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ABSTRACT 

Considerable evidence suggests that combinatorial action of dietary bioactive 

compounds may be useful to prevent or reduce senile features. Therefore, a 

synergistic multi-target approach in dietary intervention may be effective in 

slowing down the aging process and increase healthy aging. Functional foods 

and nutraceuticals can exert specific anti-aging benefits such as improvement 

in mitochondrial function or induce neuroprotective effects to counteract the 

deleterious consequences of oxidative stress. In this project, we evaluated a 

novel treatment strategy by combining two bioactive dietary constituents 

(resveratrol and equol) to determine their effect on mitochondrial function. 

The combined use of both compounds increased mitochondrial mass,  

mitochondrial DNA content, SIRT1 enzymatic activity and induced 

mitochondrial biogenesis factors such as PGC1-α, TFAM and NRF-1. 

Therefore, identification of this novel synergism may provide a new 

perspective for future treatments aiming to modulate the mitochondrial 

activity. Next, we investigated the combined effect of L-Carnosine and 

EGCG, two bioactive dietary compounds that have received particular 

attention because of their potential role in modulating oxidative stress 

associated with aging. We demonstrated that the neuroprotective effects of 

EGCG and L-Carnosine are achieved through the modulation of HO-1/Hsp72 

systems. Our results indicate that the combined administration of EGCG and 

L-Carnosine  reduces the neuronal damage caused by oxidative stress. Since 

chronic oxidative stress plays a central role in the pathogenesis of many 

diseases, including HIV-1 associated disorders, the last part of the project 

aimed to investigate the age-related patterns of Nrf2 and HO-1 in different 
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brain regions and tissues of HIV-1 transgenic rat. The Nrf2/HO-1 axis 

constitutes a crucial cell survival mechanism to counteract oxidative stress 

and several recent studies have shown that bioactive food compounds can 

modulate Nrf2/HO-1 pathway. However, in the context of HIV-1 infection its 

role remains largely uncharacterized. In HIV-1 transgenic rat, we observed a 

significant reduction in the protein levels of Nrf2 and HO-1, suggesting a 

weakening in the cytoprotection exerted by Nrf2/HO-1 system. Moreover, the 

declined protein function of Nrf2 and HO-1 was accompanied by the 

acquisition of premature senescence phenotype in HIV-1 transgenic rat. 

Dietary inducers of Nrf2 and HO-1 may provide a novel strategy for restoring 

this pathway and mitigate oxidative stress during HIV-1 infection. 
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1. INTRODUCTION 

1.1 Food synergy: approaching a new generation   of 

 nutraceuticals  

The literal meaning of synergy is ‘working together’ but a useful definition is 

‘an effect seen by a combination of substances that is greater than would have 

been expected from a consideration of individual contributions’ (Heinrich, 

2004). In addition, combining the words “nutrition” and “pharmaceutical,” the 

word “nutraceuticals” refers to foods or food products that clinical evidence 

suggests may provide health and medical benefits, including for prevention 

and treatment of disease. Such products may be categorized as dietary 

supplements, specific diets, herbal products, or processed foods such as 

cereals, soups, and beverages. Dietary supplements can be extracts or 

concentrates and are found in many forms, including tablets, capsules, liquids, 

and powders. Vitamins, minerals, herbs, or isolated bioactive compounds are 

only a few examples of dietary ingredients in the products. Functional foods 

are designed as enriched foods close to their natural state, providing an 

alternative to dietary supplements manufactured in liquid or capsule form. 

Examples of nutritional and pharmacological synergies are increasingly 

widespread in the scientific literature (Jia, 2009; Ma, 2009; Ulrich-Merzenich, 

2009), and it should be noted that many single-target drugs cannot fully 

correct a complex disease condition or a pathological process (Keith, 2005). 

Isolated nutrients have been extensively studied in well-designed, long-term, 

large randomised clinical trials, typically with null and sometimes with 

harmful effects. For this reason, synergy assessment has become a key area in 
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nutritional studies. In particular, dietary phytochemicals such as quercetin, 

genistein, curcumin and catechins tend to increase the therapeutic effect by 

modulating one or more targets of the signal transduction pathway, by 

increasing the bioavailability of the other drug or, by stabilizing the other drug 

in the system (HemaIswarya, 2006). Flavonoids derived from almond skin 

acted synergistically with vitamins C and E to enhance resistance of human 

and hamster LDL cholesterol to oxidation (Chen, 2005). However, it is often 

argued that the bioavailability of dietary phytochemicals in target tissues is to 

low but there are numerous studies showing that by combining compound 

mixtures the bioavailability of certain bioactive food products can be 

improved. For example, piperin, the major alkaloid found in black pepper has 

been shown to improve the oral bioavailability of otherwise poorly absorbable 

compounds. One example is the combination of piperin and curcumin, leading 

to an improved bioavailability of curcumin, an anti-inflammatory and anti-

cancer phytochemical from turmeric (Gertsch, 2011). A recent work showed 

that pomegranate juice polyphenols, peel polyphenols, and oil exhibit synergy 

in inhibition of cancer cell proliferation (Lansky, 2005). Clearly, more work is 

needed to provide novel insights into the mechanisms by which specific food 

components work synergistically but may enhance the understanding of diet 

and health. 

 

1.2 Mitochondrial function, aging and  bioactive food 

 components 

Mitochondria play a central role in the cell metabolism and mitochondrial 

dysfunction has been recognized as an important contributor to an array of 
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human pathologies. Mitochondrial dysfunction is particularly associated with 

the onset and progression of many age-related disorders such as 

neurodegenerative and cardiovascular diseases as well as metabolic disorders 

and age-related muscle wasting (Harman, 1972; Trifunovic, 2008; Lanza, 

2010). The major components of the mammalian system of oxidative 

phosphorylation (OXPHOS) are the four complexes of the respiratory chain, 

and since OXPHOS complexes I-IV transfer electrons and consume most of 

the cellular oxygen, it is assumed that OXPHOS is the main cellular producer 

of reactive oxygen species (ROS) (Orrenius, 2007). The rate of the oxidant 

generation by mitochondria is a critical factor in aging, and the rate of 

peroxide generation increases with age (Richter, 1988). Moreover, 

mitochondrial biogenesis includes the cellular processes involved in the 

synthesis and degradation of the organelle and mitochondrial renewal is 

impaired in aging causing accumulation of damage to mitochondria (Gomez-

Cabrera, 2012). Several regulatory factors are implicated in the modulation of 

mitochondrial biogenesis and peroxisome proliferator-activated receptor- γ 

(PPAR- γ) coactivator 1 α (PGC-1 α) has emerged as a master regulator for 

the mitochondrial transcription and translation machinery (Scarpulla, 2008). 

In addition, PGC1-α appears to act as a central coordinator of multiple 

transcription factors (Wu, 1999). In particular, it has been shown that PGC1-α 

is able to strongly interact and co-activate the nuclear respiratory factor 1 

(NRF-1) (Puigserver, 2003). Furthermore, NRF-1 is implicated in the 

interaction with several mitochondrial genes including the mitochondrial 

transcription factor A (TFAM), one of the most important mammalian 

transcription factors for mitochondrial DNA (mtDNA) (Kaufman, 2007). 
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Noteworthy, recent evidence has highlighted NAD+-dependent protein 

deacetylase sirtuin 1 (SIRT1) as a critical factor for the regulation of 

mitochondrial function. Indeed, SIRT1 with PGC1-α and its regulatory circuit 

have been recognized to have a direct involvement in the control of 

mitochondrial biogenesis and metabolism (Aquilano, 2010). Therefore, 

PGC1-α constitutes an energy sensing cellular platform that controls 

mitochondrial function and its network provides a link between mitochondria 

and ageing that may be useful as an anti-ageing strategy. Several 

nutraceuticals have been found to attenuate the progression of age-related 

dysfunction (Prasain, 2010) and there are a variety of dietary strategies to 

ameliorate mitochondrial function in ageing (Ferrari, 2004). Flavonoids 

(apigenin, kaempferol, luteolin, myricetin, quercetin), grape/wine 

polyphenols, vitamin E, chlorophyllin (water-soluble chlorophyll analogue) 

and other phenols can protect membrane polyunsaturated fatty acids from 

oxidation, avoiding mitochondrial and other biomembrane disruptions 

(Ferrari, 2004). For instance, among isoflavones (members of the class of 

flavonoids) equol (the main active product of daidzein metabolism) has 

recently attracted scientific interest since its antioxidant activity may be useful 

in treating age-related diseases (Rüfer, 2006), however its influence on 

mitochondria is still poorly understood. On the contrary, resveratrol is a 

naturally occurring polyphenol with wide-ranging health benefits including 

well-established properties in promoting mitochondrial biogenesis during 

ageing (Ungvari, 2011). Therefore, studies to identify new nutritional 

interventions focused on improving mitochondrial function will be extremely 

beneficial to prevent mitochondrial decline. 
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1.3 Neuroprotective effects of L-carnosine and EGCG  

Aging is associated with disruption of cerebral function and increased 

susceptibility to neuronal loss. Nutrition has been recognized as an important 

factor in the modulation of disease and longevity and several studies suggest 

that consumption of diets rich in functional foods may help to counteract age-

related cognitive declines and the risk of developing neurodegenerative 

disease (Kapoor, 2009; Ferrari, 2004; Eussen, 2011; Perry, 2011). Moreover, 

oxidative stress has long been linked to the neuronal cell death and it is 

associated with certain neurodegenerative conditions (Andersen, 2004). (-)-

Epigallocatechin-3-gallate (EGCG) and L-Carnosine (β-alanyl-L-histidine, L-

Car) are among the very few nutraceuticals able to cross the blood brain 

barrier (Lin, 2007; Tanida, 2005). L-Car is an endogenous dipeptide found at 

high concentrations in glial and neuronal cells throughout the brain (Quin, 

1992). L-Car has been studied extensively and even though its functional role 

is still not completely understood many biological functions and therapeutic 

actions have been proposed. Several studies indicate that L-Car has useful 

features and significant neuroprotective actions by acting as anti-oxidant and 

free-radical scavenger (Kohen, 1988; Preston, 1998). For instance, nitrosative 

stress induced in astrocytes by LPS and INF-γ clearly increases the expression 

of inducible nitric oxide (iNOS) but the addition of L-Car markedly reduced 

iNOS expression, confirming a protective effect of the dipeptide (Calabrese, 

2005). In addition to its ability to quench an excess of ROS, L-Car has also 

been proposed as a metal chelating agent with beneficial effects in the context 

of neurodegenerative diseases (Trombley, 1998; Baran, 2000; Hipkiss, 2007). 

L-Car was suggested to be useful for preventing accumulation of aging 
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features by interfering with the glycation processes and preventing the 

crosslinking of glycoxidised proteins to physiological macromolecules 

(Rashid, 2007; Brownson, 2000). Noteworthy, many studies have shown the 

protective effect of L-Car in rescuing cells from amyloid-β (Aβ) neurotoxicity 

(Bellia, 2011). EGCG also has been reported to have antioxidant, anti-

glycating, metal-chelating, and neuroprotective activities (Jeong, 2004; Lee, 

2007; Weinreb, 2009; Davinelli, 2012). EGCG is a member of the catechin 

family and it is a major polyphenolic constituent of green tea leaves (Levites, 

2003). There are numerous epidemiological studies that have emphasized the 

health-promoting effects of EGCG and recently this compound has attracted 

scientific attention as a potential nutritional strategy to counteract age related 

chronic disorders and to improve longevity (Khan, 2007). In particular, 

reports demonstrated that EGCG was found to elevate the activity of two 

major antioxidant enzymes, superoxide dismutase (SOD) and catalase in mice 

striatum. Furthermore, it has been reported that EGCG is able to inhibit the 

nuclear translocation of nuclear factor-kappa β (NF-kβ) in human 

neuroblastoma SH-SY5Y cells (Weinreb, 2009). Dietary antioxidants, such as 

L-Car and EGCG have recently demonstrated to be neuroprotective through 

the modulation of proteins such as heat shock protein 70 (Hsp70) and heme 

oxygenase-1 (HO-1) (Calabrese, 2011; Bellia, 2005). Hsp72 is the major 

stress inducible form of cytosolic Hsp70 and one of the best studied 

chaperones of the Hsp70 family which consists of at least 12 members 

(Tavaria, 1996). Hsp72 confers a cytoprotective role against various 

environmental stresses (Velazquez, 1984) and several neuroprotective effects 

have been shown against a variety of insults (Brown, 2007). A wide array of 
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exogenous factors and physiological signals are able to induce transcription 

and translation of Hsp72, including inflammatory response and oxidative 

stress (Dybdahl, 2005; Calabrese, 2001). During stressor exposure different 

intracellular signals are involved in the expression/release of Hsp72 which is 

coupled to activation of signalling pathways such as Toll-like receptors, 

adrenoreceptors, and NF-kB (Ortega, 2012) inducing a plethora of adaptive 

responses. HO-1 is one of the phase II enzymes and it is involved in the 

metabolism of heme for iron reutilization and oxidative stress tolerance (Poss, 

1997). Specifically, this stress-inducible intracellular enzyme plays a pivotal 

role in the degradation of heme into carbon monoxide (CO), ferrous iron, 

biliverdin, and bilirubin (Chung, 2008). The cytoprotective effect of HO-1 

may be attributed to its by-products, i.e. bilirubin, CO and free iron (Ryter, 

2006). Moreover, the products of heme degradation have strong influence on 

inflammatory processes and the induction of HO-1 pathway has been shown 

to act as a powerful defensive mechanism for tissues exposed to an oxidant 

challenge. Therefore, the induction of Hsp72 and HO-1 by bioactive food 

components may be crucial to reduce or prevent the neuronal damage.  

 

1.4 Relevance of Nrf2/HO-1 axis during the oxidative 

 imbalance in HIV-1 infection 

Substantial advances have been made over the past three decades to elucidate 

the complex pathobiological events related to the acquired immune deficiency 

syndrome (AIDS) caused by human immunodeficiency virus-1 (HIV-1). 

Multiple studies have shown that constitutive production of inflammatory 

mediators and radical species may significantly contribute to the severity and 
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progression of AIDS (Turchan-Cholewo, 2009; Deeks, 2011; Le Saux, 2012). 

Deregulation of inflammatory processes is a hallmark of HIV-1 infection 

(Appay, 2008) which may further increase the sustained cellular redox 

imbalance observed in HIV-1 infected patients (Gil, 2003). Indeed, several 

authors have recently claimed the crucial role of oxidative stress in the 

pathogenesis of HIV-1-related diseases (Lassiter, 2009; Husain, 2009). In 

particular, it was reported that HIV-1 proteins such as envelope glycoprotein 

gp120 (gp120) and transactivator of transcription (Tat) cause oxidative stress 

and cellular dysfunction in tissues and cells that are not generally infected by 

the virus (Price, 2005; Fan, 2013). It has also been proven that viral proteins 

released extracellularly may interact with uninfected cells and play a critical 

role to promote inflammation or affect the intracellular redox balance (Nath, 

2002). Therefore, chronic inflammation and persistent alterations of redox 

signaling during HIV-1 infection contribute to the premature occurrence of 

age-related comorbidities, including liver disease and neurocognitive 

impairment (Bathia, 2012). The rise of HIV-1-associated non-AIDS 

conditions attributed to highly active antiretroviral therapy (HAART) and 

commonly observed in the elderly suggests a new and fascinating paradigm 

describing HIV-1 infection as amodel of accelerated aging (Pathai, 2013). 

Although the premature aging of the immune system of HIV-1 carriers has 

been demonstrated (Desai, 2010), convincing evidence to support the role of 

oxidative stress theory of aging in HIV-1 are still lacking. Although consistent 

oxidative imbalance affects the body during HIV-1 infection (Ngondi, 2006; 

Mandas, 2009 ), very limited experimental data are available. The 

deregulation of redox-sensitive stress response may be due to multiple factors 
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such as exposure to circulating "virotoxins" in the extracellular environment 

(Nath, 2002), presence of oxidized proteins in several brain regions, including 

prefrontal cortex and hippocampus (Mollace, 2001; Mattson, 2005), or the 

virus making the liver more vulnerable to oxidative stress (Lin, 2013). 

Recently, the essential role of nuclear factor erythroid 2-related factor 2 

(Nrf2) in the context of HIV-1 infection has obtained growing attention and 

interest (Deramaudt, 2013). Nrf2 acts as a sensor of oxidative and 

electrophilic stress and serves as a master switch in the networks coordinating 

the induction of a battery of protective genes that are crucial for 

cytoprotection and cell survival (Niture, 2013). In addition, HO-1 plays a 

pivotal role in the maintenance of cellular redox homeostasis (Scapagnini, 

2004) and its expression is mainly regulated by Nrf2. These two systems are 

essential components of the cellular stress response and they display 

combined critical biological activities to efficiently counteract oxidative stress 

and inflammation (Paine, 2010). Noteworthy, HO-1 activity is a potent 

defense factor for HIV-1 infection and a direct correlation between HO-1 

induction and inhibition of HIV-1 replication has been shown (Devadas, 

2006). Several recent studies have shown that nutritional compounds can 

modulate the activation of Nrf2/HO-1 axis (Scapagnini, 2011) and these 

compounds may have a positive impact on this pathway during HIV-1 

infection. A recent study showed that EGCG supplementation significantly 

improved the changes associated with Tat-induced oxidative stress. The HIV-

1 Tat activates the NF-kB signaling transduction pathway, which is necessary 

for viral replication. By increasing the nuclear levels of Nrf2, EGCG 

decreased the levels of NF-kB and ROS production in cells transfected with a 
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Tat plasmid. These data suggest that the Nrf2 signaling pathway is the 

primary target for the prevention of increased viral gene expression Tat-

induced HIV-1 by EGCG which reduces NF-kB (Zhang, 2012). Thus, these 

studies suggest that bioactive food compounds have the ability to activate the 

Nrf2 pathway, increases the activity of antioxidant enzymes such as HO-1 and 

may be useful to modulate Nrf2/HO-1 system during HIV-1 infection.  
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2. AIM OF THE STUDY  

Emerging evidence suggests that combinatorial action of numerous 

biologically active compounds may be a valuable source in a variety of 

therapeutic applications. Moreover, the benefits of multi-target action are well 

established in a variety of pathological models. Therefore, identification of  

novel synergisms may provide a new perspective for future treatments aiming 

to modulate crucial biological pathways involved in the pathomechanism(s) of 

many disorders. Many dietary supplements and nutraceuticals may be useful 

to augment the efficacy of pharmacological approaches or provide 

physiological benefit to improve age-related decline. Aging process is 

characterized by a general decline in cellular activity and it is also associated 

with a decrease in mitochondrial function correlated to the onset and 

progression of age-related pathologies. In this context, it should be noted that 

oxidative stress play a central role in age-related cognitive declines and in the 

risk of developing neurodegenerative disease. Persistent alterations of redox 

signaling contributes to many of the abnormalities associated with the 

pathogenesis of many diseases, including HIV-1 related disorders. In addition, 

the partial successful of HAART caused an increase in the life expectancy of 

HIV-1 infected patients leading to frailty syndrome and age-related diseases 

during HIV-1 infection. The Nrf2/HO-1 axis constitutes a crucial cell survival 

mechanism to counteract oxidative stress and its role in HIV-1 remains largely 

uncharacterized. For all these reasons, we first examined whether the 

combination of two polyphenols (resveratrol and equol) would be more 

effective to modulate mitochondrial function. We next investigated the 

combined effect of two known nutraceuticals such as L-Car and EGCG on the 
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activation of two stress-responsive pathways to achieve cytoprotection against 

oxidative stress-induced cell damage.Finally, in order to design future 

treatments during the redox imbalance caused by HIV-1 infection, we further 

characterized the Nrf2/HO-1 system, which is the main pathway associated 

with the oxidative stress response and mainly modulated by dietary 

compounds. 
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3. EXPERIMENTAL PROCEDURES 

3.1 Materials 

3.1.1 HUVEC cell culture 

HUVEC were obtained from Lonza and maintained in endothelial basal 

medium (EBM-2) supplemented with growth factors (Lonza). Cells were 

grown at 37°C in 5% CO2 and serial passages were performed when the cells 

reached a 80% confluence. As described by Grillari et al. (Grillari, 2000) at 

around 30 passages when the cells exhibited the irreversible growth arrest, 

they were used for the experimental procedures. HUVEC cells were treated 

with resveratrol (trans-3, 4, 5,-trihydroxystilbene) (purity 98%) purchased 

from Cayman Chemical Company and equol ((3S)-3-(4-Hydroxyphenyl)-7-

chromanol) (purity 98%) purchased from INDOFINE Chemical Company.  

 

3.1.2 Neuronal culture 

The embryos were extracted from a 17-day pregnant Wistar rat (Harlan-

Sprague-Dawley). The fetuses were sacrificed and the heads placed in high 

glucose phosphate buffered saline (PBS) (Sigma). The brains were then 

quickly dissected under a stereomicroscope to isolate brain cortex, which was 

then cut into small fragments and exposed to papain, activated in the presence 

of cysteine and ethylen-diaminotethracetic acid (EDTA), for 9 minutes at 

37°C. The fragments were mechanically dissociated through a fire-polished 

Pasteur pipette to obtain single cells suspension. The cell suspension was 

layered onto a gradient consisting of 2 ml Earle's balanced salt solution 

(Gibco) containing 20 mg of bovine serum albumin and 20 mg of trypsin 
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inhibitor (ovomucoid), and then centrifuged. The pellet was successively 

resuspended in high-glucose Dulbecco's modification of Earle's medium 

containing 10% heatinactivated fetal bovine serum (Gibco,) and antibiotics 

(100 IU/ml of penicillin and 100 μg/ml of streptomycin) (ICN-Biomedicals). 

The cells were then counted and tested for viability using the trypan blue 

exclusion test (viability was > 99%). Finally, the cells were seeded onto 25 

cm
2
 T-flasks (Corning) previously coated with poly-D-lysine. After 48 hours, 

1 μM cytosine arabinoside was added to the cells to inhibit glial cell growth. 

Cell cultures were incubated at 37°C in a humid 5% CO2  and 95% air 

environment. This protocol produced an enriched neuronal culture. For the 

cell treatment we used the following compounds: 3,4,5-Trihydroxybenzoic 

acid (2R,3R)-3,4- dihydro-5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)-2H-1-

benzopyran- 3-yl ester, (TEAVIGO
TM

, purity min. 94 %) and L-Car (Sigma, 

purity min. 98 %). 

 

3.1.3 Animals 

The HIV-1 transgene (NL4-3Δgag/pol) construction and generation of the 

HIV-1 TG have been previously described in detail (Reid, 2001). Age-

matched male HIV-1 TG rats and genetic background control Fisher 344 

(F344) were used and experiments were designed to study the following age 

groups: young (3-months-old), adult (12-months-old), and aged (23-months-

old). The animals were housed under pathogen free conditions and food and 

water were provided ad libitum. Rats were anaesthetized with an overdose of 

CO2 and sacrificed. Spleen and liver were quickly removed, washed with cold 

PBS and immediately frozen at -80 °C until use. Whole brain was rapidly 
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excised and the hemispheres were either directly snap-frozen or further 

dissected on ice to prepare the following brain regions: hippocampus, cortex 

and cerebellum. The left and right sides of the brain were randomly chosen for 

either protein or gene expression analyses and kept at -80 °C until processed. 

 

3.2 Methods 

3.2.1 MitoTracker® Red staining 

The HUVEC cells were subdivided into three groups, which were treated, as 

previously tested (Csiszar, 2009) with resveratrol, 10 μM for 48 hours, equol 

10 μM (Kamiyama, 2009) for 48 hours, and with the composition containing 

resveratrol and equol 10 μM for 48 hours, respectively. The mitochondrial 

mass in HUVEC was determined selectively loading mitochondria with 

Mitotracker fluorescent red dye (Invitrogen). Fluorescent calcein (green) and 

Hoechst 33258 (blue) dyes were used to stain the cytoplasm and the nuclei, 

respectively. The mitochondrial density-area was calculated with respect to 

cytoplasmatic volume using Zeiss AxioVision imaging software (Zeiss). Only 

cells with intact cytoplasmatic calcein stain were included in the analysis. 

 

3.2.2 Histochemical staining for senescence associated β-

galactosidase (SA-β-gal) 

SA-β-gal activity was detected by a histochemical procedure, as previously 

described (Debacq-Chainiaux, 2009). Briefly, the tissues and the brain were 

frozen and embedded in tissue freezing medium (TBS, Fisher Scientific). 

Sections were cut on a cryostat and mounted onto Superfrost/Plus microscope 
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slides (Fisher Scientific). Sections were fixed in 1% formaldehyde for 1 min, 

washed in PBS, and stored at -80 °C until used for SA-β-gal staining. Slides 

were immersed in X-Gal staining solution (pH 6) and after overnight 

incubation in the dark at 37 °C, sections were washed in PBS and viewed 

under bright field. SA-β-gal activity was determined by the detection of 

stained blue-green tissues. 

 

3.2.3 Tat and gp120 immunohistochemistry 

Tissues from TG and Fisher 344 Sprague–Dawley control rats were fixed in 

10% neutral buffered formalin and embedded in paraffin. Five-microgram 

tissue sections (spleen and lymph nodes) were used and a modified 

avidin/biotin method was used for immunohistochemical localization of HIV 

gene products (Wiley, 1986). Paraffin sections were processed and treated 

with avidin/biotin blocking solution (Vector Laboratories) and non-immune 

sera appropriate for blocking the secondary antibody at a 1:5 dilution. Primary 

antibodies included mouse anti-HIV-1 gp120 monoclonal antibody (NEN), 

diluted 1:150; mouse anti-HIV-1 Tat monoclonal antibody (NEN), diluted 

1:100. Biotinylated secondary antibodies were incubated for 2 h at room 

temperature with anti-mouse IgG (rat-absorbed) (Vector Laboratories), at 

dilutions of 1:200, and labeled with Vecta Stain Elite ABC kit (Vector 

Laboratories), followed by addition of 3,3′-diaminobenzidine 

tetrahydrochloride (DAB) peroxidase (Sigma).  
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3.2.4 Nitrotyrosine detection by immunohistochemistry 

The brain was rapidly removed intact and frozen at −80°C. Nitrotyrosine was 

detected immunohistochemically in brain sections as an indicator of the 

presence of peroxynitrite and other nitrosating agents, as previously described 

(Scott, 1999). Sections were incubated overnight with 1:500 dilution of 

primary anti-nitrotyrosine antibody (Upstate Biotechnology), and specific 

labeling was detected with avidin-biotin peroxidase complex (Vectastain Elite 

ABC kit, Vector Laboratories.). 

 

3.2.5 SIRT1 activity assay 

Nuclear SIRT1 activity was evaluated in cells treated with resveratrol, equol 

and resveratrol + equol as described previously by Ferrara et al. (Ferrara, 

2008). We measured SIRT1 using a deacetylase fluorometric assay kit (Sir2 

Assay Kit, CycLex, Ina). The final reaction mixture (100 μL) contained 50 

mM Tris–HCl (pH 8.8), 4 mM MgCl2, 0.5 mM DTT, 0.25 mA/mL Lysyl 

endopeptidase, 1 μM Trichostatin A, 200 μM NAD, and 5 μL of extract 

nuclear sample. All determinations were performed in triplicate. 

 

3.2.6 Heme Oxygenase Activity Assay 

Microsomes from harvested cells were added to a reaction mixture containing 

NADPH, glucose-6-phosphate dehydrogenase, rat liver cytosol as a source of 

biliverdin reductase, and the substrate hemin. The mixture was incubated in 

the dark at 37°C for 1 hour and the reaction was stopped by the addition of 1 

ml of chloroform. After vigorous vortex and centrifugation, the extracted 
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bilirubin in the chloroform layer was measured by the difference in 

absorbance between 464 and 530 nm (e= 40 mM-1cm-1). 

 

3.2.7 Cell Viability  

Cell viability was determined in cortical neurons treated for 12 hours with 

EGCG 25 μM, L-Car 25 μM, or with EGCG 25 μM + LCar 25 μM, followed 

by incubation for 2 hours in the presence of glucose oxidase (50 mU/ml). 

After treatment with glucose oxidase, cells were washed and exposed to 

complete medium containing 1% Alamar blue for 5 hours according to 

manufacturer’s instruction (Serotec). After the incubation period, optical 

density in the medium of each well was measured using a plate reader 

(Molecular Devices). The intensity of the red color is proportional to the 

viability of cells, which is calculated as difference in absorbance between 570 

nm and 600 nm and expressed as percentage of untreated cells. 

 

3.2.8 Quantitative real-time PCR for mitochondrial DNA 

Total DNA was extracted from HUVEC cells using the DirectPCR lysis 

reagent (Viagen Biotech). The number of mtDNA copies was quantified by 

qRT-PCR according to the protocols of Adabbo et al. (Adabbo, 2009). Two 

different housekeeping genes were used (cytochrome oxidase III and β-actin) 

for normalization. mtDNA per nuclear genome was calculated as the ratio of 

cytochrome oxidase III (mitochondrial) DNA to β-actin (nuclear) DNA. 

Quantification was performed using the ΔΔCT method. 
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3.2.9 Measuring the mRNA expression of mitochondrial 

biogenesis factors via quantitative real-time PCR 

The qRT-PCR technique was used to determine the effect of resveratrol, equol 

and of the mixture of the two compounds (resveratrol + equol) (10 μM for 24 

h) on mRNA expression of mitochondrial biogenesis factors such as Nrf-1, 

TFAM and PGC1-α in HUVEC cells using Light Cycler technology (Roche 

Molecular Biochemicals). The total RNA was isolated with Mini RNA 

isolation II Kit (Zymo Research) and was reverse transcribed using 

SuperScript III RNase H-free reverse transcriptase (Invitrogen). Efficiency of 

the PCR reaction was determined performing dilution series of a standard 

sample. Hypoxanthine phosphoribosyltransferase (HPRT) was used for 

internal normalization and quantification was performed using ΔΔCT method. 

 

3.2.10 Real Time Quantitative RT-PCR to measure HO-1 and 

Hsp72 gene expression  

Total RNA from cell cultures was extracted using Trizol (Sigma, St. Louis, 

MI, USA). Single stranded cDNAs were synthesized incubating total RNA (1 

μg) with SuperScript II RNase H reverse transcriptase (200 U), oligo-(dT) 

primer (100 nM), dNTPs (1 mM), and RNase-inhibitor (40 U) at 42 °C for 1 

hour in a final volume of 20 μl. Reaction was terminated by incubating at 70 

°C for 10 min. Forward (FP) and reverse (RP) primers were used to amplify 

HO isoforms. The expected amplification products for HO-1, HO-2 are 123 

and 331 base pairs, respectively. Aliquots of cDNA (0.1 and 0.2 μg) and 

known amounts of external standard (purified PCR product, 102 to 108 

copies) were amplified in parallel reactions. Each PCR reaction (final volume 
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20 μl) contained 0.5 μM of primers, 2.5 mM Mg
2+

 and 1 x Light cycler DNA 

master SYBR Green (Roche Diagnostics). PCR amplifications were 

performed with a Light-Cycler (Roche Molecular Biochemicals). 

Quantification was performed by comparing the fluorescence of PCR products 

of unknown concentration with the fluorescence of the external standards. For 

this analysis, fluorescence values measured in the log linear phase of 

amplification were considered using the second derivative maximum method 

of the Light Cycler Data Analysis software (Roche Molecular Biochemicals). 

Specificity of PCR products obtained was characterized by melting curve 

analysis followed by gel electrophoresis, visualized by ethidium bromide 

staining. 

 

3.2.11 RNA isolation and quantitative real-time RT–PCR in 

different tissues of HIV-1 TG rat 

Total RNA was extracted from spleen, liver, whole brain, hippocampus, 

cortex and cerebellum homogenates, using TRIzol (Invitrogen) and QIAamp 

Rneasy Mini Kit (Qiagen), and DNase I-digested (Invitrogen). Quantity and 

quality of RNA were determined using a NanoDrop spectrophotometer 

(Thermo Scientific). cDNA was synthesized using iScript™ cDNA Synthesis 

Kit (Bio-Rad). Aliquots of cDNA were used to perform a quantitative real-

time RT-PCR using iQ™ SYBR® Green Supermix Kit (Bio-Rad) with an 

iQ™5 Multicolor Real-Time PCR Detection System (Bio-Rad). Primers 

(Nrf2, HO-1, Tat, GADPH, and β-actin) were designed for each gene using 

NCBI/primer-blast program and were synthesized by Sigma-Aldrich. 

Specificity of PCR products obtained was characterized by melting curve 
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analysis followed by gel electrophoresis. The fold-change in gene expression 

was quantified by the ΔΔCT method and the data are expressed as the relative 

level of the target gene in the HIV-1 TG rat normalized to the internal control 

(β-actin) and compared with F344 wild-type counterpart. All reactions were 

carried out in triplicate. 

 

3.2.12 Western Blot Analysis for HO-1 

After treatment with ECGC and/or L-Car, samples of neurons were analysed 

for HO- 1 protein expression using a western immunoblot technique. An equal 

amount of proteins (30 μg) for each sample was separated by SDS-

polyacrylamide gel electrophoresis and transferred to nitrocellulose 

membranes. Proteins were estimated by using bicinchoninic acid reagent. The 

nonspecific binding of antibodies was blocked with 3% nonfat dried milk in 

Tris buffered saline (TBS-T). Membranes were then probed with a polyclonal 

rabbit anti-HO-1 antibody (Stressgen Victoria, BC) (1:1000 dilution in TBS-

T, pH 7.4), for 2 hours at room temperature. After three washes with TBS-T, 

blots were visualized using an amplified alkaline phosphatase kit from Sigma 

(Extra-3A), and the relative density of bands was analyzed by the use of an 

imaging densitometer (model GS-700; Bio-Rad). 

 

3.2.13 Western blot in HIV-1 TG rat  

The spleen, liver, whole brain, hippocampus, cortex and cerebellum were 

homogenized in RIPA lysis buffer in the presence of a protease inhibitor 

cocktail (Sigma-Aldrich). Extracts were subjected to centrifugation at 10,000 

rpm for 20 min. Protein concentration was determined using the Bradford 
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protein assay. Equal amounts of protein extract were electrophoresed (12% 

SDS-polyacrylamide) and electrotransferred onto PVDF membrane (Bio-

Rad). Membranes were blocked with 5% non-fat milk dissolved in PBS 

containing 0.1% Tween-20 (PBST) for 1 h. The membranes were incubated 

overnight at 4°C with primary antibodies and the immunoblots were 

performed by using the following antibodies: anti-rat Nrf2 (rabbit polyclonal, 

1:1000 diluition, Abcam), anti-rat HO-1 (rabbit polyclonal, 1:1000 diluition, 

Abcam), anti-rat β-actin (rabbit polyclonal, 1:1000 diluition, Cell Signalling). 

Membranes were washed with PBST incubated with respective HRP 

conjugated secondary antibodies (Santa Cruz, Inc.). After further washing in 

PBST, the membranes were detected using an ECL chemiluminescent 

substrate kit (Invitrogen) and exposed to Kodak X-ray film. The bands were 

quantified by ImageJ software, and normalised to β-actin, which served as an 

internal control. 

 

3.2.14 Statistical analysis 

In cells treated with EGCG and L-Car, differences were analyzed by using 

one-way analysis of variance combined with the Bonferroni test. Values were 

expressed as the mean ± S.E.M., and differences between groups were 

considered to be significant at p < 0.05. In cells treated with resveratrol and 

equol, differences between various treatments were analysed by unpaired 

Student’s t-tests with P values <0.01 considered highly significant and P < 

0.05 considered significant. In the experiments involving HIV-1 TG rat, the 

values presented in the graphs are the means for at least three experiments. 

Results are expressed as mean ± standard error of the mean (SEM) of three or 
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more experiments. Student’s “t” test was used to assess differences between 

groups; a P value of <0.05 was considered significant. 

 

4. RESULTS 

4.1 Enhancement of mitochondrial biogenesis by   

 resveratrol and equol 

4.1.1 Combination of resveratrol and equol induces  

mitochondrial biogenesis in HUVEC 

We examined the combined treatment of resveratrol and equol on HUVEC 

cells to identify their effects on the mitochondrial biogenesis. In particular, the 

primary goal of this investigation was to determine whether combining 

resveratrol and equol would increase the expression of key factors involved in 

mitochondrial biogenesis. The Mitotracker staining showed that mitochondria 

were located in the perinuclear region in HUVEC (data not shown). Treatment 

with resveratrol increased significantly the density-area ratio in Mitotracker-

labeled endothelial cells as compared to the cytoplasmatic volume (Fig. 7A). 

The enhanced mitochondrial biogenesis in cells treated with both compounds 

simultaneously was also confirmed by the increased cellular mtDNA content 

(Fig. 7B). Overall, we found that co-treatment with resveratrol and equol 

positively affect mitochondrial biogenesis. 
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Figure 7: The combined treatment of resveratrol and equol strongly increased the 

number of mitochondria in HUVEC cells. (A) Mitotracker fluorescent intensities 

were analysed to assess the mitochondrial biogenesis. (B) Relative mitochondrial 

DNA (mtDNA) content was estimated by qRT-PCR. Representative data of at least 

3 experiments each performed in triplicate. (*= P < 0.05, **= P < 0.01). C: control; 

E: equol; R: resveratrol; E+R: equol + resveratrol. 

 

4.1.2 Induction of SIRT1 by the association of resveratrol and 

equol 

Analysis of the effect of a combined administration of resveratrol and equol 

showed an increase in SIRT1 enzymatic activity in HUVEC endothelial cells 

(Figure 8). Although equol was much less effective to induce SIRT1, the 

effect of a combination of resveratrol and equol was greater than the response 

achieved by the single compounds (Figure 8). 
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Figure 8: Increase of SIRT1 enzymatic activity by combined administration of resveratrol and 

equol. Fluorimetric SIRT1 activity assay to determine the effect achieved in HUVEC by the 

combined exposure to equol and resveratrol. Representative data of at least 3 experiments 

each performed in triplicate. (*= P < 0.05, **= P < 0.01). AFU: arbitrary fluorescence units; 

C: control; E: equol; R: resveratrol; E+R: equol + resveratrol. 

 

4.1.3 The association of resveratrol and equol activates 

 mitochondrial biogenesis factor 

PGC1-α is involved in regulating the expression of mtDNA via increased 

expression of TFAM which is co-activated by NRF-1 (Handschin, 2009). We 

used qRT-PCR measurements to analyse the expression of PGC1-α, NRF-1 

and TFAM. The results indicate that these mitochondrial biogenesis factors 

were strongly increased by combined treatment of resveratrol and equol (Fig. 

9). 
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Figure 9: Effect of resveratrol and equol on mRNA expression of PGC1-α (A), NRF-1 

(B), TFAM (C) in HUVEC. qRT-PCR measurement to assess the mRNA 

expression of the mitochondrial biogenesis factors. Representative data of at least 3 

experiments each performed in triplicate. (*= P < 0.05, **= P < 0.01). C: control; 

E: equol; R: resveratrol; E+R: equol + resveratrol. 

 

4.2. Synergistic Effect of L-Carnosine and EGCG in 

modulating HO-1 and Hsp72 

4.2.1 Synergistic effect of EGCG/L-Car supplementation in 

preventing neuronal cell death 

To assess the neuroprotective activity of EGCG, L-Car and of a mixture of the 

two compounds, cell viability was determined in mouse cortical neurons 

treated with different doses (0-100 μM) of the two compounds for 12 hours 

(Fig. 1). A significant decrease of viability of about 25% was observed only at 

the 100 μM dose of EGCG. We therefore decided to use the combination of 

the two compounds (25 μM each) before exposing the cells for 2 hours to 

glucose oxidase (50 mU/ml).  
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Figure 1: Cell viability of mouse cortical neurons. The cells were treated for 12 hours with 

15, 25, 50 and 100 μM of EGCG or L-Car *P<0.01.  

The glucose oxidase generates hydrogen peroxide at a constant rate and it is 

known to produce cellular injury in vitro (Chang, 1996). Treatment of cells 

for 2 hours with glucose oxidase resulted in 27% of residual cell viability 

(Fig. 2). Exposure of cells for 12 hours to 25 μM EGCG reduced glucose 

oxidase mediated damage, rising cell viability to 51% (24% more than the 

glucose oxidase treatment alone). L-Car at 25 μM concentration was less 

effective in protecting cells from oxidative damage, giving a viability of 33% 

(7% more than the glucose oxidase treatment). Remarkably, the association of 

the two compounds protected cells in a synergistic way, giving a rate of 

neuronal survival of 76% (49% more than the glucose oxidase treatment, 

which is more than the expected additive effect of 31%). 
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Figura 2: Cell viability of mouse cortical neurons exposed to glucose oxidase. The cells 

were treated for 2 hours with 50 mU/ml of glucose oxidase after exposure for 12 

hours with 25 μM of EGCG, L-Car or EGCG + L-Car.* P<0.01; **P<0,001. 

 

4.2.2 Stimulation of the HO-1 and Hsp72 Pathways by 

EGCG/L-Car supplementation 

We assessed the ability of EGCG and L-Car to elicit the HO-1 and the Hsp72 

pathways by measuring HO-1 and Hsp72 gene expression through 

quantitative real-time PCR. HO-1 and Hsp72 

mRNA steady state levels were measured following administration of 

increasing doses of EGCG and L-Car (Fig. 3). 

 

Figura 3: Stimulation of HO-1 and Hsp72 mRNA levels. Mouse cortical neurons were 

treated with increasing doses of EGCG and L-Car (5, 15, 25, 50 or 100 μM) and 

the levels of HO-1 and Hsp72 mRNA were measured. *P<0.01. 
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Compared to the not-inducible HO-2 paralog gene, EGCG elicits a dose-

dependent increase of HO-1 mRNA, which reaches the maximum (about 8 

fold) at 25 μM, and decreases subsequently at 50 and 100 μM. LCar is instead 

much less active in inducing HO-1 gene expression at the same 

concentrations, and stimulates HO-1 maximum expression at 25 μM. An 

opposite behaviour is observed for Hsp72 gene expression which is 

normalized according to the levels of the paralog not inducible gene Hsc70. 

EGCG administration gives a dose dependent enhancement of Hsp72 

expression at the highest  concentration of 50 μM and 100 μM. The last 

concentration is also associated to a 25% decrease in cell viability (see Fig. 1). 

The 25 μM dose, known to have no effects on cell viability, does not enhance 

Hsp72 gene expression in a statistically significant way. L-Car at the same 

concentration induces an increase of Hsp72 of about 8- fold (Fig. 3). To 

confirm that the increase in HO-1 gene expression corresponded to an 

equivalent increase in HO-1 activity, we measured the amount of bilirubin, as 

indicator of HO-1 activity, after 6 and 24 hours of EGCG and L-Car 

treatments in presence of glucose oxidase. We observed an increase in HO-1 

activity that was comparable to the enhanced mRNA expression, confirming 

the functional significance of the data obtained by the real time PCR 

determinations (Fig. 4). 
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Figura 4: Heme oxygenase activity of mouse cortical neurons. The amount of bilirubin 

was measured after 6 and 24 hours on cells treated with 5, 15, 25, 50 or 100 μM of 

EGCG or L-Car. * P<0.01. 

 

4.2.3 L-Car contributes to an increase in the levels of HO-1 

To estimate the contribution of HO-1 in the synergistic neuroprotective effect 

of EGCG and L-Car we repeated the first experiment by adding also Tin 

protoporphirin IX (ZnPP), a compound known to potently and specifically 

inhibit HO-1 activity. As shown in Fig. 5, the inhibition of HO-1 activity 

caused by ZnPP reduced the neuroprotective effects of the combination of the 

two compounds by 35%, bringing it to the level obtained with EGCG alone. 
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Figura 5: Cell viability of mouse cortical neurons exposed to HO-1 inhibitor (ZnPP). The 

cells were exposed for 2 hours into 50 mU/ml glucose oxydase after treatment for 

12 hours with 25 μM of EGCG, L-Car, EGCG + L-Car or 10 μM ZnPP. *P<0.01; 

**P<0,001. 

 

Determination of HO-1 by western blotting after EGCG and L-Car 

administration showed that EGCG strongly increased HO-1 expression while 

L-Car was much less effective. Similar results were already showed by 

quantitative real-time PCR. Interestingly their combination enhanced HO-1 

protein levels in a synergistic way at 25 μM dose of treatment and decreased 

HO-1 expression at higher concentration (50 μM) of the compounds (Fig. 6). 

Therefore, a contribution of L-Car could be observed also in terms of 

cooperative increase in the levels of HO-1, which is primarily induced by 

EGCG. 

 



38 

 

 

Figura 6 Protein levels of HO-1 estimated by densitometry of bands of western blot. 

Neurons were treated with 25 μM of EGCG or L-Car and with, 25 or 50 μM of 

EGCG + L-Car. Levels of HO-1 are normalized to β-actin. * P<0.01. ** P<0.001. 

 

4.3 Altered expression pattern of Nrf2/HO-1 axis during 

accelerated-senescence in HIV-1 transgenic rat 
 

4.3.1 Detection of HIV-1 Transgene Expression 

We performed a RT-PCR followed by gel electrophoresis (Fig. 10) to 

demonstrate the expression of HIV-1 transcript that encodes Tat in the HIV-1 

TG rat. PCR was conducted to use a set of primers that only gives rise to PCR 

product if the HIV-1 transcript encoding for the Tat gene was expressed.  

 

Figure 10: Detection of HIV-1 Tat by RT-PCR in HIV-TG rat. Splenocytes were 

extracted from A) Fischer, F344 and  B) HIV-1 TG rat.Formalin-fixed paraffin-

embedded 5 sections of spleen from line 1 TG rats were analyzed by 

immunohistochemistry for Tat and gp120. All two proteins were evident in 

cells within the lymph-node tissues (Fig. 11). 
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Figure 11: Detection of HIV-1 gp120 and Tat protein in HIV-1 TG rats. HIV-1 Tat and 

      gp120 detected from lymph-node tissues by immunocytochemical analysis 

 

4.3.2 Increased nitrosative stress in the brain of HIV-1 TG rat 

Figure 12 shows the results of immunohistochemical detection of 

nitrotyrosine in representative brain sections from Fischer F344 and HIV-1 

TG rat . Nitrotyrosine, an indicator of peroxynitrite formation and other 

nitrosating agents, was detected in the brain HIV-1 TG rat, whereas no 

staining was observed in brain regions of F344. 

 

a) Fischer 344 rat b) HIV-1 Tg rat

 

Figure 12: Nitrotyrosine staining in brain of F344 and HIV-1 TG rats. Representative 

     photomicrograph of a brain section taken from a) wild-type F344 rat and b) HIV-1 

     TG rat. Intense positive staining of nitrosative species  was found in HIV-1 TG rat. 

     Scale bar: 100 μm. 
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4.3.3 Protein decline of Nrf2 and HO-1 in spleen and liver of HIV-TG rat 

As reported by Reid et al. (Reid, 2001) viral transcripts and proteins were 

identified in several tissues of HIV-1 TG rat, including spleen and liver. To 

gain insight into the role of Nrf2 in the pathogenesis of HIV-1, we 

investigated its protein content in spleen extract from 3, 12 and 23 months-old 

rats by western blot analysis. Nrf2 protein was undetectable in the spleen of 

both wild-type and HIV-1 TG 3 months-old animals. Consistently, Nrf2 

protein was significantly lower in the 12 and 23 months-old HIV-1 TG rats as 

compared tocontrol animals (Fig. 13a). In contrast, the Nrf2 RNA levels 

quantified by qRT-PCR did not exhibited any substantial changes in the 

spleen from 3, 12 and 23 months-old HIV-1 TG rats compared to F344 

animals (Fig. 13b), which excludes impairment in the transcriptional 

regulation of Nrf2. We next examined whether the pattern detected in Nrf2 

levels was accompanied by a corresponding trend in HO-1 expression. Similar 

to the above findings, HO-1 protein declines significantly in each age group of 

HIV-1 TG rat spleen as compared to non-transgenic controls (Fig. 13c). 

Unexpectedly, HO-1 RNA levels were still present in all three transgenic 

groups with a slight increase at 12 months (Fig. 13d). These results suggest 

that in the spleen of HIV-TG rat, the downregulation of Nrf2 and HO-1 may 

be controlled primarily at the post-transcriptional level. 
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Figure 13: Nrf2 and HO-1 expression in the spleen of HIV-1 TG and F344 rats of 

varying ages. Western blot and densitometric analysis of total Nrf2 (a) and HO-1 

(c)  from spleen homogenates of young group: 3 months old; middle-aged 

group: 12  months old; and aged group: 23 months old (P<0.05 ). (b) RNA 

quantification of  Nrf2 and HO-1 (d) from spleen of 3, 12, 23 months old 

rats. β-actin is used as  internal control (P<0.05 ). Black bars: F344 rat; Grey 

bars: HIV-1 TG rat. 

 

Since liver performs key metabolic functions, including anti-oxidation and 

detoxification and Nrf2 provide an essential contribution to these processes, 

we investigated its hepatic protein level in HIV-1 TG rat. Noticeably, elevated 

Nrf2 protein was observed at 3 months in HIV-TG rat despite the absence of 

increased concomitant RNA expression (Fig. 2a, 2b), suggesting that an 

enhanced rate of protein translation may occur in young animals to counteract 

the stress due to the presence of the HIV-1 transgene. With increasing age, the 

levels of Nrf2 protein decreased compared to the control animals and in the 
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liver of older HIV-1 TG animals, Nrf2 protein became undetectable (Fig. 

14a). Figure 14b shows that the Nrf2 RNA level in liver of 23 months-old 

HIV- 1 TG rat was higher than that of middle-aged rats. This result supports 

the idea that in the liver, Nrf2 protein degradation occurs more quickly during 

the aging process of HIV-TG rat, even with the increased production of RNA 

in 23 months-old compared to 12 months-old. To further verify whether the 

expression of HIV-1 transgene affects the expression of one of the key 

enzymes involved in the regulation of the liver antioxidant stress, we 

determined the age-related level of HO-1 between HIV-1 TG animals and 

their wild-type counterparts. As shown in Fig. 14c, HO-1 protein content was 

undetectable at 3 months in both experimental groups, while its level was 

markedly decreased in 12 months-old and at 23 months-old compared to F344 

animals. Interestingly, RNA level was subjected to a strong decrease in 

middle-aged HIV-1 TG rat, similarly to the protein level, and to an increase in 

the older age (Fig. 14d). Even considering that the rate of HO-1 protein 

synthesis may remain constant between 12 and 23 months-old in HIV-1 TG 

rat, the enhanced RNA content at 23 months-old may indicate an adaptive 

transcriptional response in counteracting the negative effects of HIV-1 

transgene. 

 



43 

 

 

Figure 14: Age-related expression of Nrf2 and HO-1 at protein and RNA levels in liver 

of HIV-1 TG and F344 rats. Western blot and densitometric analysis of total 

hepatic Nrf2 (a) and HO-1 (c) proteins from young, middleaged and aged group 

(P<0.05 ). (b) Nrf2 and HO-1 (d) RNA levels from 3, 12, 23 months old rats. β-

actin is used as internal control (P<0.05 ). Black bars: F344 rat; Grey bars: HIV-

1TG rat. 

 

4.3.4 Reduced Nrf2 and HO-1 protein levels in multiple brain 

areas of HIV-1 TG rat 

The pro-inflammatory and pro-oxidant effects of HIV-1 related proteins in the 

brain are well known. Therefore, we next investigated the in vivo impact of 

HIV-1 on the expression of Nrf2 in the brain, by measuring its levels in whole 

brain, cortex, cerebellum and hippocampus extracts. Our results indicate a 

substantial Nrf2 protein decrease in HIV-1 TG rat, particularly in the whole 

brain, cerebellum  
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and hippocampus at 23 months-old as well as in the cortex of middle-aged and 

older HIV-1 TG rat (Fig. 15b, 15c, 15d).  

 

 

Figure 15: Nrf2 protein levels in the brain of HIV-TG and F344 rats of varying ages. 

Western blot and densitometric analysis of total Nrf2 in whole-brain (a), 

cerebellum (b), cortex (c) and hippocampus (d) from 3, 12, 23 months old rats 

(P<0.05 ). Black bars: F344 rat; Grey bars: HIV-1 TG rat. 

 

The qRT-PCR quantification revealed differential Nrf2 RNA expression with 

age in all HIV-1 TG analysed brain regions with a tendency to increase at late 

age, (Fig. 16). 

 This observed RNA profile in HIV-1 TG animals may be a late 

transcriptional response to the presence of HIV-1 transgene.  
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Figure 16: RNA expression of Nrf2 in the brain. Nrf2 RNA in different brain regions: 

whole-brain (a), cerebellum (b), cortex (c) and hippocampus (d) from young, 

middle-aged and aged group (P<0.05 ). Black bars: F344 rat; Grey bars: HIV-1 

TG rat. 

 

For a more comprehensive evaluation, we next examined whether HO-1 

protein levels were negatively affected during aging in HIV-1TG rats. Results 

of the western blot assay showed that middle-aged and aged HIV-1 TG groups 

exhibited significantly lower HO-1 content than control F344 rats (Fig.17).  
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Figure 17: HO-1 protein levels in the brain of HIV-TG and F344 rats of varying ages. 

Western blot and densitometric analysis of HO-1 in whole-brain (a), cerebellum 

(b), cortex (c) and hippocampus (d) from 3, 12, 23 months old rats (P<0.05 ). 

Black bars: F344 rat; Grey bars: HIV-1TG rat. 

 

In addition, Fig. 18 indicates the RNA levels of HO-1 in various brain regions 

of HIV-TG rat; the data displayed different expression patterns, showing an 

increase in prevalence at 23 months-old. Taken together, the results provide 

compelling evidence that the chronic expression of HIV-1-related proteins 

causes defective protein expression of HO-1 and a shared transcriptional 

signature at 23 months-old among multiple brain areas. 
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Figure 18: RNA expression of HO-1 in the brain. HO-1 RNA in different brain regions: 

whole-brain (a), cerebellum (b), cortex (c) and hippocampus (d) from young, 

middle-aged and aged group (P<0.05 ). Black bars: F344 rat; Grey bars: HIV-1 

TG rat. 

 

4.3.5 SA-β-gal expression is enhanced in the HIV- 1 

TG rat 
 

Up to this point our data indicate that the oxidative state observed in the HIV-

1 rat might be linked to the agedependent reduction of Nrf2 and HO-1 

proteins. Considering that persistent oxidative stress promotes the occurrence 

of premature senescent phenotype, we next assessed SA-β-gal expression in 

HIV-1 TG rat. SA-β-gal positive tissue areas showed substantial increase in 

expression in 12 months-old HIV-1 TG rats with respect to age-matched F344 

animals (Fig. 19). As compared with the control, no considerable variation of 

SA-β-gal activity was found in spleen, liver and brain of young HIV-1 TG rat 

(data not shown). These results suggest that the declined protein function of 
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Nrf2 and HO-1 was accompanied by the acquisition of premature senescence 

phenotype in HIV-1 TG rat.  

 

 

Figure 19: Staining for senescence-associated-galactosidase (SA-β-gal) in HIV-1 TG and 

F344 rats. Representative staining from middle-aged group of (a) spleen F344 

rat; (b) spleen HIV-TG rat; (c) liver F344 rat; (d) liver HIV- 1 TG rat; (e) brain 

F344 rat; (f) brain HIV-1 TG rat. Magnification 10 x. Scale 100 μm. 
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5. DISCUSSION 
 

Recently, synergy assessment has become a key area in medicine research in 

order to enhance efficiency of treatments and affect not only one single target, 

but several targets. Numerous nutraceuticals have been found to target and 

attenuate the progression of age-related dysfunction (Prasain, 2010). 

Currently, there are a variety of dietary strategies to ameliorate mitochondrial 

function in ageing (Ferrari, 2004). Although resveratrol and equol have 

recently attracted scientific interest for a wide-ranging of health benefits, their 

influence on mitochondria is still poorly understood. Indeed, the first aim of 

the project was to investigate the effects of resveratrol and equol on 

mitochondrial biogenesis using the two compounds individually and in 

combination. Several studies were conducted showing the synergistic effect of 

resveratrol with different compounds (Csaki, 2009) but the combination with 

equol has never been tested on the mitochondrial function. The analysis of 

Mitotracker intensity showed that resveratrol induced an increase in 

mitochondrial mass compared to non-treated cells. Equol alone was not 

effective in terms of augmenting the mitochondrial mass, however the 

combined treatment (resveratrol + equol) was more effective respect to 

resveratrol alone. It is important to point out that mitochondrial dysfunction 

tend to induce a wide range of adaptations of nuclear gene expression, named 

the retrograde response (Butow, 2004). Typical of this adaptive process 

(mitohormesis) (Calabrese, 2012; Calabrese, 2007; Tapia, 2006)  is the up-

regulation of mitochondrial biogenesis (Biswas, 1999). A robust adaptive 

response may further explain the increase in mitochondrial mass. Moreover, It 

has been consistently demonstrated that activation of SIRT1 stimulates 
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mitochondrial biogenesis and resveratrol has been utilized as a SIRT1 

activator to regulate mitochondrial function (Lagouge, 2006). Since equol 

exhibits a wide range of biological properties, it may be a sirtuin-targeting 

nutraceutical to prevent mitochondrial decline. In this study, the combination 

of resveratrol with equol is associated with the activation of SIRT1. In 

addition, PGC1-α is a key component in modulating mitochondrial function 

and interacts with transcription factors such as NRF-1and TFAM. Our results 

indicate that these mitochondrial biogenesis factors were increased by 

combined treatment of resveratrol and equol. Collectively, these data 

demonstrate that the combination of two known natural products, resveratrol 

and equol exerts a synergistic effect on mitochondrial function because 

stimulates the mitochondrial biogenesis more than the single compounds 

alone. Clearly, more work is needed to provide novel insights into the 

mechanisms by which resveratrol and equol synergize to regulate the 

mitochondrial dynamics. However, the co-administration of these agents may 

be a possible nutraceutical and/or anti-ageing strategy for a number of 

mitochondria-associated disorders. 

 

Recently, a growing number of studies have indicated that the dietary 

antioxidants may be beneficial for neuronal recovery and survival in 

neurodegenerative disorders (Calabrese, 2009). Over the past years, the 

involvement of the HO-1 pathway in anti-degenerative mechanisms has 

received considerable attention (Piantadosi, 1997; Dorè, 2002). Notably, HO-

1 induction occurs together with the induction of other heat shock proteins 

during various physiopathological conditions, generating potent protective 
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system against brain oxidative injury (Calabrese, 2004). The second aim of 

the project was to provide evidence that the combination of EGCG and L-Car 

elicits two different pathways with synergistic neuroprotective effects and 

increasing viability of neuronal cells. Our results demonstrated that the 

neuroprotective effects of EGCG and L-Car are achieved through the 

targeting of HO-1/Hsp72 systems.  the effect of a combination of EGCG and 

L-Car was greater than the response achieved by the single compounds alone 

and over the expected additive effect of EGCG and L-Car. The synergistic 

action of these two agents supports the idea of a crosstalk between the HO-1 

and the Hsp72-mediated pathways which potentiates the efficacy of the two 

compounds used alone. Moreover, the hypothesis is further reinforced since 

we assumed that the cytoprotection obtained through the expression of Hsp72 

is less effective when HO-1 is blocked with its inhibitor ZnPP. Because of this 

crosstalk, combination of drugs activating the single pathways might have a 

more pronounced antioxidant effect in a number of physiopathological 

conditions where the sensing of redox status is imbalanced. These findings 

imply that HO-1/Hsp72 system might work as a promising therapeutic 

approach with potential for clinical usefulness. To our knowledge, this is the 

first time that the antioxidant activities of the selected natural agents EGCG 

and L-Car were investigated in combinations. Our study demonstrates that 

combined administration of EGCG and L-Car possesses a more apparent 

antioxidant activity compared with each of them alone. Therefore, our 

findings indicate that the synergistic antioxidant effects of EGCG and L-Car 

may be a successful approach in the prevention of brain aging. Finally this 
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study supports the promising therapeutic mechanism of EGCG and L-Car in 

protecting against oxidative stress related diseases. 

 

The third aim of the project was to characterize Nrf2/HO-1 pathway  in HIV-1 

TG rat. This pathway has received great nutritional interest since its 

cytoprotective effects are mainly modulated by dietary components. 

Moreover, there is a growing consensus that oxidative stress is a fundamental 

feature of HIV-1 infection (Uzasci, 2013) accompanied by disruption of the 

redox balance and decrease of the major antioxidant molecules (Gil, 2003). In 

the HAART era, numerous epidemiologic studies have provided critical 

evidence into the changing spectrum between the prevalence of AIDS and 

“non-AIDS” diseases (Blanco, 2010). Although HAART cannot be 

considered fully effective, the partial successful viral suppression caused an 

increase in the life expectancy but the deleterious consequences of HIV-1 

infection are shifted progressively toward frailty syndrome and age-related 

diseases (Ruiz, 2010). In this perspective, oxidative stress and constitutive 

production of inflammatory mediators due to the passive persistent presence 

of the virus plays an essential role in the onset of age-related diseases. 

However, only few studies have been focused on the potential protective 

function of Nrf2 against the pro-inflammatory state and oxidative injury 

during HIV-1 infection (Reddy, 2012). In the present study, we investigated 

the involvement of Nrf2 and its main antioxidant effector HO-1 in HIV-1 TG 

rat model. This non-infectious transgenic rat expresses all the HIV-1 viral 

genes except the gag–pol replication genes (Reid, 2001). Thus, studies 

conducted with HIV-1 TG rat provide valuable information about the acute 
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toxicity of viral proteins. These animals can be an useful model to simulate 

HIV-1 infection since they develop pathologies similar to humans infected 

with HIV-1 virus (Reid, 2001; Peng, 2010; Lashomb, 2009). Consistent with 

previous work (Reddy, 2012), our study demonstrates that the expression of 

HIV-1 related proteins may play a role in the inhibition of Nrf2 and HO-1 

protein expression with consequent limited ability to counteract the increased 

oxidative burden associated with HIV-1 infection. In addition, it was well 

established that Nrf2-deficient mice are more susceptible to oxidative stress 

(Yoh, 2008) and inflammatory disorders (Thimmulappa, 2006). Rao et al. 

reported that HIV-1 TG rat showed elevated markers of neuroinflammation in 

the brain (Rao, 2011). All these data and the clear synergism between HIV-1 

infection and aging (Önen, 2011) raise the intriguing possibility that HIV-1 

TG rat is a model to study “oxi-inflamm-aging” as this phenomenon was 

previously defined (De la Fuente, 2009; Franceschi, 2000). The general trend 

of down-regulation that we observed in Nrf2 and HO-1 protein levels may be 

due to HIV-1-related oxidative and nitrosative species that might lead to post-

translational deregulation and eventually faster degradation of Nrf2 and HO-1 

(Uzasci, 2013). In contrast, no consistent decline in the transcripts of Nrf2 and 

HO-1 was observed. Indeed, Nrf2 and HO-1 gene expression was not 

uniformly altered and it appeared differentially regulated in the tissues of 

HIV-1 TG rat. In some cases, we did not find substantial differences in gene 

expression. In other cases, we observed enhanced RNA content that may 

suggest an adaptive transcriptional activity in counteracting the negative 

effects of HIV-1 transgene. Finally, these changes in gene expression may not 

be affected by age in HIV-1 infected tissues. However, the regulation of Nrf2 
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expression and of its dependent genes can be achieved at multiple levels 

including transcriptional and post transcriptional events (Suh, 2004). 

Therefore, more studies are needed to further elucidate the crucial in vivo role 

of Nrf2 in the context of chronological aging in HIV-1. Recently, it has been 

reported that senescence is the result of accumulated oxidative injury 

(Barascu, 2012). SA-β-gal is a reliable marker of cellular senescence and it 

reflects the change in cell function that accompanies senescence (Campisi, 

2007). In our study, a marked increase of this senescence marker was 

observed in middle-aged HIV-1 TG animals compared to the controls and it is 

conceivable that deficiency of Nrf2/HO-1 proteins observed in the tissues may 

accentuate senescence during HIV-1infection. In summary, our findings have 

implications for understanding the involvement of the complex defense 

mechanism regulated by Nrf2 and HO-1 in response to HIV-1. The down-

regulation of these proteins is consistent with Salhan et al. observations that 

HIV-1 gene expression deactivates redox-sensitive stress response program in 

HIV-1 TG mice (Salhan, 2012). Despite a sustained induction of Nrf2 and 

HO-1 in presence of endogenous stresses, both persistent oxidative stress and 

reduction of Nrf2/HO-1 determined by HIV-1 may contribute to establish 

chronic inflammation and create favourable conditions for the replication of 

the virus. Dietary inducers of Nrf2 and HO-1 may provide a novel strategy for 

restoring this system and mitigate inflammation and oxidative stress during 

HIV-1 infection. 
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