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SUMMARY 

 

 

 

Lactobacillus plantarum is a versatile and widespread microorganism found in 

materials and environments ranging from vegetable, dairy products and meat 

fermentations to the human gastrointestinal (GI) tract. Some strains are marketed as 

probiotics that are claimed to provide a health benefit for the consumer. Furthermore, 

certain strains of Lb. plantarum are known for their ability to produce several natural 

antimicrobial substances. The production of these metabolites could represent stress 

conditions that strongly affects the development of undesirable microbial species. There 

are many scientific reports that highlight antimicrobial effects of Lb. plantarum strains 

on undesirable bacteria. Several strains of Lb. plantarum showed a broad spectrum of 

antibacterial activity (including Bacillus cereus, S. aureus, Listeria monocytogenes, 

Salmonella enterica, E. coli, and Enterobacter aerogenes) and carries several 

plantaricin genes of the pln locus. Moreover various other bacteriocins produced by Lb. 

plantarum species isolated from fermented food are well known.   

Nevertheless, the effectiveness of bacteriocin-producing strains in foods can be limited 

by several factors including narrow activity spectrum, limited, diffusion in solid 

matrices, inactivation through proteolytic enzymes or binding to food ingredients such 

as lipids, low production level and the emergence of bacteriocin-resistant bacteria. 

Although, the use of class IIa bacteriocins or bacteriocins-producing strains represent a 

promising alternative for the control of spoilage or pathogenic microorganisms in foods, 

their efficacy could be compromised by onset of bacteriocins resistant strains and cross-
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resistance between bacteriocins. However, the use of bacteriocins in combination with 

other hurdles (e.g. salt, acid, other natural substances etc.) may result extremely 

effective for inhibit L. monocytogenes and reduce its resistance. A number of  

experiments have been showing the anti-listeria effect due to production of acid 

organics, including lactic acid by Lb. plantarum and 3-Phenyllactic acid (2-hydroxy-3-

phenylpropanoic acid, PLA). 

The genomic architecture and the induced metabolic consequences  are central to the 

success of Lb. plantarum in industrial applications. Moreover, the most of Lb. 

plantarum selected for their antimicrobial activity has been isolated from fresh or 

fermented food.  

Therefore, the characterization and selection of food-borne Lb. plantarum strains 

remains a topic of great interest for applied research. On the basis of this last finding, 

the first part of this PhD study (Chapter II) was devoted  to isolate and  identify food 

borne Lb. plantarum as well as to evaluate their antimicrobial range. Thirty-two 

samples from three type of traditional fermented food were subjected to microbiological 

analyses in order to isolate and select Lb. plantarum strains to be used as antagonistic 

strains (producers) against undesirable food-stuff microorganisms. To identify LAB 

isolates, several approaches were used, consisting of the DGGE analysis and 16S rRNA 

gene sequencing. While the antimicrobial activity, exerted by cells or cell-free 

supernatants of Lb. plantarum strains, were evaluated by spot on the lawn test and by 

agar well diffusion assay test. The results evidenced that Lb. plantarum represents the 

prevailing lactobacilli species in sourdough andred wine, while this species were 

detected only in few sample of fermented sausages. In detail 60 Lb. plantarum strains 

were isolated from red wines, 36 strains from sourdoughs, and 10 from fermented 
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sausages. Out 106 Lb. plantarum strains, seven strains evidenced the ability to inhibit 

Gram negative and Gram positive bacteria as well as moulds strains. These inhibitory 

effect was not attributable to pH decrease, since in the presence of neutralized CFS of 

producer strains were also detected with a strong antimicrobial activity. Noticeable was 

the data that evidenced a strong antimicrobial activity produced by Lb. plantarum RTB 

strain against L. innocua ATCC 33090. Since L. innocua has been deemed a suitable 

biological indicator for L. monocytogenes and it revealed a similar sensitivity to 

different stress condition.  

In the last years, great attention was focused on the inhibitory action against Listeria 

monocytogenes exerted by Lb. plantarum strains. The interest towards this topic is due 

to diseases caused by L. monocytogenes and which are known as “listeriosis” (causative 

agent of abortions, gastrointestinal diseases or septicaemia, thatoften lead to the death of 

infected individuals). This pathogen bacterium, growing at low pH, at refrigeration 

temperature, and at very high salt concentrations, is isolable from several food products, 

albeit in low numbers. Several studies reported the characterization of antimicrobial 

substances produced by certain Lb. plantarum strains. However it is well known that the 

knowledge of the undesirable strains response to these antimicrobial substances (stress 

conditions) represents a crucial step for the definition of an effective bio-control tool. 

Several mechanisms, can be developed by Listeria spp. in order to resist the injuries 

caused by stress conditions (temperature, acidity, NaCl). In detail, the stress seems to 

induce variations in the synthesis of certain cell components, especially proteins. 

Nevertheless the literature is very poor in studies focusing on the mechanisms of 

response, in terms of susceptibility or resistance, expressed by L. monocytogenes 

against antimicrobial substances produced by Lb. plantarum. Therefore, the second part 
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of the present PhD activity focused the attention on the stress response of Listeria to the 

presence of Lb. plantarum (Chapter III e Chapter IV). In detail, a commercial L. 

innocua strain was used as a pathogen surrogate throughout this study. For this purpose 

a multiple technique approach was adopted in the study, consisting of microbiological 

(dynamic model to predict the growth, cell counts) and proteomics (SDS-PAGE and 

2D-E) approaches 

Results showed that both cell and cell free supernatant of Lb. plantarum strain RTB 

represent a strong stress factor for L. innocua ATCC 33090, expressed through its 

growth inhibition. In detail, the inhibition was not attributable to organic acids produced 

by Lb. plantarum, since L. innocua ATCC 33090 expressed a series of new protein 

including Universal Stress Protein (USP) in the presence of lactic acid alone, that 

allowed to react to the acidic environment. On the other hand, the presence of Lb. 

plantarum RTB produced on L. innocua not only the expression of USP, but also the 

degradation or non-expression of other proteins. This phenomenon could be due to 

several antimicrobial substances and mechanisms carried out by the producer strain, and 

they could be responsible for the inhibition exerted by Lb. plantarum RTB against L. 

innocua ATCC 33090. 

Particular attention was focused on the neo-expressed USP, a group of proteins induced 

by different stress conditions and which are found in numerous prokaryotic as well as 

eukaryotic organisms. The majority of UPS genes are monocistronically expressed, and 

different transcription factors, promote transcription of USPs. The significance of USPs 

in the resistance or susceptibility model of L. monocytogenes is presently unknown. 

Moreover few information are available in literature about the biochemical function and 

3D-structures of USPs in bacteria and there are no 3D-structures for USP of Listeria. 
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available. Bioinformatics approach can help to get more information about the structure 

of USPs and the function of these proteins. Therefore in the 3rd phase of this PhD study 

(Chapter V), the three-dimensional (3D) structure of a USP (EHN60729.1) belonging 

to L. innocua was predicted on the basis of the available template (PDB code:3S3T ; 

structure deposited by Osipiuk et al., 2011)  homologues from Protein Data Bank. The 

Comparative Homology Modeling procedure uses the structure of proteins 

experimentally determined (template) to predict the 3D structure of a protein that has a 

similar amino acid sequence (target). The Comparative Homology Modeling approach 

can be used when the template and target possess at least 30% identity. In the present 

study the hypothetical USP of L. innocua shares 31% amino acid with the template 

3S3T which corresponds to about 85% of the C-α with 3.5 Å from the correct position. 

The accuracy of the model is confirmed by the values of the torsion angles phi and psi 

showed in the Ramachandran plot as well as the QMEAN Z-score. The RMSD (0.3 Å) 

of the final refined model confirms the evolutionary relationship between the model and 

the template.  

Of interest are the results regarding the analyses of the interfaces carried out with both 

PISA WebServer and with the multiple structural alignment (MUSTANG). The surface 

of the interfaces (ΔG <0, see Figure 5.6) is amongst the average values of expected for  

homologous proteins, but even more interesting is the presence of highly conserved 

residues in the region involved in the formation of the dimer and of residues that 

represent the ATP-binding motif, which is fundamental in the formation of the tetramer. 

This work suggests that L. innocua possesses a UspFG-Type and that this protein can 

assemble in a tetrameric structure. These results, although to be confirmed 

experimentally, provide important information about a poorly studied protein and may 
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stimulate experimental investigations. 

Overall, the results obtained in this study improved the knowledge both in stress 

response of L. innocua and in develop of bio-control (anti-listeria adjunct starter or 

protective cultures) useful in food bio-preservation.	
  

 

 

 



CHAPTER I 

7	
  

INTRODUCTION  

 

 

 

1.1 UNDESIRABLE MICROORGANISMS IN FOOD PRODUCTS 

1.1.1 SPOILAGE BACTERIA 

Food spoilage is a complex of changes that renders a food product unacceptable to the 

consumers from a sensory point of view. Physical damage, chemical changes 

(oxidation, colour changes) and microbiological metabolism may be responsible of food 

spoilage. Microbial spoilage is the most common cause of food decomposition; textural 

changes (degradation of polymers), off-odours, off-flavours, due of metabolites 

production, are the main changed sensory observed. The growth and metabolism of 

spoilage microorganisms is strictly correlated to intrinsic characteristics of raw material 

(chemical composition, pH, aw), and extrinsic characteristics, such as temperature, 

atmosphere etc. Furthermore, the interactions between microorganisms, processing, 

preservation and storage conditions, are also crucial for the development of a specific 

specie(s) into a product. 

At the point of sensory, the spoilage micro flora is so-called specific spoilage organism 

(SSO) of the product (Gram et al., 2002). 

In general, several of microorganisms are able to produce spoilage of a food product, 

but the spoilage ability of an organism is related to the level of growth, kind and 

quantity of metabolites produced.  
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Meat and fish spoilage 

Pseudomonas spp. (Ps. fragi, Ps. fluorescencs, Ps. lundensis) are the principal spoilages 

of the meat stored aerobically at different temperatures (-1 to 25°C) (Koutsoumanis et 

al., 2006). Population levels of 107-8 CFU/g of pseudomonads have been attributed to 

slime and sulphydryl off-odour by methionine metabolism (Nychas et al., 2008; Segal 

& Starkey, 1969).  

Cold-tolerant Enterobacteriaceae are also correlated to spoilage of chilled meat both 

stored aerobically and anaerobically; they are responsible of sulphydryl and cheesey 

off-odour (Dainty & Mackey, 1992; Segal & Starkey, 1969). 

Lactic acid bacteria (LAB) and Brochothrix thermosphacta are also present among the 

anaerobic spoilage bacteria of chilled meat, but their contribute in meat spoilage is not 

relevant. Instead, these bacteria are the most important cause of spoilage of meat under 

vacuum or modified atmospheres (Skandamis & Nychas, 2002). In particular lactic acid 

bacteria are responsible of greening (Nychas et al., 2007) and souring of meat (acetic 

acid, L,D-lactic acid) by glucose, ribose and others CHO compounds degradation 

(Nassos et al., 1983). 

Fish spoilage is frequently due to Pseudomonas spp. that is responsible both fruity off-

odour and sulphydryl off-odour (Miller et al., 1973). Furthermore, sulphidy off-odour, 

and fishy off-odour (e.g trimethylamine; TMA) are ascribable to Shewanella 

putrefaciens (Gram & Melchiorsen, 1996). Instead, ammonia putrid may be due to 

lactic acid bacteria, Enterobacteriaceae and Photobacterium phosphoreum (Jorgensen 

et al., 2000). 
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Milk and dairy spoilage 

Members of genus Pseudomonas are common in milk, and several species are 

frequently isolated from raw milk (Ternstrom et al., 1993; Jayarao & Wang, 1999). 

Species of Pseudomonas are been found in pasteurised milk originate from post-process 

contamination together psychrotrophic Bacillus (Ternstrom et al., 1993; Eneroth et al., 

2000). Several researches, showed that Pseudomonas species produces rancid and bitter 

off-flavours in milk and in dairy products because have a high lipolytic and proteolytic 

activity (Wiedmann et al., 2000; Dufour et al., 2008; Boran & Ugur, 2010; De Jonghe et 

al., 2011). Furthermore, Ps. fluorescens is the causative agent of blue coloration in fresh 

and low-acid cheese (Martin et al., 2011). Other important psychrotrophs associated 

with raw milk include members of the genera, Micrococcus, Aerococcus, Lactococcus 

and Enterobacteriaceae family (Ledenbach & Marshall, 2009).  

In processed dairy foods, there are several microorganisms able to contaminate the 

cheese during manufacturing. Coliforms and yeasts are the most frequent spoilage of 

short ripening cheeses, and the early blowing is the typical index of their contamination. 

Instead, the late blowing in hard and semi-hard cheeses is a typical spoilage of 

Propionibacterium spp. and Clostridium spp. spores of clostridia may survive during 

the manufacture of cheese and are able to germinate and grow in the product (Le 

Bourhis et al., 2005). In addition to abundant gas production, clostridial species (e.g. C. 

beijerinckii, C. sporogenes, C. tyrobutyricum) produce off-odours by release of large 

quantities of butyric and acetic acid (Le Bourhis et al., 2007). 
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Alcoholic beverages spoilage 

Alcoholic beverages, such as beer and wine, are characterized by alcohol presence 

which has an antimicrobial effect against several organisms.  

Beer has been recognized as a stable beverage from microbiologically point of view 

because in addition of ethanol presence (0.5-10% w/w), there are many other 

compounds with antimicrobial activity. Bitter compounds (17-55 ppm of iso-α-acids) 

carbon dioxide content (0.5%), low pH (3.8-4.7) and reduced concentration of oxygen 

(less than 0.3 ppm) makes beer an hostile environment for survival of many 

microorganisms (Sakamoto & Konings, 2003; Suzuki, 2011). Foodborne pathogens 

cannot survive in beer, but a restrict number of yeasts and bacteria species are able to 

grow and produce several defects into final product.  

The Gram-positive bacteria Lactobacillus brevis, Lactobacillus lindneri and 

Pediococcus damnosus are considerate as the major beer spoilers (Back, 2005). 

Strains of Lb. brevis isolated from beer are capable to produce haze (turbidity), 

sediment and acidification, but no diacetyl off-flour. Lactobacillus lindneri is also 

responsible of faint haze (turbidity) and sediment with no off-flavours formation. 

Pediococcus damnosus may produce exopolysaccharides, making the beer ropy and 

gelatinous. Furthermore, beer spoilage caused by P. damnosus is characterized by acid 

and diacetyl off-flavour (Back, 2005). 

The Gram-negative bacteria Pectinatus and Megasphaera are more sensible to alcohol, 

low pH and hops acids than lactic acid bacteria, therefore, their presence into beer is 

infrequent. In contrast, beers spoiled by Pectinatus and Megasphaera are characterized 

by unpleasant taste and odours, such to make it undrinkable. Furthermore, Megasphaera 
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slightly turbid beer, instead Pectinatus exhibits heavy sediments, haze and small clots 

too (Back, 2005).  

Beer spoilage may be also due to wild yeasts, such as Saccharomyces cerevisiae, Pichia 

spp., Candida spp. and Dekkera spp. (van der Aa Kuhle & Jespersen, 1998). 

Wine is another alcoholic beverage characterized by high ethanol concentration, low 

pH, high acidity, and limited nutrients. For these reasons, a narrow number of bacteria 

and yeasts species are capable to grow in the wine. Lactic acid bacteria (Lactobacillus, 

Oenococcus and Pediococcus), and acetic acid bacteria (Acetobacter and 

Gluconobacter) are the only groups of bacteria found in grape must and wine 

(Bartowsky, 2009). All acetic acid bacteria are considered spoilage, they produce many 

quantities of acetic acid and acetaldehyde from the oxidative metabolism of ethanol 

(Adachi et al., 1978). Furthermore, acetic acid bacteria can form ethyl acetate from 

acetic acid, which has a nail polish remover aroma (Bartowsky & Henschke, 2008). 

LAB produce several volatile secondary metabolites, which have a strong effect on 

wine sensory qualities. Members of heterofermentative LAB, such as Oenococcus oeni 

and same Lactobacillus species, may be responsible of mousy off-flour and nitrogen-

heterocylic compounds [2-acetyl- tetrahydropyridine (ACTPY), 2-acetyl-1-pyrroline 

(ACPY) and 2-ethyltetrahydropyridine (ETPY)] produced from ornithine and lysine 

metabolism (Snowdon et al., 2006; Grbin et al., 2007). Mousy wines are been also 

associated to Dekkera and Brettanomyces (Grbin et al., 2007). 

Others LAB metabolism related compounds are acrolein, exopolysaccharide , mannitol 

and diacetyl, responsible of bitterness, slimy, viscous and buttery respectively 

(Bartowsky, 2009). 
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Bakery products spoilage 

Post-process contaminations with moulds and yeasts are quite frequent in bakery 

products spoilage. The most common moulds correlated to bakery products spoilage are 

Aspergillus, Fusarium, and Penicillium (Gerez et al., 2009). Moulds typically produce 

off-odours, but they are also potential mycotoxin producers that may cause public health 

problem. 

Yeast spoilage may be divided into two types: (a) visible growth on surface of products 

(white, cream or pink spots) and (b) fermentative spoilage of products and ingredients 

characterized by alcohol, ester and other odours production (Legan & Voysey, 1991).  

Pichia, Candida and Zygosaccharomyces are common of visible spoilage instead 

Saccharomyces and Hansenula are more frequent in fermentative spoilage. 

Sporogenous bacteria also have a potential to deteriorate baked products, in particular 

Bacillus subtilis causes rope in bread. Ropey bread is characterized by fruit odour 

(similar to pineapple) and by discoloration from brown to black (Rosenkvist & Hansen, 

1995).  

 

Truffle spoilage (Tuber spp.) 

Tuber spp. (e.g. T. aestivum and T. melanosporum), better know as truffles, are hypogea 

ascocarps particularly appreciated for their culinary properties. Tuber aestivum and T. 

melanosporum are distributed in Mediterranean countries: France, Italy and Spain 

(Rivera et al., 2010). Fresh truffles are characterized for a short shelf life and a rapid 

decay of odour and taste due in part to high presence of microorganisms (104-7 cfu/g) 

(Nazzaro et al., 2007; Reale et al., 2009). Bacteria associated with truffles are mainly 

represented by Pseudomonas spp., sporogenous bacteria, Actinomycetes, Rhyzobacteria 
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and Enterobacteriaceae (Sbrana et al., 2002; Barbieri et al., 2007; Rivera et al., 2010). 

Both yeasts and moulds (e.g. Debaryomyces hansenii, Saccharomyces dairensis; 

Aspergillus, Penicillium) are been also isolated from T. aestivum and T. melanosporum 

and associated to decay of product (Buzzini et al., 2005; Rivera et al., 2010).  

 

1.1.2 PATHOGENIC BACTERIA (FOODBORNE PATHOGENS) 

Foodborne diseases encompass acute and chronic syndromes of different duration and 

severity caused by several pathogen microorganisms. The proportion of disease 

transmitted by food, differs both pathogen (species/strain, inoculum, etc) and host (age, 

sex, immunity etc.).  

Over the last years, several factors such as, genetic factors, antimicrobial resistance, 

aging of population, increase of internationalization travel and globalization of food 

trade, have contributed to change the epidemiology of foodborne illness. 

In the United States, foodborne diseases caused 9.4 million illnesses, 55,961 

hospitalizations and 1,351 deaths each year. The most (58%) of illnesses are caused by 

norovirus, nontyphoidal Salmonella spp. (11%), Clostridium perfringens (10%) and 

Campylobacter spp. (9%). Nontyphoidal Salmonella spp., norovirus, Campylobacter 

spp. and Toxoplasma gondii caused the most hospitalizations instead nontyphoidal 

Salmonella spp., T. gondii, Listeria monocytogenes and norovirus caused the most 

deaths (Scallan et al., 2011).  

In Australia, 32 % (5.4 million) of gastroenteritis are foodborne, and the most of them 

are caused by norovirus, enteropathogenic E. coli, Campylobacter spp. and Salmonella 

spp. (Hall et al., 2005). 

Likewise, in the European Union (EU) most of foodborne diseases, are caused by 

Campylobacter spp., Salmonella spp., virus and bacterial toxins.  
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Thermophilic Campylobacter spp. is the etiologic agent of campylobacteriosis in 

humans. Campylobacter jejuni followed by C. coli and C. lari are the most commonly 

associated bacteria with human infections. The infective dose of these bacteria is very 

low (500 cfu) and the symptoms of illness are generally mild (e.g. diarrhoea, abdominal 

pain, nausea and fever) (Black et al., 1988). Rarely, extra-intestinal infections such as 

neurological dysfunctions and respiratory paralysis (Guillain-Barré syndrome) occur 

(Allos, 1997).  

Since 2005, Campylobacter is considered the most commonly reported gastrointestinal 

bacteria pathogen in humans in EU. In 2009, 198,252 confirmed human 

campylobacteriosis cases were reported in EU and an increase of 4.0 % was also 

recorded, relative to previous year. Furthermore, confirmed cases of campylobacteriosis 

showed a slightly fluctuating between 2005 and 2009 (EFSA, 2011). The most of cases 

were reported during the summer (from June to August) and children under the age of 

five had the highest notification of rate. 

The principal reservoirs of Campylobacter are the alimentary tracts of domesticated 

birds and mammals, such as poultry, cattle, pigs and sheep. Therefore, the bacteria can 

readily contaminate several foodstuffs, including meat, raw milk and dairy products, 

and less frequently fish and vegetables. 

EFSA (2011), in according with also other studies (Sahin et al., 2002; Hermans et al., 

2012), reported that poultry meat still appears to be the main foodborne source of 

Campylobacter, because bacteria remains at a high level in fresh poultry meat.  

Meats, including beef, pork and lamb have been implicated in infection, but with a 

reported prevalence lower than those reported on poultry (Kramer et al., 2000). 
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A significant presence of Campylobacter has been detected also on other foods, such as 

raw milk, dairy foods, fresh and packaged fruit and vegetables (Hussain et al., 2007; 

Verhoeff-Bakkenes et al., 2011; Giacometti et al., 2012). 

Furthermore, Campylobacter spp. have been reported to survive in water, at low 

temperature for up four months, during processing and in the environment generally 

(Rollins & Colwell, 1986; Buswell et al., 1998; Hazeleger et al., 1998; Park, 2002; 

Cools et al., 2005). The wide spreading of Campylobacter in foodstuff could be due to 

environmental survival mechanisms, that paradoxically appears to be very limited 

compared with other bacteria (Park, 2002). Several key regulators of stress response, 

such as those involved in oxidative stress (SoxRS, OxyR, SodB and KatG), osmotic 

stress (e.g. BetAB, GbsAB), cold stress (CspA) and heat stress (RpoH), are present in 

enteric bacteria Salmonella spp. and E. coli and absent in Campylobacter spp. 

Interestingly, Campylobacter contains two negative regulators of heat-shock response 

(HspR and HrcA) and several two component regulatory systems that are not generally 

found in other bacteria and could be involved in stress defence (Murphy et al., 2006). 

More information about the role of these systems, could help to understanding 

Campylobacter strategy adopted for survives in several environments. 

Human salmonellosis is the second reported zoonotic disease in humans in EU, 

following campylobacteriosis. In 2009, 31 % (5,550 outbreaks) of foodborne outbreaks 

were due to Salmonella with a high frequency of S. enteridis and S. typhimurium 

serovars. The confirmed cases of human salmonellosis were 108,614 (23.7 cases per 

100,000) of which 4,156 in Italy, corresponding to 7.5 cases per 100,000 of population 

(EFSA, 2011). 
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Noteworthy, is the decreasing trend of salmonellosis, EFSA (EFSA, 2011) reported an 

average reduction of 12.0 % per year between 2005 and 2009. This decline is mainly 

due to reduction of S. enteridis in the principal resource of infection, such as eggs and 

flocks of laying hens as well as other control measures along the food chain. 

Human salmonellosis is usually characterised by the acute onset of fever, abdominal 

pain, nausea, and sometimes vomiting. The most infections are self-limiting but also 

severe diseases may be occurring, such as bloodstream infection.  

The principal reservoir of Salmonella is the intestinal tract of domestic and wild 

animals, therefore this bacteria may be transmitted both food of animal and plant origin.  

In EU, eggs and poultry meat represents the food with a highest risk of contamination 

and the main vehicle of S. enteridis. Instead, pig, poultry and bovine meat are the most 

common foodstuff contaminated by S. typhimurium serovar.  

Fruit and vegetables irrigated with faecal contaminated water may also represent a risk 

of infection by Salmonella. 

Furthermore, many other foodstuff may be contaminated by Salmonella and 

consequently to cause illnesses. For example in the United States a sever outbreak was 

caused by peanut butter contaminated with Salmonella serotype Tennessee (Sheth et al., 

2011). 

Escherichia coli is another bacteria responsible of numerous diseases in the world. 

Members of these bacteria are widespread among vertebrate gut microbiota and are 

considered to be an indicator of fecal pollution in water. Fecal decomposition of E. coli 

into soil represents an intermediate step in a host-soil-water cycle that is one mechanism 

by which E. coli may colonize new hosts (Collins et al., 2005). Human infection with E. 

coli occurs through ingestion of food or water contaminated with faecal matter. The 
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most of strains of E. coli are harmless but certain serotypes are able to cause several 

infections, with manifestations ranging from mild diarrhoea to severe haemorrhagic 

colitis and Haemolytic Uremic Syndrome (HUS). 

Based on the virulence factor, E. coli have been divided into several pathotypes (Nataro 

& Kaper, 1998; Kaper et al., 2004). Shiga toxin-producing E. coli (STEC), also called 

verotoxin-producing E. coli (VTEC), is the pathotype that cause haemorrhagic colitis 

and haemolytic uremic syndrome named also entero-haemorrhagic E. coli (EHEC) 

(Nataro & Kaper, 1998).  

The serotype 0157:H7 is the major STEC associated in human disease, therefore is 

common to distinguish Shiga toxin-producing E. coli in O157 and non-O157 serotype. 

Ruminants, such as, cattle and sheep, are the major reservoir of STEC and the 

consumption of their meat, especially undercooked beef hamburgers, represent one of 

main cause of Shiga toxin-producing E. coli transmission. However, also other kinds of 

foods have been reported to carry STEC, including pork, poultry, fish, punch and 

iceberg lettuce (Mathusa et al., 2010). 

Infections E. coli shiga toxin-producing are less frequent than those of other bacterial 

zoonoses but are generally more severe. In this regard industrialized countries increased 

resources and measures for to control and reduce the STEC rate infections associated. 

In Connecticut State, both O157 and non-O157 STEC infections incidence decreased 

from 2000 through 2009 (Hadler et al., 2011), instead STEC infections in Australia 

have remained fairly steady but low over the past 11 years with a annual rate of 0.4 

cases per 100,000 (Vally et al., 2012).Unfortunately, in other industrialized countries, 

STEC infections have been an opposite and worrying trend. For example, in New 
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Mexico, shiga toxin–producing E. coli (STEC) increased from 0.9 cases per 100,000 

population in 2004 to 1.7 in 2007 (Lathrop et al., 2009). 

Similar, in EU, also if not statistical significantly, STEC increased from 3,269 to 3,573 

(0.75 per 100,000) confirmed cases between 2005 and 2009 and more of 50 % of them 

were attributed to O157 serotype. In Austria, Belgium, Ireland, and the Netherlands a 

significant increasing five-year trend was recorded while the five-year trend was 

significantly decreasing in Estonia, Germany, Hungary, and Malta (EFSA, 2011). 

In the last years more attention was also focused for non-O157 STEC serotypes because 

although less frequent in human diseases, may cause sever infections (Gyles, 2007). 

In 2011, a large outbreak of bloody diarrhoea and haemolytic uremic syndrome was 

recorded in Germany. Shiga toxin-producing E. coli serotype 0104:04 associated to 

consumption of contaminated bean and seed sprouts, caused 3,802 infection cases, 

2,938 (77.3%) involved cases of enterohaemorrhagic E. coli (EHEC) infection and 864 

(22.7%) cases of HUS (Frank et al., 2011). 

Listeria monocytogenes is another foodborne pathogen that attracted great attention in 

the last years by scientists and experts. This bacterium causes human listeriosis, that 

although relatively rare, it is a disease generally serious characterized by a high 

morbidity and mortality in vulnerable population. In 2009, 1,645 confirmed human 

cases were reported in EU, the rate of fatality was 17 % and a significant increasing 

trend was recorded in Austria, Denmark, Hungary, Italy, Spain and Sweden. 

Furthermore, on the base of reported confirmed cases, it is estimated that in 2009 there 

were approximately 270 human deaths due to listeriosis, 90 deaths due to salmonellosis 

and 40 deaths due to campylobacteriosis in the European Union (EFSA, 2011). The 

number and the severity of foodborne diseases recorded during the years, help to 
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understand the strong impact of these illnesses both on the health public and annual 

costs of countries.  

 

 

1.2 LISTERIA MONOCYTOGENES, A FOODBORNE PATHOGEN BACTERIA 

1.2.1 EPIDEMIOLOGY AND INFECTION PROCESS 

The genus Listeria consists of a number of species including L. monocytogenes, L. 

innocua, L. welshimeri, L. seeligeri, L. ivanovii, the two newly identified species, L. 

marthii, L. rocourtiae (Graves et al., 2010; Leclercq et al., 2010) and L. grayi, which is 

distantly related to the other Listeria spp. Listeria monocytogenes represents the specie 

most commonly associated with diseases in both animal and humans. This bacteria is a 

facultative pathogenic saprotroph, can live in soil and decaying vegetation, but once it 

enters an animal or human host can cause severe diseases. L. monocytogenes is the 

etiological agent of listeriosis, clinically defined when the organism is isolated from 

blood or cerebrospinal fluid. The most severe clinical manifestations of invasive human 

listeriosis include septicemia, encephalitis, meningitis, and spontaneous late-term 

abortion. Subclinical manifestations include a mild influenza-like illness, sometimes 

combined with gastroenteritis as well as ocular and cutaneous listeriosis (McLauchlin et 

al., 2004). Healthy human individuals rarely contract invasive listeriosis, while groups 

at high risk for contracting listeriosis are immunocompromised individuals such as HIV 

patients and the elderly, infants, and pregnant women (Schlech, 2000). The majority 

(99%) of the infections caused by L. monocytogenes are thought to be foodborne 

(Swaminathan & Gerner-Smidt, 2007). The first documented outbreak of foodborne 

listeriosis occurred in 1979 in a Boston hospital (Gellin & Broome, 1989). Twenty three 
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patients were involved because ate contaminated vegetables prepared within the 

hospital. In 1981 another outbreak due to consumption of contaminated coleslaw 

occurred in the Maritime Provinces, Canada (Schlech et al., 1983). During the years, 

several listeriosis outbreaks have been associated to different foods, such as vegetable 

products in the early 1980s and dairy products in the early 1990s (Farber & Peterkin, 

1991). In the last years, ready-to-eat meat and poultry products have been associated 

with the outbreak of epidemic listeriosis (Donnelly, 2001).  

(Vázquez-Boland et al., 2001) have reported that the incidence of human listeriosis vary 

from 0.2 to 0.8 sporadic cases/100,000 people per year in Europe and in the US. 

In Europe, the incidence of listeriosis outbreaks have increased since 2000 (Allerberger 

& Wagner, 2010); in particular the incidence among those >65 years old appears to 

have increased over the two last years. 

The pathophysiology of listeriosis has been largely studied: pathogenic Listeria enters 

the host primarily through the intestine. After the intestinal translocation the pathogen 

reaches the liver where actively multiplies until the infection is controlled by a cell-

mediated immune response (Werbrouck et al., 2006). In immunocompromised patients, 

the proliferation of Listeriae in the livery is unrestricted and after a prolonged time of 

low-level of bacteremia the pathogen may invade secondary target organs such as the 

brain and the gravid uterus (Longhi, 2004). L. monocytogenes is able to survive in 

macrophages and to invade a variety of cells such as epithelial cell, endothelial cells, 

hepatocytes and fibroblast. The internalins proteins (e.g. InlA and InlB) are important 

for internalization of L. monocytogenes in to cells. 
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1.2.2 LISTERIA FOOD CONTAMINATION 

Listeria monocytogenes is a ubiquitous bacterium and is widespread in nature, it can 

survive and grow under several environmental conditions. The presence of L. 

monocytogenes has been detected in several foods. Minced beef, minced pork, minced 

chicken and minced pork–beef mixture samples have been found contaminated by L. 

monocytogenes. The organism was also isolated from cold-smoked fish and from ready-

to-eat raw seafood samples (Autio et al., 1999; Inoue et al., 2000; Kovacevic et al., 

2012). L. monocytogenes has been isolated by raw milk (Aygun & Pehlivanlar, 2006) 

cheeses, dairy products (Lyytikainen et al., 2000), ice cream and chocolate milk (Dalton 

et al., 1997; Miettinen et al., 1999).  

L. monocytogenes does not form endospores but is quite resistant to the effects of 

freezing, drying and heating. It can survive for long time in refrigerated, frozen and 

dried foods, can grow between 0 and 45 °C and show high tolerance to acid conditions 

and high salt concentrations.   

The bacterium usually enters the food through raw materials, water, workers and 

through a large variety of food-processing equipment (Tompkin, 2002). It can persist in 

environment working for a long time (Miettinen et al., 1999). Usually, the applications 

of good sanitization practices are able to kill L. monocytogenes, but if the sanitization 

procedures are inappropriate this micro-organism may be able to establish themselves, 

multiply and become resident (Kumar & Anand, 1998; Gram et al., 2007). L. 

monocytogenes is able to form biofilms (Møretrø & Langsrud, 2004), an assemblage of 

surface-associated microbial cells that is enclosed in an extracellular polymeric 

substance matrix (Donlan, 2002). This bacteria can form biofilm on material used in 

packaging and foods processing. Several studies showed the presence of biofilms on 

rubber, glass, stainless steel and plastics (Sinde & Carballo, 2000; Stepanovic et al., 
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2004; Chae et al., 2006; Poimenidou et al., 2009). 

 

1.2.3 GENETIC STUDIES 

In the last years great attention was focused for the study of genomic and comparative 

sequence in Listeria spp. In a recent study (Bakker et al., 2010) of comparative genomic 

among genus Listeria, has been shown that genome evolution is characterized by 

limited gene acquisition and limited gene loss. Consequently, it is possible to observe a 

conserved genome size i between 2.8 and 3.2 Mb. 

Extensive phylogenetic research based on nucleotide polymorphism showed that L. 

monocytogenes consist of at least four evolutionary lineages, designed lineages I, II, III 

and IV (Nightingale et al., 2005; Orsi et al., 2008; Ward et al., 2008). Most serotype of 

L. monocytogenes associated with human clinical cases seem to belong to lineages I 

(serotypes 1/2b and 4b). Lineage II strains (e.g serotypes 1/2a), common in foods and 

widespread in the environment, are commonly isolated from animal listeriosis cases and 

sporadically isolated from human clinical cases (Orsi et al., 2011). Lineage III and IV 

isolates are not widespread, they are predominantly isolated from animals source and 

sporadically are involved in human listeriosis (Bakker et al., 2012). 

Several studies have shown that L. monocytogenes strains have a highly syntenic 

genome (Hain et al., 2007; Bakker et al., 2010) with same difference (presence/absence) 

of genes involved in transport and associated with the cell wall. The most clear 

differences between gene presence in lineages I and II isolates occurr at cell surface 

(Zhang et al., 2003; Doumith et al., 2004). The virulence genes and/or virulence-related 

genes are usually present in all L. monocytogenes strains (Doumith et al., 2004) but 

several studies showed that there are the same differences among and within the 

lineages isolates.  
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Using microarray analyses, a siderophore was found present in lineages I isolates but 

absent in the lineage II isolates (Borucki et al., 2003; Call et al., 2003). Siderophores are 

virulence factors involved with ferrous transport, they are also present in other pathogen 

bacteria such as Staphylococcus aureus and Bacillus anthracis (Dale et al., 2004; 

Abergel et al., 2006). The absence of siderophores among the lineages II isolates could 

be related to lower virulence in comparison to lineage I isolates (Orsi et al., 2011). 

Recently, (Cotter et al., 2008) have described in the listeriolysin S, a new peptide 

hemolysin, carried in about half of the isolates of lineage I. This virulence factor is 

encoded in the Listeria pathogeniticy island 3 (LIPI-3) by gene lls. 

Internalins are proteins characterized by the presence of a leucine-rich repeat (LRR) and 

are involved in adhesion and internalization of pathogen into host cell. The two 

members InlA and InlB of internalins family are well studied and are present in all L. 

monocytogenes, while a third member of the family, encoded by inlC , is absent from 

the same lineage III isolates (Jia et al., 2007). The inlC2, inlD, inlE and inlJ are present 

in both lineage I and III isolates while inlG, inlH and inlF have been found among 

lineage II only (Jia et al., 2007; Sabet et al., 2005; Tsai et al., 2006). 

Other studies have shown constitution differences of teichoic acids among serotypes 

1/2, 3, and 4b (Promadej et al., 1999). The wall teichoic acids plays an important role 

both antigenicity and phage specificity. Serotype-specific phages are able to recognize 

the wall teichoic acid of the bacterium. 

Same genes involved in stress response (sigC, lmo0421 and lstR) have been only 

identified in lineage II isolates but not among lineage I isolates (Zhang et al., 2003). 

These gene who encode for an alternative sigma factor (σc), a putative member of the 

RodA-FtsW family and a PadR-like protein are induced under heat shock stress (Zhang 
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et al., 2005). Chen et al., (2009) have shown that the gene lmo0038, involved in heat 

and acid stress response, was present only in lineage I and II isolates whilst absent in 

lineage III and IV isolates. This aspect could to help to explain the low prevalence of 

lineage III isolates in food and food-related environment (Orsi et al., 2011). 

1.2.4 LISTERIA INNOCUA AS SURROGATE BACTERIA OF L. MONOCYTOGENES 

Ecological and genomic comparative studies in Listeria spp. showed a high similarity 

between the pathogenic L. momocytogenes and the non-pathogenic L. innocua (Glaser 

et al., 2001; Girardin et al., 2005).  

An extensive study on L. monocytogenes EGD-e and L. innocua CLIP 11262 showed 

that the two species had a similar size chromosomes and similar number of protein-

coding genes (Glaser et al., 2001). Moreover, both genomes encoded many putative 

surface proteins. Also internalins family proteins were found in both bacteria species 

except protein-gene containing LPXTG sorting motif (inlA, inlE, inlF, inlG and inlH) 

and protein-gene containing a GW repeat anchoring motif (inlB), present only in L. 

monocytogenes EGD-e. Several secreted proteins important for virulence, including 

PlcA and PlcB, were found in L. monocytogenes whilst were not found in L. innocua. 

Different genes encoding transport proteins, were found in in both species and many of 

them were devoted to carbohydrate transport, mediated by phosphoenolpyruvate-

dependent phosphotransferase systems (PTS). This characteristic would seem to be 

correlated to the ability of Listeria spp. to colonize and grow in a broad range of 

ecosystems (Glaser et al., 2001). A specific β-glucosides permeases II was found only 

in L. monocytogenes not in L. innocua. The carbohydrate β-glucosides has a significant 

impact on the virulence of L. monocytogenes (Kreft & Vázquez-Boland, 2001). Many 

transcriptional regulators genes were observed in both species but the virulence 
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regulatory factor PrfA was absent in L. innocua. Moreover, four classes of stress 

proteins (HrcA, sigmaB-dependent, Clp and class IV genes) and genes involved in acid 

resistance [(e.g., genes encoding glutamic acid decarboxylase (gad)] were identified in 

both Listeria species. Only one of three gad paralogs of L. monocytogenes (lmo0447) 

was missing from L. innocua. Also three genes (lmo2067, lmo0446 and lmo0754) 

involved in bile salt degradation were present in L. monocutogenes and absent in L. 

innocua. 

The high genomic similarity and the environmental niches shared by the two species, 

have induced many researchers to use the non-pathogen L. innocua as surrogate of L. 

monocytogens for a better understanding of the behaviour of pathogen specie.  

L. innocua has been used for study a new thermal process to kill L. monocytogenes in 

hamburger patties (Friedly et al., 2008). The effect on thermally processed was also 

investigated for growth control of L. innocua in orange juice (Char et al., 2009). In 

other studies, L. innocua was used as L. monocytogenes surrogate for understanding the 

grothh ability onto ready-to-eat (RTE) meat surface after ionizing radiation, ultraviolet 

light-C (UV-C) and flash pasteurization (FP) (Sommers et al., 2002; Sommers et al., 

2008). 

Furthermore, (Karaibrahimoglu et al., 2004) have studied the effect of pH on the 

survival of L. innocua in presence of calcium ascorbate in fresh-cut apples. 

1.3 BIOPRESERVATION OF FOOD 

1.3.1 LACTIC ACID BACTERIA AS PROTECTIVE CULTURES 

Classical preservation methods, such as chemical (nitrates, nitrites, sulphites), and 

physical treatments (pasteurization, freezing, high pressure, ionizing rays, etc) are 

traditionally applied both to extend the shelf-life and to protect the quality of foods.  
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Although these methods are enough to assure food safety, they often compromise other 

quality features including taste and nutritional properties.  

Furthermore, the concept of food quality is evolved in the last decades; consumers are 

being more and more inclined to research convenience foods, safe, taste and with high 

nutritional properties, and are interested in the consume of minimally processed foods 

with “naturalness” characteristics.  

The use of classical preservation methods, especially chemical preservatives, is clearly 

not compatible with these naturalness characteristics of food products.  

This fact has encouraged the research of alternative preservative methods, based on the 

biopreservation concept. Biopreservation delas with the extension of shelf-life and the 

enhancing of safety of foods by the use of natural compounds or controlled microflora 

and/or their antimicrobial products (Stiles, 1996). 

The use of natural compounds (e.g. vegetable extracts) and biological agents (protective 

cultures) in food processing is also in accordance with the contemporaneous food trends 

that promote new categories of food such as the “bio-products”.  

Similar to starter cultures and probiotic, protective cultures (PCs) are food-grade 

bacteria, which may be strains naturally present in the food. PCs are selected for their 

ability to inhibit undesirable microorganisms rather than to deliver a desired flavour 

profile. Lactic acid bacteria (LAB) are interesting candidates for biopreservation, they 

have obtained the GRAS (Generally Recognized as Safe) status (Adams, 1999) and are 

well known for their ability in antimicrobial compounds production. LAB represent a 

microbial group largely widespread in nature, they may be isolated from several sources 

including plants, animals and guts of humans as well as from food such as meat, dairy 

products, wine and vegetables.  
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Lactic acid bacteria are extensively used as microbial starter in fermented foods because 

of their high production of organic acids (e.g. lactic and acetic acid) able to improve 

sensorial characteristics and to inhibit acid sensible bacteria. Furthermore, many other 

antimicrobial compounds are produced, including carbon dioxide, hydrogen peroxide, 

diacetyl, ethanol, bacteriocins, bacteriocin-like inhibitory substances (BLIS) and 

reuterin (Caplice & Fitzgerald, 1999) 

Although, the antimicrobial ability of LAB is well known in fermented food few studies 

are available for unfermented food. Selected microorganisms that have given good 

results in fermented food or in a model medium may be not efficient in unfermented 

food (Wessels & Huss, 1996; Bello et al., 2012). 

Successful studies were obtained in seafood products, where LAB species were able to 

inhibit Listeria spp. with bacteriocin production or competition mechanisms (Nilsson et 

al., 1999; Yamazaki et al., 2003; Nilsson et al., 2005; Vescovo et al., 2006). 

Lactobacillus spp. and Pediococcus acidilactici isolated from chicken carcasses showed 

psychrotrophic characteristics and were able to inhibit Salmonella spp. and Listeria 

monocytogenes (Sakaridis et al., 2012). These pathogens, were also inhibited in raw 

chicken meat by two bacteriocinogenic strains of Enterococcus faecium and 

Lactobacillus fermentum (Maragkoudakis et al., 2009). 

Lactobacillus sakei displayed antimicrobial activity against L. monocytogenes, B. 

thermosphacta and Leuc. mesenteroides in cooked meat stored for 34 days in vacuum 

packaged at 7 °C without change in the sensorial properties (Vermeiren et al., 2004). 

The BLIS producer Lb. sakei CECT 4808, besides to improve the shelf life of sliced 

beef during the cold storage showed also limited antioxidative ability (Katikou et al., 

2005). 
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Interesting results were obtained also in ready-to-eat fresh fruit and vegetable products 

biopreservation by the use of lactic acid bacteria. In particular, cell count of S. 

typhimurium and E. coli was reduced by 1 to 2 log cfu when apples and lettuce were 

treated with Leuconostoc spp. and Lb. plantarum, while the growth of L. 

monocytogenes was completely inhibited. Organic acids, hydrogen peroxide and 

bacteriocins produced by Leuc. mesenteroides were detected as main inhibition 

mechanisms against L. monocytogenes (Trias, Badosa, et al., 2008a). 

Lactic acid bacteria, especially the genus Lactobacillus, are frequently involved in the 

antifungal activity (Magnusson et al., 2003; Sjogren et al., 2003; Hassan & Bullerman, 

2008; Dalié et al., 2010).  

Studies conducted in vitro showed the antifungal activity of Lactobacillus by producing 

several compounds, such as acetic, caproic, formic, propionic, butyric, n-valeric and 

phenyllactic acid (Corsetti et al., 1998; Lavermicocca et al., 2003). Lb. plantarum 

VTTD-78076 showed the ability to suppress the growth of Fusarium VTTD-80147 by 

the medium of benzoic acid, an imidazolidinedione derivate and a piperazinedione 

derivate (Niku-Paavola et al., 1999) 

Applications in food processing of antifungal activity by some members of 

Lactobacillus spp. were also reported. Lb. plantarum 21B isolated from sourdough 

possessed antifungal activity against the common spoiling fungi of bakery products 

belonging to the genera Apergillus, Penicillium and Fusarium. Lavermicocca et al. 

(2000) hypothesize that the antifungal activity of Lb. plantarum 21B against some 

mould species (Aspergillus niger, A. flavus, Fusarium graminearum, Penicillium 

corylophilum, P. roqueforti and P. expansum), is attributable to the production of 

phenyllactic and 4-hydroxy-phenillactic acids. Sourdough and bread produced with Lb. 
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plantarum FST 1.7 showed consistent ability to retard the growth of Fusarium species 

(Dal Bello et al., 2007). These authors reported that Lb. plantarum FST 1.7 produced 

two cyclic dipeptides [Cyclo (I-Leu-I-Pro) and Cyclo (I-Phe-I-Pro)] with antifungal 

properties as well as lactic and phenyllactic acid. Furthermore, the bread manufactured 

with acetic and phenyllactic acid Lactobacillus producer and with addition of 0.2 % of 

conventional antifungal calcium propionate, has shown to have the same shelf life of 

bread produced with only 0.4 % of calcium propionate (Gerez et al., 2009). Good 

results of antifungal effect, were also obtained when Lb. plantarum 16 was added both 

to yoghurt and to orange juice, as the yeast Rhodotorula mucilaginosa growth was 

retarded (Crowley et al., 2012). 

Although, several studies showed the potential use of PCs and/or their metabolites such 

as bacteriocins, in food preserving, the commercial applications of these products are 

still limited for different reasons. 

Regarding the application of bacteriocin and/or bacteriocin-producing LAB, the major 

problem is related to the in situ antimicrobial efficacy, that as reported by Settanni and 

Corsetti (2008), may to depend by various factors such as proteases, food additives, 

food components and other inhibitors. Furthermore, other limitations in applying 

bacteriocin or bacteriocin-producing LAB cultures rest in the, possible development of 

resistance (Embarek et al., 1994) and ineffectiveness against Gram-negative bacteria 

(Helander et al., 1997). 

Among the various bacteriocin isolated and characterized, nisin (e.g. marketed as 

Nisaplin® and Natamax®) is that best known, it is produced by Lactococcus lactic and 

has been approved for use in about 50 countries. Pediocin PA-1 is a bacteriocin 

produced by Pediococcus acidilactici and is commercialized as ALTATM 2431 by Kerry 
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Bioscience.  

Regarding the application of protective cultures, is important to understand the nature of 

inhibition and factors affecting it for to debug an efficient PCs. Inhibition ability by PCs 

may be due by several mechanisms, such as competition for nutrients, production on 

inhibitors and parasitism. Moreover, many other factors affecting PCs performance, 

including temperature effect, inoculum size and food composition.  

Currently, some commercial products are available; for example, the Danisco 

HOLDBACTM is a commercial preparation of protective cultures with capability to 

control the growth of fungi and bacteria, including L. monocytogenes, in dairy and meat 

products. Micocin® is another commercial preparation of LAB with anti-listeria 

activity in meat products.  

The extensive application of PCs in food processing is still limited but in the future PCs 

could be used possibly in synergetic relationship with other hurdles such as the low 

temperature. 

 

1.3.2 LACTOBACILLUS PLANTARUM IN FERMENTED FOOD 

Lactobacillus plantarum is one of about 180 species recognized among the genus 

Lactobacillus: http://www.bacterio.cict.fr/l/lactobacillus.html. Many Lactobacillus 

species are highly specialized and are found in a restricte number of niches. For 

example, Lb. delbrueckii spp. bulgaricus is adapted to the dairy environment and is 

widely applied in yoghurt manufacture (van de Guchte et al., 2006). Whereas other 

species such as, Lb. rhamnousus, Lb. reuteri, Lb. gasseri and Lb. acidophilus are found 

in the mammalian gastro-intestinal tract (Russell & Klaenhammer, 2001; Siezen & G. 

Wilson, 2010) and are used as probiotic cultures. The specie Lb. iners is considered the 

predominant member of the vaginal microbiota (Macklaim et al., 2011). 
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In contrast, the ubiquitous Lactobacillus plantarum is able to colonize several 

ecological niches such as meat, fish, vegetables, diary products (Gardner et al., 2001; 

Ercolini et al., 2003; Aymerich et al., 2003; Bringel, 2005) and mammalian gastro-

intestinal tract (Ahrné et al., 1998). 

The ability to colonize several environments by Lb. plantarum could be attributed to 

large and organised genome of this bacterium. 

Recent researches such as the complete genome sequencing of Lb. plantarum strains 

WCFS1 (Kleerebezem et al., 2003; Siezen et al., 2012), JDM1 (Zhang et al., 2009) and 

ST-III (Wang et al., 2011) as well as comparative genomic studies (Siezen & van 

Hylckama Vlieg, 2011) have shown interesting data about the genomic architecture of 

this bacterium. There is a high phenotypic and genotypic diversity as well as a high 

metabolic versatility and flexibility among Lb. plantarum group (Bringel, 2005; 

Molenaar et al., 2005; Siezen et al., 2010; Siezen & van Hylckama Vlieg, 2011). The 

large set of genes involved in sugar uptake and utilization as well as the large number of 

surface bound extracellular proteins is also likely to contribute to the large versatility 

with its environment (Kleerebezem et al., 2003). Furthermore, it is hypothesized that 

Lb. plantarum chromosome has specific regions, designated life-style adaptation 

regions, dedicated to the interaction with the environment (Kleerebezem et al., 2003).  

In line with the ability of growing in many ecological niches, Lb. plantarum may be 

used in different food and health applications. 

Some studies reported that use of Lb. plantarum in sourdough fermentation represent a 

valid means to improve texture, flavours and shelf-life of bakery products. Lb. 

plantarum 20B showed a good sourdough acidification and acid acetic production when 

pentosans and L-arabinofuranosidase where also added to the dough (Gobbetti et al., 
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2000). Lactic acid produced by LAB (including Lb. plantarum) carbohydrate 

metabolism, is the main compound responsible of sourdough acidification and also have 

a little effect on bread flavour. Acetic acid is also positive because does improve the 

sensory properties of the final product. However, for a pleasant flavour perception it is 

necessary an optimal (2.0-2.7) molar ration lactate/acetate (the fermentation quotient, 

FQ). Other studies reported that the time of leavening and the acidification degree 

detected during dough manufacture were improved by the presence of Lb. plantarum 

strains (Pepe et al., 2004). A good sourdough acidification (pH lower than 5.0) also 

prevents the growth of undesirable microorganisms, such as, Enterobacteriaceae and 

rope-forming bacteria. Growth inhibition of typical bread spoilage rope-forming 

(Bacillus subtilis and Bacillus licheniformis) was observed, when 20–30 % of 

sourdough fermented with Lb. plantarum VTT E-78076, was addend to the wheat 

dough (Katina et al., 2002). Furthermore the Lb. plantarum antifungal properties in 

bakery products of were also observed. The phenyllactic acid and its 4-hydroxy derivate 

produced by Lb. plantarum 21B possessed antifungal activity against the common 

spoiling fungi of bakery products belong to genera Apergillus, Penicillium and 

Fusarium (Lavermicocca et al., 2000; Valerio et al., 2004). Recent studies, showed the 

potential application of Lb. plantarum CRL 778 for improving the nutritional quality 

and the shelf life of bread made with quinoa sourdough (Dallagnol et al., 2012). A good 

lactic acid production and protein hydrolysis were observed during fermentation, and an 

abundant production of phenyllactic and hydroxyphenyllactic acids were also obtained. 

Lactobacillus plantarum is considered one of more important lactic acid bacteria used 

in table olives fermentation (Sabatini et al., 2008; Corsetti et al., 2012). This 

microorganism has the potentiality to improve the lactic acid yield, control the 
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microbiological process during green olives fermentation and improve the organoleptic 

characteristics of the final product (Panagou et al., 2008; Ruiz-Barba et al., 2010; 

Hurtado et al., 2012). The bacteriocinogetic strain Lb. plantarum LPCO10, isolated 

from Spanish-style fermented green olives, has been successfully used in olive 

fermentation; both fermentation process and growth of undesirable competitors were 

well controlled (Jimenez-Diaz et al., 1993; Ruiz-Barba et al., 1994; Leal-Sanchez et al., 

2003).  

Other vegetable products, such as sauerkrauts, have been also produced with Lb. 

plantarum. For example, the application of Lb. plantarum L4 as starter culture during 

cabbage heads, allowed to use a more low concentration of NaCl (from 4.0 to 2.5%) and 

reduce the time of fermentation, as well as to improve the product quality (Beganović et 

al., 2011). 

In the last years, is becoming the use of Lactobacillus species in oenological field, 

especially in red wine production. Among Lactobacillus species, Lb. plantarum is the 

best candidate for winemaking process because in addition to being able to survive and 

growth in stress condition (pH 2.8-3.4, alcohol 11-15%) of wine it may drive the 

malolatcic fermentation (MLF) (Miller et al., 2011; Toit et al., 2011). MLF consist in 

malic acid decarboxylation with production of lactic acid. During MLF wine became 

less acid and the aroma compounds envelope. Other than malic acid degradation and 

production of aroma compounds, several advantages may be obtained when Lb. 

plantarum is employed. For example, antimicrobial effect and biogenic amines 

degradation were showed by Lb. plantarum (Toit et al., 2011; Capozzi et al., 2012). 

Although, Lb. plantarum is not known as the principal bacterium involved in meat 

products fermentation, some evidence is reported of its potential use in fermented 
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sausages. Of interest is the anti-listeria activity showed by bacteriocinogenic strains of 

Lb. plantarum when used as sausage starter cultures (Campanini et al., 1993; Dicks et 

al., 2004). 

Other important properties of Lb. plantarum such as probiotic characteristics are been 

even reported (Kaushik et al., 2009; Čokášová et al., 2012; Martín et al., 2012; Kakisu 

et al., 2012). An interesting study has shown the potential application of Lb. plantarum 

Lp299 as component of oral care in Intensive Care Unit (ICU) patients (Klarin et al., 

2008). This probiotic strain was able to counteract pathogenic bacteria for 24 hours 

offering a valid alternative to use of antiseptics, such as chlorhexidine (CHX) or 

antibiotics. 

 

1.3.3 LACTOBACILLUS PLANTARUM AS ANTI-LISTERIA CULTURE 

Some strains of Lactobacillus plantarum are known for their antimicrobial properties 

against foodborne pathogenic bacteria including Listeria monocytogenes (Diep et al., 

2009; Sip et al., 2012). The antimicrobial properties may be ascribable to several 

reasons: production of antimicrobial compounds such as bacteriocins, bacteriocine-like 

substances (BLIS), phenyllactic acid, organic acids (mainly lactic and acetic acid), 

hydrogen peroxide and competition for nutrients (Todorov et al., 2011; Reis et al., 

2012). 

Bacteriocins represent an heterogeneous group of peptides produced or modified 

through the ribosomal synthesis, released into the extracellular environment and active 

against taxonomically related bacteria (Jack et al., 1995). They have been classified into 

three classes on the basis of common characteristics: i) lantibiotics (class I, e.g. Nisin), 

ii) small heat-stable peptides (class II, e.g. pediocin) and iii) large heat-labile proteins 

(class III, e.g. helveticin) (Nes et al., 1996). Among bacteriocins classes, bacteriocins 
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belonging to either class I and II are active against Listeria spp., especially the subclass 

IIa exert the highest inhibitory effect on L. monocytogenes (Fimland et al., 2005). 

Classe IIa bacteriocins, generally named pediocin-like (pediocin PA-1 has been the first 

member characterized), have a high level of homology (40-60%) and causes the 

membrane permeabilization of target cells and a subsequent arrest of transmembrane 

electrical potential (∆pH and ∆ψ) (Chung et al., 2000; Ennahar et al., 2000; Drider et 

al., 2006). Several studies have shown that Lb. plantarum strains may produce class IIa 

anti-listeria bacteriocins, such as: plantaricin 423 (van Reenen et al., 1998), plantaricin 

WHE92 (Ennahar et al., 1999), plantaricin C19 (Atrih et al., 2001) and plantaricin 

AMA-K (Todorov et al., 2008).  

Recently, Mills et al. (2011a) reported the anti-listeria effect produced by Lb. plantarum 

LMG P-26358 isolated by artisanal soft cheese. This strain produce a class IIa 

bacteriocin stable at 100 °C and pH range 1-10 with 100% homology to plantaricin 423. 

The potential class IIa bacteriocin-producing Lb. plantarum Lab572, isolated from 

golka cheese, were able to inhibit L. monocytogenes (Sip et al., 2012). These authors 

have also observed that the bacteriocin was produced both in logarithmic growth phase 

and stationary phase of growth, but the maximum level of activity was detected at the 

beginning of the stationary phase. Other authors have also reported that Lb. plantarum 

LB-B1, isolated from fermented dairy product, synthetized a pediocin LB-B1 (a 

identical pediocin PA-1) with the maximum production at the early of stationary phase 

of growth (Xie et al., 2011). Although, the use of class IIa bacteriocins or bacteriocins-

producing strains represent a promising alternative for to control the growth of L. 

monocytogenes in a foodstuff, their efficacy could be compromised by onset of 

bacteriocins resistant strains and cross-resistance between bacteriocins (Naghmouchi et 
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al., 2007; Tessema et al., 2009).  

For these reasons an in-depth understanding of mechanisms of survival, adaptation and 

resistance to bacteiocins by L. monocytogenes is important. However, the use of 

bacteriocins in combination with other hurdles (e.g. salt, acid, other natural substances 

etc.) may result extremely effective for inhibit L. monocytogenes and reduce its 

resistance (Mills et al., 2011a; Mills et al., 2011b).  

Some experiments showing the anti-listeria effect due to production of acid organics by 

Lb. plantarum (Bernbom et al., 2006; Kaushik et al., 2009). Lb. plantarum SK1 showed 

anti-listeria activity through lactic acid production (Wilson et al., 2005).  

As mentioned before in recent times  attention has been drawn to  the antifungal and 

antimicrobial compounds such as, phenyllactic acid. 

3-Phenyllactic acid (2-hydroxy-3-phenylpropanoic acid, PLA) has been reported as an 

antibacterial compound with broad-spectrum activity against Gram-negative and Gram-

positive bacteria including L. monocytogenes (Dieuleveux et al., 1998). The effect of 

PLA on L. monocytogenes caused aggregate formation and complete cells 

disintegration, moreover anti-listeria activity was observed in culture medium, milk and 

cheese (Dieuleveux & Gueguen, 1998). Lb. plantarum is able to produce PLA similarly 

tosome LAB members, such as Lactobacillus, Enterococcus, Weissella and 

Leuconostoc, but the quantity produced by Lb. plantarum seems to be greater than that 

produced by other species (Mu et al., 2012). Moreover, several studies have shown that 

PLA production may vary among Lb. plantarum strains (Gerez et al., 2010; Rodríguez 

et al., 2012). In LAB strains the PLA is synthetized by transamination of phenylalanine 

in phenylpyruvic acid (PPA) and a further reduction of it (Li et al., 2007). A direct 

correlation between PLA production and phenylalanine content in medium has been 
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widely reported (Valerio et al., 2004; Li et al., 2007; Rodríguez et al., 2012). 

In conclusion, the wide ability of Lb. plantarum to survive and adapt in several 

environmental conditions as well as to produce anti-listrial compounds, could make it a 

suitable candidate for control the growth of L. monocytogenes in the food.  

 

1.4 STRESS RESPONSE IN LISTERIA MONOCYTOGENES 

1.4.1 SPECIFIC AND GENERAL STRESS RESPONSE 

Listeria monocytogenes is recognised as a bacteria able to grow in several 

environmental conditions such as: temperature ranging -1.5 and + 45 °C, salt 

concentration up to 12%, pH values of 4.5 and aw of about 0.92 (Gandhi & Chikindas, 

2007). Different stress protection systems are involved and efficiently coordinated to 

protect cells in response to environmental changing. Generally, these systems 

involvedifferent changes in gene expression and the induction of proteins linked to 

particular stress (specific stress response) or involved in several stress conditions 

(general stress response). 

 

Survival at low temperatures 

The low temperature, known to reduce metabolic capacity, causes structural changes in 

nucleic acids (DNA and RNA), macromolecular assemblies such as ribosomes and alter 

membrane fluidity (Beales, 2004; Schumann, 2009). To maintain an optimal membrane 

fluidity, bacteria tend to increase both unsaturated and short fatty acids (Beales, 2004).  

Cold stress proteins are involved in response to low temperature: cold shock proteins 

(Csps) are expressed in response to temperature downshock, instead cold acclimation 

proteins (Caps) are synthetized during growth at low temperatures (Bayles et al., 1996).  
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The cold shock proteins family consist on small and highly conserved proteins that 

seemto serve as nucleic acid (DNA and RNA) chaperones-like (Ermolenko & 

Makhatadze, 2002; Horn et al., 2007). Four proteins (7 KDa), determined by 2D-

electophoresis and immunoblotting techniques, were designated as Csp1, Csp2, Csp3 

and Csp4 and associated with cold stress in L. monocytogenes LO28 (Wemekamp-

Kamphuis et al., 2002). Recently, two of Csp proteins, CspA (CspL) and CspD have 

been confirmed to be vital for cold growth in L. monocytogenes (Schmid et al., 2009). 

Microbial growth at low temperature is characterised by cold acclimation that cause 

several changes in microbial gene expression. The overexpression of mRNA related to 

general stress chaperone and protease, such as GroEL, ClpP and ClpB was observed at 

10 °C in comparison to 37 °C (Liu et al., 2002). In a recent proteomic study, it has been 

showed that 57 proteins were overexpressed whilst 8 proteins were repressed in L. 

monocytogenes when grown for 14 days at 4 °C. In the same work, the proteome 

changes were characterised by synthesis of proteins related to energy metabolism, 

oxidative stress, nutrient uptake and protein folding. The molecular chaperon GroEL 

and DnaK were overexpressed at 4 °C of about 13-16 fold compared to cells grown at 

37 °C (Cacace et al., 2010).  

The cold stress associated proteins GroEL, DnaK and Ctc, induced during L. 

monocytogenes cold adaptation, have been also associated to other stress condition. In 

particular Ctc has been associated to cold and osmotic stress, whilst GroEL and DnaK 

have been associated to cold and heat stress (Duche et al., 2002a; Duche et al., 2002b; 

Gardan et al., 2003). 

The ability of L. monocytogenes to accumulate compatible solutes such as, glycine, 

betaine and carnitine is another strategy adopted for growthat refrigeration 
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temperatures. Angelidis & Smith (2003) reported that three transporters are involved in 

the accumulation of these substances: glycine betaine porter I (BetL), glycine betaine 

porter II (Gbu) and carnitine transporter (OpuC). The deletion of these osmolyte 

transporters genes reduced the growth of L. monocytogenes at low temperatures 

(Wemekamp-Kamphuis et al., 2004). LtrC and Lmo1078 (UDP-glucose 

pyrophosphorylase) proteins have been also proposed as cold adaptation proteins (Chan 

et al., 2007; Chassaing & Auvray, 2007). In particular Lmo1078 protein is involved in 

UDP glucose production, an essential substrate of lipoteichoic acids synthesis known 

for their contribute to the maintenance of cellular membrane integrity (Chassaing & 

Auvray, 2007).  

 

Survival under heat stress 

Upon exposure to high temperatures (>45 °C), L. monocytogenes induces the activation 

of several protection mechanisms (heat-shock response), including specific stress 

mechanisms and general stress mechanisms (van der Veen et al., 2007). These 

mechanisms, common also to many other microorganisms, may be distinguished, in a 

specific heat-stress response (Class I and Class III) and in a general heat-stress response 

(Class II) (Benson & Haldenwang, 1993; Schulz & Schumann, 1996; Kruger & Hecker, 

1998). 

Class I heat-stress response involve the induction of Heat shock proteins (Hsps) such as 

molecular chaperones (DnaK, DnaJ, GroES and GroEL) and the HrcA repressor, 

instead, Class III heat-stress response induce the overexpression both ATP-dependent 

Clp proteases and CtsR repressor (van der Veen et al., 2007). Chaperones and proteases 

are proteins highly conserved and are involved in refolding and degradation on 
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damaged proteins. Class I heat-shock genes (dnaK, dnaJ, groES and groEL) are 

controlled by the HrcA repressor, which binds the CIRCE operator sequence 

(TTAGCACTC-N9-GAGTGCTAA). Whilst the expression of Class III heat-shock 

genes is regulated by CtsR repressor.  

Class II heat-stress response, involve the overexpression or regression of general stress 

proteins whose genic expression is regulated by the alternative sigma factor SigB.  

Several studies showed that GroEL and DnaK constituted the main Hsps observed in L. 

monocytogenes under heat-stress conditions (Hanawa et al., 2000; Gahan et al., 2001). 

Many other mechanisms are involved in heat-stress response, for example the SOS 

response was observed when L. monocytogenes EGD-e was exposed to 48 °C (van der 

Veen et al., 2007). The SOS response consists of a conserved pathway involved for 

DNA repair and restart of stalled or collapsed replication forks (Lusetti & Cox, 2002). 

Usually, proteins such as excinucleases, helicases and recombinase are involved in SOS 

response and are regulated by repressor LexA and by activator RecA (Cox, 2007; 

Butala et al., 2009). SOS response has been observed is several bacteria as result of 

different stress conditions (van der Veen & Abee, 2011). L. monocytogenes produced 

SOS response over the heat stress, also when exposed to acid stress, oxidative stress and 

mitomycin C (van der Veen et al., 2010).  

Ferritin-like protein (Fri) with a molecular weight of 18 KDa and pI of 5.1 was 

overexpressed (50.6-fold) when L. monocytogenes was exposed to 49 °C for 15 min 

(Phan-Thanh & Gormon, 1995). The importance of this protein both in heat-stress 

response and in cold-stress response in L. monocytogenes has been highlighted by 

several studies (Hebraud & Guzzo, 2000; Dussurget et al., 2005; van der Veen et al., 

2007). 
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Survival under acid stress 

L. monocytogenes is able to survive and grow in environment with low-pH, such as acid 

foods, gastric trait and in the phagosome of the macrophage (Cotter & Hill, 2003). The 

exposure of L. monocytogenes to mild acid pH of 5.5 (1 M lactic acid) for 1 hour 

induces acid tolerance resistance (ATR), which is capable of protecting cells from 

severe acid stress (pH 3.5) (O'Driscoll et al., 1996). Several molecular mechanisms are 

involved by exposing cells to a lethal acid pH (acid stress) and a non-lethal acid pH 

(acid adaptation). Acid adapted cells showed an increment of resistance to heat shock 

(52 °C), osmotic shock (25-30% NaCl) and alcohol stress (cross-protection) (Phan-

Thanh et al., 2000). The production of several proteins during acid conditions, including 

GroEL (produced in response to heat- and cold-stress), could explain the ability of L. 

monocytogenes to increment the resistance to other stress conditions (Phan-Thanh & 

Mahouin, 1999). 

To maintain an optimal level of intracytoplasmic pH, microorganisms use the 

mechanism of pH homeostasis. In aerobic bacteria the active transport of H+ is coupled 

with electronic transport of respiratory chain, whilst in anaerobic organisms, the 

transport of H+ is coupled with the F0F1-ATPase molecules using energy from ATP 

hydrolysis. The facultative anaerobic L. monocytogenes is able to use both systems pH 

homeostasis (Shabala et al., 2002). The essential role of this enzyme in ATR has been 

extensively studied. The inhibition of F0F1-ATPase with N,N’-

dicyclohexylcarbodiimide (DCCD) caused the reduction of three-log respect during acid 

adaptation of Listeria (Cotter et al., 2000).  

Other mechanisms, such as the decreasing of the membrane permeability to protons 

have been observed under mild acid conditions (pH 5.0 to 6.0) L. monocytogenes 
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10403S increased straight chain fatty acids production and decreased the concentration 

of branched chain fatty acids (Giotis et al., 2007). 

The synthesis induction of proteins involved in red-ox reactions such as dehydrogenases 

(GuaB, PduQ and lmo0560) and reductases (YcgT) together with respiratory enzymes 

could be important to maintain pH homeostasis (Phan-Thanh & Jänsch, 2006). 

The glutamate decarboxylase (GAD) system is another strategy adopted by L. 

monocytogenes to survive acid stress (Cotter et al., 2001). According to the current 

model, an extracellular glutamate (Glte) is imported inside the cell through an antiporter 

system (Glt/GABA) that exchange for an intracellular ϒ-aminobutyrate (GABAi). The 

Glt is decarboxylated, and a proton (H+) is incorporated in GABA. Subsequently the 

GABAi is exported out of the cell through the antiporter system that exchange for an 

other Glte (O'Byrne & Karatzas, 2008). The most of L. monocytogenes strains include 

five genes (gadT1, gadT2, gadD1, gadD2 and gadD3) that encodes for GAD system: the 

genes gadT1 and gadT2 encodes antiporters, whilst the genes gadD1, gadD2 and gadD3 

encodes the decarboxylases (Cotter et al., 2005). Cotter et al. (2005) have also shown 

that the five genes are organized in three loci: gadD1T1, gadD2T2 and gadD3. The 

gadD1T1 locus function is to enhance the growth under mild acid condition, whilst the 

gadD2T2 play an important role under extreme acidic conditions (Cotter et al., 2001; 

Cotter et al., 2005). Recently (see Figure 1.1) it has been shown that GAD system can 

utilize intracellular Glt (Glti) to produce GABAi independently of the antiport, for this 

reason it has been proposed to divide the GAD system into extracellular (GADe) and 

intracellular (GADi) components (Karatzas et al., 2010; Karatzas et al., 2012). The 

gadD3 gene together the gadD2T2 loci are important in the GADi system. Studies, 

showed that the GADi system is activated firstly (pH 4.5 to 5.0) than GADe (pH 4.0 to 
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4.5) system in response to acidic conditions (Karatzas et al., 2012). 

 
Figure 1 Model for the function of the GAD system under severe acid  
conditions (pH < 4.5) (Karatzas et al., 2012). 

The arginine deiminase (ADI) system is another mechanism used by L. monocytogenes 

against acid stress conditions. In this process, several proteins (ArcA, ArcB, ArcC and 

ArcD) are involved for the conversion and transfer of arginine into ornithine and 

production of NH3. Recent studies showed that expression of ADI genes at low pH and 

in the presence of arginine were increased (Ryan et al., 2009). The alternative stress 

sigma factor (σB) and a dedicated transcriptional regulator, ArgR were involved in ADI 

regulation (Ryan et al., 2008; Ryan et al., 2009). 

Acid stress response in L. monocytogenes may be regulated by several mechanisms, 

including a two-component regulatory system, consisting of lisR and lisK (Cotter et al., 

1999) and a general stress sigma factor (σB) (Wiedmann et al., 1998).  

 

Survival under osmotic stress 

During osmotic stress, L. monocytogenes increase or decrease the synthesis of various 

proteins. Similarly to the response to cold stress, two groups of proteins were detected 

in response of osmotic stress: salt shock proteins (Ssps) induced for a short period and 
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salt acclimation proteins (Saps) overexpressed for several hours Duche et al. (2002a) 

identified DnaK and Ctc proteins among Ssps proteins, instead with Saps was detected 

the osmoprotectantGbuA, transporter of glycine betaine. Intracellular accumulation of 

compatible solutes that have no net charge at physiological pH, play an important role 

during osmotic stress. The osmoprotectant function of glycine betaine, proline betaine, 

carnitine and acetyl carnitine in L. monocytogenes has been shown (Bayles & 

Wilkinson, 2000). The authors showed that the presence of these compounds in external 

environment resulted in an increase of salt resistance in L. monocytogenes compared 

with cell cultivated without the presence osmoprotectant. Expression of transporter 

genes betL, gbu and opuC, involved in uptake of osmoprotectant glycine betaine and 

carnitine is regulated by the general stress sigma factor σB (Becker et al., 1998). 

 

1.4.2 COMPARATIVE PROTEOMIC APPROACHES TO STUDY STRESS RESPONSE  

Contrary to genome, the proteome continually changes in response to environmental 

events. Microorganisms are able to change their protein expression for adapt oneself to 

several conditions that characterize a food process. Proteomic analysis can help to 

understand gene function during the change of the bacterial physiological state. 

Scientific progress has contributed to improve and diversify the proteomic techniques. 

Currently, proteomics encompass three main areas: i) structural proteomics - proteins 

characterization including their post-translational modifications, ii) comparative 

proteomics - comparison of protein expression in two physiological states, iii) protein-

protein interaction using techniques such as mass spectrometry (Pandey & Mann, 2000; 

Florens et al., 2002; Huber, 2003). 

Comparative proteomic studies, based on extensive protein separation, are used to 

obtain information about proteins expressed or repressed from different cellular 
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biological states, including cells in normal physiological state versus stressed cells. 

Two-dimensional electrophoresis (2D-E) is a powerful technique able to separate a 

complex mixture of proteins. This technique has been developed by O’Farrel and Klose 

about 40 years ago, and now represents a tool largely applied in the field of proteomics 

(Klose, 1975; O'Farrell, 1975).  

Proteins separation consists of two steps: in the first phase (iso-electrofocalization, IEF) 

proteins are separated according to their isoelectrical point (pI), whilst in the second 

step proteins are separated trough SDS-PAGE and subsequently are stained with a 

colorant (comassie blue, silver stain etc.). Results of 2D-E analysis consist in a gel, in 

which proteins are represented as spots, and their coloration intensity is strictly related 

to the protein concentration. 

The two-dimensional electrophoretic technique has been successfully applied to detect 

and quantify microbial stress response. Stress response to different stressors, such as 

salt, acid, heat and cold, have been studied in L. monocytogenes as well as other 

bacteria, through 2D-E approach (Phan-Thanh & Gormon, 1995; Phan-Thanh & 

Gormon, 1997; Phan-Thanh & Mahouin, 1999; Phan-Thanh et al., 2000; Duche et al., 

2002b; Hecker, 2003; Cacace et al., 2010). 

Separated proteins by 2D-E may be subsequently identified with other proteomic 

techniques. Usually spots detected are digested with a sequence-specific protease and 

identified through Matrix-Assisted Laser Desorption Ionization (MALDI)- Time-Of-

Flight (TOF) mass spectrometers (Jungblut & Thiede, 1997). 

Although 2D-E offers numerous advantages in the study of proteomic, it is important 

tohighlight the limits linked to reproducibility and the difficulty to solubilize and 

separate hydrophobic and membrane proteins. 
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The intrinsic gel-to-gel variability of 2D-E can mask the biological differences between 

the samples and compromise the quantitative protein comparison between the different 

samples. New equipment and technologies may be adopted to improve the 

reproducibility of 2D-E and for quantitative protein comparison between more samples. 

Simultaneous protein samples separation during the first and the second dimension 

through equipment such as Manifold (for IEF), EttanDALT six or EttanDALT twelve 

(for SDS-PAGE) can to help to reduce the intrinsic gel-to-gel variability. 

Furthermore the new technology, named fluorescent two-dimensional difference gel 

electrophoresis (2D-DIGE), seems to overcome the limitations of 2D-E reproducibility. 

In fact, proteins separation with 2D-DIGE consistsin the use of a single gel for the 

simultaneous separation of multiple protein samples. Fluorescent compounds such as 

cyanine dyes Cy2, Cy3 and Cy5 are usually used for proteins detections and 

comparison. 

It is known, that certain classes of proteins such as basic proteins or hydrophobic 

proteins associated to membrane are poorly soluble therefore hardly separable. In 

general, only proteins with a molecular weight of 10-100 kDa and a pI of 4-8 migrate 

well within 2D-E gels (Renzone et al., 2005). For this reason may be necessary to 

modify the experimental conditions for improve protein solubilisation and consequently 

obtain a better resolution and detection of hydrophobic proteins (Molloy et al., 1998; 

Herbert, 1999; Weiss & Gorg, 2009; Westermeier & Gorg, 2011). 

Although many limits regarding the use of 2D-E and new technologies are emerging, 

including MudPIT, ICAT, or protein arrays, 2-DE is still the proteomic technique 

mostused for routine parallel expression profiling of large sets of complex protein 

mixtures (Weiss & Gorg, 2009). 
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1.4.3 BIO-INFORMATIC APPROACHES TO STUDY PROTEINS INVOLVED IN STRESS 

RESPONSE 

In the post-genomic era, the development and the application of numerous proteomics 

techniques including mass spectrometry and two-dimensional electrophoresis have 

produced a large set of data. Therefore, data analysis through bioinformatics approaches 

becomes an essential part of this research. For example, in the last years the image 

analysis of two-dimensional gels has been improved through the implementation of new 

algorithms. Several commercial software (Delta 2D, Melanie, PDQuest) that differ by 

the kind of algorithm used, are now available to perform spot detection and spot 

matching (Blueggel et al., 2004; Palagi et al., 2005). Webservers such as, Flicker, 

(http://www-lecb.ncifcrf.gov/flicker/) (Lemkin, 1999), WebGel (http://www-

lecb.ncifcrf.gov/webgel/) (Lemkin et al., 1999) and free software (ImageJ), offer also 

useful and flexible tools for the analyses of 2D-E (Bucci et al., 2011). Furthermore, a 

large number of 2D-E databases are also available for compare gel images, share and 

exchange information (Appel et al., 1996). A list of database may to be visualised on 

the ExPASy portal (http://world-2dpage.expasy.org/list/). 

Although, 2D-E gel comparison helps to obtain interesting information about protein 

expression or repression of a biological system, it may be not enough to understand the 

role of a particular protein. For this reason proteomics techniques such as mass 

spectrometry (MS) over those applied for protein structure determination (X-ray 

crystallography, high-resolution microscopy and nuclear magnetic resonance 

spectroscopy) are used to identify and obtain more information about the detected 

proteins. Also in these cases, bioinformatics represent a powerful means to process the 

large amount of data obtained. For example experimental data achieved by MS may be 

matched with those stored in database for proteins identification. Furthermore, protein 
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spatial atom coordinates obtained by X-ray or NMR techniques, are stored and available 

in a central database named Protein Data Bank (PDB).  

Knowledge of the three-dimensional (3D) structures of proteins is essential to 

understand the molecular basis of their functions. The great attention focused on the 

proteins 3D structure, and their atomistic details produced a large number of crystal and 

solution structure determination. Currently, about 80,000 experimental protein 

structures have been released by PDB. Although, several protein structures are now 

available, this number is small compared to the 500,000 annotated and curated protein 

sequences in the Swiss-Prot (UniProtKB/Swiss-Prot) and even smaller when compared 

to the 30 million known protein sequences (UniProtKB/TrEMBL) (Consortium, 2012). 

The gap in structural knowledge may be filled by bioinformatics approaches including 

computational structural biology. Different types of approaches are commonly used, 

such as homology modeling, de novo methods and hybrid method.  

Homology or “comparative” modeling is the most accurate method that uses 

experimentally structure of related protein as templates to model the structure of the 

protein of interest (target). This technique is based on the observation that evolutionary 

protein sequences generally have a similar 3D structure.  

Homology modeling procedures involve four main steps: 1) identification of template(s) 

structure and sequences alignment among the target and template; 2) modeling of the 

structurally conserved regions and prediction of structurally variable regions; 3) 

refinement of the model; 4) evaluation of the model(s) generated (Schwede et al., 2008). 

Identifying and the accurate alignment between template and target is a crucial step to 

obtain a good model. It is important to consider the target-sequence identity level during 

the selection of structure template. Generally, from sequence alignments between target 
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and template with an identity of 50% or higher, are obtained models with “high 

accuracy” that tend to have about 1 Å root mean square deviation (RMSD) (Marti-

Renom et al., 2000). The accuracy of these models may be compared with those of a 

medium-resolution NMR-derived structure or a low-resolution X-ray structure (Baker & 

Sali, 2001; Read & Chavali, 2007). Instead, models based on 30-50% sequence identity 

may be considered “medium accuracy model” whilst comparative model with a 

sequence identity below 30% are considered “low accuracy model”.  

Several sensitive methods such as, Blast, PSI-Blast, Hidden, FFAS03, based on 

interactive profile searches, are now available for sequence homology detection.   

Model building based on alignment between template-target and sequences may be 

performed by the use of several approaches including methods based on rigid fragment 

assembly and methods based on maximization of the satisfaction of spatial restraints 

(Blundell et al., 1987; Peitsch & Jongeneel, 1993; Sali & Blundell, 1993). Furthermore, 

several specialized protocols are also available to improve the accuracy of non-

conserved regions such as loops or side chains (Lovell et al., 2000; Canutescu et al., 

2003; Jacobson et al., 2004; Soto et al., 2008). 

Once models are built, these may be refined to improve model geometry and to remove 

unfavourable contact. For this aim molecular mechanics force fields and other methods 

such as molecular dynamics can be applied (Bordner, 2012). 

At the end of homology modeling procedure, it is important to evaluate the structure 

geometrical accuracy. Methods based on atoms spatial geometrical location and/or 

molecular energetic state may be used for this purpose. Several software and interactive 

web application such as MolProbity and QMEAN server sare often used for models 

validation. The accuracy of a model is important for its applications. There are several 
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applications for comparative models, such as protein engineering, designing 

experiments for site-directed mutagenesis, predicting ligand binding sites, docking 

small molecules in structure-based drug discovery, effect of mutations (Hillisch et al., 

2004; Poole & Ranganathan, 2006; Feyfant et al., 2007). These applications are 

particularly useful in designing new experiments and in the cases for which a qualitative 

investigation of the structural disposition of specific residues in the proteins needs to be 

assessed/evaluated. 
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INHIBITORY ACTION EXPRESSED BY LACTOBACILLUS 
PLANTARUM STRAINS AGAINST SPOILAGE MICROORGANISMS 

 

 

 

2.1 INTRODUCTION 
Lactobacillus plantarum is a versatile and widespread microorganism found in 

materials and environments ranging from vegetable, dairy and meat fermentations to the 

human gastrointestinal (GI) tract (Kleerebezem et al., 2003). Some strains are marketed 

as probiotics (Shah, 2007) that are claimed to provide a health benefit for the consumer 

through interactions with the human GI system (de Vries et al., 2006). Furthermore, 

same strains of Lb. plantarum spp. are known for their ability to produce several natural 

antimicrobial substances (Ennahar et al., 1996; Todorov et al., 2007; Diep et al., 2009). 

The production of these metabolites could represent stress conditions that strongly 

affects the development of undesirable microbial species. There are many scientific 

reports that highlight antimicrobial effects of many Lb. plantarum strains on undesirable 

bacteria. Ben Omar et al., (2008) evidenced that several strains of Lb plantarum showed 

a broad spectrum of antibacterial activity (including Bacillus cereus, S. aureus, L. 

monocytogenes, S. enterica, E. coli, and Enterobacter aerogenes) and carries several 

plantaricin genes of the pln locus. In recent years, various bacteriocins produced by Lb. 

plantarum species isolated from fermented food have been reported (Atrih et al., 2001; 

Todorov et al., 2010; Xie et al., 2011). Up to now, five different types of the Mosaic 

plantaricin (pln) loci have been identified from several strains of Lb plantarum 

(Maldonado et al., 2003; Rojo-Bezares et al., 2007; Navarro et al., 2008; Diep et al., 
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2009; Li et al., 2009). Aguilar et al., (2010) evidenced that a specific Lb. plantarum 

strain exhibited a strong inhibitory effect against the Gram positive Listeria 

monocytogenes. The Authors, asserted that this activity could be due to BLIS action 

additively to lactic acid accumulation. Moreover Lb. plantarum strains have also been 

described as being active against different plant pathogenic, toxigenic and gushing-

active Fusarium fungi (Laitila et al. 2000). Siezen et al., (2011) illustrated that the 

natural genomic architecture and the metabolic consequences here of are central to the 

success of Lb. plantarum in industrial applications. Moreover, as widely reported in 

literature (Gerez et al., 2010; Dalié et al., 2010) the most of Lb. plantarum selected for 

their antimicrobial activity has been isolated from fresh or fermented food.  

Therefore, the characterization and the selection of food-borne Lb. plantarum strains 

remains a topic of great interest for applied research. On the basis of this last finding, 

the first part of this PhD study was addressed to isolate and to identify food borne Lb. 

plantarum as well as to evaluate their antimicrobial range. Thirty two samples from 

three type of traditional fermented food were subjected to microbiological analyses in 

order to identify predominant lactobacilli species and to select Lactobacillus plantarum 

strains to be used as antagonistic strains (producers) against undesirable food-related 

microorganisms. To identify LAB isolates, several approaches were used, consisting of 

the DGGE analysis and 16S rRNA gene sequencing. While the antimicrobial activity 

exerted by cells or cell-free supernatants, Lb. plantarum strains were evaluated by spot-

on-the-lown test and agar well diffusion assay test. The results evidenced that 

Lactobacillus plantarum represents the prevailing lactobacilli specie in the sourdoughs, 

red wine, while this specie were detected only in few sample of fermented sausages. In 

detail 60 Lactobacillus plantarum strains were founded in red wines, 36 strains in 
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sourdoughs, and 10 in fermented sausages. Moreover the results evidenced that DGGE 

and 16S rRNA gene sequencing allowed to obtain a reliable identification of strains. 

Regarding the evaluation of antimicrobial activity, out 106 Lb. plantarum strains, seven 

strains evidenced the ability to inhibit Gram negative and Gram positive bacteria as well 

as moulds strains. These inhibitory effects was not attributable to organic acids, since in 

the presence of neutralized cell-free supernatant (CFS) of producer strains were also 

detected a strong antimicrobial activity. Noticeable was the data that evidenced a strong 

antimicrobial activity produced by Lb. plantarum RTB strain against L. innocua ATCC 

33090. 

 

2.2 MATERIALS AND METHODS 

2.2.1 LACTOBACILLUS PLANTARUM FROM TRADITIONAL FERMENTED FOOD OF 
SOUTHERN ITALY 
 
2.2.1.1 THE SAMPLES 

Thirty-two samples from 3 type of traditional fermented food (10 sourdoughs from 

Campania region, 12 red wine from Campania and Molise region, 10 fermented 

sausages –Ventricina type- from Abruzzo and Molise regions) were collected from 

different artisanal factories located in various areas of Southern Italy as showed in Table 

2.1.  
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Table 2.1 Type and geographical origin of the assayed fermented foods. 

Samples Type Geographical Origin 
SD AV1 Sourdough Avellino 
SD AV2 Sourdough Avellino 
SD AV3 Sourdough Avellino 
SD AV4 Sourdough Avellino 
SD AV5 Sourdough Avellino 
SD AV6 Sourdough Avellino 
SD AV7 Sourdough Avellino 
SD AV8 Sourdough Avellino 
SD AV9 Sourdough Avellino 
SD AV10 Sourdough Avellino 
VT CB 1 Fermented sausage (Ventricina) Campobasso 
VT CB 2 Fermented sausage (Ventricina) Campobasso 
VT CB 3 Fermented sausage (Ventricina) Campobasso 
VT CB 4 Fermented sausage (Ventricina) Campobasso 
VT CB 5 Fermented sausage (Ventricina) Campobasso 
VT CH 1 Fermented sausage (Ventricina) Chieti 
VT CH 2 Fermented sausage (Ventricina) Chieti 
VT CH 3 Fermented sausage (Ventricina) Chieti 
VT CH 4 Fermented sausage (Ventricina) Chieti 
VT CH 5 Fermented sausage (Ventricina) Chieti 
RW 1 Red wine (Taurasi) Avellino 
RW 2 Red wine (Taurasi) Avellino 
RW 3 Red wine (Taurasi) Avellino 
RW 4 Red wine (Taurasi) Avellino 
RW 5 Red wine (Piedirosso) Salerno 
RW 6 Red wine (Piedirosso) Salerno 
RW 7 Red wine (Pentro d'Isernia) Isernia 
RW 8 Red wine (Pentro d'Isernia) Isernia 
RW 9 Red wine (Tintilia) Campobasso 
RW 10 Red wine (Tintilia) Campobasso 
RW 11 Red wine (Tintilia) Campobasso 
RW 12 Red wine (Tintilia) Campobasso 
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2.2.1.2 MICROBIOLOGICAL ANALYSIS  

For food in solid form (sourdoughs, cheeses, sausages, fermented olive) about ten 

grams of each sample were diluted 1:10 (w:v) in physiological sterile solution (9 g/L 

NaCl) and homogenized in a Stomacker 400 Lab Blender (PBI International, Milan, 

Italy) (1 min agitation, 1 min pause, 1 min agitation). For wine 10 mL were diluted in 

90 mL of physiological sterile solution. Subsequent serial dilutions were prepared and 

inoculated into appropriate media. 

Lactic Acid Bacteria were enumerated and isolated by plating serial decimal dilutions 

on MRS agar medium (Oxoid, Milan, Italy) adding 40 mg/L actidione. Plates were 

incubated at 28 °C for 72 h under anaerobic conditions using an anaerobic system 

(Anaerogen, Oxoid, Milan, Italy). Five colonies randomly picked from plates with the 

highest dilution having positive growth, following the procedure described by Valmorri 

et al. (2006). Isolates were than purified by streaking on MRS agar. After 

morphological examination, presumptive lactobacilli were maintained frozen at -80 °C 

in MRS medium with 15% glycerol.  

 

2.2.1.3 IDENTIFICATION OF PRESUMPTIVE LACTOBACILLI 

Gram staining, catalase testing, microscope observation, study of metabolism 

assimilation of carbon sources by the API 50 CHL test and APILAB plus software, 

were used to screen the isolates as described by López et al. (2008) and to 

presumptively identify those belonging to the Lactobacillus genus. Lactobacilli were 

then identified by PCR-DGGE and 16S rRNA gene sequencing and biotyped by RAPD-

PCR. DNA extraction and purification from pure culture. Two milliliters of each 

overnight culture was centrifuged at 14,000g for 10 min at 4°C to pellet the cells and 
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the pellet was subjected to DNA extraction according to Querol et al. (1992) with the 

addition of lysozyme (25 mg/mL, Sigma) and mutanolysin (10 U/mL, Sigma) for 

bacterial cell-wall digestion. Quantity and purity of the DNA were assessed by optical 

reading at 260 and 280 nm, as described by Sambrook et al. (1989). 

DGGE analysis  

The DNA from each strain was prepared for DGGE by amplifying the V1 region of 16S 

rRNA using the following primers: P1V1 (5’-GCG GCG TGC CTA ATA CAT GC-3) 

(Cocolin et al., 2001) and P2V1 (5’-TTC CCC ACG CGT TAC TCA CC-3’) (Rantsiou 

et al., 2005). A GC clamp (5 ‘CGC CCG CCG CGC CCC GCG CCC GTC CCG CCG 

CCC CCG CCC G-3’) (Sheffield et al., 1989) was attached to the 5’ end of the P1V1 

primer. PCR was performed in a Mastercycler gradient (Eppendorf, Hamburg, 

Germany). The reaction mixture (50 µl) consisted of 10 mmol/L Tris–HCl (pH 8.3), 50 

mmol/L KCl, 200 µmol/L of each dATP, dGTP, dCTP and dTTP, 1.5 mmol/L MgCl2, 

0.2 µmol/L of each primer, 200 ng DNA and 1.25 U Taq-DNA polymerase (Finnzymes, 

Finland). The amplification program consisted of a 1 min denaturation step at 95 °C, a 1 

min annealing step at 45 °C and a 1 min extension step at 72 °C. The first cycle was 

preceded by an initial step at 95 °C for 5 min. After 35 cycles, there was a final 7 min 

extension step at 72 °C. Negative controls without DNA template were included in 

parallel. PCR products were separated in 1.5% (w/v) agarose gel (Sigma) by 

electrophoresis for 45 min at 120 V in TBE 0.59 (Sigma) and were subsequently 

visualised by UV illumination after ethidium bromide (50 µg/ml) staining (Sigma). PCR 

products obtained from amplification of V1 region of 16S rRNA were subjected to 

DGGE analysis, using a DCode Universal Mutation Detection System (BioRad, 

Hercules, CA, USA). Electrophoresis was performed in a 0.8-mm polyacrylamide gel 
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(8% [w/v] acrylamide-bisacrylamide [37.5:1]) by using two different ranges of 

denaturant to optimise separation of the products. Two denaturant gradients, from 40 to 

60% (100% denaturant was 7 M urea plus 40% [w/v] formamide) increasing in the 

direction of electrophoresis run, were used. The gels were subjected to a constant 

voltage of 120 V for 5 h at 60 °C, and after electrophoresis they were stained for 20 min 

in 1.259 TAE containing 50 µg/ml ethidium bromide and visualised under UV 

illumination. DGGE gels were digitally captured by GEL DOC XR System (Bio-Rad, 

Hercules, CA, USA) using the software Quantity One Analysis (Bio-Rad) and analysed 

with the pattern analysis software package, Gel Compare II Version 2.0 (Applied 

Maths, Kortrijk, Belgium). Calculation of similarities in the profile of bands was based 

on Pearson product-moment correlation coefficient. Dendrograms were obtained by 

mean of the Unweighted Pair Group Method using Arithmetic Average (UPGMA) 

clustering algorithm (Vauterin and Vauterin 1992). 

 

2.2.1.4 SEQUENCE ANALYSIS 

One to four representative strains of each cluster obtained by DGGE analysis were 

amplified with primers P1 and P4, as described by Klijn et al. (1991), targeting 700 bp 

of the V1–V3 region of the 16S rRNA gene. After purification, (QIAquick PCR 

purification kit, QIAGEN GmbH, Hilden), products were sent to a commercial facility 

for sequencing (Eurofins MWG Biotech Company, Ebersberg, Germany). Sequences 

were aligned with those in GeneBank with the Blast program (Altschul et al., 1997) to 

determine the closest known relatives, based on the partial 16S rRNA gene homology. 
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2.2.2 INHIBITION OF UNDESIRABLE MICROORGANISMS 

The antimicrobial activity exerted by Lb. plantarum strains (producers) against 

undesirable microorganisms (indicators), including both Gram positive and Gram 

negative bacteria, was detected. 

 

2.2.2.1  PRODUCER STRAINS OF LB. PLANTARUM  

Sixty-four Lb. plantarum strains isolated from traditional fermented food 

(sourdoughs, red wines and fermented sausage) and previously identified by PCR-

DGGE were tested for antimicrobial activity against several spoilage bacteria 

strains. Producer strains were maintained in MRS soft agar (Oxoid, Basingstoke, 

UK) at 4°C. Before use, strains were propagated twice for 16 h at 28°C in MRS 

broth. 

2.2.2.2 INDICATOR STRAINS  

36 strains belonging to undesirable food-related microorganisms were used as 

indicator strains. In details the indicators microorganisms strains used and relative 

conditions of cultivations are listed in Table 2.2. 
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Table 2.2 Microorganisms used as indicator strains. 

N° Strains Species  Origin  Collection Cultivation 
1 SL  Lb. brevis wine DIAAA MRS, 28 °C 
1 SL1 Lb. brevis Ferm. 

sausage 
DIAAA MRS, 28 °C 

2 SERB108, SERB69 Lb. casei wine  DIAAA MRS, 28 °C 
1 ATCC33090 L. innocua  type strain ATCC BHI, 37 °C 
1 DSM 20171T B. thermosphacta  type strain DSMZ Corin, 28 °C 
1 DSM 50090T P. fluorescens type strain DSMZ Nutrient, 28 °C 
1 DSM 795T C. sporogenes  type strain DSMZ RCM, 28 °C 
1 DSM 3508T A. aceti type strain DSMZ MYP, 28 °C 
4 111, 111E, ASRT, 

ASC 
A. aceti type strain DIAAA MYP, 28 °C 

1 DSM 3509T A. pasteurianus  type strain DSMZ MYP, 28 °C 
1 DSM 15551T A. tropicalis  type strain DSMZ MYP, 28 °C 
6 194BV, ASAC4, 

ASR, ARLA, AC1, 
141A 

Ga. hansenii wine DIAAA MYP, 28 °C 

1 203B1 Ga. hansenii fruit DIAAA MYP, 28 °C 
1 DSM 5602T Ga. hansenii type strain DSMZ MYP, 28 °C 
1 DSM 5003T Ga. liquefaciens type strain DSMZ MYP, 28 °C 
2 146B and AC6 G. oxydans wine DIAAA MYP, 28 °C 
5 F1, F2, F4, F5, F6 Frateuria spp. wine DIAAA MYP, 28 °C 
5 T1, T2, T3, T4, T5 Penicillium 

digitatum 
truffle DIAAA PDA, 28 °C 

 
	
  

2.2.2.3 DETECTION OF ANTIMICROBIAL ACTIVITY 

Antimicrobial activity of 106 Lb. plantarum strains versus the 31 undesirable bacteria 

was carried out using the following procedures: the “spot-on-the-lawn” test and agar 

well diffusion assay using cells or cell free supernatant of Lb. plantarum strains as 

producers.  

The spot-on-the-lawn technique was performed as described by Moraes et al. (2010). 

An aliquot of 2 ml of each Lb. pantarum culture previously amplified in MRS broth 

(incubation at 28 °C for 24 h) was spotted on plates containing 10 ml of MRS and was 

incubated at 28 °C for 24 h. For this step, 9 cm diameter plates were used and 4 Lb 

plantarum cultures were tested per plate, spotted in equal distances. After incubation, 
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the plates were overlayed with 8 ml of appropriate media (Table 2.2) semi-solid agar 

(0.8 g/ 100 ml of bacteriologic agar) inoculated with 105 CFU/mL of each culture of 

indicator strains. The plates were then incubated at 28 °C 24 h. The presence of a 

distinct inhibition zone around the spots was considered a positive antagonistic effect. 

Calibrated-densitometer GS-800 was used for plate imaging acquisition and Adobe 

Photoshop CS4 Extended software was used for measurement of clearing zone. 

Streptomicine was used as positive control of antagonism activity. 

The well diffusion assay was also used to evaluate the activity of cell-free supernatants: 

overnight cultures, obtained as described before, were centrifuged (12000 rpm for 15 

min at 4°C; Centrifuge 5415 R; Eppendorf, Hamburg, Germany) and supernatant was 

filter-sterilized (Filter Unit Red 0.22-µm pore size; Schleider & Schuell, Dassel, 

Germany) before its use. Assessment in using the well diffusion assay involved BHI 

plates overlaid with 7 ml of soft BHI (0.7% agar) inoculated with an overnight culture 

of each indicator strain (final concentration of about 105 CFU ml). In the agar well 

diffusion assay, wells of 3.0 mm in diameter were bored into BHI plates and 75 µl of an 

cell-free supernatants of Lb. plantarum producers strains were placed into each well. 

Prior to incubation, plates were refrigerated at 4°C for 4 h (Tremonte et al., 2007). After 

24–48 h of incubation at 28 °C, plates were investigated for zones of inhibition as 

described before. Plates inoculated with each indicator strain and with any supernatant 

were used as control. Each experiment was carried out in duplicate. 

2.2.2.4 ASSESSMENT OF INHIBITORY SUBSTANCES 

The presence of acids or proteins with inhibitory effect produced by Lb. plantarum 

strains was evaluated against indicators by the agar-well diffusion test by using soft 

BHI agar as follows:  
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(A) Inhibition through acids. Wells were filled with producer culture or 

its cell-free supernatant. Cell-free supernatant neutralized with NaOH, H2O 

or MRS broth acidified with lactic acid (same pH of producer cell-free 

supernatant) were used as control. Plates were incubated as described above.  

(B) Inhibition through proteins. Plates were prepared as described in (A) 

but wells were filled with cell-free supernatant and cell-free supernatant plus 

α-chymotrypsin, proteinase K and trypsin, (Rojo-Bezares et al., 2007). 

 

2.2.2.5 STATISTICAL ANALYSIS 

Mean values, medians, and standard deviations as well as the occurrence of 

statistically significant differences were determined with the OriginPro 7.5 software 

(OriginLab Corporation, Northampton, MA, USA) 

 

2.3 RESULTS AND DISCUSSION 

2.3.1 LACTOBACILLUS PLANTARUM FROM TRADITIONAL FERMENTED FOOD OF 

SOUTHERN ITALY 

The LAB levels of the samples and the number of isolates recovered from the different 

samples are reported in Table 2.3. 

The level counts founded in the assayed samples closely respected those of tradition 

sourdoughs, red wines as well as of fermented sausage from Southern (R. Coppola et 

al., 1998; Spano et al., 2007; Reale et al., 2011) . 
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Table 2.3 Lactobacilli microbial load and number of isolates in each assayed sample. 

 Count levels (log 
CFU/g or log CFU/mL 

Number of 
isolates 

SD AV1 6.4 7 
SD AV2 5.2 6 
SD AV3 7.1 7 
SD AV4 4.4 6 
SD AV5 5.5 6 
SD AV6 6.7 7 
SD AV7 5.7 6 
SD AV8 4.6 6 
SD AV9 6.3 7 
SD AV10 6.4 6 
VT CB 1 7.5 8 
VT CB 2 7.0 8 
VT CB 3 6.5 6 
VT CB 4 6.3 7 
VT CB 5 7.4 8 
VT CH 1 7.9 7 
VT CH 2 7.5 7 
VT CH 3 6.9 8 
VT CH 4 6.8 7 
VT CH 5 7.4 8 
RW 1 4.3 5 
RW 2 3.8 5 
RW 3 4.4 5 
RW 4 4.6 5 
RW 5 4.8 5 
RW 6 5.2 5 
RW 7 3.9 5 
RW 8 4.6 5 
RW 9 4.1 5 
RW 10 5.2 5 
RW 11 3.6 5 
RW 12  4.8 5 
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2.3.1.1 LACTIC ACID BACTERIA FROM SOURDOUGHS 

64 Gram positive and catalase-negative bacteria were presumptively identified as 

presumptive lactobacilli lactic acid bacteria (data not shown) and were subjected to 

DGGE identification. 

DGGE analysis allowed to obtain the dendrogram shown in Figure 2.1. The strains were 

grouped, according to the migration profile, in 11 clusters and, for each cluster, one to 

four strains were subjected to sequencing for identification purpose. The results of the 

sequencing analysis (data not shown) allowed the identification of 21 out of 22 selected 

strains (marked with an asterisk in Figure 2.1). Combining these results with those 

obtained from DGGE cluster analysis, it was possible to identify 62 out of 64 strains. 

Only the two strains from cluster M resulted not identified. In detail, 36 strains were 

identified as Lb. plantarum (clusters A, B, E, G, N), 15 as Weissella confusa (clusters C 

and F) 5 as Lb. sanfranciscensis (cluster D) 3 as Ln. citrium (cluster H) and 2 as Ln. 

pseudomesenteroides (cluster I). The results evidenced that the main bacterial species 

isolated from the sourdoughs were Lb. plantarum, detected in all the samples. These 

results are in agreement with other studies  (Randazzo et al., 2005; Ricciardi et al., 

2005; Catzeddu et al., 2006; Reale et al., 2011). Interesting was the occurrence of W. 

confusa species. In fact 15 out 64 strains were identified as W. confusa. This species, as 

reported by several studies has been frequently isolated from diverse fermented food, 

such as sourdough, kimchi, and fermented soya  (Corsetti et al., 2001; J.-S. Lee et al., 

2005; Malik et al., 2009; Robert et al., 2009) as well as from the human intestines 

(Walter et al., 2001; K. W. Lee et al., 2012). Moreover, as ascertained by Amari et al. 

(2012), Weissella could be used in various technological applications for its ability to 

produce dextran enzymes. Noticeable was the result that evidenced the identification of 
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five strains as Lb. sanfranciscensis. This species was described as an important bacterial 

species often isolates in traditional baked products (Gobbetti et al., 1994; Vogel et al., 

1994; Foschino et al., 2001). 
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Figure 2.1 Dendrogram showing the similarity among DGGE profiles of 64 lactic acid bacteria isolated from 
traditional sourdoughs of Campania region. The Asterisks indicate the strains identified by sequencing. 
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2.3.1.2 LACTOBACILLUS FROM FERMENTED SAUSAGES 

Out of all isolates, 72 Gram-positive, catalase-negative and presumptive lactic acid 

bacteria were subjected to DGGE identification. 

DGGE analysis allowed to obtain the dendrogram shown in Figure 2.2. The strains were 

grouped, according to the migration profile, in 16 clusters and, for each cluster, one to 

four strains were subjected to sequencing for identification purpose. The results of the 

sequencing analysis (data not shown) allowed the identification of 16 out of 17 all 

selected strains (marked with an asterisk in Figure 2.2). Combining these results with 

those obtained from DGGE cluster analysis, it was possible to identify 71 out of 72 

strains. In fact, the sole strain from cluster G resulted an uncultured bacterium clone  

obtained by sequencing analysis and clustered alone in the DGGE dendrogram (Figure 

2.2). In detail, 46 strains were identified as Lb. sakei (cluster A, B, C, E ed H), 3 as Lb. 

coryneformys (cluster D), 10 as Lb. plantarum (cluster F, L, M, N ed O) and 12 as Lb. 

curvatus (cluster P, Q ed R).  

Among the studies reported in literature and considering the LAB populations in 

fermented meats, Lb. sakei and or Lb. curvatus represent the predominant species. In 

fact these species were mainly isolated in fermented sausage from several geographic 

areas (Rantsiou & Cocolin, 2006). 

As a matter of fact, only Samelis et al. (1998), R. Coppola et al. (1998) and S. Coppola 

et al. (2000) did not isolate L. curvatus. Results showed in this study evidenced that L. 

sakei, represent the most adapted species of Lactobacillus spp. in meat fermentations, as 

also reported by other authors  (Samelis et al., 1998; Papamanoli et al., 2003; Rantsiou 

& Cocolin, 2006). Moreover other species of Lactobacillus were also identified. In 

detail, the results evidenced that Lb. plantarum and Lb. curvatus were other important 
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species that participate to sausage fermentations. However, as reported by other studies 

(Parente et al., 2001; Papamanoli et al., 2003; Rantsiou & Cocolin, 2006) their 

frequency of isolation is not as high as for the Lb. sakei species. 	
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Figure 2.2 Dendrogram showing the similarity among DGGE profiles of 64 lactobacilli isolated from Ventricina, a 
traditional fermented sausage of Molise and Abruzzo regions. The Asterisks indicate the strains identified by 
sequencing. 
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2.3.1.3 LACTOBACILLUS FROM RED WINE 

60 Gram-positive, catalase-negative, rood-sheep bacteria and presumptive lactobacilli 

were subjected to DGGE identification.  

DGGE analysis allowed to obtain the dendrogram shown in Figure 2.3. The strains were 

grouped according to the migration profile in four clusters. For each cluster, two strains 

were subjected to sequencing for sub-species identification purposes. The results of the 

sequencing analysis (data not shown) allowed the identification of all 8 selected strains. 

Combining these results with those obtained from DGGE cluster analysis, it was 

possible to identify the 60 strains as Lb. plantarum. This specie, occurring singly or in 

association with other lactic acid bacteria, are the main Lactobacillus specie found in 

red wine undergoing malolactic fermentation (MFL) and sterilized with sulphite (Spano 

et al., 2002; Beneduce et al., 2004). In fact as reported by several authors  (G-Alegria et 

al., 2004) Lactobacillus plantarum species have displayed the ability to survive the 

harsh wine conditions. Moreover, they possess many favourable characteristics that 

would make them suitable MLF starter cultures in the future (Toit et al., 2011). It was 

shown by several Authors that many wine-associated lactobacilli have the genes that 

encode for the enzymes involved in the malolactic fermentation and that some of the 

enzymes are active under winemaking conditions (Vaquero et al., 2004; Grimaldi et al., 

2005; Matthews et al., 2007; las Rivas et al., 2009). Spano et al. (2007) evidenced that 

Lb. plantarum was the predominant population at the beginning of MFL in our samples. 

Lb. plantarum species was already observed 10 days after the start of alcoholic 

fermentation in sample treated with or without K2S2O5 and was still detectable at 16 and 

22 days. It did not disappear at 28 days even in wine supplemented with K2S2O5. The 

studies (Toit et al., 2011) that have screened oenological lactobacilli for their potential 
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as MLF starter cultures identified Lb. plantarum and Lb. hilgardi as having the best 

potential. This species of Lactobacillus also shows a more diverse enzymatic profile 

than O. oeni, which could play an important role in the modification of the wine aroma 

profile (Matthews et al., 2007). High interest by a commercial culture has recently been 

released by Lallemand as Lactobacillus plantarum V22®. In fact, Lactobacillus 

plantarum has shown the most potential as a starter culture.  
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Figure 2.3 Dendrogram showing the similarity among DGGE profiles of 64 lactobacilli isolated from red wine of 
Molise and Campania regions. The Asterisks indicate the strains identified by sequencing.  
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Results highlighted also that DGGE analysis and 16S rRNA gene sequencing constist of 

a suitable multiple approach to identify lactobacilli from wine. Analysis of the 

amplified variable V3 region of the 16S rDNA has been applied to differentiate 

lactobacilli species by several authors (Ercolini et al., 2001). In details, the primers 

P1V1 (Klijn et al., 1991) have been used to study bacteria communities from several 

food (Reale et al., 2011). As pointed out already in 2001 by Ercolini DGGE analysis, 

even if is not always suitable for the identification of all species, can be used for 

screening and grouping the isolates and reducing the number of cultures to identify by 

other molecular methods, such as 16S rRNA gene sequencing.  

 

2.3.2 INHIBITION OF UNDESIRABLE MICROORGANISMS 

Different effects of growing cells of Lb. plantarum strains on undesirable 

microorganisms were assessed by agar spot test (Table 2.4). In detail, Gram negative 

bacteria, except for A. pasteurianus, were inhibited by all the assayed producer strains 

with a different intensity (P < 0.05).  Among Gram negative, some species, such as A. 

aceti, A. tropicalis, Ga. hansenii and Ga. liquefaciens showed a higher (P<0.05) 

sensitivity than that exhibited by Ga. oxydans and Frateuria spp.  
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Table 2.4 Different effects of growing cells of Lb. plantarum strains on undesirable microorganisms assessed by 
agar spot test. 

 

A different sensibility was evidenced in Gram positive bacteria. The most of the Lb 

brevis and Lb. casei strains were not sensitive to Lb. plantarum producer strains. 

Regarding the inhibition against Lb. casei strains, 23 producer strains showed a low 

(16) or moderate (7) activity, whilst as regard for Lb. brevis, 30 producer strains showed 

a low or moderate inhibition and 7 producer strains expressed a high or very high 

inhibitory activity. A stronger (P<0.05) inhibition was detected against the other Gram 

positive species. In detail, B. thermosphacta and in C. sporogenes showed the highest 

sensitivity; instead a lower (P<0.05%) sensitivity was observed in L. innocua. However, 

noticeable were the data that evidenced a high or very high inhibition exerted by 17 

producers strains versus L. innocua ATCC 33090. 

The highest activity recorded against Gram negative bacteria is unusual, and has thus 

far only been reported for a few bacteriocins of lactic acid bacteria (De Kwaadsteniet et 

al., 2005). As reported by other authors (Maragkoudakis et al., 2009) Gram-negative 
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bacteria are not sensitive to the antibacterial action exerted by lactic acid bacteria. 

Althoughsome studies (Bernet-Camard et al., 1997; van de Guchte et al., 2001) have 

demonstrated antibacterial activity of LAB against Gram negative bacteria the nature of 

the inhibitory effect was not attributed to a bacteriocin and has not been completely 

elucidated (Bernet-Camard et al., 1997; van de Guchte et al., 2001; Zoumpopoulou et 

al., 2008) and only in few cases a clear bacteriocinogenic effect against Gram negatives 

has been reported (Zamfir et al., 1999; Kim et al., 2003; De Kwaadsteniet et al., 2005). 

As regarding for the moulds, the majority of lactobacilli strains was unable to inhibit the 

P. digitatum strains or showed a very low inhibition ability. Only six strains of 

lactobacilli showed the high inhibitory features. In particular the strains Lb. plantarum 

RTB and 14 showed the highest antimicrobial activity. Previous study studies have 

reported that antimicrobial mulecules produced by LAB are inactive against Gram-

negative bacteria and eucaryotic microorganisms such as yeasts or moulds (Batish et al., 

1997). Moreover, as evidenced by Dalié et al. (2010) in a recent review, the action of 

the antifungal properties of LAB on some moulds have also been reported by a few 

authors (Corsetti et al., 1998; Hassan & Bullerman, 2008).  

The cell-free supernatants of Lb. plantarm strains produced, against both bacteria and 

moulds, exerted a lower antimicrobial activity than that exhibited by growing cells of 

producers strains (Table 2.5). This datum evidenced that the stress conditions exerted by 

producer strains against indicator microorganisms could be due to several hurdles 

including the presence of live cells.  
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Table 2.5 Different effects of cell free supernatants of Lb. plantarum strains on undesirable microorganisms 
assessed by agar well diffusion. 

	
  

However, the results also highlighted that the cells free supernatant of a considerable 

number of producer strains exerted a remarkable antimicrobial activity versus the 

indicators strains. Therefore, as described by others authors (Deegan et al., 2006; 

Albano et al., 2007; Maragkoudakis et al., 2009) the antimicrobial activity of these 

producers strains could be due to the synthesis of many compounds such as organic 

acids, hydrogen peroxide, peptides, as well as antimicrobial proteins (known as 

bacteriocins). 

The inhibition actions produced by the neutralized cell free supernatants of producer 

strains are reported in Table 2.6. It is clear that most of the neutralized cell-free 

supernatants produced no inhibitory action against indicators strains. Therefore, it is 

possible to assert that the antimicrobial activity of most of Lb. plantarum strains was 

mainly due to the production of lactic acid and to the presence of their live cells. 
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Moreover these strains are not able to produce extracellular proteins or metabolites with 

antimicrobial activity.  

Table 2.6 Inhibitory action produced by the neutralized cell free supernatants of producer strains against the 
indicators. 

 

Only seven strains of Lb. plantarum evidenced the ability to inhibit one or more 

indicator strains when used as neutralized cell-free supernatants. In detail, the inhibitory 

action exhibited by these strains is not due to the mere production of lactic acid but to 

metabolites of other nature.  

As reported in Table 2.7, the inhibitory action expressed by the seven producer strains is 

different for their spectrum of action. In detail, the producers strains Lb. plantarum 14 

and  Lb. plantarum 21, both isolated from sourdoughs, showed the lowest spectrum of 

action inhibiting only the indicator strains belonging to P. digitatum species. Also other 

Species Strains ++++ +++ ++ + -

Lb. brevis SL, SL1 0 0 1 (RTB) 4 (BB, SP, 
BP, LCT30) 101

Lb. casei SERB108, 
SERB69 0 0 0 1 (RTB) 105

L. innocua ATCC33090 0 1 (RTB) 1 (BB, BP) 1 (SP) 102

B. thermosphacta DSM 20171T 0 0 0 3 (RTB, BB, 
SP) 103

P. fluorescens DSM 50090T 0 0 0 1 (RTB) 105
C. sporogenes DSM 795T 0 0 1 (RTB) 1 (BB) 104

A. aceti DSM 3508T 0 0 1 (BB) 3 (RTB, BP, 
SP) 102

A. aceti ASRT, ASC 0 0 2 (RTB, BB) 4 (RTB, BP, 
SP, LCT30) 102

A. aceti 111, 111E 0 0 1 (RTB, )
5 (RTB, BB, 

SP, BP, 
LCT30)

102

A. pasteurianus DSM 3509T 0 0 0 0 106
A. tropicalis DSM 15551T 0 0 0 2 (RTB, BB) 104

Ga. hansenii
194BV, ASAC4,
ASR, ARLA,
AC1, 141A

0 0 0 1 (RTB) 105

Ga. hansenii 203B1 0 0 0 2 (RTB, BB) 104
Ga. hansenii DSM 5602T 0 0 1 (RTB) 1 (BP) 104
Ga. liquefaciens DSM 5003T 0 0 1 (RTB) 2 (BB, BP) 103
G. oxydans 146B and AC6 0 0 0 1 (RTB) 105
Frateuria spp. F4 0 0 2 (RTB, BB) 1 (BP) 103
Frateuria spp. F1, F2,  F5, F6 0 0 2 (RTB, BB) 1 (BP) 103

P. digitatum P1, P2, P3, P4, P5
5 (RTB, BB, 
LCT30, 21, 

14)
101

Indicator strains Neutralized cell free supernatants of Lb. plantarum producer strains
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authors (Gerez et al., 2009; Garofalo et al., 2012) have evidenced the ability of 

Lactobacillus strains to prevent the mould growth. A moderate spectrum of action was 

evidenced by Lb. plantarum LTC30, Lb. plantarum SP and Lb. plantarum BP that 

inhibit respectively 3, 4 and 5 different species. A broad range of action was evidenced 

by Lb. plantarum BB that inhibited several strains belonging to 10 different species. Lb. 

plantarum RTB showed the highest inhibition range producing an antimicrobial action 

against all the bacteria and moulds strains assayed. Moreover, statistical analyses (TCA) 

showed a behaviour of these last strains different from all other producer strains (data 

not shown). Noticeable was also the strong inhibitory action exerted by the neutralized 

CFS of this last strains versus L. innocua. 

Table 2.7 Producer strains that exert inhibitory action against the indicators when used as neutralized cell-free 
supernatants.	
  

	
  

The results related to the effects expressed by supernatants in presence of proteinases 

could be useful to understand the nature of the compounds responsible of antimicrobial 

action. The antimicrobial activity was expressed also when the CFS of producer strains 

was exposed to the proteinases. Therefore, one could suppose that the inhibition 

expressed by these strains was not due to compounds of proteinaceous nature, such as 

bacteriocines. 
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2.4 CONCLUSIONS 

The results showed that Lactobacillus plantarum is harbored in a variety of 

environmental niches, including fermented beverages, fermented meats, and sponge 

doughs. Its largest genome, among other lactic acid bacteria, reflects the ecological 

flexibility of this bacterium. Therefore, we can state that Lb. plantarum is characterized 

by a high ability to adapt itself to many kinds of foods, as well as by a recognized 

antimicrobial capacity. Both these features make Lb. plantarum a species of remarkable 

interest in the development of protective culture to be used in the food production.  

Interestingly, a specific strain of Lb. plantarum, such as Lb. plantarum RTB, showed a 

remarkable antimicrobial activity versus L. innocua. However, it is well known that the 

knowledge of the undesirable strains response to these antimicrobial substances (stress 

conditions) represents a crucial step for the definition of an effective bio-control tool. 

Therefore, a further investigation on this strains for their antilisterial ablity are 

desirable.  
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ANTI-LISTERIA ACTION EXPRESSED BY LACTOBACILLUS 
PLANTARUM 
 

 

 

 

3.1 INTRODUCTION 

Lactobacillus plantarum represents a common species in microbial communities of 

several fermented and fresh foods. Its high metabolic plasticity (Molenaar et al., 2005) 

and the production of several natural antimicrobial substances can cause the inhibition 

of undesirable microorganisms including L. monocytogenes. The anti-listeria properties 

may be ascribable to production of antimicrobial compounds such as bacteriocins, 

bacteriocine-like substances (BLIS), phenyllactic acid, organic acids (mainly lactic and 

acetic acid), hydrogen peroxide as well as competition for nutrients or by effect of their 

combination (Todorov et al., 2011; Reis et al., 2012) 

Lb. plantarum strains may produce class IIa anti-listeria bacteriocins, such as: 

plantaricin 423 (van Reenen et al., 1998), plantaricin WHE92 (Ennahar et al., 1999), 

plantaricin C19 (Atrih et al., 2001) and plantaricin AMA-K  (Todorov et al., 2005).  

Nevertheless, the effectiveness of bacteriocin-producing strains in foods can be limited 

by several factors including narrow activity spectrum, limited, diffusion in solid 

matrices, inactivation through proteolytic enzymes or binding to food ingredients such 

as lipids, low production level and the emergence of bacteriocin-resistant bacteria 

(Rodriguez et al., 2003). Although, the use of class IIa bacteriocins or bacteriocins-

producing strains represent a promising alternative for the control the growth of L. 
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monocytogenes in a foodstuff, their efficacy could be compromised by the  onset of 

bacteriocins resistant strains and cross-resistance between bacteriocins (Naghmouchi et 

al., 2007; Tessema et al., 2009). However, the use of bacteriocins in combination with 

other hurdles (e.g. salt, acid, other natural substances etc.) may result extremely 

effective for inhibition of L. monocytogenes and reduce its resistance (Mills, Serrano, et 

al., 2011a; Mills, Stanton, et al., 2011b). Some authors (Devlieghere et al., 2005) 

suggested that an alternative to overcome the disadvantages of bacteriocinogenic 

cultures is the use of non-bacteriocinogenic but nevertheless very competitive cultures. 

Certain experiments showing the anti-listeria effect due to production of acid organics, 

including lactic acid by Lb. plantarum (Bernbom et al., 2006; Kaushik et al., 2009). Lb. 

plantarum SK1 showed anti-listeria activity through lactic acid production (Wilson et 

al., 2005). 3-Phenyllactic acid (2-hydroxy-3-phenylpropanoic acid, PLA) has been also 

reported as an anti-listeria compound (Dieuleveux & Gueguen, 1998). 

In this study the anti-listeria activity of Lb. plantarum RTB was investigated and a 

commercial L. innocua strain was used as a pathogen surrogate. This is justifiable since 

L. innocua has been deemed a suitable biological indicator for L. monocytogenes 

(Kamat and Nair, 1996) and it revealed a similar sensitivity to different stress condition. 

 
3.2 MATERIALS AND METHODS 

3.2.1 STRAINS USED AND EXPERIMENTAL DESIGN 

The strain Lactobacillus plantarum RTB (producer) previously screened (see Chapter 

II), was used in this study to detect its anti-listeria activity. The type strain Listeria 

innocua 33090 was utilized as indicator. Both strains were propagated in MRS broth 

(Oxoid) at 28 °C.  

To detect the anti-listeria effect of Lb. plantarum RTB several experiments were 
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performed.  

In detail, four batches of MRS (450 mL) were inoculated with L. innocua ATCC 33090 

at concentration of 107 CFU/mL and then added respectively with 50 mL of MRS (as 

Control) and with 50 mL of MRS containing three stressors as show below: 

2stressRTB: culture of Lb. plantarum RTB (108 CFU/mL);	
  

3stressCFS-RTB: cell free supernatant of culture containing Lb. plantarum RTB at 108 

CFU/mL;	
  

4stressLA: MRS acidified with lactic acid up to pH 4.0 (the same of stress RTB and 

stress CFS-RTB pH);	
  

The samples were incubated at 28 °C for 24 hours during which the optical density 

(OD) was detected (several time intervals). The vital count of L. innocua was also 

performed in exponential phase and at the beginning of the stationary phase. In this 

respect a selective medium (ALOA, Biolife) was used. 

 

3.2.2 DETECTION OF ANTI-LISTERIA ACTIVITY 

Two approaches were used to investigate the anti-listeria action expressed by the three 

stressors (see par. 3.2.1) 

The first approach regarded the use of a dynamic model (Baranyi & Roberts, 1994) to 

predict the growth of L. innocua in presence of stressors. The OD values recorded 

during the growth of L. innocua were fitted using the program DMFit v. 3 (Barany and 

Le Marc 1996). The growth curve parameters (lag time, growth rate and asymptote) of 

L. innocua were estimated when the indicator was cultivated in MRS broth with the 

stressRTB, stressCFS-RTB and stressLA. The kinetics parameters of the L. innocua 

growth were also evaluated when the indicator was cultivated in MRS broth without 
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stressors (control). 

In the second approaches, the anti-listeria action of stressors was investigated as vital 

count of L. innocua in three different times: just after the inoculum of indicator (time 

zero), in the exponential phase (log-phase) and at the beginning of the stationary phase.  

The anti-listeria activity of different stressors against L. innocua was calculated 

according to (Charernjiratragul et al., 2010) 

%  inhibition = !"#/!"  !"#$%"& ! !"# !"  !"#$!!  !"#$%&%"#
!"#/!"  !"#$%"&

      X  100  

  

where: “CFU/mL control” is L. innocua concentration in the log-phase or in the 

stationary phase in MRS broth whilst “CFU/mL in stress condition” is L. innocua 

concentration in the log-phase or in the stationary phase cultivated in presence of 

stressors.  

 

3.3 RESULTS AND DISCUSSION 

3.3.1 QUANTIFICATION OF L. INNOCUA INHIBITION 

The application of a dynamic model (Baranyi and Roberts, 1994) allowed to predict the 

growth of L. innocua in presence of different stressors represented by stressLA or stress 

CFS-RTB (Figure 3.1). The estimated parameters obtained from the fits are shown in 

Table 3.1. As evidenced by values of mean corrected R-square (min. 0.990 and max. 

0.996), the goodness of fit Baranyi model is very high.  The growth parameters 

highlighted significant differences among the several cultural conditions. In details, the 

L. innocua strains cultivated wit-out stressors showed a growth rate of about 0.4 h-1 

(Table 3.1).  This value respected those evidenced also by others authors  (Houtsma et 

al., 1996; Le Marc et al., 2002) In fact, these authors evidenced that L. innocua strains 
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when cultivated with-out stress and at optimal temperature condition exhibited ⎧max 

values similar to those appreciated in the present study. As also evidenced by others  

(Le Marc et al., 2002; Kaushik et al., 2009), the results of this study showed that lactic 

acid was able to produce an injury, even whit low intensity, on the growth of Listeria 

innocua. In fact, the assayed strains when cultivated in presence of stressLA showed 

growth rate and yend values (Table 3.1) significantly lower (P<0.05) than those 

exhibited by the Listeria cultivated with-out stress. In agreement whit several studies 

reposted in literature (Perry & Donnelly, 1990; Wilson et al., 2005) these evidences 

confirm that the addition of weak acid could represents an approach to enhance foods 

preservation. Presence of weak acid lowers the pH which causes an increase of the 

amount of undissociated acid. These features could inhibit the development of Listeria 

and ensure food safety.  

Table 3.1 Growth parameters of L. innocua ATCC 33090 cultivated in presence of different 
stress conditions. 

Curve growth rate lag y0 yEnd R^2_stat 
CONTROL 0.40 3.80 0.08 1.04 0.993 
stressLA 0.13 3.10 0.06 0.70 0.996 
stressCFS-RTB 0.08 4.53 0.06 0.53 0.990 

 

However, in the present study the most noticeable results were represented by the 

predicted growth of L. innocua in presence of stress-CFS-RTB. This last stress 

conditions produced a highest decrease in growth rate and yend values (Table 3.1). 

Regarding stressCFS-RTB, these values resulted significantly lower than those 

registered both in control condition and in presence of stressLA. Therefore, one could 

confirm that the inhibitory action produced by Lb. plantarum RTB against L. innocua 

ATCC 33090 is to be due to the production of extracellular compounds having neither 

acidic nor proteinaceous nature. Also other authors (van de Guchte et al., 2001; 
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Zoumpopoulou et al., 2008) reported that the antimicrobial effect expressed by some 

lactobacilli was not attributed to a bacteriocins and has not been completely elucidated. 
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Figure 3.1 Predicted growths of L. innocua ATCC33090 in presence 
with-out or with stress conditions. 
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The results relate to the count levels evidenced that L. innocua ATCC 33090 in absence 

or in presence of stresses (stressRTB, stressCFS-RTB, stressLA) showed a different 

behaviour. In details, without stresses (control) L. innocua, from initial concentration of 

7 log CFU/mL, reached levels of about 9.6 CFU/mL in the stationary phase. Inhibitory 

effect was appreciated when the strains was cultivated in presence of stresses. However, 

the intensity and the behaviour of inhibition effect was different in several stress 

conditions. There was a strongly decrease of concentration, recorded in the log-phase 

and in the stationary phase when L. innocua ATCC 33090 was cultured with Lb. 

plantarum RTB. Growth inhibition of L. innocua ATCC 33090 was also observed in the 

log-phase in presence of stressLA, stressCFS-RTB, but an adaptation indicator was 

observed in the stationary phase of indicator in presence of  stressLA.  

As evidenced by results reported in Figure 3.2, L. innocua was inhibited by 100% (both 

in log-phase and stationary phase) when cultivated in stressRTB. Instead in presence of 

stress CFS-RTB the indicator strain was inhibited by 97.7% in the log-phase and by 

99.8% in the stationary-phase. Interesting L. innocua ATCC 33090 was inhibited by 

96.7% (in the log-phase) when cultivated with stressLA but it was inhibited only by 

92.7% when reached the stationary phase, showing an adaptation to the acid.  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2! Inhibition of L. innocua ATCC 33090 cultivated whit several stressors 
and  expressed as percentage.

Stat-phase

Log-phase
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Therefore, it is possible to assert that the presence of the acid induces a reversible stress 

condition against the indicator strain, which after a period adaptation is still able to 

proliferate albeit in a more limited manner than for the control. The indicator resistance 

could be due to a complex molecular mechanism known as the ATR (Acid Tolerance 

Response) and described for the first time in 1996 by O'Driscoll et al. It is known that 

this mechanism results in the activation of various defence mechanisms, such as 

changes in the composition of the membrane, increasing the proton flux, increased 

catabolism of amino acids, formation of enzymes that repair DNA (Beales, 2004). 

 

3.4 CONCLUSIONS 

The anti-listeria action expressed by Lb. plantarum RTB cannot be based solely on the 

production of lactic acid or protean compounds such as bacteriocin. The	
   exhaustive 

explanation of the inhibition is more complex and could be due to several factors such 

as production of other antimicrobial compounds for competition or depletion of specific 

nutrients.   
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STRESS RESPONSE OF LISTERIA INNOCUA TO LACTOBACILLUS 
PLANTARUM RTB 
 

 

 

 

4.1 INTRODUCTION 
Ecological and genomic comparative studies in Listeria spp. showed a high similarity 

between the pathogenic L. monocytogenes and the non-pathogenic L. innocua (Girardin 

et al., 2005; Glaser et al., 2001). The high genomic similarity and the environmental 

niches shared by the two species have driven many researchers to use the non-

pathogenic L. innocua as surrogate of L. monocytogenes to better understand the 

behaviour of the latter. Listeria monocytogenes is recognised as a bacterium able to 

grow in several environmental conditions such as temperature ranging from -1.5° to + 

45°C, salt concentration up to 12%, aw of about 0.92 and pH values of 4.5 (Gandhi & 

Chikindas, 2007). Different stress protection systems are involved and efficiently 

coordinated to protect the cell in response to environmental changing. Generally, these 

systems involve different changes in gene expression and the induction of protein 

expression linked to a particular stress (specific stress response) or involved in several 

stress conditions (general stress response). 

Pathogenic L. monocytogenes and non-pathogenic L. innocua species share several 

genes encoding transport proteins involved in the carbohydrate transport and mediated 

by Phosphoenolpyruvate-dependent Phosphotransferase systems (PTS). This character 

would seem to be correlated to the ability of Listeria spp. to colonize and grow in a 

broad range of ecosystems (Glaser et al., 2001). Many transcriptional regulator genes 
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have been observed in both species including four classes of stress proteins (HrcA, 

sigmaB-dependent, Clp and class IV genes) and genes involved in acid resistance, e.g. 

genes encoding glutamic acid decarboxylase (gad) were identified in both Listeria 

species. Only one of the three gad paralogs of L. monocytogenes (lmo0447) was absent 

in L. innocua.  

Some authors reported that several mechanisms can be developed by L. monocytogenes 

and/or by L. innocua in order to resist to injury processes caused by stress conditions 

such as temperature, acidity and NaCl (Bergholz et al., 2012; Bowen et al., 2012; 

Milillo et al., 2012). In detail, the stress seems to induce variations in the synthesis of 

certain cell components, especially proteins. Nevertheless the literature is very poor in 

studies focusing on the mechanisms of response, in terms of susceptibility or resistance, 

expressed by L. monocytogenes against antimicrobial substances produced by Lb. 

plantarum. Therefore, the present chapter focused the attention on the stress response of 

Listeria to the presence of Lb. plantarum. In detail, a commercial L. innocua strain was 

used as a pathogen surrogate. 

 

4.2 MATERIALS AND METHODS 
4.2.1 BACTERIAL STRAINS, GROWTH CONDITIONS, AND STRESS CONDITIONS 

As reported previously (Chapter 3), Listeria innocua ATCC 33090 was evaluated for its 

ability to grow in MRS broth (Oxoid). Then, the indicator strain was cultivated in the 

same medium at 28 °C with or without two stressors. In detail, three batches of MRS 

(450 mL) were inoculated with L. innocua ATCC 33090 at a concentration of 107 

CFU/mL and then added with 50 mL of MRS (control, without stressors) or with 50 mL 

of MRS containing the two stressors (stressCFS and stressLA, respectively) as detailed 

below: 
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• stressCFS-RTB: cell free supernatant of a culture containing Lb. plantarum RTB 

at 108 CFU/mL; 

• stressLA: MRS acidified with lactic acid up to pH 4.0 (the same pH registered in 

the MRS broth added with the cell free supernatant of a culture containing Lb. 

plantarum RTB at 108 CFU/mL (stressCFS-RTB)); 

Batches were incubated at 28 °C under continuous stirring. Cultures of L. innocua were 

recovered during the log phase and the stationary phase. The proteome of L. innocua 

during log and stationary phase was studied: (i) 28 °C in log phase (log phase control), 

(ii) 28 °C in stationary phase (stationary phase control), (iii) stressLA in log phase, (iv) 

stressLA in stationary phase, (v), stressCFS-RTB in log phase, and (vi) stressCFS-RTB 

in stationary phase. 

4.2.2 TOTAL PROTEIN EXTRACTION 

The six conditions were performed in triplicates. The cells of L. innocua were harvested 

by centrifugation for 15 minutes at 8000 rpm and washed three times with Tris-HCl 50 

mM pH 7.5. Pellets were re-suspended in a lysis buffer (Tris-HCl 100 mM, pH 9.5; 

SDS 1% p/v), added of glass beads, and sonicated (LABSONIC M) for 12 min with the 

following setting: 100% Amplitude, 0.8 Cycle, pulse 5 s. Samples were then vortexed 

for 3 min and centrifuged for 15 min at 13200 rpm. The supernatants (in lysis buffer) 

containing protein extract were recovered and the pellet was discarded. Protein 

concentrations were measured using the Bradford protein assay kit (Quick StartTM 

Bradford Protein Assay, Bio-Rad). 
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4.2.3 SDS-PAGE 

About 40 µg of proteins in a Laemmli buffer were charged in polyacrilamide gel, 1.5 

mm thickness and 4% T, 2.6% C (stacking gel) and separated in a gel 12.5% T, 2.6% C 

(running gel). Two wells per gel were charged with molecular standards (Prestained 

SDS-PAGE Standards, Bio-Rad). Electrophoresis was performed for 180 min at 220V 

in a Hoefer SE600 apparatus (Amersham, Bio-sciences). Proteins were stained with 

Coomassie blue G-250 and unstained with a solution of acetic acid/ethanol/water 

(1/4/5). Gel images were acquired with a Densitometer Calibrate GS – 800 (Bio-Rad) at 

42 microns resolution. Background subtraction, lines and bands number were carried 

out by Quantity – One software (Bio-Rad). 

4.2.4 Two-dimensional gel electrophoresis (2D-E) 

Proteins were collected by lysis buffer using the Methanol/Chloroform protocol (Wessel 

and Fugge, 1984). For Isoelectrofocusing (IEF), precast immobilized pH gradient (IPG) 

strips with a pH 4 to 7 linear gradient were passively rehydrated for 18 h in a IPGBox 

with 450 µL of rehydration buffer (Urea 8M, CHAPS 2%, DTT 50 mM, Anfoline 3/10 

2%, bromophenol blue 0.002%) containing about 250 µg of proteins. IEF was 

performed at 65,000Vh using the Ettan IPGphor apparatus (GE Healthcare Bio). Strips 

were equilibrated for 25 minutes in equilibration buffer (Tris-HCl pH 8.8 50mM, urea 

6M, glycerol 30%, SDS 2%, bromophenol blue 0.002%) with DTT 65 mM and 25 min 

in equilibration buffer with iodoacetamide (IAA) 70 mM. 2D-E was performed in gels 

of 1.5 mm thick (12.5% T, 2.6% C) using the Ettan DALTsix Electrophoresis System 

apparatus (Amersham, Bio-sciences). Protein spots were visualized by staining with 

Coomassie Brillante blue G-250.  
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4.2.5 DATA ANALYSIS 

The proteins from the six conditions were performed in triplicates, and electrophoresis 

run was conducted on 24-cm IPG strips. Each replicate was obtained from three 

independent electrophoresis runs. 2D-E protein patterns were recorded as digitalized 

images using the Densitometer Calibrate GS – 800 (Bio-Rad). Spot detection, 

quantification and analysis were performed using the PDQuest™ 2-D gel analysis 

software, Version-8 (Bio-Rad, Hercules, CA). 

The proteome of L. innocua ATCC 33090 grown in MRS broth at 28 °C (Control) was 

compared with those obtained when the indicator was cultivated in presence of stress 

conditions. In detail, the protein expression pattern observed at 28 °C in log phase (i) 

was compared with those expressed in stress conditions: stressLA in log phase (iii) and 

stressCFS-RTB in log phase (v). Whilst the protein expression pattern observed at 28 

°C in stationary phase (ii) was compared with the protein expression pattern in presence 

of stressLA in stationary phase (iv), and in presence of stressCFS-RTB in stationary 

phase (vi).  

 

4.3 RESULTS AND DISCUSSION 

4.3.1 ANALYSIS OF CELL PROTEIN BY SDS-PAGE  

Changes in protein patterns of L. innocua ATCC 33090 cultivated in presence or in 

absence of stressors were analyzed by SDS-PAGE. This trial allowed the ascertainment 

of the effect on L. innocua not only of lactic acid, used as stressor in the batch stressLA, 

but also that of other metabolites possibly produced by Lb. plantarum and present in the 

cell free supernatant used as stressor in the batch stressCFS-RTB. Figure 4.1 shows the 

cell protein patterns of L. innocua at the beginning of the exponential phase (lane 2), at 
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the second half of the exponential phase (lane 3), at the second half of the exponential 

phase in presence of lactic acid (lane 4), and in presence of cell free supernatant of Lb. 

plantarum (lane 5).  

 

 

In all patterns the presence of 36 bands, with molecular weight between 100 kDa and 8 

kDa, was detected (software Quantity-One, Bio-Rad). The intensity of each detected 

band was first expressed as percentage of the total intensity in lane. Moreover, band 

intensities of each lane were standardized by dividing them by the intensity of the band 

at 16.5 kDa, which was present in all patterns with the same intensity. This parameter 

(PSInt) is useful to compare the bands of different patterns with the same molecular 

weight. To know the effect produced exclusively by the presence of non-acidic 

metabolites (stressCFS-RTB) on the protein expression, the effect due to the growth 

Figure 4.1 Cell protein patterns of L. innocua  ATCC 33090 at  the 
beginning of the exponential phase (L2), at the second half of the 
exponential phase (L3), at the second half of the exponential  phase 
in presence of stressLA (L4), and stress CFS-RTB (L5)
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phase (E Gphase) and to the acidic condition (stressLA) was firstly calculated.  

The effects due to the evolution of the exponential growth phase was calculated as 

follows: 

𝐄  𝐆𝐩𝐡𝐚𝐬𝐞 =
PSInt  band!"#$% − PSInt  band!"#$%

PSInt!"#$%
% 

The results showed that the evolution of the exponential growth phase did not cause 

significant changes in protein expression. 

The effect of acidic condition (E StressLA) on the protein expression of L. innocua 

ATCC 33090 was calculated as follows: 

𝐄  𝐒𝐭𝐫𝐞𝐬𝐬𝐀𝐋 =
PSInt  band!"#$% − PSInt  band!"#$%

PSInt!"#$%
%− E  Gphase 

The acidic stress determined the over-expression of seven protein bands. In detail, a 

strong expression was appreciated for the protein band 11, with molecular weight of 

58.2 kDa, for the band 14, with molecular weight of 48.2 kDa, and for the bands 28 and 

30, with molecular weight of 26.5 and 23.6 kDa, respectively. Furthermore, an over-

expression was also appreciated for three protein bands (16, 17 and 19) ranging between 

37.2 and 42.2 kDa. 

The effect on protein changes due to non-acidic metabolites present in the CFS of Lb. 

plantarum RTB was estimated as follows:	
  

𝐄  𝐒𝐭𝐫𝐞𝐬𝐬𝐂𝐅𝐒 − 𝐑𝐓𝐁 =
PSInt  band!"#$% − PSInt  band!"#$%

PSInt!"#$%
% − (EGphase + E  StressLA) 

This stress caused a significant change in the expression of nine protein bands. In detail, 

it was possible to appreciate the over-expression of three protein bands, one with 

molecular weight of 83.4 kDa and another two with a molecular weight of 26.5 and 23.6 
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kDa, respectively. These two bands were also over-expressed in the protein pattern of L. 

innocua in stressLA. On the other hand, stressCFS-RTB caused the significant 

repression of 6 protein bands. In detail, it was appreciated the repression of two bands 

with molecular weight of 78 and 18.5 kDa. In addition, repression was also observed for 

4 protein bands (11, 16, 17 and 19) between 58.2 and 37.2 kDa, which were over-

expressed in stressLA.  

 

4.3.2 ANALYSIS OF CELL PROTEIN BY 2D-E  

The cell protein 2D-E map of L. innocua cultivated without stresses or in presence of 

stressLA or stressCFS-RTB evidenced significant differences both in exponential and in 

stationary growth phase. 

 
4.3.2.1 CELL PROTEIN IN EXPONENTIAL PHASE 
 
The map (Figure 4.2) relative to the proteins of L. innocua cultivated in stressLA 

(exponential phase) showed the neo-formation of 35 spots and the over-expression of 30 

spots. In Table 4.1 are reported the main proteins induced in L. innocua (exponential 

phase) by stressLA.  

	
  

Figure 4.2	
  2D-E gels of cellular proteome of L. innocua cultivated without stress condition (gel left) and in presence 
of stressLA (gel central and right). The proteins of neo-formation (gel central) and over-expressed (gel right) by the 
stressLA are indicated by a dot and an identification number. The pI and molecular weight (MW) of the main 
proteins neo- and over-expressed are reported in the Table 4.1. 
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Table 4.1  Main proteins induced in L. innocua (log phase) by stressLA. 

Identification 
Number 

Induction 
Ratioa 

Molecular 
Mass (Kda) 

Isoelectric 
Point (pI) Putative Proteinb 

9 Novel 10.76 4.45 GroES 
601 Novel 59.43 4.63 GroEL 

1001 Novel 19.99 4.73 Ycel like family protein 

1403 Novel 46.14 4.82 Clpx 

2101 Novel 28,35 4,84 Serine/Treonine Fosfatase stp 

3307 Novel 38,67 5.11 Phosphoserine amminotransferase 

3501 Novel 53.16 4.99 Probable glutamate decarboxylase 
gamma o GadB 

4102 Novel 27.77 5.18 Oxidoreduttase Short chain 
dehydrogenase 

4104 Novel 22.69 5.22 TetR family transcriptional 
regulator 

4202 Novel 38.43 5.16 GroES like protein 

7402 Novel 46.97 5.58 PTS system 

7501 Novel 52.47 5.63 Ribonuclease Y 

7801 Novel 77.57 5.54 PTS system 

8601 Novel 61.44 5.98 Probable ABC transporter 

9401 Novel 50.12 6.63 Transketolase 

5402 3.02 47.04 5.24 Arginine deaminase 
a The induction ratios given are means of the values from several gels. 
b putative proteins with a high similarity in Mw and pI with proteins reported into databases UniProtKB/Swiss-Prot 
and UniProtKB/TrEMBL 
 
 
 
The Mw and the pI of each spot carried out by 2D-E analysis were compared to those 

obtained by databases UniProtKB/Swiss-Prot and UniProtKB/TrEMBL trough the 

TagIdent tool (http://web.expasy.org/tagident/). Putative proteins with a high similarity 

in Mw and pI with proteins reported into databases UniProtKB/Swiss-Prot and 

UniProtKB/TrEMBL are showed in the Table 4.1. 
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The comparison evidenced that some spots neo-expressed in stressLA, such as 9, 601, 

4202 and 1403, are compatible with putative chaperonine (GroES, GroEL and GroES 

like protein) and protease (Clpx). According to previous studies (Phan-Thanh & 

Mahouin, 1999) these proteins are of high interest in Listeria stress response. Molecular 

chaperonins are involved in refolding of proteins damaged by stressors (e.g. acid, 

osmotic, heat stress), instead proteases degrade proteins misfolded.  

Noticeable is the neo-formation of spot 3501, compatible with a protein of the 

glutamate decarboxylase (GAD) system. The GAD system is a complex of 

decarboxylases and transporters involved during the decarboxylation of glutamate. This 

mechanism is adopted by L. monocytogenes to survive acidic stress (Cotter et al., 2001). 

According to the current model, an extracellular glutamate (Glte) is imported inside the 

cell through an antiporter system (Glt/GABA) that exchanges for an intracellular ϒ-

aminobutyrate (GABAi). The Glt is decarboxylated, and a proton (H+) is incorporated in 

GABA. Subsequently, the GABAi is exported out of cell through the antiporter system 

that exchanges for another Glte (O'Byrne & Karatzas, 2008). Recently, it has been 

shown that the GAD system can utilize intracellular Glt (Glti) to produce GABAi 

independently from the antiport; for this reason it has been proposed to divide the GAD 

system into extracellular (GADe) and intracellular (GADi) components (Karatzas et al., 

2010; Karatzas et al., 2012). It has been showed that the GADi system is activated firstly 

(pH 4.5 to 5.0), than GADe (pH 4.0 to 4.5) system in response to acidic conditions 

(Karatzas et al., 2012). 

Moreover, the results evidenced that several spot proteins involved in metabolite 

transport, such as PTS systems and ABC transporters (spots, 7402, 7801 and 8601) 

were synthetized by L. innocua in presence of stressLA.  
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The spot proteins 2101 and 3307 compatible respectively with Serine/Treonine 

Fosfatase stp and Phosphoserine aminotransferase were neo-expressed in stressLA. 

These proteins are involved in several metabolic vies including the production of 

glutamate. Glutamate is a substrate involved in the GAD system and its high 

intracellular concentration could stimulate the GAD intracellular activity (GADi). 

The spot protein 5402, compatible with the arginine deaminase, a protein of the arginine 

deiminase (ADI) system was over-expressed. It is known that the ADI system is a 

metabolic process activated in Listeria to respond the acidic stress. In this process, 

several proteins (ArcA, ArcB, ArcC and ArcD) are involved for the conversion of 

arginine into ornithine and production of NH3 (Ryan et al., 2009). 

StressCFS-RTB caused several changes in the proteome of L. innocua during the 

exponential phase. 20 spot proteins were neo-expressed and 37 spots resulted over-

expressed (Figure 4.3). The 20 spots neo-expressed with stressCFS-RTB resulted neo-

expressed also when L. innocua was cultivated with stressLA. In Table 4.2 are reported 

the main proteins induced in L. innocua (exponential phase) by stressCFS-RTB. 

 

Figure 4.3 2D-E gels of cellular proteome of L. innocua cultivated without stress condition (gel left) and in presence 
of stressCFS-RTB (gel central and right). The proteins of neo-formation (gel central) and over-expressed (gel right) 
by the stressCFS-RTB are indicated by a dot and an identification number. The pI and molecular weight (MW) of the 
main proteins neo- and over-expressed are reported in the Table 4.2. 
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Table 4.2  Main proteins induced in L. innocua (log phase) by stressCFS-RTB. 

Identification 
Number 

Induction 
Ratioa 

Molecular 
Mass (Kda) 

Isoelectric 
Point (pI) Putative Proteinb 

9 Novel 10.76 4.45 GroES 
601 Novel 59.43 4.63 GroEL 

1001 Novel 19.99 4.73 Ycel like family protein 

3501 Novel 53.16 4.99 Probable glutamate decarboxylase 
gamma o GadB 

4102 Novel 27.77 5.18 Oxidoreduttase Short chain 
dehydrogenase 

7501 Novel 52.47 5.63 Ribonuclease Y 

8601 Novel 61.44 5.98 Probable ABC trasporter 

9401 Novel 50.12 6.63 Transketolase 

5402 3.02 47.04 5.24 Arginine deaminase 
a The induction ratios given are means of the values from several gels. 
b Putative proteins with a high similarity in Mw and pI with proteins reported into databases UniProtKB/Swiss-Prot 
and UniProtKB/TrEMBL	
  
	
  
The map (Figure 4.4) relative to the proteins of L. innocua cultivated in stressCFS-RTB 

(exponential phase) showed the repression of 14 spot proteins. In Table 4.3 are reported 

the main proteins repressed in L. innocua (exponential phase) by stressCFS-RTB.  

 

Figure 4.4 2D-E gels of cellular proteome of L. innocua cultivated without stress condition (gel left) and in presence 
of stressCFS-RTB (gel right). The proteins indicated by a dot with the identification number are absent in the gel 
regarding the stressCFS-RTB. 
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Table 4.3  Main proteins repressed in L. innocua (log phase) by stressCFS-RTB.	
  

Identification 
Number 

Molecular Mass 
(KDa) 

Isoelectric 
Point (pI) Putative Proteinb 

3902 93.31 5.09 Leucine-tRNA ligase 

3903 93.14 5.11 Protein translocase subunit SecA 1 

4602 65.84 5.21 Glutamine--fructose-6-phosphate 
aminotransferase 

4703 71.58 5.28 Potassium-transporting ATPase B 
chain 1 

6502 61.66 5.42 ABC transporter, substrate-binding 
protein, family 5 

6602 66.72 5.42 PTS system, beta-glucoside-specific, 
IIABC component 

6604 67.01 5.47 DNA mismatch repair protein MutL 

7703 75.33 5.71 Fructose-1,6-bisphosphatase class 3 
b Putative proteins with a high similarity in Mw and pI with proteins reported into databases UniProtKB/Swiss-
Prot and UniProtKB/TrEMBL.	
  

 
 
 
Several spot proteins repressed in L. innocua during the growth with stressCFS-RTB 

were compatible with membrane transporters. Of interest is the repression of proteins 

translocase (Protein translocase subunit SecA 1, spot 3903) associated to uptake of 

extracellular proteins, as well as the repression of ABC transporters and PTS system 

(spots 6502, 6602). ABC transporters and PTS system play an important role in the 

internalization of carbohydrates such as glucose, fructose and mannose (Mitchell et al., 

1993; Vu-Khac & Miller, 2009). Other proteins repressed with stressCFS-RTB are 

ascribable to enzymes involved in the carbohydrate metabolism. For example the 

Fructose-1,6-bisphosphatase class 3 (spot 7703) and Glutamine--fructose-6-phosphate 

aminotransferase (spot 4602), involved into carbohydrate metabolism, were absent in 

the listeria proteome in stressCFS-RTB condition and expressed without stress 

(control).  
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The spot 6604 compatible with a MutL (DNA mismatch repair protein) was repressed in 

L. innocua when cultivated with stressCFS-RTB.  

The repression of these proteins in L. innocua when cultivated in stressCFS-RTB could 

be responsible of decrement of grow rate of bacteria.  

 
4.3.2.2 CELL PROTEIN IN STATIONARY PHASE  

As regard to the stationary phase, the map (Figure 4.5) relative to the proteins of L. 

innocua cultivated in stressLA (stationary phase) showed the neo-formation of 15 spots 

and the over-expression of 29 spots (Table 4.4).  
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Table 4.4 Proteins induced in L. innocua (stationary phase) by stressLA. 

Identification 
Number 

 Induction 
Ratioa 

Molecular Mass 
(Kda) Isoelectric Point (pI) 

2 2.97 12.50 4.45 
4 2.10 12.04 4.54 
5 2.29 12.67 4.56 
101 2.37 32.23 4.42 
502 4.92 59.43 4.64 
1501 3.66 58.15 4.68 
1602 3.90 63.12 4.74 
1902 3.44 85.21 4.71 
2001 3.31 14.77 4.81 
2002 2.45 14.30 4.81 
2202 2.09 39.09 4.90 
2401 2.49 53.24 4.81 
2601 2.46 64.01 4.82 
3303 1.93 46.67 5.03 
3401 7.79 53.48 4.97 
3704 2.09 73.59 5.02 
4203 3.13 38.43 5.14 
4403 0.70 51.43 5.13 
4902 2.08 77.51 5.12 
4904 2.14 94.66 5.13 
5101 1.76 29.04 5.16 
5202 1.75 38.36 5.23 
5305 2.88 47.38 5.22 
6402 1.62 53.49 5.33 
6501 3.22 57.17 5.34 
7402 2.48 53.14 5.63 
7501 2.48 56.48 5.42 
7703 2.67 71.46 5.76 
1 2.9 12.27 4.31 
8 Novel 14.00 4.30 
501 Novel 57.32 4.58 
703 Novel 70.57 4.64 
1001 Novel 11.69 4.67 
1002 Novel 19.71 4.73 
1901 Novel 85.65 4.68 
2103 Novel 16.6 4.97 
3102 Novel 30.70 5.00 
4101 Novel 25.42 5.06 
5102 Novel 27.57 5.16 
5601 Novel 68.17 5.23 
6201 Novel 38.05 5.29 
6601 Novel 63.70 5.28 
7503 Novel 58.64 5.76 
9201 Novel 36.70 6.98 

a The induction ratios given are means of the values from several gels. 
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Putative proteins with a high similarity in Mw and pI with proteins reported into 

databases UniProtKB/Swiss-Prot and UniProtKB/TrEMBL are shown in the Table 4.5. 

The spot proteins identified with numbers 1501 and 4203 and compatible with the 

molecular chaperones GroEL and GroES where over-expressed when L. innocua was 

cultivated with stressLA. The induction of the synthesis of these proteins were observed 

in Listeria by other authors (Phan-Thanh & Mahouin, 1999) in presence of acidic stress, 

as well as in presence of other stress conditions, including salt and heat stress. 

  

Figure 4.5 2D-E gels of cellular proteome of L. innocua  cultivated without stress condition (gel  left) and in 
presence of stressLA (gel right). The proteins induced by the stressLA are indicated by a dot and an identification 
number with pI and molecular weight (MW) given in Table 4.4.



CHAPTER IV 

140	
  

Table 4.5 Putative proteins with a high similarity in Mw and pI with proteins reported into databases 
UniProtKB/Swiss-Prot and UniProtKB/TrEMBL. 

Identification 
Number 

 Induction 
Ratioa 

Molecular 
Mass (KDa) 

Isoelectric 
Point (pI) Putative Protein 

4 2.10 12.04 4.54 Cell division suppressor protein 
YneA  

5 2.29 12.67 4.56 50S ribosomal protein L7/L12 

101 2.37 32.23 4.42 Putative uncharacterized protein 

1501 3.66 58.15 4.68 GroEL protein 

1602 3.90 63.12 4.74 Phosphoenolpyruvate-protein 
phosphotransferase 

2401 2.49 53.24 4.81 ABC transporter, permease protein 

3401 7.79 53.48 4.97 Probable glutamate decarboxylase 
gamma o GadB 

3704 2.09 73.59 5.02 DNA ligase (ligA) 

4203 3.13 38.43 5.14 GroES-like protein 

4902 2.08 77.51 5.12 Putative ATP-dependent Clp 
protease  

5305 2.88 47.38 5.22 Arginine deiminase 

7402 2.48 53.14 5.63 Ribonuclease Y 

7501 2.48 56.48 5.42 Two-component sensor histidine 
kinase (LisK) 

1 2.9 12.27 4.31 Negative regulation of transcription, 
DNA-dependent 

1001 Novel 10.76 4.65 GroES 

1002 Novel 19.71 4.73 YceI like family protein 

2103 Novel 16.6 4.97 Putative universal stress protein 

5102 Novel 27.57 5.16 Oxidoreductase, short chain 
dehydrogenase 

5601 Novel 68.17 5.23 Sensor protein kinase WalK 

6601 Novel 63.70 5.28 Adenine deaminase 

7503 Novel 58.64 5.76 DNA-binding response regulator 
a The induction ratios given are means of the values from several gels.  
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The spot protein 4902, compatible with a Putative ATP-dependent Clp protease, was 

also over-expressed. The Clp proteases degrade proteins damaged by acidic conditions 

or proteins not correctly fold by chaperones.  

Of interest was the strong induction (induction ratio, 7.79) of spot 3401, compatible 

with a protein of the glutamate decarboxylase (GAD) system. As above evidenced, the 

GAD system is a complex of decarboxylases and transporters involved in L. 

monocytogenes acidic stress response (Cotter et al., 2001).  

The spot protein 5305 is compatible with the arginine deaminase, a protein of the 

arginine deaminase (ADI) system. It is known that the ADI system is involved in a 

metabolic process activated in Listeria to respond the acidic stress. In this process, 

several proteins (ArcA, ArcB, ArcC and ArcD) are involved for the conversion of 

arginine into ornithine and production of NH3 (Ryan et al., 2009). 

The spot 4, compatible with the YneA, was also over-expressed in L. innocua in 

presence of stressLA. The YneA is a division suppressor protein that inhibits cell 

division during the SOS response (van der Veen et al., 2010). L. monocytogenes 

produces SOS response over the acidic stress, also when exposed to heat stress, 

oxidative stress and mitomycin C (van der Veen & Abee, 2011). 

Other spots were induced in L. innocua in presence of stressLA, including spots 

compatible with solutes transporters (1602 and 2401) and spots compatible with stress 

regulators such as the two-component sensor histidine kinase (LisK) (spot 7501) and the 

negative regulation of transcription (spot 1). 

Among spots of neo-formation (Table 4.5), the spot 2103 resulted compatible with a 

Universal stress protein. This family of proteins is involved in the response to several 

stress conditions, including acidic stress and oxidative stress. Their importance in acidic 
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stress response has been documented but the exact role still unknown (Seifart Gomes et 

al., 2011). 

The spot 6601, compatible with the adenine deaminase, was expressed when L. innocua 

was cultivated with stressLA and it was not expressed without acidic stress. This 

enzyme could be responsible of the of the intracellular pH increase through the 

production of NH3 by degradation of adenine. 

These phenomena were not observed in the cell protein 2D-E map obtained by L. 

innocua cultured without stress conditions. 

The map relative to the proteins of L. innocua cultivated in stressCFS-RTB (Figure 4.6) 

(stationary phase) showed that the phenomena of protein neo-formation or protein over-

expression were less evident than those observed in the map relative to the proteins of 

the strain cultivated in stressLA. Moreover, in the presence of stressCFS-RTB a 

repression of several proteins was observed (Figure 4.7). In detail, the map relative to 

the proteins of the strain in stressCFS-RTB (Figure 4.6 and Figure 4.7) showed the neo-

formation of 1 spot (Identification number 1001, M.M. 10.75 KDa; I.P. 4.65), the over-

expression of 9 spots (Table 4.6) and the repression of 15 spots (Table 4.7). 

The neo-expressed spot 1001, compatible with the GroES protein, was also neo-

expressed in presence of stressLA. As reported in literature (Phan-Thanh & Mahouin, 

1999) this protein is often expressed in Listeria spp. in response to several stress 

conditions including acidic, salt and heat stress. Among the 9 over-expressed proteins, 

the spots 1501, 5305 and 7402 were the most interesting. The spot 5305 was compatible 

with Arginine deaminase which contributes to both growth and survival of the L. 

monocytogenes under acidic conditions. The spot 7402 was compatible with 

ribonuclease Y, an enzyme that could recycle damaged or unnecessary macromolecules 
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to satisfy changing cellular needs (Price et al., 2001). 

Remarkable results in presence of stressCFS-RTB were represented by the repression of 

15 spot proteins (Table 4.7). The repressed spot 4102 was compatible with D-alanine 

aminotransferase, which is active in the synthesis of glutamate, the starting substrate of 

glutamate decarboxylase (GAD) system involved in the stress response of L. innocua. 

In presence of stressCFS-RTB the Phosphoenolpyruvate-protein phosphotransferase 

(compatible with spot 1602) resulted repressed too. The PTS system is essential in the 

bacteria metabolism, in fact it provides the transport of sugars into the cell and 

phosphorylates sugars during this transport process (Donaldson et al. 2009). 

Moreover, the 2D-E map of Listeria in stressCFS-RTB evidenced the repression of five 

protein spots (4902, 4003, 5503, 7101, 7501) respectively compatible with Putative 

ATP-dependent Clp protease, Helicase, RecD/TraA family, ATP synthase subunit alpha 

2, Beta-glucoside kinase, two-component sensor histidine kinase. As reported by several 

authors (Chaturongakul et al., 2008; Montague et al., 2009) these proteins are involved 

in stress response of Listeria to several conditions.  

So, it is possible to hypothesize that the repression of a series of proteins does not allow 

the overcoming of adverse and/or lethal conditions produced by stressCFS-RTB. 

Therefore, the cell free supernatant of Lb. plantarum RTB (stressCFS-RTB) determines 

one or more stress conditions, different from acidic stress, and able to exert a lethal 

effect against the indicator strain. 
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Table 4.6 Proteins over-expressed in L. innocua  (stationary phase) in presence of the stressCFS-RTB. 
Proteins identified on the basis of the high similarity in Mw and pI with proteins existent into databases 
UniProtKB/Swiss-Prot and UniProtKB/TrEMBL. 

Identification 
Number 

 Induction 
Ratioa 

Molecular Mass 
(KDa) 

Isoelectric Point 
(pI) Putative Protein 

101 2.32 32.23 4.42 Putative uncharacterized 
protein 

1501 3.3 58.15 4.68 GroEL protein 

1902 3.16 85.21 4.71 - 

2002 2.15 14.30 4.81 - 

2202 1.94 39.09 4.9 - 

5305 3.45 47.38 5.22 Arginine deiminase 

6501 2.89 57.17 5.34 - 

7402 1.98 53.14 5.63 Ribonuclease Y 

7703 2.89 71.46 5.76 - 
a The induction ratios given are means of the values from several gels. 

	
  

 
Figure 4.6 2D-E gels of cellular proteome of L. innocua (stationary phase) cultivated without stress condition (gel 
left) and in presence of stressCFS-RTB (gel right). The proteins induced by the stressCFS-RTB indicated by a dot 
and an identification number with pI and molecular weight (MW) given in Table 4.6. 
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Table 4.7 Proteins repressed in L. innocua  (stationary phase) by stressCFS-RTB. Proteins identified 
on the basis of the high similarity in Mw and pI with proteins existent into databases UniProtKB/Swiss-
Prot and UniProtKB/TrEMBL. 

Identification 
Number 

Molecular Mass 
(KDa) Isoelectric Point (pI) Putative Protein 

1401 54.80 4.69 - 

1602 63.12 4.74 Phosphoenolpyruvate-protein 
phosphotransferase 

2602 60.59 4.83 - 

3505 57.49 4.97 - 

3602 60.05 5.00 - 

3703 68.72 4.96 - 

3902 88.99 5.03 Glutathione biosynthesis (GshAB) 

4102 32.56 5.13 D-alanine aminotransferase 

4702 72.15 5.13 DNA primase 

4902 77.51 5.12 Putative ATP-dependent Clp protease  

4903 91.03 5.13 Helicase, RecD/TraA family 

4904 94.66 5.13 - 

5503 56.04 5.27 ATP synthase subunit alpha 2 

7101 31.73 5.41 Beta-glucoside kinase 

7501 56.48 5.42 Two-component sensor histidine kinase 
(LisK) 
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Figure 4.7 2D-E gels of cellular proteome of L. innocua  (stationary phase) cultivated without stress condition (gel 
left) and in presence of stressCFS-RTB (gel right). The proteins indicated by a dot with the identification number are 
absent in the gel regarding the stressCFS-RTB. 
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STRUCTURE PREDICTION OF A UNIVERSAL STRESS PROTEIN 

(USP) IN LISTERIA INNOCUA 

 

 

 

 

5.1 INTRODUCTION 
Universal stress proteins (Usps) are small cytoplasmic proteins that are found in 

bacteria, Archea, fungi and plants. The production of these proteins is stimulated when 

bacteria is exposed for a long time to stressors, such as stationary phase, starvation, 

exposure to heat, oxidants, uncouplers, ethanol, antibiotics, acid and osmotic stress 

(Kvint et al., 2003). Usps have been observed for the first time in Escherichia coli K-12 

and subsequently have been described for several species, including Haemophilus 

influenzae (Fleischmann et al., 1995; Sousa & McKay, 2001), Mycobacterium 

tuberculosis (O'Toole & Williams, 2003; Drumm et al., 2009), Pseudomonas 

aeruginosa (Schreiber et al., 2006; Boes et al., 2008), Salmonella typhimurium (Liu et 

al., 2007; Sagurthi et al., 2007) and Lactobacillus plantarum (Licandro-Seraut et al., 

2008; Gury et al., 2009). Recently, the importance of Usps in acid or oxidative stress 

response in Listeria monocytogenes has been reported (Seifart Gomes et al., 2011). Six 

Usps have been found in E. coli, five of witch (UspA, UspC, UspD, UspF, UspG) 

characterized by a single domain whilst one (UspE) presents  two domains (Nystrom & 

Neidhardt, 1992; Gustavsson et al., 2002). On the basis of sequence similarity Usps 

may be divided in four groups: i) UspA-type proteins (UspA, UspC, UspD), ii) UspFG-

type proteins (UspF, UspG ), iii) UspE1 and, iv) UspE2 (Sousa & McKay, 2001; 
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Nachin et al., 2008). The two main groups of Usps (UspA-type and UspFG-type) may 

assume a dimeric and a tretrameric structure. This characteristic would seem to be 

related to the absence (dimer) or presence (tetramer) of ATP in the structure. Usually 

the UspA-type form a dimer, while the UspFG-type assumes a tetrameric structure 

where the ATP plays an important role in the stabilization of the molecule.  

Few informations are available in literature about the biochemical function and 3D-

structures of Usps in bacteria and there are no3D-structures for Usp of Listeriae. 

available. 

Bioinformatics approach can help to get more information about the structure of Usps 

and the function of these proteins.  

In the present study, the three-dimensional (3D) structure of a Universal stress protein 

(EHN60729.1) belonging to L. innocua was predicted on the basis of the available 

template (PDB code:3S3T ; structure deposited by Osipiuk et al., 2011)  homologues 

from Protein Data Bank. 

 
5.2 MATERIALS AND METHODS 

5.2.1 TEMPLATE SELECTION AND SEQUENCE ALIGNMENT 

The FASTA sequence (152 aa) of universal stress protein (number access EHN60729.1) 

from Listeria innocua was obtained from the NCBI database (National Center for 

Biotechnology Information). Comparative modeling (Notredame et al., 2000) was used 

to build the protein 3D structure. The target sequence was searched into the Protein 

Database (PDB) using BLASTp (protein-protein Basic Local Alignment Search Tool). 

The Usp (PDB code: 3S3T) from Lactobacillus plantarum showed the highest score 

with 31% of identity, therefore was used as template for the homology modeling 

analysis. This value is at the borderline of the so-called twilight region of protein 
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sequences (ref), but we decided to proceed to the modelling anyway and to perform 

more tests later on the accuracy of the model. The sequence alignment (Figure 5.1) 

between template (3S3T chains A, B, C, D) and the Usp of Listeria was performed with 

the T-COFFE program (Notredame et al., 2000). 

5.2.2 COMPARATIVE MODELING 

The theoretical structure of Universal stress protein (EHN60729.1) from Lactobacillus 

plantarum was generated using MODELLER v9.10. MODELLER implements 

comparative protein structure modeling by satisfaction of spatial restraints (Sali & 

Blundell, 1993). Two hundred models were generated and the best model (lower DOPE 

score, -0.443) was used for validation. 

	
  
Figure 5.1 Sequence alignment between the hypotetical Usp of L. innocua and the chains A, B, C and D of 
template (PDB code: 3S3T). The conserved regions are indicated by ‘*’. 

	
  
5.2.3 MODEL VALIDATION 

The best model of L. innocua Usp protein according to the DOPE score (Model_195) 

was validated with PROCHECK and QMEAN Servers. PROCHECK was used for a 

preliminary evaluation of the stereochemical quality of Model_195 (Laskowski et al., 
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1993).  

QMEAN server was used to evaluate the QMEAN Z-score of Model_195. The 

QMEAN Z-score provides an estimate of the absolute quality of a model by relating it 

to reference structures solved by X-ray crystallography (Benkert et al., 2011).  

To evaluate the similar degree of three dimensional structure between the template and 

the Model_195, the Root Mean Squared Deviation (RMSD) was calculated using 

PyMol software. The lower the value, the more similar the structures are (Maiorov & 

Crippen, 1994). 

 

5.2.4 INTERFACES ANALYSIS  

The interfaces between monomer-monomer or dimer-dimer of Model_195 were 

evaluated using PISA WebServer. The surface and the energetic state of interfaces were 

evaluated. Furthermore the presence of residues with a key role in dimer formation was 

investigated through a multi structural alignment. For this aim MUSTANG software 

(Konagurthu et al., 2006) was used to perform a multiple structural alignment between a 

single chain of Model_195 and homology protein structures. 

 

5.3 RESULTS 

5.3.1 COMPARATIVE MODELING OF UNIVERSAL STRESS PROTEIN MODEL 

Three dimensional structure of hypothetical Universal stress protein belonging to L. 

innocua was predicted by the homology modeling technique. The final 3D structures 

created with MODELLER were stored as PDB output file and the best model 

(Model_195) with a lower DOPE score (-0.443) was used for both validation and 

interfaces analysis. Model_195 was visualized by PyMol program and has been 
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represented in the figure 5.2. Model_195 seems to represent the quaternary structure of 

Usp with a tetrameric conformation. Four monomers (chain A, B, C and D) with a 3D 

structure similar to the Rossmann-like α/β fold have 5 parallel β-strands and 4 α-helices.  

	
  

Figure 5.2 Cartoon representation of the final 3D structure of the Universal stress protein model from L. 
innocua (right); 3D structure of template (3S3T) from Lb. plantarum (left). The chain A (green), chain B (cyan), 
chain C (magenta) and chain D (yellow) are distinguish by different colours.  

5.3.2 UNIVERSAL STRESS PROTEIN MODEL VALIDATION 

Two approaches were used to evaluate the accuracy of the protein model generated. The 

first was based on the stereochemical properties of model, the second, more accurate 

method was based on the absolute quality of the structure.  

To check the torsion of dihedral angles phi and psi of amino acid residue of Model_195 

PROCHECK was used and the Ramachandran plot is reported  in the figure 5.3.  

D C 

B 

C D 

A B A	
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Figure 5.3 Ramachandran plot of hypothetical Universal stress protein (Model_195) of L. innocua. 

Ramachandran plot analysis showed that main-chain conformations for 93.3% of amino 

acid residues are within the most favoured region only two residues (ALA 51 e SER 

208) are in the disallowed region. In general, a score higher to 90% implies good 

stereochemical quality of the models. 

The good quality of Model_195 was also showed by the good distribution of 

normalized QMEAN Z-score (Figure 5.4). 

The circles of different shades of grey colour in the plot represent the QMEAN scores 

of the reference structures from the PDB. The model's QMEAN score is compared to 

the scores obtained for experimental structures of similar size (model size +/- 10%) and 

a Z-score is calculated (Benkert et al., 2011). The QMEAN Z-score of Model_195 is 

represented in the plot by the red dot.  



CHAPTER V 

155	
  

	
  

Figure 5.4 Distribution of normalized QMEAN Z-score. The red dot represents the QMEAN Z-score of Model_195. 

	
  
Figure 5.5 Superposition of Cα trace of Universal stress protein model (Model_195) from L. innocua (represented 
in red color) and the template 3S3T (represented in green color) from Lb. plantarum.  

	
  

The close relationship between the predicted Model_195 and the template (3S3T) was 

evidenced by the low RMSD of 0.3 Å (Figure 5.5). Superposition of Cα trace of 

Universal stress protein model (Model_195) from L. innocua (red) and the template 

3s3t (green) from Lb. plantarum was very close, small differences was observed 

between the interface of chains A and B as well as between the chains C and D.  
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5.3.3 INTERFACES ANALYSIS  

To understand if the quaternary Model_195 structure may be significant from the 

biological point of view, the exploration of macromolecular interfaces of the quaternary 

structures predicted were investigated. In the figure 5.6 are reported the results of the 

interfaces analysis performed with PISA WebServer and the graphical representation of 

residues involved in the interfaces.  

	
  

Figure 5.6 Number and surface area (left) and graphical representation (right) of interfaces of Model_195. The 
interface residues with ΔG < 0 are represented in blue whilst the interface residues with ΔG > 0 are represented in 
orange. 

Results show that six interfaces have been found in the Model_195. The interface area 

between the chains A and B was of 1484.6 Å2 and the formation resulted energetically 

favorited (∆G <0). Also the interface area between the chains C and D was energetically 

favorite (∆G <0) with a surface area of 1201.8 Å2. These data show that the monomers 

A and B as well as the monomers C and D may assume a dimeric structural 

conformation. Furthermore, the interfaces between the chains A and C even the 

interfaces between the chains B and D were also energetically favorited (∆G <0), and 

the surface interfaces were of 1119.0 Å2 and 1199.8 Å2 respectively. These results show 

that the tetrameric assembly between the two hypothetical dimers structure of 

Model_195 is biologically possible. On the other hand, the two interfaces between the 

chains A-D and the chains B-C were not energetically favorited.  

 

A B 

C D	
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The presence of residues with a key role in dimer formation was investigated with the 

multiple structural alignment between the chain A of Model_195 and proteins of 

homologue structure (Figure 5.7).  

	
  

Figure 5.7 Multiple structural alignment of sequences between the chain A of Model_195 and proteins of 
homologue structure. Residues coloured are conserved in all the structures. 

 

Residues involved in dimer formation take a β sheet conformation and are allocated in 

the β5 of Model_195. The β5 residues are strongly conserved in the structures of similar 

proteins and show an important role in dimer formation in the protein structures 

experimentally resolved.  

Of interest are the two conserved residues (Figure 5.8) of VAL 140 and VAL 142 (in β5 

sheet) of Model_195 that show an important role in dimer formation trough hydrogen 

bonds. This observation is in accord with previous studies for TeaD (Usp) protein by H. 

elongata (PDB: 3HGM) (Schweikhard et al., 2010). 

 
 
 
 
 
 
 

β5 
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Figure 5.8 Superposition of multiple structural alignment between the chain A of Model_195 and proteins of 
homologue structures. Conserved residues of β5 sheet are coloured (see Figure 5.7) and the two dots represents 
the position of VAL140 and VAL142. 

 

By the multiple structural alignment between Model_195 and proteins of homologue 

structure (Figure 5.9) was showed the presence of the conserved ATP-binding motif 

[GXXGXXXXXXXXXG(S/T)] (O'Toole & Williams, 2003). The ATP-binding motif, 

is located in the interface between the two dimers of our model (Figure 5.10), 

suggesting the “capability” of Universal stress protein model of L. innocua to bind the 

ATP. It has in fact shown that the presence of ATP in the interface between the two 

dimers of Universal stress protein may be responsible of tetrameric assemblies whilst 

Usp without ATP-binding motif have a dimeric structure. 

  

VAL140       VAL142 
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Figure 5.9 Sequences multiple structural alignments between the chain A of Model_195 and proteins of 
homologue structure. Residues coloured represents the ATB-binding motif. 

	
  

Figure 5.10 Superposition of multiple structural alignment between the chain A of Model_195 and the proteins 
of homologue structure. Conserved residues of the ATP-binding motif are coloured acconding to the alignment (see 
Figure 5.9).  

 

5.4 DISCUSSION AND CONCLUSIONS 

The Usps are proteins expressed under different stress conditions. The role of these 

proteins is still unknown and the literature is lacking of information about the structure 

 

GXXGXXXXXXXXXGS/T	
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and function of the Usps. These proteins have about 150 amino acid and can assume a 

dimeric and/or a tetrameric structure. This characteristic may be associated with the 

capacity to bind or not the ATP. Several studies showed that some Usps are not able to 

bind ATP (UspA-Type), while other crystallize with ATP (UspFG-Type). Usually the 

UspA-Type form a dimer, while the UspFG-Type assume a structure where the 

tetrameric ATP plays an important role in the stabilization of the molecule 

(Schweikhard et al., 2010). 

Currently the 3D structure of the Usp of Listeria is not known, but there is evidence that 

these proteins are involved in resistance to acid stress and oxidative stress. Gomes et al., 

(2010) have shown that mutants of L. monocytogenes devoid of genes (Δlmo0515, 

Δlmo1580 and Δlmo2673) which encode for the Usp, showed a reduced growth 

capacity and resistance in the presence of acid stress and oxidative stress both in vitro 

and in vivo. Due to the lack of data regarding the Usps, the bioinformatics approach can 

help to get more knowledge about the structure and function of these proteins. The 

Homology modeling uses the structure of proteins experimentally determined (template) 

to predict the 3D structure of a protein that has a similar amino acid sequence (target). 

The comparative homology modeling approach can be used when the template and 

target possess at least 30% identity. In the present study the hypothetical Usp of L. 

innocua shares  

31% amino acid with the template 3S3T which corresponds to about 85% of the C-α 

with 3.5 Å from the correct position. The accuracy of the model is confirmed by the 

values of the torsion angles phi and psi showed in the Ramachandran plot as well as the 

QMEAN Z-score. The RMSD (0.3 Å) confirms the evolutionary relationship between 

the model and the template.  
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Of interest are the results regarding the analyses of the interfaces carried out with both 

PISA WebServer and with the multiple structural alignment (MUSTANG). The surface 

of the interfaces (ΔG <0, see Figure 5.6) is amongst the average values of expected for  

homologous proteins, but even more interesting is the presence of highly conserved 

residues in the region involved in the formation of the dimer and of residues that 

represent the ATP-binding motif, which is fundamental in the formation of the tetramer. 

This work suggests that L. innocua possesses a UspFG-Type and that this protein can 

assemble in a tetrameric structure. The results of this study, although to be confirmed 

experimentally, provide important information about a poorly studied protein and may 

stimulate experimental investigations. 
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