature have a decreased feed consumption and delayed return to estrus (EFSA 

2005).  

Humidity 

The pig is more adapted to live in humid conditions than in a dry atmosphere; a 

dry environment can even be a cause of irritability, and humid or frequently wet skin is 

essential for thermoregulation. When the relative humidity is very high, pigs become 
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more dependent on water loss from their skin, even though the respiration rate increases. 

Therefore it is necessary for them to wallow or lie on a wetted floor. If no adequate 

possibility to wet the skin is offered, as temperature rises there is an increasing rate of 

dirty pigs as they wallow in their own excrement in order to cool down (EFSA 2007). 

Massabie and Granier (1996), housing fattening pigs at different levels of air relative 

humidity and maintaining the temperature at 24C, found the growth rate significantly 

reduced by a hygrometry reading of 90% as a consequence of a reduction in 

spontaneous food consumption. There are no studies indicating the optimal range of 

relative humidity for pigs kept indoors, nevertheless, a moderately high level of 

humidity is necessary for keeping the respiratory system in good condition. In fact, the 

incidence of respiratory diseases is greatly reduced by keeping pigs in a very humid 

environment. A dry atmosphere increases skin evaporation and the consequent lowering 

of skin temperature. This is harmful for pigs because it removes them from their thermo 

neutral zone (EFSA 2007). Bockisch et al., (1999) recommend a relative humidity of 

60% to 80% for sows, 50% to 70% for sows with piglets, 50% to 80% for piglet rearing 

and 50% to 70% for fattening pigs and remark that immoderate dry air leads to 

coughing. On the other hand, high air humidity values at low temperatures lead to wet 

skin, loss of body temperature and increasing discomfort (EFSA 2007).  

4.4 Ventilation 

Ventilation systems in livestock housing serve an important function, 

maintaining a comfortable animal environment. Ventilation systems continuously 

remove the heat, moisture, and odors created by livestock, and replenish the oxygen 

supply by bringing in drier, cooler outside air. Adequate air exchange also removes 

gases such as ammonia (NH4), hydrogen sulfide (H2S), and methane (CH4) which can 
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be harmful to both animal and operator health (ROSS 2010). Carbon dioxide (CO2) is a 

non-reactive gas, which is removed only by ventilation contrary to a reactive gas like 

ammonia which may interact chemically, for example, by absorption on wet building 

surfaces or dust particles (EFSA 2012). There are two basic ventilation types: natural 

ventilation and fan-powered ventilation. Natural ventilation relies on opening up the 

house to the right extent to allow outside breezes and inside convection currents to flow 

air into and through the house. This is often done by lowering (or raising) sidewall 

curtains, flaps or doors. Sidewall curtains are most common, and natural ventilation is 

often referred to as “curtain ventilation”. In curtain ventilation, the curtains are opened 

to let in outside air when it gets warm; when it gets cold, they are closed to restrict the 

flow of air. Opening house curtains allows a large volume of outside air through the 

house, equalizing inside and outside conditions. Curtain ventilation is ideal only when 

outside temperature is close to the target house temperature. The air exchange rate 

depends on outside winds. On warm to hot days with little wind, circulation fans may be 

used to provide some wind-chill cooling effect. Natural ventilation as a system does not 

allow a great deal of control over in-house conditions. In the early days of the industry it 

was commonly used, especially in mild climates, and houses were specifically designed 

to facilitate natural air convection currents for ventilation purposes. In more recent 

times, managers of more modern curtain sided houses equipped with fan-powered 

ventilation systems have used natural ventilation as an “in between” option, when 

outside air temperature is close to desired in-house temperature and neither heating (and 

minimum ventilation) nor cooling is needed (ROSS 2010). Fan-powered ventilation 

uses fans to bring air into and through the house. Powered ventilation generally allows 

much more control over both the air exchange rate and the airflow-through pattern, 
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depending on the configuration of fans and air inlets and the type of control used. Fan-

powered ventilation systems can use either positive or negative pressure. Positive-

pressure wall-mounted fan systems, which push outside air into the house, are most 

often seen in setups used for cooler weather. However, some house fan-powered 

systems now use negative-pressure ventilation. This means that the fans are exhaust 

fans, pulling air out of the house. This creates a partial vacuum (negative pressure) 

inside the house, so that outside air is drawn into the house through inlets in the house 

walls or under the eaves. Achieving a partial vacuum inside the house during ventilation 

allows for much better control of the air-flow through pattern in the house and for more 

uniform conditions throughout the house (ROSS 2010). Inaccurate knowledge of the 

ventilation rates inside barns is the major cause of production losses and ventilation-

related health problems in cattle breeding (St-Pierre et al., 2003); Doherty et al., (2001) 

showed, for example, that environmental diseases act as a major limiting factor in Irish 

calf production. Adequate ventilation rates can play a key role in alleviating the 

negative effects of high stocking density and of wet litter and the incidence of foot pad 

dermatitis in poultry (EFSA 2012). Ventilation of animal houses should be based on 

maintaining desired thermal conditions and air quality. This requires no buildup of heat 

and/or gases in the inside air (Pedersen et al., 2008). The ventilation control inside the 

farms can be done using various parameters like the relative humidity, the CO2 

production (CIGR 1984, 2002) and using gas tracer (Freon 134a, Müller et al., 2006). 

The measures of the real ventilation given by the environmental concentrations of the 

relative humidity is more difficult to get because the air humidity continually changes 

during the day and, therefore, it would need continuous control to guarantee optimal 

ventilation conditions inside the shelters. Estimation of the gas emission needs 
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knowledge on both the air exchange to the environment and the gas concentration in the 

animal house. To estimate the air exchange rate by performing a carbon dioxide (CO2) 

balance in the house an accurate estimation of the CO2 production in the building is 

crucial. The total CO2 production includes CO2 produced by the animals and CO2 

emitted from the manure. CO2 production from the animal can be derived from its 

energy metabolism rate, which is related to feeding level and nutrient composition of 

the diet (CIGR 2002). In animal houses where the manure is not stored in the barn for a 

long period (e.g. slatted houses with regular emptying of manure pits) the CO2 

production from the manure is small compared to the CO2 production from animals. 

However, in animal houses with deep litter (i.e animal houses where the depth of the 

litter is > 0.5m), the CO2 production from the deep litter can be considerable (Jeppsson 

2000, 2002). The calculation of ventilation through the study of the CO2 concentrations 

is directly connected to the total heat produced by the animals (CIGR 2002, Pedersen et 

al., 2008). The production of total heat depends on the animal, on the body weight and 

on the production level of the considered animals and it can change during the day 

cause the influence of feed level and the micro-environmental conditions on the animal 

activity (Sousa and Pedersen 1994). In the mentioned studies, and particularly in the 

report of the Committee Internazional of the Rural Genius (1984 and 1992) and in the 

works of Chepete and Xin, (2002) there are the equations for the calculation of the total 

heat production in thermo-neutrality conditions. For every type of animal and different 

productive destination, the quantity of total producible heat is calculated depending on 

( tot in Watt) the body mass (m, kg) (C.I.G.R., 2002). For example: calves  tot = 6,44 

m
0,70 

+  13,3 Y2 (6,28 +0,0188 m) / 1 - 0,3 Y2  where: Y2= daily increase, 0,5 kg / day. 

Cows tot = 5.6 m
0,75

 + 22 Y1 + 1,6 x 10
-5

 p
3   

where:Y1 = milk production, kg / day ; p = 
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days of pregnancy. When the temperature goes down under the thermo-neutrality value, 

or rather under 20 °C, the production of total heat increases and, in opposite, when the 

temperature increases the heat production decreases. The equation to determine the 

correction factor of total heat expressed in hpu (1 hpu is equivalent to 1000 Watts of 

total heat production at 20 °C) is (C.I.G.R., 2002): Cattle >tot  =  1000 +4  ( 20 – t );  

where :  tot = total heat production for hpu expressed in Watt; t = environmental 

temperature in °C. To determine the Kc correction coefficient we have to divide the 

quantity obtained with the previous equation for 1000 Watts : Cow Kc= tot  / 1000 = 

(1000 +   4  (20 – t)) / 1000. 

Considering that environmental CO2 is nearly stable during the day and it is 

attested on values of about 380 ppm. and knowing the number and the size of animals 

inside the shelters, it is possible to determine the ventilation flow and therefore also the 

necessary air exchange rate to guarantee the comfort of the reared animals. 
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5. Aim of the research 

The research has been divided into two step: the first one concerning the 

evaluation of ventilation in cattle and broilers houses, the second one concerning the 

study of a new experimental device in pigs breeding.  

 

5.1 Evaluation of ventilation in cattle and broilers houses  

Cattle. These studies were carried out in a typical dairy farm in Molise region 

(central Italy). It was set up a control procedure and the planning of the ventilation using 

the literature available. Special emphasize was given to the direct measure of the 

Carbon Dioxide amount, detected directly inside the buildings, and considering it as gas 

traces for the real control of ventilation. The experimental procedure was planned to 

improve air quality inside the barn through a proper fan.  

Broilers. The experimental study was carried out in a poultry house located in 

Molise region (Italy). During experimental trials different configurations of the 

ventilation system were tested to find the optimum ventilation system to improve the 

rearing conditions in broiler house. 

 

5.2 Experimental device for pigs 

Considering the animal well-being concept and the rules that regulate it, the 

ethology and the behavior of pigs, we have investigated a “more appropriate” handling 

method, both from the ethological and operative point of view; it was planned and 

assembled a new tool, to be used inside the pens, to support the pigs during the handling 

and transfer procedures limiting the stress phenomena. 
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6. Material and methods 

6.1 Evaluation of ventilation in cattle and broilers houses 

 6.1.1 Cattle  

 The search was carried out in a farm is located in Sepino (CB) built in the 80’s 

Years. The used housing is the stall one with short seat and with a head to head 

disposition. The shelter, connected to service and deposit structures, has an area of 260 

m
2
, and the external walls realized by cement face bricks with 2 air spaces. The roof is 

made by two undulated cement asbestos boards with a glass wool sheets cavity and it is 

supported by purlins and iron beams. The group was composed by 12 cows (average 

weight 600Kg/head) and 18 calves (average weight 325kg/head). 

 Calculation of ventilation flow based on measured CO2 production. 

After the determination of total heat production inside the building it was planned the 

abacus of calculation for the airflow rate. The formula that connects the ventilation rate 

with the quantity of CO2 inside the barn and the CO2 of the air external to the building it 

is the following (CIGR 2002): 

 

where:  Qv = ventilation rate (m
3
/h); a = CO2 production per produced hpu (0.185 * 10

6
 

ppm); Φtot = total heat production expressed in hpu; Kc = correlation factor of the heat 

production for temperatures different to 20°C, considered the thermo-neutrality 

temperature; x = carbon dioxide quantity measured  in the indoor air (ppm); G =  carbon 

dioxide quantity in the outdoor air. For the construction of the abacus it has been 

considered, in this case, the thermo-neutrality condition and so the Kc was not 

considered. The producing plan is a Cartesian diagram that shows the function that 
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connects the ventilation rate and the carbon dioxide quantity measurable inside the barn. 

Considering this abacus it is possible to realize an example of its business use. After the 

detection of 2200 ppm of CO2 inside the shelter, starting from the 2200 value on the 

abscissa it is possible to intercept the curve of the rates and continuing horizontally 

toward the left ordinate to obtain the value of the ventilation rate inside the building. If 

we want to maintain, inside the shelter, a concentration of nearly 2200 ppm of CO2, it is 

possible to do the same on the graph, and get the ventilation rate that has to be 

guaranteed and that, in this specific case, is about 3000 m
3
/h, equal to 2.5 total air 

changes per hour. The research was divided in two tests. 

1
st
 test; it was planned for a 100 days duration; it was determined the total heat 

produced by the animals inside the shelter using the previous formulas and the required 

minimum ventilation rate, using the abacus, to guarantee an average quantity of 

carbonic dioxide equal to 1500-1600 ppm. To be able to improve ventilation rates it was 

installed a fan.  
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2
nd

 test: climate conditions were evaluated by mean of temperature distribution in space 

and time and carbon dioxide in two given points inside the building. 

Detected micro – environmental parameters and used instruments.  

 The first test has been planned for a 100 days duration (from 06/12/07 to 

14/03/08). We have installed the temperature, the moisture and the light intensity 

detectors, data loggers HOBO, one inside the shelter, located in the same box of the 

CO2 detector, and the other in a particular airy box outside the building. The data logger 

HOBO were set to detect every hour temperature, moisture and light intensity. It was 

used the Dragër X-am 7000 with an infrared sensor to detect the carbonic dioxide. The 

instrument stores, every 10 minutes, the middle, the maximum and the minimum value. 

The detector, inside the shelter, was been placed in the middle of the feeding course 

(lane) up to 1 mt from the ground level. To be able to get a relationship between the 

traditional breeding adopted in the barn (natural ventilation managed by the breeder) 

and the experimental one (automatic forced ventilation by a fan), the period of test has 

been divided in sub periods of ten days, alternating the two types of management in the 

shelter. During all the search it was evaluated the productive level of the cows by  the 

milk quantitative and qualitative production, often under the veterinary control. In the 

first period of the trial it was applied the theoretical calculation for the abacus related to 

experimental structure. The previous formulas were applied to determine the total heat 

produced by the animals inside the shelter. The total heat produced  tot is: 20139 W. 

The barn volume used for the air changes calculation is 964 m
3
. Using the abacus it was 

determined the required minimum ventilation rate, inside the refuge, to guarantee an 

average quantity of carbonic dioxide equal to 1500-1600 ppm. The minimum ventilation  

rate is 3000 m
3
/h that is about 3 total air changes per hour. 
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To be able to realize these ventilation rates it was installed a 17000 m
3
/h maximum rate 

fan. The used fan with such a big nominal rate gave the possibility to select conditions 

inside the shelter, because it was necessary also to use the same equipment for the 

summer ventilation, the seasonal period that needs greater air rate in comparison to the 

winter. Therefore, during the test, the fan has worked in timed mode. To determine the 

fan working periods, it was used a bigger air rate value (in comparison to the abacus 

value), 3200 m
3
/h rather than 3000 m

3
/h, to have a safety margin if the heat produced by 

the animals increases because of the weight or the number. After calculation the fan 

worked for 11.3 min/h. It was decided to divide the 11.3 minutes into eight cycles 100 s. 

each: therefore the fan worked for 100 s. and was in stand by for 440 s. 

 During the second test measurements were performed using a multi-channels 

data logger equipped with resistance temperature sensors for its distribution in a half 

side of the whole space of the tested livestock building and two temperature-CO2 

sensors located in the centre and in a low air-mixing zone of the building. For 

temperature acquisition the LastemBabuc ABC was used equipped with 24 thermo-

resistors located in 8 horizontal positions and vertically arranged in groups of three. 

Moreover Onset Hobo located in two other points and equipped with the Telaire CO2 

detector were used to acquire both temperature and carbon dioxide concentration 

The data was detected during: 

 forced and natural ventilation since 05/11/2009 to 11/11/2009; 

 natural ventilation since 31/12/2009 to 07/01/2010; 

 natural ventilation with translated Hobo since 21/01/2010 to 29/01/2010. 
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Figure 1. Shelter plan with temperature sensor and CO2  detector locations. 
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6.1.2 Broilers 

Experimental tests were carried out in an recently built building placed in S.Elia 

at Pianisi (CB Italy); it is able to breed 30000 heads/cycle (9500 females and 20500 

males). Every cycle goes on 80 dayes: 60 to grow animals (60 for males and 35 for 

females) and 20 needed to the health rest. 

The building size is 13,00 x 14,20 metres with an inner surface of 1874,40 m
2
 and an 

height of 2,65 m. Inside the building 14 electric fans (fig.2), that can be operated one by 

one, supply the change of air. These fans are set in motion by a1.0 CV three-phase 

engine and a fixed speed of 1400 revolution per minute (rev/min). 

An impeller with 6 blades and a diameter of 1270 mm whirls at a nominal speed of 368 

rev/min. Every fan has a maximum capacity of 36000 m
3
/h. The cooling or pad climate 

system is a water cooling that uses latent heath of the water evaporation. Water 

circulates inside the system through a pump, goes across the delivery pipes, located in 

the superior part of the system, and finally is sprayed into the deflector. 

The air takes up the heath useful to water evaporation and, through a panel, gets cold 

and humid.  

 

Figure 2 – Fans location 
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Two cooling systems are located on the sidewall of the warehouse near the service area: 

in this way the air entering through the cooling runs across the whole warehouse before 

being discharged outside. Each cooling is composed of two parts: the first one is longer 

and located in the middle of the warehouse. The overall length is 30 m. This division 

helps to restrict heating air during the transit inside the warehouse. The warehouse 

switches on the cooling at 27 °C and switches off at 24 °C. For the evaluation of 

microclimate conditions inside the building, temperature, humidity, air speed and 

carbon dioxide have been measured using a multichannel BABUC/A data logger. The 

tests have been carried out during the whole breeding cycle, every week before midday 

in summertime when the maximum air quantity is requested. Each test was carried out 

during June 2011 for a overall length of about 1 hour and 40 minutes each, with the 

storage of the mean values of the measured properties. The used feelers were: 

• a psychrometer BSU 102 supplied with two thermometers: the first one, with a 

dry bulb, measures air temperature, the second one, which has a wet bulb and an 

hydrophilic sheath soaked in distilled water, measures the water temperature on 

contact with air. The psychrometer is provided with a little fan that sets up the 

testing at air velocity of 4 m/s. 

• an anemometer BSV 101 with warm wire that measures the air velocity in every 

direction. The wire is platinum and is covered by a cylindrical bearing, let down 

during the testing so that the air flow is not obstructed. BABUC/A is able to 

calculate the number of the air changes, if the volume of the building is known. 

• a infrared feeler BSO 103.1 to measure carbon dioxide with a range from 0 to 

3000 ppm. 

The building was divided in 14 vertical sections and 3 detections at the height of 20,100 
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and 150 cm have been taken in the middle part of each one. In the sections 1, 5, 9, 13 

two more sets of testing on the lateral positions of the same sections have been carried 

out; so the values of the parameters at the different heights have been obtained for each 

set. The following schedule shows the points where the measuring have been taken 

inside the building (Fig. 3).  

 

Figure 3 - detections points 
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6.2 Experimental device for pigs 

The used tool was assembled using a cloth wrapped around a steel rod with a 

pivot welded on a right angled steel base (fig 4 and 5); the base, after a preliminary test, 

has been equipped with two wheels to easily move the tool. On the top side of the rod 

the following parts are assembled: a metallic plate (fig. 6) (with a hole in the center to 

allow the passage of the pivot, 3 holes for 3 screws to fix plate to the rod, 6 holes to stop 

the cloth at the desired length) and a hand grip, welded on the plate, to rewind the cloth 

after its use; on the bottom part of the rod a metallic plate with the same hole in the 

center and same holes for screws is fixed to hold up the cloth and to simplify 

unwinding/rewinding operations. The upper part of the pivot is threaded to allow to 

screw a locking tool to stop the cloth on required length (depending on the pen size), in 

correspondence of one of the 6 plates holes. The cloth is 20.0 m long and 1.20 m high, 

much more than animal’s height to ensure animals could not see what it is happening 

beyond it; the selected color is grey to have continuity with color walls and a waterproof 

synthetic material was chosen as it is easy to clean. Finally, the initial side of the cloth is 

stiffened with another rod to keep the cloth stretched and with an adjustable clamp to fix 

it to the wall (fig.7).  

Figure 4: cloth wrapped around a steel rod.          Figure 5 pivot welded on a steel base 
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Figure 6: metallic plates.   Figure 7: initial part with adjustable clamp. 

     

 

Figure 8: a view of the realized device. 
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The trial was carried out in a pigsty built in the 80’s years located in Bonefro (Molise 

region). The building size is 16,05 x 38,50 meters with an inner surface of 617,925 m
2
; 

inside building there are 19 pens of about 20 m
2
 each one, 8 on one side and 11 on the 

other, divided by the handling course, and all provided of dejections area (defecation) 

on the back side. The handling course is 38,50m long × 1.00m wide with solid walls; 

pen’s doors are used to open and close the pen and, at the same time, to stop animals 

along the handling course. Pigsty is able to breed 300 animals. Pigs arrived in the pigsty 

at approximately the same age (about 2 months) and the same weight (about 20 kg.) 

from a commercial unit and, therefore, had been subjected to normal (minimal) levels of 

interaction with humans. The trial involved pigs that were not familiar with the presence 

of others humans, excluding the breeder, and with going in and out of their pens. A total 

of 89 pigs, weighing 130-150 kg, were used in the experiment; pigs were moved from 

their pens to other free pens through the handling course. 48 animals, divided in 4 

groups (group 1,2,3,and 4), were moved without use of the tool and 41, also divided in 4 

groups (group 5,6,7 and 8), were moved using the tool. If pigs stopped moving they 

were gently pushed with a sorting panel (boar) to reinitiate movement and to drive them 

in the direction of the exit. A preliminary test was carried out to verify if the tool could 

be properly used to rapidly move pigs and to assess the correct methodology to be used 

for final tests evaluation. During this test several spontaneous stops have been observed 

through the handling course and the reasons were animal curiosity and breeding 

organization (e.g. pen’s gates that allow pigs to watch inside): pigs stopped every time 

they found something new/different to observe or to sniff along the way like faeces, 

urines and/or other pigs. Thus, only the time used to exit animals from pen, the only 

place where the tool was used, was determined in order to correctly assess tool 
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capabilities. A camera was used to detect the time used by animals to go out of their 

pens, precisely the time between the beginning of the operations of animal moving and 

the release of each pig beyond the pen’s door. When the tool has been used the time 

required to assemble it inside pens was not considered mainly for two reasons: first of 

all, the time required for its assembly is negligible, except for a few trials (not 

considered here) in which the tool was damaged or difficult to roil out; second main aim 

of the study was to evaluate the efficiency regardless of some constructive details which 

can be modified to adapt and optimize the tool to the various types of pens. Data 

obtained were first separated in: 

• time of the first animal to exit the pen; 

• global time required by all animals to leave the pen. 

Global times were processed by non-parametric Kruskal-Wallis test to detect 

significant differences between groups as there are more than 5 samples in each group 

that is the accepted definition of "too small" (McDonald 2009)  
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7. Results and discussion 

7.1 Evaluation of ventilation in cattle and broilers houses 

7.1.1 Cattle barn 

 The data, detected by HOBO data loggers, on indoor and outdoor temperature, 

relative humidity and CO2 concentrations are in the plots shown in the figures 9, 10, 11.  

 

Figure 9 – Temperature in the housing during the experimental period 
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Figure 10 – Relative humidity in the housing during the experimental period 

 

 

Figure 11 – CO2 in the housing during the experimental period 

 

 

The study of the data related to the indoor and outdoor temperatures (Fig. 9), shows that 

when the fan was turned off there was a 5-6°C difference among the two temperatures; 

this difference was lower when the fan was turned on. In the figure 10 it’s clear that 
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during the turned off fan periods the inside moisture is higher, even if a bit, than outdoor 

one. When the fan is turned on we have the opposite situation. As a consequence of the 

examination of two more detailed graphs, according to previous results, it was observed 

that the inside moisture oscillations, in both cases, are smaller than the external. 

Moreover, with the turned on fan , the indoor humidity course seems more similar to the 

outdoor one, even if it is lower. As shown in figure 11, during the natural ventilation 

periods, the environmental carbonic dioxide concentration was extremely high, and we 

have even detected concentration higher than 5000 ppm. Moreover, the variation of 

concentration is very big, in fact, it was between 1600 ppm and 5300 ppm. During the 

forced ventilation periods, the range was extremely smaller, from 1000 to 2200 ppm, 

with daily average values of 1500 - 1600 ppm. These values are the attended ones, in 

fact, through the previous calculations on the theorized ventilation rates, our purpose 

was to guarantee a micro-environmental carbonic dioxide concentration of 1500- 1600 

ppm. When the fan was turned on the range of carbonic dioxide concentration is 

extremely narrow instead of the natural ventilation. By the examination of  the curve of 

the CO2 hourly average values we can observe that at 9:00, 13:00, and 19:00 the 

carbonic dioxide concentration increases in comparison to the others times. This is due 

to the animals digestion that produces a great quantity of carbonic dioxide.  

During the winter, abundant vapor condensations were observed; they were detrmined 

by the attainment of the dew point in several parts of the structure. During the first test 

the condensations were observed during the switched off fan periods, and, sometimes, it 

was also possible to see "the rain in the shelter"; with the turned on fan we never saw 

any condensations. These phenomena were quantified trough some direct inspections on 

the surfaces of the shelter to appraise the wall temperature and to calculate, by the 
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psychrometric diagram, the dew point that depends on the temperature values and the 

air moisture. It was used the infrared thermometer Eurotron IR Tec P500. The surfaces 

interested in the detection were: North wall, South wall, West door, East door, glass of 

the first window on north side, internal side of the roof and third truss. Table 1 shows 

the instantaneous measurements of some parts of the structure to appraise the 

condensation phenomenon. As we can see we have the dew point only with the natural 

ventilation. With the forced ventilation, it is difficult to have the dew point and so, also 

"the rain effect" inside the shelter, an extremely deleterious phenomenon for the 

constructions, for the animals inside and for the workers. 

 

 Table 1 – Infrared thermometer measurement results 

Date Hour 
N. 

Wall 

S. 

Wall 

W. 

Door 

E. 

Door 

Wind

ow 

Glass 

Roof Truss D. Point 

13/2 20.30 12.7 13.5 7.4 7.5 6.5 11.4 12.7 9.95 

14/2 7.30 9 11 5.6 6 5.2 10.4 10.7 8.54 

14/2 12.30 10.5 14.4 8.6 11.5 11 15.9 15.1 7.23 

4/2 19.30 10.2 13.5 5.9 7.2 6.5 9.2 10.9 4.52 

20/2 11.15 8.7 11.3 7.1 13.5 9.5 15.5 14.7 5.4 

23/2 18.30 14.7 17.6 10.9 12.2 11.3 14.2 15.9 7.83 

26/2 7.15 13.3 15.4 9 10.9 10.5 13.8 15.1 12.15 

29/2 8 14.8 15.9 10.5 17.1 11.5 14.4 15.3 11.8 

29/2 19 16.8 19.9 12.8 14.9 13.7 16.6 17.9 12.63 

01/3 7.15 15.2 17.3 11 13 12.4 15.3 15.9 12.3 

05/3 19.30 11.5 12.5 6.4 7.4 6.6 9.6 11 6.26 

10/3 12.30 10.9 12.8 8.6 12.7 10.5 12.9 13.3 6.68 

14/3 17.15 15.5 19.7 13.8 15.8 14.7 17.3 18.8 7.14 

In the table, the yellow series show the turned on fan periods, the others the natural 

ventilation. The red values are under the dew point and therefore the water contained in 

the air, condenses. 

Measurement results on the climate conditions by mean of temperature distribution in 
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space and time and carbon dioxide in two given points inside the building are showed in 

terms of a temperature distribution graph (Fig. 12) in different ventilation conditions 

pointing out space-time variations. These data have been then related to CO2 

measurements in order to highlight not so good air mixing and renewing affecting 

wellness of animals housed inside. The forced ventilation system was automatically 

activated if the temperature went under the 22°C. The temperature was detected by a 

thermostat located near the central Hobo. The higher early-morning temperature is due 

to the closed doors during night time that don’t allow the air change in the breeding, 

while the minimum temperature is due to the opened doors for the foods load and 

unloading. 

 

Figure 12. Temperature in position F7. 

 

 

Figure 12 shows the temperature inside the breeding detected by the data logger Babuc 
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in position F7: sampling time was 1s and minimum, mean and maximum values are 

calculated during one minute and over the group of three thermo-resistors for each 

plotted value. During the first three days an almost constant temperature can be 

observed as forced ventilation was used, then very large variations occur as the 

ventilation system was stopped due to technical problems in fan equipment. 

 

Figure 13. Carbon dioxide concentrations (Lateral position). 

 

Fig. 13 shows the carbon dioxide concentration trend. It is clear that during the forced 

ventilation period (first three days), the values never exceed 2485 ppm which is the 

storing limit of the Onset Hobo. Greatest values (2485 ppm) can be observed after 

milking (20:00) and in the first hours of the morning (7:00) and in both cases only 

during the turning off fan period. This could even mean that the maximum level allowed 

for animals’ health is likely to be exceeded in these conditions. 
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7.1.2 Broilers House 

The measurements of the environmental parameters and also the number and the 

location of the fans have been registered in function of each test. The following graphs 

(Fig.14) obtained allows a first evaluation of the microclimate in the farm.  

 

Figure 14 – Microclimate parameters measurements. 
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The graphs show the parameters trend considering the variation of height and  

length of the farm building. The air velocity mean value is higher at 150 cm from the 

floor with corresponding higher mean values of Humidity and Carbon Dioxide 

measured at 20 cm from the floor (animals height). The temperature values are higher at 

100 and 150 cm from the floor respect to the values measured at 20 cm from the floor. 

The temperature values increase and the Relative Humidity values decrease moving 

towards the end of the building because of the presence of animals that heat the air. The 

Carbon Dioxide concentration was constant during the air flow. The Carbon Dioxide 

rate can be evaluated by mean of the following equation (rate of Carbon Dioxide which 

flows through a generic section in time unit): 

Avm aaCOCO 22
  

where: 

2COm  = Carbon Dioxide mass rate (mg/s), 

 = Carbon Dioxide concentration (ppm: mg (CO2) /kg (dry air)), 

ρa = air density (kg/m
3
), 

A (section) = area of the transverse section (m
2
) in the point of measure, 

va (air) = air velocity (m/s).  
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Figure 15 – Amount of carbon dioxide delivered across each measurement point 

 

 

Figure 15 shows the variation of the Carbon Dioxide rate along the air flow in the 

farm. The values used for the Carbon Dioxide concentration and for the air velocity 

were obtained from the average of the corresponding values measured at three different 

heights. The graph is subdivided in three parts: 

• a first phase of  CO2 increase,  due to the animals presence without a further air 

change,  

• a second phase of CO2 rate decrease, during the air change and due to the 

cooling (in the first part of the farm(1/3)),   

• a third phase of CO2 increase  (during the second inactive cooling). 

The CO2 increases linearly during the tests and shows a quite high gradient. 

The carried out tests showed a good quality of the air in the farm related with the 



73 

 

Carbon Dioxide and the Relative Humidity. The fans put in are able to extract a high air 

rate causing, in some cases, a sudden variation of temperature. The values of the 

measured parameters, except for the temperature, are meanly included in the range 

considered as optimal for the welfare of the animals. The mean value of the CO2 were 

calculated at three height of measure, to determine the CO2 rate. Tests were carried out 

during summer when the worse conditions of microclimate are evaluated in the farm. In 

particular:  

• The measured Carbon Dioxide never overcame the value of 800 ppm, also when 

the animals generated a higher amount of the gas. The low concentration of 

Carbon Dioxide and the low Relative Humidity, both due to good ventilation, 

make us to think that the concentration of other polluting substances in the farm 

is low also in absence of specific monitoring.  

• The temperatures, before cooling, always were not higher than 3 °C respect to 

the outside temperature. The inside temperature, during cooling, lowered of 3 – 

4 °C respect to the outside temperature. The temperature values measured during 

cooling tests ranged between 25 – 30°C, too high compared to that ones 

considered as optimal for the boiler growth up (range 20-21°C). 

• The Relative Humidity values measured during the tests ranged between 40 and 

60%. During the cooling some R.H. values are lower than that ones considered 

as optimal (range 60-70%) for animals. A low Humidity makes the temperature 

perceived by the animal not too high, partially compensating the highest tested 

temperature values.  
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7.2 Experimental device for pigs  

First of all groups for which the tool was not used are examined. In particular in table 2 

the time of the first animal exiting the pen is highlighted (bold character) for each of the 

four groups. As can be easily viewed pigs require similar times to begin to go out of 

pens, excluding those of group 2 that showed significant difference when compared to 

groups 1, 3 and 4. Animals of group 2, in fact, initially went in the dejections area and 

then stayed in the corner for some seconds only after 65 s they started to go out of pen; 

the others pigs moved without tool (groups 1, 3 and 4) required on average less time 

(about 38 s) to start to go out. The total time required by each group of animals moved 

without tool to leave the pen cover a wide range of values (from 21 to 125 s). Animals 

moved using the tool, excluding group 6, began to go out of pens more quickly than the 

others (Table 3, bold character as for table 2). Group 5 and 8 show similar behavior 

while group 6 and 7 were respectively slower and faster than previous. Anyway, all 

groups showed significant difference of the total time required by each group to go out 

of pen (between 10 and 17 s after the first animal goes out), when compared with pigs 

moved without tool. Pigs of group 6 required more time as they were quite scared and, 

at the start, they went all together in the dejections area of pen. Moreover, as detected 

times of animals of group 6 showed times to go out of pen similar to times required by 

pigs moved without tool, these values were compared with those of group 1,3 and 4; 

statistical analysis showed again significant difference (P<0.001) between group 6 and 

groups 1, 3, 4. Group 7 showed the smallest values both for starting exit and total time 

required. Moreover, considering that the number of animals of group 7 was the same of 

animals of group 3, Times of these two groups can be compared highlighting the 

efficiency of tool.  
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Table 2– Time required by each animal moved without tool and divided in four groups. 

Animal 

No. 

Times of 

group 1
a
 (s) 

Times of 

group 2
 b

 (s) 

Times of 

group 3
 a
 (s) 

Times of 

group 4
 a
 (s) 

Total Relative Total Relative Total Relative Total Relative 

1 41 0 65 0 38 0 34 0 

2 42 1 66 1 40 2 35 1 

3 45 4 81 16 41 3 39 5 

4 45 4 88 23 42 4 39 5 

5 45 4 88 23 51 13 40 6 

6 46 5 92 27 58 20 45 11 

7 47 6 97 32 59 21 46 12 

8 47 6 106 41  47 13 

9 48 7 106 41 59 25 

10 48 7 118 53 60 26 

11 49 8 118 53 74 40 

12 49 8 120 55 91 57 

13 56 15 155 90  

14 57 16 190 125 

15 76 35  

 

Table 3– Time required by each animal moved using the tool and divided in four groups. 

Animal 

No. 

Times of 

group 5
c
 (s) 

Times of 

group 6
 d

 (s) 

Times of 

group 7
 e
 (s) 

Times of 

group 8
 c
 (s) 

Total Relative Total Relative Total Relative Total Relative 

1 21 0 34 0 16 0 19 0 

2 22 1 34 0 16 0 19 0 

3 22 1 35 1  17 1 20 1 

4 23 2 36 2 17 1 21 2 

5 23 2 36 2 18 2 22 3 

6 23 2 37 3 20 4 27 8 

7 25 4 37 3 26 10 28 9 

8 25 4 39 5  28 9 

9 26 5 40 6 29 10 

10 26 5 40 6 33 14 

11 38 17 43 9  

12  44 10 

13 46 12 
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8. Conclusions 

8.1 Evaluation of ventilation in cattle and broilers houses 

8.1.1 Cattle barn 

The carried out research has allowed to show the potential application of the 

calculation methodologies and of the ventilation systems plan for the micro-

environmental conditioning of the refuges. The control of the real ventilation obtained 

through the detection of the carbonic dioxide concentration and the direct reading of the 

ventilation rate on the abacus is an applicable result to every livestock farm. In this 

specific case the data confirmed the validity of the calculation model. The work carried 

out gives the possibility to get information related to the trend of some parameters 

helping to determinate the assess of animals breeding conditions. By the analysis of 

environmental parameters it is possible to assert that with forced ventilation, during the 

autumn, the variability of inside temperatures is very low and their stratification in plant 

is homogeneous. At the opposite during the natural ventilation, in the autumn season, 

the inside temperature is higher with differences of over 5°C. Continuous monitoring of 

micro-environmental parameters could be a tool used by the breeders to improve 

cowshed management. 

 

8.1.2 Broilers house 

The research showed that some conditions in the farm, regarding the environmental 

control, could be improved trough a better control of the ventilation. 

• A more homogeneous condition of temperature and R.H. in the farm could be 
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reached working on smoother ventilation and testing the cooling surface. 

• The optimization of the ventilation system could be done changing the ON-OFF 

working with the VFD working. The VFD system, thanks to the opportunity to 

control the speed, guarantees a better ventilation control and a higher energy 

saving.  

 

8.2 Experimental device for pigs  

In this study we have investigated an appropriate handling method that allowed 

us to plan and assemble a particular tool, to be used inside the pens, to support the pigs 

during the exit; we used the tool to close the corner opposite to the door, replacing it to 

the walls. If we want to better understand pigs behavior during transfers, first of all we 

have to see the way by pig’s point of view; the observer looks at about 170 cm from 

ground while pigs look at about 45 cm, therefore the passageway, for example, for man 

is only a small construction inside the main building, but for animal is the main 

construction; on the other side the pen’s door, when opened, is only a little different part 

of the wall and animals, during handling/transfer procedures, often do not consider it 

and, moreover, they go toward the angle where they felt more protected. The use of the 

tool during the trial showed a positive effect on the time requested by pigs to go out of 

pens; in fact, when the tool was used fewer stops were observed. Moreover, the tool 

requires the presence of one worker only in order to move the animals. Consequently, 

the animals are calmer and no squirrels/vocalizations have been recorded during the 

experimentation; that is why they did not require of any external stimuli for going on 

and, additionally, they were less dangerous for workers also. Finally, the need of one 

worker only is an important factor even for the economic efficiency.  
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