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Riassunto 

 

Il rapido incremento delle attività commerciali, il perpetuarsi delle 

migrazioni umane, il turismo, i trasporti e i viaggi sempre più celeri, nel 

corso dell’ultimo secolo hanno notevolmente favorito la diffusione di 

numerose specie invasive, che hanno superato barriere geografiche, anche 

considerevoli, in un ristretto arco temporale. Questa tendenza è destinata ad 

aumentare ulteriormente, e le specie invasive provenienti da altri Paesi, 

prima sconosciute, sono da annoverare tre le principali minacce per la 

biodiversità e la produzione alimentare in tutto il mondo. 

Gli insetti rappresentano la maggioranza degli organismi viventi e, quindi, 

costituiscono larga parte del problema delle specie invasive, tanto che in 

molte aree, come Nord America, Australia, Asia e Sud Africa, gli insetti 

dannosi alloctoni sono considerati importanti quanto, e forse più, di quelli 

autoctoni. Tradizionalmente l’Europa ha subito danni meno ingenti da parte 

di insetti di provenienza esterna, tendenza che è notevolmente cambiata in 

anni recenti e che ha portato ad un interesse sempre maggiore nei confronti 

degli insetti alieni che hanno colonizzato il territorio comunitario. 

Drosophila suzukii Matsumura (Diptera: Drosophilidae), nota anche come 

moscerino dei piccoli frutti o spotted-wing drosophila (SWD), originaria del 

sud-est asiatico, è un fitofago di recente introduzione in Europa, Stati Uniti e 

Canada, ove i danni sono stati rinvenuti su numerose colture come ciliegio, 

vite, uva spina, lampone e frutti di bosco in genere, pesco, susino, cachi, 

pomodoro, olivo, gelso e nespolo, di cui attacca i frutti. 

Gli adulti di D. suzukii sono moscerini lunghi 2-3 mm, con occhi rossi, 

torace marrone chiaro o giallastro e strisce nere sull'addome. Sono 

caratterizzati da uno spiccato dimorfismo sessuale; i maschi mostrano, 

infatti, una macchia scura al margine anteriore di ogni ala, le femmine un 

grande ovipositore seghettato. Le uova sono bianco latte, oblunghe (0,5-0,7 

x 0,2 mm) e con due filamenti ad un’estremità; dell’uovo, deposto sotto 

l’epicarpo, sono visibili dall’esterno solo i due filamenti sporgenti (ca. 0,4 



 
 

mm) dalla cicatrice di ovideposizione. Le larve si sviluppano attraverso tre 

età, sono di colore bianco traslucido e vivono all’interno del frutto ospite, 

nutrendosi della polpa e dei microrganismi naturalmente presenti, 

causandone il deterioramento; le cicatrici di ovideposizione, infatti, 

consentono l’ingresso di patogeni, come batteri e funghi, che comportano la 

cascola precoce dei frutti danneggiati. 

I danni economici causati da D. suzukii sono stati stimati in circa 2 miliardi 

di dollari in America, oltre 4 miliardi in Europa e 500 milioni in Asia. 

Appare scontato pensare che gli insetticidi di sintesi possano rappresentare il 

mezzo principale per il controllo e la gestione di D. suzukii ma, data la 

novità rappresentata da questo fitofago, deve essere individuata, intanto, una 

soglia economica di danno. Insetticidi di sintesi quali organofosfati, 

piretroidi e spinosad, hanno dimostrato una certa efficacia contro D. suzukii; 

l’altra faccia della medaglia mostra come questi principi attivi ad ampio 

spettro di azione siano tossici per gli insetti utili, oltre che essere responsabili 

dell’aumento dei residui presenti nei frutti, con tutti i rischi conseguenti per 

la salute umana. 

Risultati incoraggianti sono attesi dall’uso di agenti di biocontrollo come 

funghi, batteri, virus e altri nemici naturali del carpofago, ovvero predatori e 

parassitoidi, che potrebbero essere usati per limitarne le popolazioni. 

Il metodo attualmente più utilizzato per il monitoraggio di D. suzukii è 

basato sull’impiego di trappole costituite da un bicchiere di plastica forato 

contenente aceto di sidro di mele, un tensioattivo e un pannello adesivo di 

colore giallo. Tali trappole sono inefficaci per un monitoraggio precoce di D. 

suzukii, le cui popolazioni raggiungono rapidamente densità tali da arrecare 

danni, in quanto progettate per catturare altri insetti, in particolare 

Drosophilidae. 

Al fine di mettere a punto strategie efficaci di cattura massale, sono necessari 

attrattivi altamente efficaci e selettivi. Per D. suzukii, osservazioni 

preliminari confermano che l’insetto adulto è richiamato dalla frutta 

lesionata e preferibilmente in stato di fermentazione, come suggerisce la 

naturale attrazione esercitata da una varietà di liquidi fermentati, tra cui vino, 

aceto, succhi di frutta e derivati, nonché dall’associazione, recentemente 

riportata, di questo insetto con una comunità di diverse specie di lieviti, 



 
 

come Hanseniaspora uvarum (Niehaus) Shehata et al. Allo stato attuale, le 

trappole più efficaci per catturare D. suzukii sono innescate con diversi tipi 

di aceto e vino, substrati entrambi derivanti dalla fermentazione mediata sia 

da lieviti che da batteri. Una delle esche liquide commerciali, il cosiddetto 

“Droskidrink”, ha fornito risultati promettenti sia nel monitoraggio di D. 

suzukii, condotto negli anni 2011-2013 in provincia di Trento, che in prove 

preliminari di cattura massale. 

L’obiettivo principale di questo lavoro, pertanto, è stato quello di studiare 

alcuni aspetti poco noti di D. suzukii, in particolare quelli inerenti la 

percezione di stimoli di varia natura e il riconoscimento di substrati di 

interesse per la messa a punto di esche innovative e altamente efficaci da 

utilizzare nel monitoraggio e in strategie di controllo del carpofago. In 

particolare, gli studi sono stati indirizzati alla caratterizzazione di parametri 

biologici, fisici e chimici utili per valutare l’efficacia in campo dell’attrattivo 

noto come “Droskidrink”, l’esca commerciale raccomandata contro D. 

suzukii anche in pieno campo. Le prove di campo sono state condotte nella 

regione Trentino-Alto Adige, dove il fitofago ha recentemente causato danni 

ingenti. La ricerca ha sviluppato un nuovo tipo di esca, in cui l’attrattivo 

commerciale “Droskidrink” è risultato fortemente potenziato nella sua 

azione grazie all’associazione con microrganismi in grado di rilasciare 

sostanze volatili biologicamente attive su D. suzukii. 

Gli studi sono proseguiti presso l’Oregon State University, dove è stata 

saggiata la funzionalità della trappola innescata con il nuovo attrattivo anche 

in ambienti ecologicamente diversi, con l’intento di accelerare la ricerca e il 

trasferimento tecnologico di nuovi metodi ecosostenibili di controllo di D. 

suzukii basati, ad esempio, su tecniche di cattura massale. 

Nel presente lavoro è stato possibile dimostrare l’importanza dei 

microrganismi, in particolare batteri lattici, e più propriamente ceppi 

appartenenti alla specie Oenococcus oeni (Garvie) Dicks et al., nel 

miglioramento della capacità di cattura del “Droskidrink”, dovuto a sostanze 

prodotte durante la fermentazione malolattica. Gli studi compiuti hanno 

anche condotto alla messa a punto di un nuovo modello di trappola che 

sembra agire in modo sinergico con la miscela attrattiva utilizzata e che, tra 

l’altro, è in grado di ridurre i tempi necessari per la quantificazione e la 



 
 

determinazione degli individui catturati. Interessante è risultata la capacità di 

questo nuovo modello di trappola di catturare un consistente numero di 

individui, specialmente di sesso femminile, in periodi caratterizzati da 

temperature al limite della sopravvivenza di D. suzukii, ovvero in presenza di 

basse densità di popolazione del carpofago. Questi risultati permettono di 

ipotizzare una buona efficacia dell’applicazione precoce delle tecniche di 

cattura massale o di lotta attratticida, che potrebbero condurre, come 

auspicato, ad una significativa riduzione del numero di individui presenti in 

campo al momento della comparsa dei frutti adatti all’ovideposizione. 

 



 
 

Abstract 

 

The spotted-wing drosophila (SWD), Drosophila suzukii Matsumura 

(Diptera: Drosophilidae), native of Eastern Asia, is an invasive alien species 

in Europe and the Americas and is one of the main emerging pests of 

valuable crops, including soft fruits and wine grapes. The conventional 

approach to handle infestations of SWD involves the use of commercially 

available insecticides, but these do not seem able to ensure effective results; 

consequently, alternative strategies are strongly required. Mass trapping uses 

a high density of traps baited with a lure and is one of the most promising 

methods studied and tested so far. Consequently, an improvement in the bait 

composition is obligatory to guarantee reliable attractivity to SWD. This 

study was aimed precisely to investigate and improve upon one of the best 

attractant mixtures for SWD, the “Droskidrink” (DD). The goal of the work 

was centred on the exploitation of lactic acid bacteria as a biological catalyst 

in the production of organic volatile molecules attractive to SWD, thanks to 

the fermentation of sugars and organic acids present in the liquid bait. 

Strains of lactic acid bacteria were chosen because they are usually involved 

in the fermentation of wine and vinegar, historically the most attractive 

liquids for species of Drosophilidae. A series of preliminary field tests was 

coupled with laboratory tests to describe the behaviour and performance of 

various kinds of lactic acid bacteria, in this particular application. 

Afterwards, we focused our analysis on different biotypes of the bacterium 

Oenococcus oeni (Garvie) Dicks et al. that revealed a high resistance to 

stressful environmental conditions of the liquid bait and, at the same time, a 

promising attractive capacity to SWD. Attention was then moved to a new 

model of trap able to produce a synergistic effect between the trap and the 

liquid bait. Our results showed that the attractiveness of DD was greatly 

increased by the addition of O. oeni to the standard mixture.  Malolactic 

fermentation due to O. oeni released volatile substances attractive to SWD. 

In particular, the new trap-bait combination provided excellent results, 

increasing the number of catches, especially with regard to female 

individuals and particularly during the cold seasons, when SWD has low 

population density. In addition, this new trap design is simpler and faster to 



 
 

service, compared to the traps used previously. The long-term goal is to 

accelerate research and technology transfer toward the development of mass 

trapping and attract-and-kill strategies based on the use of traps baited with 

this new attractant. Moreover, through the development of a trap utilizing the 

best characteristics identified in this study, we were able to obtain excellent 

levels of catches during the whole year. 

  



 
 

Dedication 

 

To Antonella, with all my heart. 



 
 

Contents 

 

1. Introduction .......................................................................................... 12 

1.1 Invasive alien insect species .................................................................. 12 

1.2 Drosophila suzukii Matsumura ............................................................. 13 

1.3 Management ......................................................................................... 17 

1.4 Volatile attraction ................................................................................. 19 

1.5 Monitoring ............................................................................................ 22 

1.6 The importance of trap design ............................................................. 25 

1.7 References ............................................................................................. 26 

2. Objectives .............................................................................................. 35 

2.1 Main goal of the thesis .......................................................................... 35 

2.2 Specific aims and list of main achievements and related 

publications ................................................................................................... 35 

2.3 References ............................................................................................. 38 

3. Development and efficacy of Droskidrink, a food bait for 

trapping Drosophila suzukii (Chapter 1) .............................................. 40 

3.1 Introduction .......................................................................................... 40 

3.2 Material and methods ........................................................................... 40 

3.2.1 Perimeter mass trapping - 2011 .................................................... 40 

3.2.2 Attractiveness of attract-and-kill baits - 2011 .............................. 41 

3.2.3 Control efficacy of attract-and-kill baits - 2013 ............................ 42 

3.2.4 Mass trapping - 2013 ..................................................................... 43 

3.2.5 Attractiveness of baits in monitoring traps - 2014 ........................ 44 

3.3 Results and discussion .......................................................................... 45 

3.3.1 Perimeter mass trapping - 2011 .................................................... 45 

3.3.2 Attractiveness of attract-and-kill baits - 2011 .............................. 46 

3.3.3 Control efficacy of attract-and-kill baits - 2013 ............................ 47 

3.3.4 Attractiveness of baits in monitoring traps - 2014 ........................ 48 

3.4 Conclusions ........................................................................................... 49 

3.5 References ............................................................................................. 49 



 
 

4. Exploitation of lactic acid bacteria for the improvement of a bait 

for Drosophila suzukii trapping (Chapter 2) ........................................ 51 

4.1 Introduction .......................................................................................... 51 

4.2 Materials and methods ......................................................................... 53 

4.2.1 Insect rearing ................................................................................. 53 

4.2.2 Composition of the Droskidrink (DD) bait for D. suzukii 

trapping ......................................................................................... 54 

4.2.3 Field assessment of different lactic acid bacteria species and 

strains............................................................................................. 54 

4.2.4 Laboratory evaluation of Oenococcus oeni performance to 

the DD conditions .......................................................................... 55 

4.2.5 Headspace characterization of DD inoculated with different 

O. oeni strains by Gas Chromatography - Mass 

Spectrometry (GC-MS) ................................................................. 55 

4.2.6 Electroantennography responses (EAG) of D. suzukii 

females to the headspace collected from DD inoculated with 

different O. oeni strains ................................................................. 56 

4.2.7 Field test with DD activated by three strains of O. oeni ............... 57 

4.3 Results and discussion .......................................................................... 59 

4.3.1 Field assessment of different lactic acid bacteria species and 

strains............................................................................................. 59 

4.3.2 Laboratory evaluation of O. oeni performance to the DD 

conditions ....................................................................................... 61 

4.3.3 Headspace characterization of DD inoculated with different 

O. oeni strains by Gas Chromatography - Mass 

Spectrometry (GC-MS) ................................................................. 62 

4.3.4 Electroantennography responses (EAG) of D. suzukii 

females to the headspace collected from DD inoculated with 

different O. oeni strains ................................................................. 64 

4.3.5 Field test with DD activated by three strains of O. oeni ............... 64 

4.4 Table and figures .................................................................................. 67 

4.5 References ............................................................................................. 74 

5. Use of an active culture of lactic acid bacteria for preparing a 

bait aimed at monitoring and controlling Drosophila suzukii and 

its respective compound to be put in appropriate traps (Chapter 

3) ............................................................................................................ 79 



 
 

5.1 Object of the invention ......................................................................... 79 

5.2 Scope of the invention ........................................................................... 79 

5.3 Background of the invention ................................................................ 79 

5.4 Disclosure of the invention ................................................................... 83 

5.5 Experimental section ............................................................................ 85 

5.6 Claims ................................................................................................... 88 

5.7 Figures................................................................................................... 90 

5.8 References ............................................................................................. 92 

6. Combined effect of trap design and Droskidrink mixture 

improved with different strains of Oenococcus oeni bacteria for 

early detection of Drosophila suzukii adults (Chapter 4) ..................... 95 

6.1 Introduction .......................................................................................... 95 

6.2 Materials and methods ......................................................................... 97 

6.2.1 Fermentation in open field ............................................................ 97 

6.2.2 Fermentation in the laboratory under controlled 

temperatures and different trap design and bait assessment ....... 99 

6.2.3 New trap design ........................................................................... 100 

6.3 Results and discussion ........................................................................ 101 

6.3.1 Fermentation in open field .......................................................... 101 

6.3.2 Fermentation in the laboratory under controlled 

temperature and different trap design and bait assessment ...... 102 

6.3.3 New trap design ........................................................................... 103 

6.4 Conclusions ......................................................................................... 104 

6.5 Figures................................................................................................. 106 

7. Final considerations ............................................................................ 112 

7.1 References ........................................................................................... 115 

8. Bibliography ....................................................................................... 116 

9. Acknowledgements ............................................................................. 129 

 



12 
 

1. Introduction 

 

1.1 Invasive alien insect species 

 

Invasive alien species are recognized as one of the leading threats to 

biodiversity and food production worldwide. The ways in which non-native 

species affect native species and ecosystems are numerous and usually 

irreversible (Parker et al., 1999). Non-indigenous species also impose 

enormous costs on agriculture, forestry and human health (Pimentel et al., 

2002). Rapidly accelerating human trade, tourism, transport and travel over 

the past century have dramatically enhanced the spread of invasive species, 

allowing them to surmount geographic barriers. Since this tendency is likely 

to increase (Levine & D’Antonio, 2003), national and international strategies 

are required to assess the full scope of the threat of invasive alien species 

and to deal with it effectively. Insects represent the majority of living 

organisms and, hence, form a large part of the alien species problem. In 

many regions, such as North America, Australasia and South Africa, exotic 

insect pests are considered as important as native pests, if not more so 

(Pimentel, 2002). Traditionally, problems have been less severe in Europe 

(Niemelä & Mattson, 1996). However, in recent years, several pests of 

economic importance have invaded Europe, inducing more interest in the 

issue of alien insects. For example, Dryocosmus kuriphilus Yasumatsu 

(Hymenoptera: Cynipidae), the Asian chestnut gall wasp, is a major pest of 

chestnuts, Castanea spp. (Fagaceae) (Zhang et al., 2009), or even 

Drosophila suzukii Matsumura (Diptera: Drosophilidae), that is causing 

extensive economic damage to small fruits (Cini et al., 2012; Rota-Stabelli et 

al., 2013; CABI, 2014; Asplen et al., 2015). As for the control, in addition to 

the use of insecticides, that are relatively easy to use and have generally 

provided safe and effective pest control, biological control may represent 

one alternative to the use of insecticides. Biological control is the conscious 

use of living beneficial organisms, called natural enemies, for the control of 

pests. Virtually all pests have natural enemies and appropriate management 

of natural enemies can effectively control many pests. Although biological 

control will not control all pests all of the time, it should be the foundation of 
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an approach called integrated pest management (IPM), which combines a 

variety of pest control methods. Biological control can be effective, 

economical, and safe, and it should be more widely used than it is today 

(Mahr et al., 2008). 

 

1.2 Drosophila suzukii Matsumura 

 

 

Fig. 1 - Key characters for the identification of D. suzukii. Photo: Oregon 

State University. 

 

D. suzukii is commonly known as the spotted-wing drosophila (SWD). SWD 

originates from Southeast Asia, is a recently introduced pest in the 

continental United States, Canada and Europe that has caused significant 

damage to cherries and other soft-skin fruits (Hauser, 2011). It is thought to 

have originally had ancestors with short, weakly sclerotized ovipositors 

(typical of the melanogaster species), which later evolved to have the long, 

strongly sclerotized ovipositors, characteristic of D. suzukii (Kimura & 

Anfora, 2011). SWD adults are drosophilid flies  (2-3 mm  long) with red 

eyes, a pale brown or yellowish brown thorax and black stripes on the 

abdomen. Sexual dimorphism is evident: males display a dark spot on the 

leading top edge of each wing and females possess a large serrated 

ovipositor (Kanzawa, 1939; Walsh et al., 2011; CABI, 2014). Despite these 
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evident features, the identification of SWD presents several challenges: 

adults can be easily misidentified, as it occurred for example in California, 

where it was initially erroneously identified as Drosophila biarmipes 

Malloch (Hauser, 2011; Cini et al., 2012). D. suzukii differs from 

Drosophila melanogaster Meigen in that the adult males have a black spot 

near the tip of their wings (which may be faded or completely absent if the 

insect is too young), and females have an ovipositor with dark sclerotized 

teeth (Hauser, 2011). The males also have two sets of black combs on their 

front legs, one on the first tarsal segment and one on the second, which 

appear as bands (Hauser, 2011; Cini et al., 2012). The distinguishing 

features of the two sexes (serrated ovipositor and black wing spots) are 

present in other Drosophila species, thus making species identification 

difficult in areas where they are sympatric. For example, Drosophila 

subpulchrella Takamori et Watabe males’ black spots are very similar in 

shape and position to those of SWD (Takamori et al., 2006). Instead, other 

characteristics, such as the sex  combs on the foretarsi may guide to 

identification (Cini et al., 2012). Other species within the Drosophila genus 

have smaller, less sclerotized ovipositors and tend to lay their eggs on rotting 

plant matter or overripe fruits and vegetables (Fellows & Heed, 1972; 

Jaenike, 1983; Markow & O’Grady, 2005). Within the family Drosophilidae, 

Zapronius indianus Gupta is another direct pest of a variety of fruits 

including figs and citrus, but are easily distinguishable from D. suzukii due 

to distinctive dorsal white stripes that extend from the head to the tip of the 

thorax (Steck, 2005). The eggs are milky white and oblong, 0.5-0.7 mm in 

length, about 0.2 mm in width with two filaments at one end. When the egg 

is laid under the skin of the fruit, all that is visible from the exterior is the 

two 0.4 mm filaments projecting from the oviposition scar (Kanzawa, 1935). 

The larvae are typical of the Drosophila genus; they grow from about 0.6 

mm in length when first emerged from the egg and develop through three 

instars to 5.5 mm in length and 0.8 mm in width. The larval body is 

translucent white with distinguishable yellowish entrails. The black 

mouthparts are visible in the head. Two tan respiratory organs protrude from 

the posterior end and curve upwards. The larvae live inside the host fruit and 

feed on the fruit and the microorganisms present as the fruit deteriorates 
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(Kanzawa, 1935). When the larva is ready to pupate it may leave the host 

fruit, but pupation inside the fruit is more common (Walsh et al., 2011). The 

resulting pupa is brown and oblong, with respiratory organs on the anterior 

and posterior sides. The posterior respiratory organs are similar to the 

posterior respiratory organs of the larva. The anterior respiratory organs are 

visible as two protrusions, from either side of the head, with a whorl of 7-8 

spikes around the termination of the spiracle (Kanzawa, 1935). This pest 

species has the potential to cause severe economic damage to fruit crops, 

because it has a wide host range and fast generation time (Kanzawa, 1939). 

The fruit is damaged as the three larval instars develop inside the fruit 

(Kanzawa, 1939), and the oviposition scar allows entrance by secondary 

pests, fungal and bacterial pathogens leading to decay of unripe fruits 

(Walsh et al., 2011; Hamby et al., 2012). The host range of SWD is widely 

varied and includes both crop and non-crop hosts. Kanzawa (1935) reported 

that SWD can infest cherries, grapes, gooseberries, raspberries, peaches, 

plums, persimmons, tomatoes, olives, mulberries, and loquats. Infestation 

levels in intact ripe fruit were compared to the levels in fruit left to shrivel or 

rot after harvest date, which indicated higher infestation levels in ripe fruit 

rather than overripe or rotting fruit (Kanzawa, 1935). In recent studies of 

susceptibility of some fruits at varying stages, oviposition began with fruit 

coloration and increased as the fruit ripened to maturity. Indeed, fruits 

susceptibility was shown to increase along the fruit ripening as a function of 

the balance between sugar and acidity. However, the severity of infestation 

depends mostly on the penetration resistance of the fruit skin (Lee et al., 

2011a; Burrack et al., 2013; Ioriatti et al., 2015). 

 



16 
 

  
Fig 2 - Blueberry and cherries damaged by D. suzukii. Photos: Regional Pest Alert 

(Oregon State University). 

 

The mobility of the fly and the wide range of hosts allow SWD to fully 

utilize a landscape of crop and wildland hosts that ripen throughout the year 

(Lee et al., 2011a). Important are the economic damage worldwide (Fig. 3) 

and they are estimated at more than 2 billion dollars in America, over 4 

billion in Europe and 500 million in Asia (Liburd, 2015). 

 

 
  Fig. 3 - Economic damage by D. suzukii worldwide (Liburd, 2015). 
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Fig. 4 - Current European SWD distibution map (as of May 2015). 

Countries are indicated accordingly to the years of the first SWD report 

(Asplen et al., 2015). 

 

1.3 Management 

 

Insecticides are the primary means of controlling and managing D. suzukii. 

Although an economic threshold for the insect has yet to be developed, it is 

recommended that upon first capture of the insect, treatments should begin 

for all susceptible crops in an area (Burgess, 2013). Organophosphate, 

pyrethroid and spinosyn insecticides have proven partly effective against D. 

suzukii, however these broad-spectrum compounds also kill beneficial 

insects, and application at the ripening stage may increase residues in the 

fruit (Burrack et al., 2012; Cini et al., 2012). Insecticide-alternative 

management strategies are also currently being investigated. Biological 

controls in the form of predators, parasitic wasps, symbiotic microorganisms 

in the form of Wolbachia bacteria are under investigation for the control of 

D. suzukii (Chabert et al., 2012; Siozios et al., 2013; Miller et al., 2015; 

Rossi Stacconi et al., 2015; Woltz et al., 2015). Changes in cultural practice, 

crushing or cold treatment of contaminated fruits, pesticide rotation to 

minimize pesticide resistance, installment of physical barriers such as fine 

netting, landscape management, and better sanitation practices such as 
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removal of dropped fruit may also help control the insect (Dreves & 

Langellotto-Rhodaback, 2011; Lee et al., 2011a; Cini et al., 2012). However, 

due to the lack of specific insecticides against D. suzukii larvae within fruits, 

research has been focused on treatments based on chemicals targeting adults. 

Kanzawa (1939) found that camphor oil was the most effective of the 

treatments he employed, followed by nicotine sulphate, kerosene emulsion, 

and neoton but no treatment totally prevented oviposition and most of these 

materials are no longer used or acceptable. Recent laboratory and field 

studies both in the USA and in EU revealed that among the registered 

insecticides, organophosphates, timely applications of pyrethrins and 

spinosyns can provide good contact activity and residual impact for up to 12-

14 days (Beers et al., 2011; Bruck et al., 2011; Profaizer et al., 2012). In 

contrast, the efficacy of the neonicotinoids as adulticides was not satisfactory 

(Bruck et al., 2011). Initial trials in the Province of Trento indicated that 

only lambda-cyhalothrin provided an adequate level of control. However, at 

high population densities repeated applications by alternating pyrethrins and 

spinosad in strawberry plantations only reduced the damage immediately 

after the treatment and had negligible impact at the end of the harvest time 

(Grassi et al., 2012). Therefore, future research needs to address not only 

identification of effective chemicals, but must also consider how protocols 

for delivery of chemicals can be optimized. In addition, growers should 

undertake a pesticide rotation, in order to avoid or at least delay the 

evolution of insecticide resistance, which can be easy in Drosophila species 

(even associated with a single resistance allele, see Ffrench-Constant & 

Roush, 1991) also thanks to the numerous generations per year. As 

mentioned before, there are multiple potential biocontrol agents (fungi, 

bacteria, viruses and other natural enemies of the pest, such as predators and 

parasitoids) that could be employed in IPM for D. suzukii. Biocontrol 

activity of microorganisms: recently, DNA viruses have been isolated also in 

Drosophila species (Unckless, 2011) and were found to be related to other 

viruses used for pest control. These findings open the way for the evaluation 

of SWD control based on viral pathogens and research is urgently needed on 

this subject. Research on arthropods as biocontrol agents is ongoing, 

although a control approach based on arthropod natural enemies would 
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probably be very difficult for a high-reproduction species like SWD. 

Nevertheless, several valuable studies on this topic have been performed in 

Japan, in the native range of the species. Potentially, results from these 

studies could help identify novel management strategies based on 

introduction and permanent establishment of natural enemies of SWD from 

its native range for a long-term control (Cini et al., 2012). Nevertheless, 

another approach for the biological control of SWD would be to enhance the 

effect of beneficial organisms already present in the newly invaded areas, 

generalist and widespread species having D. suzukii in their host range or, 

otherwise, species able to adapt their selection strategies to the invader. The 

most promising candidates found in Europe so far are Pachycrepoideus 

vindemiae (Rondani) (Hymenoptera: Pteromalidae), Leptopilina heterotoma 

(Thomson) (Hymenoptera: Figitidae) and Trichopria drosophilae Perkins 

(Hymenoptera: Diapriidae) (Rossi Stacconi et al., 2013, 2015; Gabarra et al., 

2015; Miller et al., 2015). 

However, in any IPM system, it is important to use multiple strategies to 

manage key pests. For example, in the Province of Trento, Northern Italy, it 

has been assessed that before the adoption of an IPM strategy, the potential 

revenue losses by D. suzukii were about 13% of the industry’s output, while 

after the implementation of an IPM strategy including mass trapping, field 

sanitation and insecticide programs, the sum of losses and associated control 

costs decreased to about 7% of industry’s output (De Ros et al., 2015). 

 

1.4 Volatile attraction 

 

An insect’s environment is made up of not only the tactile landscape that it 

encounters, but largely of chemical signals given off by other insects, plants, 

and animals. Volatile chemical cues indicate the presence of mates, food, 

oviposition sites, danger and other important factors in the surroundings. 

Carey and Carlson (2011) reviewed in detail the mechanisms by which 

odours are sensed, how insect behaviour is altered by odour, and how 

olfaction is utilized in insect management. Insects sense chemical cues with 

their antennae, which are covered by sensory hairs called sensilla (Shanbhag 
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et al., 1999). These sensilla respond to different stimuli by producing an 

electrical signal that is sent to the mushroom body and lateral horn regions of 

the insect’s brain. The mushroom body is responsible for olfactory learning 

and memory, and the lateral horn is responsible for innate olfactory 

behaviours (Masse et al., 2009). Depending on the species and chemical 

cues to be detected by the antennae, the number of sensilla can range from 

about 400 in D. melanogaster to more than 100,000 in Manduca sexta (L.) 

(Sanes & Hildebrand, 1976; Shanbhag et al., 1999). There can also be sexual 

dimorphism in the number of sensilla arising due to the differences in 

necessity of host- or mate-seeking (Zwiebel & Takken, 2004). Along with 

the olfactory system that insects possess, they also have a gustatory system 

for sensing chemical cues that they come in contact with. In Drosophila, this 

system is comprised of the two labial palps covered with sensilla on the 

proboscis, taste pegs in the pharynx that make contact with food as it passes, 

and 16 taste bristles along the legs and the anterior margin of the wings 

(Amrein & Thorne, 2005). The sensilla of the gustatory system function 

similarly to those of the olfaction system, sending electrical responses to the 

fly’s brain when detectable compounds are encountered (Stocker, 1994). The 

two chemosensory systems do not always work together to influence the 

behaviour of the insect. D. melanogaster females have been shown to have 

an egg-laying preference for substrates containing acetic acid that is 

mediated by the gustatory system in conjunction with a positional avoidance 

of substrates containing acetic acid that is driven by the olfaction of the fly 

(Joseph et al., 2009). Insect behaviour is driven by taking in chemical cues 

present in the air or on the substrate it is in contact with and responding to 

those signals. The first step in determining the behavioural response of an 

insect to a chemical cue is determining if the compound is biologically 

active to the insect. Since the sensilla respond to chemicals with an electrical 

signal, that signal can be measured using an electroantennogram (EAG) 

(Mayer et al., 1984). An insect is immobilized and electrodes are attached to 

an antenna, one at the severed tip of the antenna and another at the base of 

the antenna or into the base of the decapitated head. The antenna is exposed 

to various odours and an electrical response corresponds to the insect’s 

detection of a compound (Arn et al., 1975). Compounds can be presented 
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singly or in series from a mixture of compounds that has been separated by 

gas chromatography (GC-EAD) (Struble & Arn, 1984). This techniques 

elucidate which compounds the insect can detect, but not the behavioural 

response they will elicit. Therefore, further testing of the EAG-active 

compounds is required to determine if it has an attractive, deterrent, or no 

effect. Plant-insect interactions are mediated by semiochemicals that can 

have many different effects on insect behaviour. Kairomones are chemical 

cues released from the plant that changes insect behaviour with no benefit to 

the plant. Three types of kairomones have been described: attractants (which 

draw the insect to the plant), arrestants (that slow down or stop the 

movement of the insect) and excitants (that cue the insect to feed or oviposit) 

(Metcalf & Metcalf, 1992). Leaf volatiles act as attractants, dispersing 

through air to attract insects from long-range. Once the insect is near or in 

contact with the attractive plant, close range volatiles elicit an arrestant or 

excitant effect to stop movement and induce feeding or oviposition. Fruit 

flies of the family Tephritidae use fruit odours to find suitable hosts for 

oviposition; females seek out ripe fruit and use their ovipositor to create a 

cavity where between four and ten eggs are laid (Ioannou et al., 2012). Flies 

are lured to the plant by the fermentation volatiles, only to become unwilling 

pollinators. For communication between insects of the same species, 

pheromones are produced by individuals to elicit a response from another 

individual of the same species. Female-produced sex pheromones disperse 

very far, and the males of the species can detect tiny amounts of the 

pheromone and are directed toward the point source by following the 

concentration gradient (Cardé & Knols, 2000). Long distance male-produced 

pheromones are less common, usually attracting both females and males, and 

are referred to as aggregation pheromones (Landolt, 1997). These 

aggregation pheromones signal that the male is seeking a mate and also tend 

to identify sites that are appropriate for feeding or oviposition. Drosophila 

species have been shown to release aggregation pheromones to increase the 

density of oviposition at a site, which increases larval survival (Wertheim et 

al., 2002). Along with volatile pheromones, species of the D. melanogaster 

subgroup utilize contact and close range pheromones, which are expressed 

on the insect’s cuticle (Cobb & Jallon, 1990). Female produced pheromones 
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orient males to females and induce male courtship behaviours such as 

touching and wing vibrations (Shorey & Bartell, 1970). The D. melanogaster 

male produced pheromone 11-cis-vaccenyl acetate promotes aggressive 

behaviour between males and is transferred to females during mating to deter 

multiple mating with a mated female (Wang & Anderson, 2010). 

Interestingly, most of the species of the Drosophila subgroup share the same 

aggregation pheromone, 11-cis-vaccenyl acetate, while in SWD, which has 

the peculiar ecology to rely to fresh unwounded fruits for oviposition, it is 

lacking and the epicuticular hydrocarbon profile is isomorphic between 

sexes. However, SWD is still able to perceive it, likely providing a signal of 

a fermenting substrate already occupied by other Drosophila species, not 

attractive for mating and laying eggs but only for feeding purposes (Dekker 

et al., 2015). Another pheromone produced by males, 7-tricosene, increases 

receptiveness of females to male courtship (Grillet et al., 2006). 

 

1.5 Monitoring 

 

Currently, the most common method for monitoring and detecting SWD is 

through the use of traps constructed from a plastic cup with holes punched 

around the exterior, containing apple cider vinegar, a surfactant and a yellow 

sticky card (Burrack et al., 2012; Burgess, 2013). However, by the time this 

trap detects SWD, the insect has already established itself, populations are 

typically very high, and the insect has already done its damage (Bolda et al., 

2010). Such traps are ineffective in early detection of SWD because they are 

designed to catch other pests and Drosophilidae in general (Cini et al., 

2012). These traps utilize a vinegar-based bait which is appropriate for 

catching most Drosophilidae as the majority perform all aspects of their life 

cycle infermenting fruit (Cini et al., 2012). SWD however, uses fermenting 

fruit to feed, but also follows cues of ripening fruit when searching for 

oviposition sites (Cini et al., 2012; Dekker et al., 2015). If a trap more 

specific to SWD could be developed, which would include odorants found in 

ripening fruit, SWD could be detected earlier, and action could take place in 

attempts to control this insect dispersal and its population levels (Cini et al., 
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2012; Revadi et al., 2015). Mass trapping of pests has been used routinely on 

more than 10 million hectares of commercial crops around the world, 

predominantly against Lepidoptera, Coleoptera, Diptera and Hemiptera 

(Witzgall et al., 2010). A variety of lures are used to attract them, including 

food, colour, kairomones and pheromones, either alone or in combination 

(Howse, 1998). Insects respond to various stimuli that can be used alone or 

in combination to attract them: thermostimuli, photostimuli, mechanostimuli, 

and chemostimuli (Dethier, 1947). Research into trapping of Drosophila 

tends to be in manipulating color (Hottel, 2011) and odour (Hutner et al., 

1937; Cha et al., 2012). Pheromones, plant-based kairomones and 

combinations of the two are used as attractants in traps for monitoring and 

mass-trapping purposes. Pheromone lures mimic female calling signals and 

are widely used in the trapping of moths, beetles, and some Hymenoptera 

species (Dethier, 1947). Kairomone attractants are used to draw insects to 

plant odours that signal food or oviposition site rather than the direct signal 

of a mate (Metcalf & Metcalf, 1992). In some cases, the combination of 

pheromone and kairomone is needed to achieve adequate attraction (Landolt 

& Phillips, 1997) or a combination of a food odour and oviposition host 

kairomone is most attractive (Landolt et al., 2012). Attractants are also used 

for the direct control of pests in similar programs of mass trapping and 

attract and kill by luring insects to either a trap where they are contained or a 

surface from which they can feed with an insecticide applied to it (El Sayed 

et al., 2006). The key objective of mass trapping is to capture the maximum 

number of insects before they reproduce or cause damage to crops in the 

specific control area (El Sayed et al., 2006; Suckling et al., 2015). Effective 

trapping requires the use of lures that are able to attract fruit flies more 

effectively than natural food sources, such as calling virgin females, mating 

aggregations or food sources, including efficient traps or stations or 

formulations for killing the attracted insects and using lures and non-

saturating traps that are effective during the entire period of adult emergence 

and mating (Suckling et al., 2015). Consequently, traps need to be visually 

attractive and capable of capturing and retaining flies long enough to deliver 

a lethal dose of toxicant or otherwise prevent their escape, e.g., by drowning 

or starvation (Lasa et al., 2014). Evaluations of fruit fly trap designs have 
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focused on the influence of color, size, and shape on efficiency 

(Cytrynowicz et al., 1982; Economopoulos, 1989; Sivinski, 1990; Robacker, 

1992; Lopez Guillen et al., 2009). However, other specific features related to 

the accessibility of the trap entrance and retention of captured flies have 

attracted less attention, despite the role played by these features in trap 

efficacy. The ability of a trap to retain flies is likely to be influenced by the 

bait and the retention system used. Wet traps use a liquid bait to retain flies 

that drown inside the trap, whereas dry traps retain flies using adherents or 

chemical insecticides (Lasa et al., 2014). As such, the overall efficacy of the 

trap involves a complex interaction between trap design, lure combination, 

and retention method (Robacker & Czokajlo, 2005; Diaz-Fleischer et al., 

2009). The material and labour costs of trapping or killing may be lower 

than the costs of other treatments. Mass trapping has been successfully used 

to manage even such ubiquitous pests as blow flies, while the identification 

of new attractants can present opportunities for developing more 

environmentally benign pest management tactics (Suckling et al., 2015). 

Mass trapping therefore can be a useful stepping stone towards a cost-

effective control system, as it is possible to determine the number of flies 

that need to be removed in order to achieve a reduction in damage (Suckling 

et al., 2015). 

However, in order to obtain effective mass trapping strategies, highly 

powerful and selective attractive baits are required. In D. suzukii, 

preliminary experimental observations confirm that this insect is attracted, in 

terms of nutritional sources, by wounded and presumably fermenting fruits, 

as suggested by the attraction exerted by a variety of fermented liquids, 

including wine, vinegar, and liquid derivatives of fruits (Kanzawa, 1935; 

Cha et al., 2012, 2013, 2014; Landolt et al., 2012) and by the association, 

recently reported, of this insect with a community of yeast species basically 

formed of Hanseniaspora uvarum (Niehaus) Shehata et al. (Hamby et al., 

2012). Indeed, at present, the most effective traps for capturing D. suzukii 

are those baited with different types of vinegar and wine (Landolt et al., 

2012). Both these substrates result from fermentation, mediated both by 

yeast and by acetic bacteria. 
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According to this knowledge, traps are marketed containing wine vinegar, 

apple vinegar, wine, fruit juices (Asplen et al., 2015). In order to warrant 

stability and marketability, such matrices are sterilized via pasteurization 

during the production step. One of these commercial liquid baits, the so-

called Droskidrink, showed preliminary promising results in both monitoring 

SWD during the period 2011-2013 in the province of Trento and in first 

mass trapping trials (G. Anfora, personal communication). In summary, the 

traps known so far are not sufficiently active against SWD and feature a 

short duration in time. 

Mass trapping or monitoring can also be useful for IPM program. Pest 

control can be taken only when the economic threshold is surpassed by pests, 

not by looking at calendar or plant physiology. Applying insecticides when 

needed reduces pesticide residues in the crop and saves time and money by 

limiting applications, decreases the chance of secondary pest infestations, 

reduces the effect of the pesticide on the environment and promotes human 

health and safety (Kogan, 1998). 

 

1.6 The importance of trap design 

 

Trap structure and design can also influence the ability of a trap to attract 

and retain insects. Trap color, contrast (such as trap striping), size of entry 

holes, as well as trap shape, may influence the attractiveness of a trap to 

SWD (Cini et al., 2012; Basoalto et al., 2013). Trap colour is important, as 

drosophilids have color vision and often use it to discriminate between 

different host and food options (Basoalto et al., 2013). The colors red and 

black appear to be most effective in attracting SWD thus far, as these colors 

mimic ripe fruit (Basoalto et al., 2013). Striping can also improve traps, as 

traps with a black stripe surrounded by red have been shown to significantly 

enhance trap captures over all-red or all black-traps (Basoalto et al., 2013). It 

has also been suggested that SWD may prefer traps with mesh openings, 

which have increased entry areas (Basoalto et al., 2013). Trap designs are 

frequently built upon plastic cups, however other traps which have been 

tested involve tents, or have taken the form of a dome (a.k.a. McPhail or 



26 
 

MultiLure
®
 traps) (Leblanc et al., 2010; Landolt et al., 2012; Lee et al., 

2012; Basoalto et al., 2013). The MultiLure
®
 trap (designed by Better World 

Manufacturing, Fresno, California), is yellow on the bottom third and clear 

on the top two thirds with a large hole for insect entry (a.k.a. modified 

McPhail trap) and has been used and found to attract SWD (Leblanc et al., 

2010; Landolt et al., 2012). 
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2. Objectives 

 

2.1 Main goal of the thesis 

 

Based on the background described in the previous sections, the main goal of 

my thesis was to elucidate unknown processes of D. suzukii perception and 

recognition of attractive substrates in order to develop innovative and highly 

effective baits with the potential to implement in both monitoring and 

control strategies for this pest. In particular our studies were focused at 

characterizing either the physical, chemical and biological parameters or the 

efficacy in field conditions of Droskidrink, the commercial SWD food bait 

recommended in Trentino region, Italy. Such knowledge has led to develop a 

new concept of trap, in which the attractiveness of Droskidrink would be 

strongly increased by the combination of microorganisms releasing 

biologically active volatiles to SWD. The long term perspective is to 

accelerate research and technology transfer towards new environmentally 

friendly pest control methods based on the use of traps baited with this new 

lure, such as mass trapping and attract and kill. 

 

2.2 Specific aims and list of main achievements and related 

publications 

 

1) Currently there is little information on the chemical ecology of D. suzukii. 

However, SWD adults are attracted to and probably feed on damaged and 

presumably fermented fruits, as suggested by attraction to a variety of types 

of fermented sweet foods, such as wine and vinegar. This led to the 

development of different commercial food baits, like the liquid bait 

Droskidrink empirically set-up in Trentino.We have compared its 

attractiveness and control efficacy with that of other available food baits for 

SWD. The results obtained in this preliminary part of the work shall justify 

the necessity to investigate further chemical and microbiological 

characteristics of Droskidrink in relation to the mechanisms of the SWD 

adult attraction, in order to produce baits more effective. 
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- Grassi A., Anfora G., Maistri S., Maddalena G., De Cristofaro A., 

Savini G., Ioriatti C., 2015. Development and efficacy of Droskidrink, a 

food bait for trapping Drosophila suzukii. IOBC Bulletin, 109: 197-204. 

2) Some volatiles derived from the fermentation of carbonaceous compounds 

are present both in fermenting liquids attractive to D. melanogaster 

(McKenzie & Parsons, 1972; Becher et al., 2010, 2012; Barata et al., 2012) 

and SWD baits (Cha et al., 2012, 2013, 2014; Landolt et al., 2012). Among 

these volatiles, acetyl methyl carbinol, butyrate, and 2-phenyl ethanol, 

methionol, isoamyl lactate and dietyl succinate are the most frequently 

detected in the headspace of SWD baits, even though in low quantity. All 

these compounds are released in high amounts from the fermentation of 

sugars by yeasts and/or lactic bacteria (Nielsen & Richelieu, 1999; Cordente 

et al., 2012). Therefore, in this second step of the thesis we have focused our 

attention on the interactions between SWD and lactic bacteria, which are 

poorly studied with respect to yeasts. Furthermore, lactic acid bacteria do not 

appear in the microbiota usually isolated inside traps. Therefore, we aimed at 

developing a new trap for catching SWD characterized by the addition of 

viable culture of different species and strains of lactic acid bacteria as bio-

catalyzers of the production of the mentioned biologically-active volatiles. 

- Guzzon R., Maddalena G., De Cristofaro A., Grassi A., Ioriatti C., 

Anfora G., 2016. Exploitation of lactic acid bacteria for the improvement 

of a bait for Drosophila suzukii trapping. Submitted to Journal of Applied 

Entomology. 

3) Based on the outcomes collected in stages 1 and 2, I was included in the 

list of the inventors at Fondazione Edmund Mach submitting a patent 

application to the Italian Patent and Trademark Office on 06/11/2014. The 

application has been extended to the International Patent System under the 

Patent Cooperation Treaty (PCT) on 05/11/2015. The invention is regarding 

the use of lactic bacteria belonging to the O. oeni species for preparing a bait 

for use in traps aimed at monitoring and controlling D. suzukii. The main 

purpose of this patent proposal was to protect this innovative product from 

unwanted copying. Such a patent has been an incentive for further research 

and will have an important role in technology transfer and in future 

cooperations with industries. 
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- Maddalena G., Guzzon R., Grassi A., Ioriatti C., Anfora G., 2014-2015. 

Use of an active culture of lactic bacteria for preparing a bait aimed at 

monitoring and controlling Drosophila suzukii. Classificazione 

internazionale dei brevetti (IPC): INV. A01N37/02 A01N65/00. 

4) The last part of the research has been carried out at Oregon State 

University, US, where I have been host in the laboratory of Entomology 

coordinated by Prof. Vaughn M. Walton at the Department of Horticulture. 

During step 2 and 3 of the thesis, the lactic bacterium O. oeni has been 

selected in both laboratory and field trials as the most active to D. suzukii. 

Therefore, our main goal in the last year of the study was to evaluate the 

attractiveness of different O. oeni strains and to develop a specific trap-bait 

combination. This will lead to the adoption of a new type of bait trap 

resulting in better trapping before fruit appears in the field. This may lead to 

the early detection and reduction in populations of SWD. 

- Maddalena G., Dalton D., Guzzon R., Mazzoni V., Anfora G., Ioriatti 

C., De Cristofaro A., Walton V.M., 2016. Combined effect of trap design 

and Droskidrink mixture improved with different strains of Oenococcus 

oeni bacteria for early detection of Drosophila suzukii. To be submitted. 
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3. Development and efficacy of Droskidrink, a food bait for 

trapping Drosophila suzukii (Chapter 1) 

 

3.1 Introduction 

 

Drosophila suzukii (Diptera: Drosophilidae), the spotted-wing drosophila 

(SWD), native of South East Asia, is a pest of fresh fruits since it is one of 

the few Drosophilid with serrated ovipositor, which enables it to oviposit in 

unwounded fresh fruits thereby making them unmarketable. SWD is highly 

polyphagous and, at present, infests various soft skinned fruits including 

cherry, blueberry, blackberry, strawberry, raspberry, apricot and grapes (Cini 

et al., 2012). Recently, SWD invaded western countries and is now a threat 

to both European and American fruit industry (CABI, 2014). A highly 

attractive lure is an important part of IPM strategies. Currently there is little 

information on the chemical ecology of SWD. However, they are attracted to 

and probably feed on damaged and presumably fermented fruits, as 

suggested by attraction to a variety of types of fermented sweet foods, such 

as wine and vinegar and syntethic volatiles identified from such substrates 

(Kanzawa, 1935; Landolt et al., 2012; Cha et al., 2012, 2013, 2014). 

However, initial trap designs for monitoring SWD utilized apple cider 

vinegar, grape wine, yeasts and sugar water mixtures, or a vinegar/wine 

mixture as bait. We report here the results of several field experiments 

(2011-2014) that led to the development of Droskidrink, the food bait 

recommended in Trentino and that compared its attractiveness and control 

efficacy with that of other available food baits for SWD. 

 

3.2 Material and methods  

 

3.2.1 Perimeter mass trapping - 2011 

 

The main goal of this trial was to evaluate the efficacy of a first version of 

Droskidrink bait used in a mass trapping technique against D. suzukii. 

Originally, the bait was a mixture of 75% apple cider vinegar (Azienda 

Agricola Prantil, Priò, Trento, Italy) and 25% red wine (Merlot, Conad 
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supermarket). White plastic 1000 mL flasks (Kartell S.p.a., Noviglio, Italy) 

with 6 holes of 5 mm diameter, were used as trap, loaded with 200 mL of the 

bait mixture. 

The experimental field was a small highbush blueberry plot (cv. Elliott) of 

about 550 square meters, located in Canezza (Trento, Italy). The traps (42 

bottles) were positioned around the perimeter of the plot on July 12
th

 (week 

28), in correspondence of the fruit reddening phenological phase. Traps were 

hung directly on the bushes at about 60-80 cm from the soil level and about 

2 meters apart. 

Traps were serviced weekly. The bait was replaced and the adults captured 

were sexed and counted under dissecting microscope. The fruit infestation 

(fruits with eggs or larvae) was also weekly assessed during the whole 

harvest period on 100 commercially ripe fruits sampled either from the 

borders or from the inner part of the plantation. Fruits were inspected one by 

one under a dissecting microscope. 

 

3.2.2 Attractiveness of attract-and-kill baits - 2011 

 

In August 2011 we carried out a field survey in order to assess the efficacy 

of the Droskidrink used as an attract-andkill bait with comparison with other 

baits (Table 1). The trial was carried out in a highly SWD infested highbush 

blueberry plantation (cv. Elliott) of about 1100 square meters, rain protected 

with plastic tarpaulin, located in Samone (Trento, Italy). Either Droskidrink 

or other attractants were baited on both the sides of plastic yellow sticky 

panels (10 x 20 cm) using a toothbrush at about 09:00 am of the 8
th
 of 

August 2011. The panels were hung vertically on the bushes at about 60 cm 

from the ground level. The adults caught on the panels were sexed and 

counted directly in the field using a hand magnifier (10x), then removed. 

Inspections were made at different intervals after the panel positioning. Each 

treatment was replicated 3 times in a randomized block design. A sticky 

panel without bait was used as a control. Baits composition is shown in 

Table 1.  

For each time interval data on D. suzukii captures for each bait type were 

first x+0.5-transformed in order to meet the assumption of homogeneous 
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variances and then compared using ANOVA followed by Tukey’s post hoc 

test to separate the means. 

 

Bait A 0.03 g USA bait (from Oregon State University)+0.03 g brewer’s 

yeast+25 mL water 

 

Bait B 4 times concentrated bait A 

 

Bait C 12.5 mL Spintor Fly (Dow Agroscience, 0.024% spinosad)+25 mL 

water+3 g unrefined brown sugarcane+25 mL apple cider vinegar 

Bait D 0.5 mL Laser (Dow Agroscience, spinosad 480 g/lt)+3 g unrefined 

brown sugarcane +25 mL apple cider vinegar+25 mL water 

Bait E 12.5 mL Spintor Fly (Dow Agroscience, 0.024% spinosad)+25 mL 

water+3 g unrefined brown sugarcane+18 mL apple cider vinegar+7 

mL red wine 

Table 1. Composition of the mixtures used in August 2011 for the evaluation of 

attractiveness as attract-and-kill baits. 

 

During the period 2011-2012 results from several trials showed that red 

bottle traps generally performed better than clear bottles in catching SWD 

when baited with apple cider vinegar (results not shown). Therefore, during 

the following seasons (2012-2014), Droskidrink added with unrefined 

sugarcane and its combination with red bottles, was adopted as a tool for the 

monitoring and control efforts in Trentino.  

 

3.2.3 Control efficacy of attract-and-kill baits - 2013 

 

In 2013, an open field trial was carried out with the aim to assess the 

efficacy of daily sprays of an attract-and-kill bait formulated using 80% 

Droskidrink (produced by Azienda Agricola Prantil, Priò, Trento, Italy – 

75% apple cider vinegar and 25% red wine), 20 g/liter of unrefined brown 

sugar and 20% Spintor Fly (Dow Agroscience – 0.024% spinosad). The 

treated plot was a small autumn-fruiting raspberry plantation (cv. Heritage) 

of about 350 square meters, rain protected, located in Canezza (Trento, 

Italy). Another raspberry plantation of cv. Erika, was selected in the same 

location, at about 350 m from the treated plot, and was used as a control plot. 
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No insecticides were applied for D. suzukii control in both the orchards. The 

bait was sprayed by means of a 1.5 liters hand sprayer, the nozzle was 

adjusted in order to release quite large droplets (around 3 mm diameter) on 

the grass at the base of the canes, on their basal leaves and on shrubs and 

trees around the field. The bait was daily distributed at 07:00-07:30 am, 

alternating 2m-long sprayed and unsprayed bands along the perimeter and 

the inner rows of the plantation. The first treatment was carried out at the 

beginning of the harvest time, and a total of 33 sprayings were made. The 

efficacy was assessed twice a week, determining the number of fruits 

infested with eggs or larvae on a sample of 50 commercially ripe raspberries 

randomly collected from both untreated and treated plots. Fruits were 

inspected one by one under dissecting microscope.  

 

3.2.4 Mass trapping - 2013 

 

The combination of Droskidrink and red traps was tested in 2013 in a mass 

trapping trial carried out in a highbush blueberry orchard (cv. Brigitta) of 

about 1600 square meters, located in Samone, (Trento, Italy). The 

experimental field was divided in two blocks, a treated and an untreated 

(control) plot: in this last one, the pest was managed only with insecticides, 

while in the treated plot insecticides were combined with mass trapping. 

Red painted 1000 mL Kartell flasks with 6 holes of 5 mm diameter were 

used as traps, loaded with 200 mL of Droskidrink and 4 g of unrefined 

sugarcane. A step by step procedure was used to deploy the traps: at first 

(week 25), only 5 bottles were positioned on the surrounding wild 

vegetation. At the beginning of the fruit reddening phenological stage (week 

27), 55 traps deployed 2 meters apart were hung at about 1 m from the 

ground level on the blueberry bushes along the perimeter of the plot and a 

sentinel trap was deployed in the middle. As the first adult was caught in the 

sentinel trap, 19 traps 4 meters apart were positioned along the internal rows 

of the mass trapping plot. The bait in all the traps was weekly renewed till 

the end of the trial (week 35) and the adults caught were sexed and counted. 

The efficacy of the technique was evaluated determining the percentage of 

berries infested with eggs or larvae in a sample of 100 commercially ripe 
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fruits randomly collected both from the inner and perimeter part of treated 

and untreated plot. Fruits were inspected one by one under dissecting 

microscope in laboratory. 

 

3.2.5 Attractiveness of baits in monitoring traps - 2014 

 

During August 2014 a trial was carried out in order to compare the 

attractiveness of some of the most common and commercially available lures 

and food baits for D. suzukii. The test was conducted in a 2000 square 

meters surface sweet cherry orchard located in Pergine Valsugana (Trento, 

Italy). Due to the severe SWD damage, the owner did not harvest most of the 

fruits that ripened in July. The following treatments were compared: 

1) 200 mL of Droskidrink + 4 g unrefined sugarcane + a drop of 

Triton 
TM

 X-100 (as surfactant agent); 

2) 200 mL of Apple Cider Vinegar (Azienda Agricola Prantil, Priò, 

Trento, Italy) + a drop of Triton 
TM

 X-100 (as surfactant agent); 

3) 200 mL of Droskidrink + 4 g unrefined sugarcane + a drop of 

Triton 
TM

 X-100 (as surfactant agent) + Pherocone
®
 SWD dual 

lures (Trecè); 

4) 200 mL of Apple Cider Vinegar (Azienda Agricola Prantil, Priò, 

Trento, Italy) + a drop of Triton 
TM

 X-100 (as surfactant agent) + 

Pherocone
®
 SWD dual lures (Trecè). 

The different attractants were tested baiting the same trap, the Droso-trap
®
, 

2013 version (Biobest, Westerlo, Belgium). To improve its selectivity and 

make easier the adults counting, a grid of mesh (with 3 x 2.5 mm openings) 

was fixed on the entrance holes. Each trap was filled with 200 mL of the 

bait. Traps were hung on the cherry trees at about 150-160 cm from the 

ground level. Trecè dispensers (Pherocone
®
 SWD dual lures) were fixed 

under the lid of the trap using a scotch tape. Each treatment was replicated 5 

times in a completed randomized experimental design. The experiment 

lasted 3 weeks and traps were serviced at weekly interval. Traps were 

positioned 2 meters apart: the distance between replications was at least 20 
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m. The position of the traps in each weekly service was changed with a 

randomized sequence. 

Weekly captures of SWD in the tested baits were compared using ANOVA 

followed by Tukey’s post hoc test to separate the means. 

 

3.3 Results and discussion 

 

3.3.1 Perimeter mass trapping - 2011 

 

In July 2011, a first version of Droskidrink, prepared with only apple cider 

vinegar and wine, showed a good efficacy in limiting the damage in the 

inner part of experimental plots treated with the perimeter mass trapping 

technique as a control method (Table 2). However, a higher damage level 

was observed at the end of the harvest period, corresponding to an increase 

in the number of immigrating adults in the plantation. 

 

 

Table 2. Captures of D. suzukii (SWD) adults and percentage of 

fruit infestation in mass trapping trial on highbush blueberry 

during 2011. 
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3.3.2 Attractiveness of attract-and-kill baits - 2011 

 

A further improvement of Droskidrink, obtained by adding unrefined 

sugarcane, was observed in August 2011, when the food attractant was 

deployed as a bait in a preliminary experiment aimed at the development of 

an attract-and-kill technique (Figure 1). Despite all the compared baits 

showed a very fast drop of attractiveness, the bait prepared with 75% apple 

cider vinegar, 25% red wine and unrefined sugarcane (bait E) showed the 

highest attractive efficacy. Indeed, a significantly higher number of catches 

was recorded for bait E in comparison with control and bait B, while only a 

tendency to be higher with respect to bait A, C and D for the data 

corresponding to 20 min interval (ANOVA; F=4.84; d.f.=17; P<0.05). No 

significant differences were shown for the other time intervals (8 hours: 

F=0.85; d.f.=17; P=0.54 – 24 hours: F=0.71; d.f.=17; P=0.63 – 48 hours: 

F=0.71; d.f.=17; P=0.63).  

 

 

Figure 1. Evaluation of the attractiveness of attract-and-kill baits in a highbush 

blueberry orchard in 2011. Attractants were baited on both the sides of plastic 

yellow sticky panels and are described in Table 1. Inspections were made at 

different intervals after the panel positioning (n=3). Different letters above columns 
within the same time interval indicate significant differences (ANOVA, Tukey’s 

test). 
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3.3.3 Control efficacy of attract-and-kill baits - 2013 

 

Promising results were obtained with the complete formulation of 

Droskidrink as attract-and-kill (Table 3) and mass trapping devices (Figure 

2). 

 

 

Table 3. Results of 2013 open field attract-and-kill trial as 
percentage of fruits with D. suzukii (SWD) eggs. The grey 

table cells indicate the period of the daily bait applications. 

 

During the open field attract-and-kill trial in 2013, a considerable decrease in 

the control efficacy was recorded at the beginning of week 37, after the 

grower removed infested wild blackberry fruits from surrounding vegetation. 

Therefore, it is likely that many SWD adults moved from these external 

sources to the crop and damaged the cultivated fruits while no wild hosts 

were yet available. 
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Figure 2. Results of the mass trapping trial carried out in 2013 in a highbush 

blueberry orchard. 

 

The efficacy of the mass trapping treatment in comparison with the untreated 

plot (Figure 2) peaked up 72% during the weeks 34 and 35. After the traps 

removal, at the end of the harvest time, the damage rapidly increased and 

reached the same levels of the untreated block, confirming the previous 

buffer effect of the traps. It is also interesting to observe the high number of 

captures recorded during the trial in the traps deployed in the surrounding 

wood, indicating the crucial role of this wild environment, very common in 

adjacency of the soft fruit orchards in Trentino, for the behaviour and 

development of the pest.  

 

3.3.4 Attractiveness of baits in monitoring traps - 2014 

 

In 2014 comparative field trials, traps baited with only Droskidrink caught 

more D. suzukii adults than both commercially available D. suzukii lures and 

food baits recommended in other fruit growing regions (Figure 3). In 

particular, Droskidrink was significantly more attractive than ACV and 

ACV+Pherocone Dual Lure in correspondence of the first trap control (week 

31: F=5.79; d.f.=19; P<0.01), ACV at the second control (week 32: F=3.95; 

d.f.=19; P<0.05), and ACV and ACV+Pherocone Dual Lure at the last 

control (week 33: F=4.91; d.f.=19; P<0.05), respectively. 
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Figure 3. Results of the different baits and lures comparison trial carried out in 

August 2014 (n=5). For each weekly trap control different letters indicate 
significant differences (ANOVA, Tukey’s test). 

 

3.4 Conclusions 

 

Trials carried out from 2011 to 2014 in Trentino region, demonstrated that 

Droskidrink is highly effective as food attractant for D. suzukii and showed 

the potentiality to be used both in insect direct control strategies (mass 

trapping, attract-and-kill) and in monitoring. Hence, results obtained in these 

trials justify the necessity to investigate further the chemical and 

microbiological characteristics of Droskidrink in relation to the mechanisms 

of the D. suzukii adult attraction, in order to produce bait even more effective 

and a delivery device easy to manage. 

 

3.5 References 

 

CABI, 2014. Drosophila suzukii [original text by Ioriatti C., Rossi Stacconi M.V., 

Anfora G.]. In: Invasive Species Compendium. Wallingford, UK: CAB 

International. http://www.cabi.org/isc. 

B

B

B
A

AA

AB

B

AB

A

B

A

0

100

200

300

400

500

600

700

31 32 33 week n°

av
er

ag
e 

n
° 

o
f 

SW
D

/w
ee

k

Droskidrink

ACV

Droskidrink+Pherocone Dual Lure

ACV+Pherocone Dual Lure

http://www.cabi.org/isc


50 
 

Cha D.H., Adams T., Rogg H., Landolt, P.J., 2012. Identification and field 

evaluation of fermentation volatiles from wine and vinegar that mediate attraction of 

spotted wing drosophila, Drosophila suzukii. J. Chem. Ecol., 38: 1419–1431. 

Cha D.H., Hesler S.P., Cowles R.S., Vogt H., Loeb G.M., Landolt P.J., 2013. 

Comparison of a synthetic chemical lure and standard fermented baits for trapping 

Drosophila suzukii (Diptera: Drosophilidae). Environ. Entomol., 42: 1052-1060. 

Cha D.H., Adams T., Werle C.T., Sampson B.J., Adamczyk Jr J.J., Rogg H., 

Landolt P.J., 2014. A four-component synthetic attractant for Drosophila suzukii 

(Diptera: Drosophilidae) isolated from fermented bait headspace. Pest Manag. Sci., 

70: 324-331. 

Cini A., Ioriatti C., Anfora G., 2012. A review of the invasion of Drosophila suzukii 

in Europe and a draft research agenda for integrated pest management. Bull. 

Insectol., 65: 149-160. 

Kanzawa T., 1935. Research into the fruit fly Drosophila suzukii Matsumura.- 

Yamanashi Prefecture Agricultural Experiment Station Report, Kofu, Japan, 

October 1934, 48. 

Landolt P.J., Adams T., Rogg H., 2012. Trapping spotted wing drosophila, 

Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), with combinations of 

vinegar and wine, and acetic acid and ethanol. J. Appl. Entomol., 136: 148-154. 

 



51 
 

4. Exploitation of lactic acid bacteria for the improvement of 

a bait for Drosophila suzukii trapping (Chapter 2) 

 

4.1 Introduction 

 

Drosophila suzukii Matsumura (Diptera: Drosophilidae), the spotted-wing 

drosophila (SWD), is an insect native of South-Est Asia. This insect has 

recently invaded both Europe and Americas, and it is causing serious losses 

in the production of the most relevant soft fruits (Lee et al., 2011b; Cini et 

al., 2012; Rota-Stabelli et al., 2013; Asplen et al., 2015). Eggs and larvae 

were detected in many valuable cultivated fruits, such as sweet cherry, 

apricot, blueberry, strawberry, raspberry, blackberry, and wine grape. High 

reproduction potential and adaptability to many environmental conditions 

make D. suzukii one of the major pests in agriculture of western countries, 

capable of causing production losses even higher than 90% (Cini et al., 

2012). The management of SWD was implemented mainly with insecticides, 

such as pyrethroids, spinosyns, and organophosphates, sanitation and net 

exclusion (Beers et al., 2011, Cini et al., 2012; Asplen et al., 2015). At 

present, all these methods often show drawbacks and failures related to the 

pest population density and to the specific social and agronomical context. 

Other environmentally safe methods, such as mass trapping or biocontrol 

with natural enemies are still only matter of investigations (Grassi et al., 

2015; Miller et al., 2015). 

Understanding better biology and ecology of SWD is indeed a fundamental 

prerequisite to set up and/or optimize control techniques based on the 

interference with the insect behaviour. From this point of view, some useful 

hints may be obtained by the tremendous knowledge gained with the par 

excellence model organism, Drosophila melanogaster Meigen. With regard 

to the interactions with microorganisms, Becher et al. (2012) observed that 

the activity of the microbiota present in the oviposition and feeding sites 

plays a key role for the recognition and orientation of D. melanogaster. 

Moreover, it is proved that this insect improves its fitness when the food 

substrate is contaminated by yeasts. However, the information available for 

D. melanogaster can only partly help understanding the behaviour of D. 
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suzukii, due to its peculiar ecology. Indeed, SWD is attracted by rotting and 

fermenting fruits for adult feeding (Cha et al., 2013) but has the unique 

characteristic for the Drosophila genus of laying eggs in fresh soft fruits, 

breaking the skin of ripening and undamaged fruits using its serrated 

ovipositor (Cini et al., 2012; Atallah et al., 2014). Regarding the 

microorganisms involved in the trophic interactions of SWD, some evidence 

is present about the role of yeasts. As a fact, SWD is attracted for feeding 

purposes by fermenting substrates, as suggested by the action exerted by 

wine, vinegar, and fermented fruit juice (Kanzawa, 1935; Cha et al., 2012, 

2013, 2014; Landolt et al., 2012). Also, a community of yeasts composed by 

Hanseniaspora uvarum (Niehaus) Shehata et al. and other secondary species 

was found in some vital organs of this insect (Hamby et al., 2012). Further 

confirmation of the interactions between SWD and yeasts was provided by 

field tests, where baits inoculated with Saccharomyces cerevisiae Meyen ex 

E.C. Hansen showed higher attraction with respect to the same, but sterile, 

bait (Knight et al., 2013). On the contrary, to date, there is no published 

evidence about the positive interactions, in the sense of increasing of 

attractiveness, of bacteria involved in the fermentation of wine or vinegar. 

In many insects, a key role in the processes of choice of the oviposition and 

feeding sites is played by volatile compounds released by the microbiota  

interacting with the target substrates (Schoonhoven et al., 1998; Dicke & van 

Loon, 2000; Bruce et al., 2005; Hilker & McNeil, 2007; Bruce & Pickett, 

2011). The behavioural activity driven by this group of volatile compounds 

can be therefore exploited for the development of control methods for D. 

suzukii based on baits, such as mass trapping and “attract and kill” (Grassi et 

al., 2015). At present, the most effective traps are those baited with vinegar 

and wine, or by synthetic compounds identified in their headspace (Asplen et 

al., 2015). These latter substances derived from the fermentation, mediated 

by various microorganisms, of carbonaceous compounds present in such 

liquids (McKenzie & Parsons, 1972; Becher et al., 2010, 2012; Barata et al., 

2012). However, tests performed comparing the attractiveness of pure 

ethanol and acetic acid with a mixture of wine and vinegar suggested that 

other secondary compounds contribute in the attraction of SWD (Cha et al., 

2013). Among these volatiles, acetyl methyl carbinol (also known as 
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acetoin), butyrate, and 2-phenyl ethanol are frequently detected in the 

headspace of wine vinegar, while methionol, isoamyl lactate and dietyl 

succinate were already found in wine (Cha et al., 2013). All these 

compounds derivate from the fermentation of sugars by yeasts and/or lactic 

bacteria (Nielsen and Richelieu, 1999; Cordente et al., 2012), confirming the 

importance of these microbes in the mechanisms of recognition of food and 

oviposition sites in D. suzukii. Hence, in this work we have focused our 

attention on the interactions between SWD and lactic bacteria, which are 

poorly studied with respect to yeasts (Guzzon et al., 2014). These molecules 

are present only in low concentration in the headspace of D. suzukii 

commercial baits, and lactic acid bacteria do not appear in the microbiota 

usually isolated inside traps. 

Therefore, we aimed at developing a new trap for catching SWD 

characterized by the addition of viable culture of lactic acid bacteria as bio-

catalyzers of the production of the mentioned biologically-active volatiles. 

Field tests and laboratory experiments have been carried out preliminarily in 

order to assess the performance of different genera of lactic acid bacteria. 

Afterwards, we selected three biotypes of Oenococcus oeni (Garvie) Dicks et 

al. that revealed a high resistance to the harsh environmental condition of the 

liquid baits and, at the same time, showed a significant attractive capacity vs. 

SWD. Results are discussed taking into account the practical implications of 

our findings for D. suzukii management. 

 

4.2 Materials and methods 

 

4.2.1 Insect rearing  

 

A D. suzukii population collected in Trento Province was reared on a 

standard Drosophila semiartificial diet (Drosophila species stock center, 

https://stockcenter.ucsd.edu/info/ food_cornmeal.php,2013) at the 

temperature of 23-25°C, relative humidity (R.H.) of 65±5% and 16L:8D 

photoperiod. 
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4.2.2 Composition of the Droskidrink (DD) bait for D. suzukii 

trapping 

 

The commercial D. suzukii bait chosen for the experiments described in the 

following sections is called Droskidrink (DD) and is composed by a mixture 

of 30% of red wine (Tavernello, Caviro, Italy), 70% of apple vinegar 

(Prantil, Italy) and 5 g/L of brown sugar cane. For details see Grassi et al. 

(2015). 

 

4.2.3 Field assessment of different lactic acid bacteria species 

and strains 

 

A preliminary trapping experiment was conducted during summer 2013 both 

in a commercial vineyard at the bottom of the Adige Valley (San Michele 

all’Adige, 46°19’01’’N, 11°13’73’’E, 230 m a.s.l.). The experiment was set 

up in order to compare the following baits: A) DD with a pH regulated at 

4.00, and inoculated with the strain of O. oeni ATCC BAA-331. B) DD at 

pH 4.00 with a Pediococcus spp. strain. C, D, E) DD at pH 4.00 and added 

with 3 different strains of Lactobacillus. F) DD without bacteria. G) 

Commercial DD (Prantil). H) The same of G but pasteurized at 70°C for 30 

min. I) The same of G added with 10 mL/L of cicloeximide (cicloeximide 

aqueous solution 0.01%, Oxoid, United Kingdom) for preventing the 

contamination of lure by environmental yeast. All the baits were tested by 

using 200 mL of the adjusted DD in red plastic traps (Droso-Trap, Biobest, 

Belgium). A drop of TritonTM X-100 (Sigma-Aldrich, USA) drowning 

solution was also added to each 200 mL of liquid bait in order to break the 

surface tension of the liquid. The nominal concentration of microorganisms 

of the DD traps inoculated with bacteria was adjusted at 10
6
 cfu/mL. A 

randomized complete block design was used, with 3 replicate blocks. During 

the 7 weeks of trapping period, traps were serviced weekly by removing and 

counting the insects and by replacing the drowning solutions. 

The mean weekly number of D. suzukii captured per trap over the 7-week 

study period in each treatment was compared among treatments using 
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Friedman (two-way ANOVAs with replicas), followed by Wilcoxon 

Pairwisw test for posthoc comparisons of means. 

 

4.2.4 Laboratory evaluation of Oenococcus oeni performance to 

the DD conditions 

 

We tested 14 strains of O. oeni for their resistance and performance to the 

physical and chemical conditions of DD considering its main limiting 

factors: low pH, high concentration of ethanol and acetic acid, and low 

temperatures likely encountered during the field exposure of traps. The O. 

oeni strains were belonging to the Edmund Mach Foundation collection; all 

bacteria were cultured in modified MRS broth (Oxoid) in a 96 micro volume 

(200 µL) plate (Starstedt, Germany) at 25°C (with the exception of 

temperature test). According to the feature of DD, the composition of MRS 

broth was modified taking into account the following parameters: pH (3.8), 

acetic acid (45 g/L), ethanol (5% v/v), and temperature (15°C).  Each 

parameter was studied singularly. The bacterial growth was measured every 

24 h, by increases of optical density (620 nm) of cell culture by a 

PowerWave HT Microplate Spectrophotometer (BioTek, USA). Each 

measurement was replicated 3 times. The time of incubation was adjusted 

according to the OIV methods for the analysis of this bacteria (OIV, 2014). 

Obtained data were analysed by a PCA. 

 

4.2.5 Headspace characterization of DD inoculated with 

different O. oeni strains by Gas Chromatography - Mass 

Spectrometry (GC-MS) 

 

The characterization of volatile compounds of DD was performed 

considering two different sampling approaches, the Headspace and the 

Closed Loop Stripping (CLS) analyses. In both cases samples of DD were 

inoculated with 1% v/v of bacterial strain culture and incubated at 25°C for 1 

week. In the Headspace approach, 5 mL of DD was inserted prior the 

incubation into hermetic closed glass vials (20 mL) and the withdrawal of 

volatile compounds was performed by a multifunctional auto sampler 

(Multi-Purpose Sampler MPS, Germany). Each vial was automatically 
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introduced in an incubator at 38°C for 20 min, then 1 mL of air was removed 

from the headspace by a gas syringe pre heated at 80°C, and further injected 

in the column of GC. In the CLS approach the sample of DD (50 mL) was 

transferred into a proper glass jar with a plastic top having two holes. One 

hole was hosting a miniature 12 V vacuum graphite pump (Fürgut GmbH, 

Germany) which made air circulating from the jar containing the liquid to 

the second tube loaded with a CLSA carbon filter (Brechbühler AG, 

Switzerland). After 60 minutes of air flux, volatiles concentrated in the 

CLSA filter were eluted with 100 µL of dichloromethane (J.T. Baker, 

Holland). The samples were stored in 1 mL vials for chromatography (CS-

Chromatographie Service GmbH, Germany) prior GC analysis. The GC-MS 

analysis was performed by a 7890A Gas Chromatograph (Agilent 

Technologies, USA) equipped by a hp-5ms column (Agilent Technologies), 

and coupled with a 5975 inert XL mass selective detector (Agilent 

Technologies). Helium was used as carrier gas (flow rate of 1.2 mL/min); 

the thermal cycle provided 5 min at 30°C, a temperature ramp of 3.5°C/min 

until the 240°C, and 2 min at 240°C. The total run time was 44.87 minutes. 

Data acquisition and analysis were done by a ChemStation software (Agilent 

Technologies). 

 

4.2.6 Electroantennography responses (EAG) of D. suzukii 

females to the headspace collected from DD inoculated with 

different O. oeni strains 
 

EAG responses to volatile compounds were recorded on mated D. suzukii 

females (n = 5) by means of a standard EAG apparatus (Syntech), as 

previously described (Revadi et al., 2015). Each stimulus, represented by the 

eluted samples obtained by CLS analysis, was prepared by absorbing 25 µL 

of a solution on a piece (1.5 cm
2
) of filter paper (Albet

® 
400, Scharlab SL, 

Spain) inserted into a Pasteur pipette. The solution was loaded directly on 

the filter which has the function to absorb and release the volatiles. The 

Pasteur pipettes were closed on the thinner side with a 1 mL-blue-tip. Three 

pipettes were used as blank controls (one empty pipette, one filled with 

paraffin oil solvent, one filled with dichloromethane solvent) while other two 

were filled with 1-hexanol and 2-hexanal solutions. These compounds are 
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known to be very effective in eliciting antennal responses in SWD, hence 

they were used as references. Each synthetic stimulus was prepared by 

absorbing 25 µl of a dichloromethane solution at the concentration of 1 

µg/µl on the filter paper. The solvents were allowed to evaporate for 10 min 

before starting the experiments. 

A stimulus controller (CS-01; Syntech, Hilversum, The Netherlands) was 

used to keep the flow over the antenna constant during injection. A glass 

capillary indifferent electrode filled with Kaissling solution containing 5g/l 

polyvinylpyrrolidone K90 was inserted in the severed fly’s head. The 

different electrode was a similar capillary, brought into contact with the 

distal end of fly’s antenna. After the antenna preparation, the chemical 

stimulus output was directly delivered on the antenna with the Pasteur 

pipette through the air flow, activated by operating an external pedal linked 

to the stimulus air control. Each odour pipette was replaced every 3 trials. 

EAG responses were analysed with EAG 2000 software programme 

(Syntech, Hilversum, The Netherlands), and evaluated by measuring the 

maximum amplitude of negative deflection (mV) elicited by a given 

stimulus. 

EAG responses were compared across treatments by means of parametric 

one-way ANOVAs, followed by Tukey’s test for posthoc comparisons of 

means. Homogeneity of variance had been determined previously with 

Levene’s test. 

 

4.2.7 Field test with DD activated by three strains of O. oeni 

 

Field trapping tests were carried out in 2 different orchards in the area of 

Pergine Valsugana (Trento Province,  Italy): A) a sour-cherry orchard at 

Zivignago (490 m a.s.l.; 46°04’15,89”N; 11°14’26,04”E); B) a repository 

soft-fruit orchard at Casalino including blueberries, blackberries, raspberries 

and red currant in different rows (669 m a.s.l.; 46°02’50,90”N; 

11°14’26,04”E). The field tests were performed using strains of O. oeni 

belonging to three subpopulations that showed the best performances in 

laboratory tests carried out in the limiting growth conditions of DD (see 
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section above). Bacteria were hence multiplied in a 100 mL flask containing 

MRS broth (Oxoid) for 7 days at 20°C, then the culture was centrifuged 

(4000 rpm, 15 min) to remove the growth medium, and cells were added to 

the DD used to fill traps, previously corrected by adjusting the pH at 4.00 

value. The bacterial concentration in DD at the beginning of field tests was 

adjusted to 10
6
 cfu/mL. Red plastic traps (Droso-Trap) were baited with 200 

mL of DD containing bacteria. A drop of Triton TM X-100 (Sigma-Aldrich) 

drowning solution was added to each 200 mL of liquid bait, in order to 

reduce the surface tension and to facilitate capture and submersion of 

trapped insects (Landolt et al., 2012). The traps were placed randomly along 

the rows of the orchards (each 2 m and 1,5 m from the ground), and the 

position of different traps was changed randomly each week. Three 

replications and 5 replications were deployed in test A and B, respectively. 

Test A was conducted from the cherry flowering period until the period of 

“veraison” of the fruits (7 weeks, from 10
th
 April to 30

th
 May 2014). Test B 

was conducted from “veraison” of the first fruits until the fruits were over-

ripen on the plants (7 weeks, from 19
th
 June to 6

th
 August 2014). After 1 

week of exposition, the liquid bait was filtered and sent to the 

microbiological analysis. The insects caught in the liquid bait were identified 

by optical observation using a stereoscope (Optika, Italy). Two commercial 

baits, the Pherocon SWD (Trécé, USA) and the conventional DD (Prantil) 

were employed as references. 

The mean weekly number of D. suzukii captured per trap over the 7-week 

study period in each treatment was √2(x + 0.5)-transformed and compared 

among treatments using one-way ANOVAs, followed by Tukey’s test for 

posthoc comparisons of means. 
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4.3 Results and discussion 

 

4.3.1 Field assessment of different lactic acid bacteria species 

and strains 

 

Figure 1 reports the total number of D. suzukii adults caught by the different 

baits during the preliminary tests, aimed at confirming the hypothesis about 

the attractiveness of volatiles produced by the fermentation metabolism of 

lactic bacteria. We explored the attractive performance of different genera of 

lactic acid bacteria with regard to biochemical changes of the bait, such as 

the increase of the standard pH of Droskidrink (typically about 2.50) up to 

4.00, a value recognized as ideal for the heterofermentative activity of wine 

lactic acid bacteria (Lonvaud-Funel, 2001; Liu, 2002). Overall, the DD baits 

inoculated with the different species of lactic bacteria caught a significantly 

higher number of SWD adults, in comparison to the other baits (Friedman: 

F=6 ; P<0.0001; d.f.= 31.6). In particular, the bait inoculated with O. oeni 

showed the highest attractive activity (Figure 1). Indeed, O. oeni-baited traps 

were able to catch a significantly higher number of D. suzukii adults than 

that recorded in traps baited with both the combination of DD and other 

genera of lactic bacteria and the commercial DD alone. The differences, in 

terms of attractiveness of the baits inoculated bacteria increased over the 

time of trap exposure (Figure 2). Conversely, control theses represented by 

either the pasteurized DD bait or the DD bait added with antibiotic are far 

less attractive for SWD, likely due to the inhibition of microbiological 

processes in the liquid bait. Concerning the different genera of lactic acid 

bacteria, it has been already reported that Oenococcus spp. have a 

remarkable hetero-fermentative activity and resistance in a low-pH 

environment (Lonvaud-Funel, 2001; Liu, 2002). Therefore, their enhanced 

biological activity and effectiveness in trapping SWD is not unexpected. As 

a consequence, the regulation of the value of pH in the liquid bait is a key 

point for the improvement of the trap efficacy. The standard value of pH in 

DD, that is about 2.5, is unsuitable for the development of most of the lactic 

acid bacteria species and thus the pH level has to be increased in order to 
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provide them an appropriate growing environment. On the other hand, too 

high pH values would favour a non-selective growth of contaminant 

microbes (yeasts, bacteria or mold), causing a rapid depletion of the nutrients 

contained in the bait. Furthermore, the pH value of 4.0, adopted in these 

experiments, has been shown in oenological trials to induce the shift of the 

metabolic activity of lactic bacteria from omo- to hetero-fermentation of 

sugars, increasing their energetic yield (Lonvaud-Funel, 2001; Liu, 2002). 

However, the pH 4.00 represents a threshold level for the optimal growth of 

both Lactobacillus spp. and Pediocccus spp., and this would partly explain 

their minor efficacy with respect to O. oeni. The poor performances of the 

baits containing a very limited if any microbial community after either 

pasteurization or antibiotic treatments further supported the hypothesis of the 

crucial role played by the microbiota in the regulation of the attractiveness of 

feeding substrates for SWD. The non-linear increase of traps catches over 

the time of field exposure could be explained considering that the traps were 

only refilled every week to compensate the bait evaporation and hence the 

liquid bait was not completely replaced during the entire duration of field 

test in order to maintain the original population of bacteria inside it (Figure 

2). In these conditions the lactic acid bacteria added to DD were likely 

adapting to the harsh liquid bait conditions. We may speculate that during 

the first weeks of field exposure the effect of the initial high cellular 

concentration (about 10
6
 cell/mL) inoculated in the traps was able to allow a 

satisfactory attractiveness. In the following weeks the composition of DD 

could have imposed a reduction of cell viability, and consequently a 

performance decrease of the traps baited with bacteria with respect to the 

commercial DD and other control baits, until the adaptation of bacteria at the 

DD environment over the 5
th 

week of exposure would have favored a new 

considerable bacterial growth and the consequent recovery of the trapping 

capacity. Therefore, this first experiment clearly indicates O. oeni as the 

most promising species among the tested lactic bacteria for the improvement 

of the efficacy of DD traps and it has been thus selected for further 

laboratory and field tests. 
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4.3.2 Laboratory evaluation of O. oeni performance to the DD 

conditions 

 

O. oeni has been found in few fermented materials, in particular wines 

(Dicks et al., 1995; Li et al., 2006). Despite this, a large variability, in terms 

of resistance to environmental limiting factors and biosynthetic capacity, has 

been reported among strains of O. oeni (Zapparoli et al., 2012). However, 

the use of O. oeni as bio-catalyzer of the production of D. suzukii 

biologically-active volatiles inoculated in DD is completely new and, 

therefore, an assessment of the behaviour of different O. oeni strains in these 

peculiar conditions was needed. We took into account four main 

characteristics of DD that, reasonably, would act as limiting factors for the 

metabolism of O. oeni strains (Guzzon et al., 2009). In all cases the “wild” 

strains of O. oeni, isolated from wines, showed significantly higher growth 

rates in the conditions set up in the syntethic media, with respect to the 

standard strains employed in the first field test (Figure 4), supporting the 

hypothesis of a gradual adaptation of bacteria to harsh environmental 

conditions. The four considered variables allowed a satisfactory 

classification of O. oeni strains, according to the resistance to such limiting 

parameters; the cumulative percentage of the total variance explained by the 

first two factors was about 80%. Figure 3 shows the scatterplots of both the 

variables (2A) and the cases (2B) in the plane defined by the Factors 1 and 2. 

A first large group (Figure 3B, G1), containing 9 strains, was characterized 

by a substantial tolerance of low temperature and ethanol, a second group 

(Figure 3B, G2) composed by 4 strains showed, on the contrast, a poor 

tolerance at the liming factors. Finally, the strain 6 showed a peculiar 

behaviour, resulting largely resistant to the pH and acetic acid and, therefore, 

was grouped alone (Figure 3B, G3). This last result is particularly interesting 

considering that acetic acid has a double influence in our experimental 

conditions. It is able to lower the pH level (that in this test was about 2.50), 

but it is also an end-product of many metabolic reactions of O. oeni 

(Lonvaud-Funel, 2001) and, as such, can inhibit the bacterial activity 

unbalancing the ratio between substrates and catabolites. On the contrast, the 

low selective pressure induced by ethanol, at the values considered in these 
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tests, is not surprising since this outcome is in line with what has been 

previously observed about the interactions of bacteria with wine. In 

conclusion, the laboratory tests identified 3 candidate sub-populations of O. 

oeni strains that showed different adaptation at the peculiar composition of 

DD. These 3 groups of strains have been selected and utilized in an 

extensive field assessment, after having checked their ability to produce 

volatile compounds with a biological activity to SWD by the fermentative 

metabolism in DD. 

 

4.3.3 Headspace characterization of DD inoculated with 

different O. oeni strains by Gas Chromatography - Mass 

Spectrometry (GC-MS) 

 

GC-MS analyses were done in order to characterize the volatile compounds 

released by the DD, inoculated by different O. oeni sub-populations. We 

selected the strain 5 (G1 group), 6 (G3 group), and 7 (G2 group), according 

to the results shown in the sections above, and the type strain, included in 

this test as reference. In Table 1 the relative quantification of volatiles 

emitted by the baits inoculated with the O. oeni strains is shown, referring to 

the amount of each compound emitted by a standard unfermented DD 

sample. Thirteen compounds were detected: ethanol, 2-butanone, acetic acid, 

acetidin, acetoin, 3-methyl-1-butanol, isoamyl alcohol, 2-butil acetate, 

isobutyl acetate, ethyl butyrate, isoamyl acetate, ethyl caproate, and ethyl 

octanoate. No qualitative differences were found among the baits, and the 

same compounds were detected in all samples. However, the relative 

quantity of compounds showed relevant differences. G1 sample is 

characterized by a high concentration of acetic acid (+ 560% than the 

standard DD) and ethanol (+ 55% than the standard DD). G2 and G3 strains 

showed a considerable reduction of acetic acid (- 45% of DD release) 

emission, while ethanol increases about the 30%. The emission rate of 3-

methyl-1-butanol, reported as “non-target” attractive volatile for a wide 

range of moths (Landolt et al., 2011), is higher than in the standard DD in 

the case of G2 and G3 samples, while being unvaried in the case of G1. It is 

likely that acetoin is one of the key compounds for the attraction of SWD to 
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DD (Cha et al., 2012; Guzzon et al., 2014). The amount of this molecule 

showed a decrease of 55% in the G1 group headspace when compared to 

standard DD, while its concentration was very high in the case of G2 (+85%) 

and G3 (+70%). The 2-butanone followed a similar trend, with a relevant 

reduction in the G1 bait and an increase in the G2 and G3 samples. In the 

case of compounds belonging to esters the impact of bacterial activity on 

their release rate appears more uniform, with a generalized decrease in 

comparison to DD, except the case of G3 sample that showed a slightly 

increase of 2-butyl acetate and ethyl octanoate production. 

Overall, the GC results provide a very complex, and somehow unexpected, 

analytical framework of relationship between bacterial strains and baits 

features. Moreover, it is necessary to take into account that an excessive 

concentration of some compounds characterizing the components of DD, 

may induce a negative response into the olfactory system of the insect. Cha 

et al. (2012) reported indeed that several EAD active compounds released 

from wine and vinegar have deterrent effects at high concentration on D. 

suzukii attraction in the laboratory two-choice bioassay. One of these 

compounds is isoamyl acetate that is probably released by the epiphytic 

community on fruits surface as well as in fermenting substrates (Cha et al., 

2012; Witzgall et al., 2012; Revadi et al., 2015). When it was tested singly, 

isoamyl acetate was attractive only within a concentration range similar to 

that emitted by fresh fruit (Revadi et al., 2015), whereas the 100-fold higher 

release rates from wine and vinegar were behaviourally repellent (Cha et al., 

2012). In our experiments the released rate of isoamyl acetate has been 

remarkably reduced after bacterial inoculum and lactic fermentation, which 

could be one of the reasons of the augmented attractiveness to SWD. All this 

evidence further corroborates the commonly accepted theory that the 

absolute amount of ubiquitous volatiles is the critical factor mediating the 

recognition and the orientation of polyphagous insects to feeding and 

oviposition sites (Bruce et al., 2005). 

Therefore, the quantitative variations induced in the DD by the added 

bacteria, both in the cases of increase and of decrease of initial amount of 

each volatile compound should be carefully considered as well as the 

interactions of the trap mixture with environmental variables (temperature, 
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humidity, insect catches) along field ageing of traps. However, the relevant 

difference among the three O. oeni sub-populations warranted to carry out 

the further field trials in order to select the best attractive blend for SWD. 

 

4.3.4 Electroantennography responses (EAG) of D. suzukii 

females to the headspace collected from DD inoculated with 

different O. oeni strains 

 

EAG results are shown in Figure 4. As expected, the reference compounds, 

1-hexanol and 2-hexanal elicited strong responses to D. suzukii antennae. 

There were not statistical differences between our samples (Droskidrink, G1, 

G2, G3 and reference strain), but all the baits were statistically different 

from both the solvents and the blank controls, except for G2 sample, which 

showed a significant lower response compared to the other baits and which 

resulted not statistically different from the blanks (ANOVA: d.f. = 47; F= 

8.6; p< 0.001). All our samples, except G2, elicited EAG responses 

statistically equal to 1-hexanol, the compound that induced the highest 

absolute responses. Interestingly, 1-hexanol was already detected among the 

volatile bouquet of fresh mature host fruits of SWD and elicited its antennal 

responses in gas chromatographic analysis coupled with 

elettroantennographic detection experiments (GC-EAD) (Revadi et al., 

2015). On the other hand, the results obtained with the bacterial bait G2 was 

unexpected, since it did not show either to be less attractive in the field trials 

or to release low amounts of VOCs in the GC-MS analysis. However, EAG 

analysis confirmed a remarkable insect sensitivity to the both standard DD 

and DD inoculated with O. oeni. However, additional GC-EAD experiments 

are warranted in the future, in order to understand which single compounds 

are able to be perceived by the olfactory system of SWD. 

 

4.3.5 Field test with DD activated by three strains of O. oeni 

 

Two consecutive field tests were performed in order to evaluate the effect of 

the addition of bacterial O. oeni strains belonging to the G1 (strain 5), G2 

(strain 6), and G3 (strain 7) groups in the traps in different periods of the D. 
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suzukii host-fruit ripening season, early spring in a sour-cherry orchard, and 

full summer in a mixed soft-fruit orchard in the same area. In Figure 5A the 

results of the spring test are reported, expressed as sum of the insects 

captured for each type of bait. This experiment was generally characterized 

by a low number of SWD catches, since it was carried out in the early 

season, when the SWD population density in the fruit growing areas of 

Trento Province is still relatively low (Wiman et al., 2014). However, the 

aim of this test was to evaluate the potential use of both DD and DD 

inoculated with O. oeni as an early warning tool able to provide a reliable 

information on the first infestation by SWD of cultivated fruits, i.e. sour-

cherry. The number of insect caught in traps inoculated with both bacterial 

sub population, G1, G2, and G3 did not differ from the captures recorded in 

the standard DD or in the trap baited with the Trecè dispenser. The low 

activity of the baits inoculated with bacteria can be explained by the 

observation that, during traps exposure, the mean daily temperatures were 

generally below the threshold of 15°C, considered not suitable for an 

adequate growth of O. oeni (Liu, 2002; Guzzon et al., 2009) and, as a 

consequence, for the biotransformation of the liquid substrate and the 

production of volatile metabolites attractive to SWD. In any case, the low 

temperatures do not kill the microorganisms but only cause the slowing 

down of the metabolic activity that would recover as soon as the proper 

temperature would be re-established. 

A similar observation was reported by Beers et al. (2011) regarding yeast 

baits, which have comparable environmental needs for optimal growing. In 

general, all microorganisms potential candidates for the production of 

attractive volatile metabolites for SWD (yeasts, acetic bacteria and lactic 

acid bacteria) are considered mesophilic, that is with an optimum of activity 

between 15 and 30°C. Interestingly, dissections of adult females captured 

during the early season field experiment showed that about 80% contained 

fully developed eggs in their ovaries (data not shown), supporting the 

hypothesis that SWD overwinter mainly as adult mated females. Therefore, 

during this portion of the season food baits, such as DD and O. oeni-

inoculated DD, are supposed to be particularly efficient since either gravid 

females would be looking for feeding substrates before oviposition after the 
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winter population bottleneck or food baits are not yet in strong competition 

with many natural sources of attraction, such as ripening fruits (Ometto et 

al., 2013; Wiman et al., 2014). A high number of catches in this part of the 

season thus will result in a delay of the population outbreak during the rest 

of the growing season, allowing reduced damage of the ripening crops. It is 

therefore crucial in future experiments to optimize trap architecture and bait 

components in order to keep the temperature within the optimal range and 

hence provide an effective tool for trapping control strategies even off 

season. 

The second field experiment was performed during summer, for 7 

consecutive weeks. In this case the temperatures were suitable for a massive 

bacterial growth, remaining stable over the daily average of 20°C. This 

different situation immediately reflected in the catches of insects which 

peaked up overall 3000 individuals a week (Figure 5B). Differences in 

attractiveness of inoculated baits with respect to commercial references are 

quite evident along all the duration of the experiment. In particular, the bait 

inoculated with the G3 strain showed basically the best trap performance, 

even though we did not find any statistical difference (ANOVA: d.f. = 55; 

F= 0.18; p=0.99). As mentioned before, the general greater summer-

performance of bacterial baits, compared to the low activity earlier in the 

season can be explained by the effect of increased temperatures. 

In conclusion, we believe that the knowledge provided in this work paved 

the way to develop new concept of trap, in which the attractiveness of DD 

would be strongly increased by the combination of microorganisms releasing 

biologically active volatiles to SWD. The long term perspective is to 

accelerate research and technology transfer towards the set up of new 

environmentally friendly pest control methods based on the use of traps 

baited with this new lure, such as mass trapping and attract and kill. 
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4.4 Table and figures 

 

Volatile compound 

Retention time Extracted ions O. oeni type strain  G1 G2 G3 

Min m/z % 

Acetic acid   2.20 60 -52.2 559.3 -44.1 44.3 

Ethanol   1.55 45  26.1   54.7 38.5 29.3 

3-methyl-1-butanol   4.67 70    8.3     0.9 70.0 21.1 

Isoamyl alcohol   4.70 41  23.7     9.6 88.1 36.7 

Acetoin   3.78 88  49.4 -55.4 84.8 69.2 

Acetidin   2.27 88 -95.0 -96.1 -93.0 94.5 

2-butyl acetate   5.55 87  14.6 -31.3 12.5 5.5 

Isobutyl acetate   6.17 56 -29.3 -56.2 6.8 30.8 

Ethyl butyrate   7.36 71 -35.1 -48.3 -9.2 37.8 

Isoamyl acetate 10.84 43 -59.8 -70.5 -57.8 62.8 

Ethyl caproate 16.73 88 -4.2 -49.4 47.4 7.5 

Ethyl octanoate 25.35 88  43.4 -27.4 141.4 35.6 

2-butanone   2.13 72  39.4 -15.0 64.7 49.3 

       

Table 1. Relative quantification of volatiles emitted by the baits inoculated with 3 

strains of O. oeni (G1-G2-G3). Data are expressed as difference (%) with respect to 

amount measured in the standard unfermented Droskidrink. 
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Figure 1. Overall number of D. suzukii catches in the preliminary field tests with 

traps baited with attractive mixtures (Droskidrink) inoculated with different species 

and strains of lactic acid bacteria. Different letters indicate significant differences 
(Wilcoxon pairwise test, P = 0.0001).  
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Figure 2. Catches trend week by week of different bacterial strains and different 

commercial baits. 
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Figure 3. PCA of data of bacterial growth in synthetic media considering the 4 

main limiting factors for O. oeni growth characteristic of DD: pH (4.00), 
ethanol (4%), acetic acid (45 g/L), and temperature (15°C). A) Scatterplots of 

the 4 variables in the plan defined by the factors 1 and 2. B) Scatterplots of the 

4 variables in the plan defined by the factors 1 and 2. 
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Figure 4. Mean EAG responses (mV) of D. suzukii mated female antennae elicited 
by commercial DD and DD inoculated with different O. oeni strains. Control 

stimuli: empty blank, paraffin oil, dichloromethane. Reference compounds: 1-

hexanol, 2-hexanal. Baits: commercial Droskidrink, O. oeni reference strain (MRI 

10000), G1, G2, G3 strains. The standard deviation of the means is reported. 

Istograms with the same letters are not significantly different (ANOVA: d.f. = 39; 

F= 9.5; p< 0.05). 
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5A 

 

 

 

 

 

 

Figure 5. Comparison of D. suzukii catches by different baits; data are expressed as 

sum of fly catches during the entire period of tests. A) Early spring test. B) 

Summer test. 

 

 
The graph shows the differences in catches between different baits in early season, 

in sour-cherry fields. The standard error of the means is reported. 
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5 B 

 

 

 

 

 

 

 

 

The graph shows the mean of catches of the different baits tested in berries field, 

during seven weeks of trial (19th June- 6th August). Peak abundances with the 

same letters are not significantly different by ANOVA: d.f. = 55; F= 0.18; p=0.99. 

The standard error of the means is reported. 
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5. Use of an active culture of lactic acid bacteria for 

preparing a bait aimed at monitoring and controlling 

Drosophila suzukii and its respective compound to be put in 

appropriate traps (Chapter 3) 

 

5.1 Object of the invention 

 
The use of lactic acid bacteria, belonging to the Oenococcus oeni (Garvie) 

Dicks et al. species, for preparing a bait for monitoring and controlling 

Drosophila suzukii Matsumura (Diptera, Drosophilidae), the spotted-wing 

drodophila (SWD), and its respective compound to be put in appropriate 

traps. 

 

5.2 Scope of the invention 

 

The scope of the invention is to propose a new, effective, economical, and 

long lasting preparation alternative to the treatments based on chemical 

pesticides for controlling D. suzukii. This scope is achieved by using a 

culture of lactic acid bacteria, belonging to the O. oeni species, and put in a 

condition to warranty the production of metabolites strongly attractive for 

SWD for a long period of time, thanks to the original composition of the 

attractive blend contained in a trap. 

 

5.3 Background of the invention 

 

D. suzukii is an insect capable of causing substantial damage in different 

high-value arboreal, frutescent and vegetable cultures, including soft fruits, 

drupaceous fruits, and grape. Aggressiveness and adaptability to numerous 

contexts make it one of the major adversities in the agricultural field, capable 

of causing step-downs of production even greater than 90%. At present, the 

struggle against this insect is performed through the use of insecticides, 

massive capture traps, and other agronomic practices. None of these 

solutions led to a resolution of the problem. 

The researches published so far highlighted that the information concerning 

fundamental aspects for survival of insects, including the research for 
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nutritional resources, escape from enemies, reproduction, and identification 

of the oviposition sites are mainly mediated by volatile chemical compounds 

perceived by olfaction (Schoonhoven et al., 1998; Dicke & Van Loon, 2000; 

Bruce et al., 2005; Hilker & McNeil, 2007). 

Numerous studies demonstrated the importance of the volatile compounds, 

produced by the host plant and by other organic substrates, in helping insects 

in identifying the foods and the oviposition site (Bruce et al., 2005; Bruce & 

Pickett, 2011). 

More recently for the Drosophila genus, some studies clarified the 

contribution given by the microbic component present in the substrates 

commonly frequented by the insects of this group, in producing chemical 

compounds capable of influencing their behaviour. For instance, Becher et 

al. (2012) observed that such microbic component strongly influences 

Drosophila melanogaster Meigen in searching oviposition and foodsites and 

that this insect features better performances, in terms of reproduction, 

whenever the substrate is contaminated by yeasts.  

The experimental data clearly shows that D. melanogaster is more attracted 

by substrates being in fermentation, thanks to the presence of the 

Saccharomyces cerevisiae Meyen ex E.C. Hansen yeast, as compared to 

what observed in tests where the same, non-yeasting substrates were present.  

Little information is present in the literature on the chemical ecology of 

SWD. With respect to D. melanogaster and to all remaining species of the 

same genus, SWD has a peculiarity in that it lays eggs on unwounded and 

healthy fruits, whereas it is attracted by marcescent and fermenting 

substrates for feeding purposes (Cini et al., 2012). Consequently, the 

knowledge acquired on the D. melanogaster model insect and on other 

closely-related species cannot provide an exhaustive information for 

understanding the behaviour of D. suzukii. Preliminary experimental 

observations confirm that this insect too is attracted, in terms of nutritional 

sources, by wounded and presumably fermenting fruits, as suggested by the 

attraction exerted onto SWD by a variety of fermented liquids, including 

wine, vinegar, and liquid derivatives of fruits (Kanzawa, 1935; Cha et al., 

2012, 2013, 2014; Landolt et al., 2012) and by the association, recently 
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reported, of this insect with a community of yeast species basically formed 

of Hanseniaspora uvarum (Niehaus) Shehata et al. (Hamby et al., 2012).  

A further confirmation of the interactions between SWD and 

microorganisms was found in capture tests, wherein baits inoculated with S. 

cerevisiae gave improved results as referred to sterile baits (Knight et al., 

2013). Conversely, no evidences have been published about the positive 

interactions, in terms of a greater attractiveness, of the insect with bacteria 

originating from the ambient or involved in the fermentation processes that 

is the base of the attractive mix commonly used in traps. However, tests 

carried out by the applicant demonstrate that the attractive capacity exerted 

by matrices activated with lactic acid bacteria belonging to species not 

commonly isolated in traps or in the agricultural context where these are 

located, is significantly higher than that observed by the mentioned species 

of yeast, the conditions being equal. 

At present, the most effective traps for capturing D. suzukii are those baited 

with different types of vinegar and wine (Landolt et al., 2012). Both these 

substrates result from fermentation, mediated both by yeast and by acetic 

bacteria, of carbonaceous compounds, mainly hexose sugars present in the 

raw material (McKenzie & Parsons, 1972; Becher et al., 2010, 2012; Barata 

et al., 2012). 

Other secondary compounds are also apparently relevant in attracting these 

insects, which justifies the greater effectiveness observed in the case of using 

food matrices like vinegar and wine to bait traps, with respect to that of pure 

compounds, for instance acetic acid and ethanol.  

Among these secondary compounds it is worth mentioning, according to the 

present references, acetyl methyl carbinol, butyrate, 2-phenyletanol, present 

both in wine and in vinegar, methionol, isoamyl lactate, and diethylsuccinate 

present in wine. All of these compounds are produced by the fermentation of 

yeasts and/or bacteria (Nielsen & Richelieu, 1999; Cordente et al., 2012), 

which confirms the importance of the microflora in forming a set of volatile 

molecules attractive to SWD. 

According to this knowledge, traps are marketed containing wine vinegar, 

apple vinegar, wine, fruit juices (Grassi et al., 2014). In order to warrant 
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stability and marketability, such matrices are sterilized via pasteurization 

during the production step. 

Tests carried out by the applicant demonstrated that the liquid matrices used 

so far in traps feature a limited activity, are not capable of warranting a 

sufficient effectiveness in the control strategies (mass trapping, attract and 

kill) and have a rather low duration in time, in the order of one week. 

In summary, the traps known so far are not sufficiently active against SWD 

and feature a short duration in time. In order for the control strategies to 

provide acceptable results, it is therefore necessary to use a high number of 

traps per hectare, which can be estimated to amount to different thousands. 

Furthermore, the traps known so far require weekly service of the bait. The 

high number of traps and the complex operativity necessary for their 

maintenance make the current solution ineffective and unsustainable from 

the economical point of view. 

In summary, the present invention refers to a bait aimed at monitoring and 

controlling SWD, which comprises the use of an active culture of lactic acid 

bacteria, preferably of the O. oeni species, preferably of the type used in 

oenology. In a preferred preparation the concentration of the lactic acid 

bacteria equals at least 10
8
 cells/g and the mixture also comprises at least 

apple cider vinegar or wine vinegar or wine or fruit juices taken individually 

or added with at least one organic acid, sugar, preferably a fermentable one, 

and a fermentation activator, or with all of the three additives, namely 

organic acid, preferably fermentable sugar, and a fermentation activator. 

The pH of the preparation ranges from 3.5 to 5.0 and is cold sterilized, 

preferably by filtration, before the first use. 

According to an even more preferable preparation, the active culture of lactic 

acid bacteria is included in an organic matrix, preferably formed of an 

organic polymer of an alginate stabilized by bond to an element in a cationic 

form. Such containment form of microorganisms makes it possible to 

optimize their functionality, meant as a biosynthetic activity and a resistance 

to environmental stresses, and to warrant a use thereof extended in time as 

compared to the devices currently in use (Avnir et al., 2006; Guzzon et al., 

2012). 
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The scientific works mentioned in the present document are listed below for 

the sake of completeness. 

 

5.4 Disclosure of the invention 

 

D. suzukii is an invasive species capable of causing major damages to 

cultivated fruits. For this reason it is presently managed by using chemical 

insecticides with big risks of damages to the environment, to the operator’s 

health and to the population who stands on the cultivation areas of the 

cultures infected by SWD. Among the few existing alternatives there is the 

mass trapping of the population of insects by means of specific traps. 

However, so far traps did not demonstrate to be capable of solving the 

problem, as it appears from the major losses of production recorded even in 

the presence of these devices, because an adequately attractive and long-

lasting bait has not been identified yet. Studies carried out by the applicant 

demonstrate that SWD is particularly sensitive to some molecules like 

acetoin and diacetyl. Such molecules are not naturally present in significant 

quantities in the attractive mixes presently used, however they can be 

produced in high quantities by O. oeni, a species of lactic acid bacteria of a 

typically oenological origin (Versari, 1999). Such species is the only one 

belonging to the Oenocccus genus and its presence has been exclusively 

described in oenological environments, in particular in wines during the 

malolactic fermentation (Liu, 2002). The addition of lactic acid bacteria 

belonging to the O. oeni species, which is the scope of the present invention, 

in traps baited with properly modified mixes of vinegar and wine, makes it 

possible very effective massive captures, capable of representing an 

alternative to chemical treatments. 

The very restricted environmental allocation of the species under 

consideration, as well as its poor intraspecific variability, is due to some of 

its physiological characteristics. In particular, O. oeni exhibits a poor vigor 

and a very low growth rate, thereby being rapidly overtaken in the 

colonization of the common fermentable substrate, including sugary juices 

of vegetal origins, by other species of bacteria or yeasts. Contrary to other 
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species O. oeni exhibits an excellent resistance to low pH values and to the 

presence of ethanol in the environment, thereby resulting the dominant 

species in wine at the end of alcoholic fermentation, wherein it finds the 

organic acids, among which in particular the malic acid, as a primary feeding 

source (Liu, 2002). Its characteristic metabolism consists of the 

decarboxylation of the malic acid into lactic acid, from which O. oeni is 

capable of taking energy thanks to the protonic gradient that is thus 

generated; it also produces secondary matabolites, including acetoin, 

diacetyl, and acetaldehyde (Liu, 2002). Such peculiar deacidification activity 

has been considered so far of an exclusively oenological interest, in that the 

action usually exerted by lactic acid bacteria in food matrices entails an 

acidification of the means through a consumption of sugars (e.g. dairy 

productions) and production of acid. 

The disadvantages of the known traps are therefore solved by the present 

invention. It is based on the original use of O. oeni in capturing D. suzukii 

thanks to the surprising increase in attractiveness of the traps that this 

microorganism, added to bait, causes. Such application is totally surprising 

with respect to the current and one context of use of this microbial species, 

i.e. malolactic fermentation into wine (Liu, 2002). 

O. oeni is also capable of warranting an increased attractive capacity of the 

conventional traps already in use, as demonstrated by experiments carried 

out by the applicant. The applicant experimentally ascertained that adding O. 

oeni to the common attractants present in the traps for SWD induces a higher 

number of captures than that observed with traps baited with other 

microorganisms or other attractive formulations; such difference can be 

attributed, according to the present references and to experiments carried out 

by the applicant, to the production by O. oeni of volatile molecules that are 

attractive to SWD, for instance acetoin or diacetyl, significantly higher with 

respect to other species of microorganisms. On the contrary, other 

experiments performed by the applicant demonstrated a non statistically 

significant intraspecific variability, i.e. internally to the O. oeni species, with 

respect to the attractive activity toward SWD. Such poor variability is 

reasonably to be attributed to the fact that the main differences highlighted 

between strains belonging to this species are in charge to genes encoding 
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resistances to environmental stress factors and do not concern the energetic 

metabolisms essential to life of cells, which the production of the mentioned 

attractive molecules is related to. 

An increased capability of traps in terms of attractiveness, thanks to the 

addition of O. oeni, is already evident by using traps already available on the 

market. 

The applicant observed that the common attractants, especially that most 

commonly used in the Province of Trento, called Droskidrink, consisting of 

apple cider vinegar, wine vinegar, wine, fruit juice staken individually or 

mixed together, do not enable O. oeni to express its metabolic activity at the 

best. Conversely, a better result is achieved with completely new 

modifications in the composition of the attractant, consisting of adding to a 

3:1 mix of apple cider vinegar and red wine of exogenous components like 

organic acids, for instance citric acid and L-malic acid, cane sugar, and 

nutritional factors including nitrogenous sources and vitamins. The acidity of 

the mix has also been corrected, by adjusting its pH to a value ranging from 

3.5 to 5.0 in order to warrant a maximum efficiency, in energy terms, of the 

decarboxylation reaction of the malic acid. Such liquid bait is stabilized via a 

sterile filtration and is not thermally treated because it has been possible to 

experimentally demonstrate that the attractiveness of baits containing non 

thermally-treated substrates is greater, probably thanks to the preservation of 

the compounds with high biological activity, but thermolabile, secondary 

constituents, for instance vitamins. Also, the use of an immobilized bacterial 

culture makes it possible to recover the biomass in the periodical service 

and/or replacement of the attractive substrate, making it possible its use in 

subsequent batches with surprising increases in the activity period of the 

trap. Note that the current time of use of the commercial traps is as low as 

one week. 

 

5.5 Experimental section 

 

Figure 1 graphically represents a gaschromatography recording coupled with 

an electroantennography (GC-EAD) carried out by the applicant. By this 
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technique, the individual compounds eluted by the gaschromatograph reach 

the antenna of an insect specifically prepared in an electroantennograph. The 

substances perceived by the antenna of an insect induce an electrical 

response which is displayed as a depolarization. In this recording a solution 

of volatile compounds collected from a sample of Droskidrink added with a 

culture of O. oeni (red line on the upper part) has been injected into a 

gaschromatograph and coupled with an antenna of a female D. suzukii (black 

line on the bottom side). As compared to the tests carried out in the absence 

of lactic acid bacteria, this preparation emits high quantities of diacetyl (the 

arrow indicates the peak of diacetyl at approximately 10min of retention 

time) and of acetoin (the arrow indicates the peak of acetoin at 

approximately 13min of retention time). Both compounds induce significant 

electroantennographic responses (their corresponding arrows on the bottom 

side). 

The applicant performed a field test in an applicant’s experimental vineyard 

of the Teroldego variety, simple pergola trailing system and located in the 

municipality of San Michele all’Adige (Trento) to evaluate the attractive 

effectiveness to SWD of a bacterial culture of O. oeni combined with the 

Droskidrink commercial product, i.e. the commercial attractant commonly 

used in the province of Trento and in other fruit growing regions. 

Droskidrink is normally formed of a mix of apple cider vinegar and red wine 

in a proportion 3:1 with the addition of 4.0 g of raw cane sugar. The pH of 

the commercial Droskidrink is approximately 3.0. 

Bottles provided with side holes filled with 200 mL of liquid attractant have 

been used in the test.  

The following theses have been evaluated: 

1) a Droskidrink whose pH had been increased up to a value of 

approximately 4.0 through the addition of KOH (such pH value makes 

the growth of lactic acid bacteria easier) added with approximately 3.5 

mL of a culture medium with O. oeni; 

2) a Droskidrink featuring a pH of approximately 4.0; 

3) an unmodified Droskidrink featuring a pH of approximately 3.0 

(commercial Droskidrink); 

4) a commercial Droskidrink added with 1.0 g of tetracycline (an antibiotic). 
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Every thesis has been repeated 3 times on different rows in a randomized 

block. Service of traps has been made weekly and the number of SWD 

captures are expressed as an average of the 3 traps, account being taken of 

the summation of males and females of the insect. 

The traps baited with O. oeni at the moment of the weekly control have been 

filtered from the captured insects and refilled with a quantity of Droskidrink 

up to reaching the quantity of 200 mL again. Conversely, the traps of the 

theses containing Droskidrink only, according to the commercial protocol, 

have been completely emptied and baited again with a fresh attractant. 

The results have been analyzed via a Levene test to check the standard 

distribution of the values. Analysis of variance (ANOVA) and LSD test have 

been performed and plotted in the following figures. 

Figure 2 shows the average number of captures of SWD by means of traps 

(no. 3/theses; 4/weeks 5) by using an attractive mix inoculated with O. oeni, 

the result of the previously described test. The values are represented in a 

logarithmic scale. Letters that are different for every week of checks indicate 

significant differences (ANOVA, Levene test; LSD test, P=0.05). 

The traps baited with a Droskidrink inoculated with a culture of O. oeni are 

always significantly more attractive than the remaining theses containing 

Droskidrink only in different conditions. Also, the presence of the bacteric 

culture in active growth made it possible to keep the trap effective for all the 

duration of the test without the need for completely replacing the liquid mix 

but just weekly refilling the contents lost by evaporation with new 

Droskidrink. 

Figure 3 shows the results of a test carried out by the applicant similar to that 

previously described wherein different species of lactic acid bacteria, in 

particular of the Pediococcus and Lactobacillus genera, have been compared 

to each other. The diagram shows the total number of captures during the 5 

weeks of test of such species as compared to O. oeni, which results to always 

be significantly more attractive to SWD. 
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5.6 Claims 

 

1 A use of an active culture of lactic acid bacteria for preparing a bait 

aimed at monitoring and controlling D. suzukii. 

2 A use according to claim 1, wherein the active culture of the lactic 

acid bacteria is of the type used in oenology. 

3 A use according to claim 1, where in the lactic acid bacteria of the 

compound belong to the O. oeni species. 

4 A use according to claim 1, wherein the concentration of the lactic 

acid bacteria in the compound is of at least 10
8
 ufc/g. 

5 A use according to claim 1, wherein the active culture of lactic acid 

bacteria is included in an organic matrix. 

6 A use according to claim 5, wherein the organic matrix is formed of 

an organic polymer. 

7 A use according to claim 1, wherein said compound comprises said 

lactic acid bacteria in association with at least one of the following 

liquids: vinegar, wine, fruit juices. 

8 A use according to claim 1, wherein said compound comprises said 

lactic acid bacteria in association with at least one of the following 

liquids: fruit vinegar, wine vinegar, wine, fruit juices,and added with 

at least one of the following elements: an organic acid, a fermentable 

sugar, a fermentation activator. 

9 A use according to claim 5, wherein said compound is cold 

stabilized. 

10 A use according to claim 5, wherein said compound is cold 

stabilized by filtration. 

11 An attracting compound aimed at monitoring and controlling D. 

suzukii, characterized in that it comprises an active culture of lactic 

acid bacteria belonging to the O. oeni species associated with at least 

one of the following liquids: fruit vinegar, wine vinegar, wine, fruit 

juices. 
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12 A compound according to claim 11, characterized in that the 

compound is added with at least one of the following elements: 

organic acid, sugar,  fermentation activator. 

13 A compound according to claim 11, characterized in that the 

compound is added with an organic acid and a sugar, and a 

fermentation activator. 

14 A compound according to claim 10, characterized in that the 

compound features at a pH ranging from 3.5 to 5.0. 
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5.7 Figures 

 

Fig. 1 - Gaschromatography recording coupled with an electroantennography 

(GC-EAD) carried out by the applicant. 

 
 



91 
 

 

Fig. 2 - Average number of captures of D. suzukii by means of traps using 

an attractive mix inoculated with O. oeni. 

 

 

  

Fig. 3 - Total catches of D. suzukii with different species of lactic acid bacteria. 
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6. Combined effect of trap design and Droskidrink mixture 

improved with different strains of Oenococcus oeni 

bacteria for early detection of Drosophila suzukii adults 

(Chapter 4) 

 

6.1 Introduction 

 

Drosophila suzukii Matsumura (Diptera: Drosophilidae), the spotted-wing 

drosophila (SWD), is an economic pest of small and stone fruit in major 

production areas including North America, Asia and Europe (Walsh et al., 

2011; Cini et al., 2012). SWD females have a serrated ovipositor and exhibit 

a preference for ovipositing in ripe and ripening intact fruit as opposed to the 

overripe and blemished fruit that are infested by other Drosophila species 

(Lee et al., 2011a). Oviposition by SWD may reduce quality of fresh fruit 

and cause downgrading or rejection at processing facilities (Wiman et al., 

2014). Adaptability to different environments makes SWD one of the major 

pests in agriculture. This species also causes production losses that may even 

exceed 90% (Cini et al., 2012). Economic damage is estimated at more than 

$2 billion in North America, over $4 billion in Europe and $500 million in 

Asia (Liburd, 2015). D. suzukii originates from Southeast Asia. It is still 

unclear whether SWD is native to Japan, but in any case populations have 

likely been established there since 1916 (Kanzawa, 1939; Mitsui et al., 

2010). Pesticide applications have been the primary control technique 

against SWD in both North America and Europe (Wiman et al., 2014). Mass 

trapping and other alternative agronomical practices may also affect 

populations (Beers et al., 2011, Cini et al., 2012). However, currently used 

methods and techniques do not sufficiently manage commercial infestations. 

The alternative management strategies to insecticide applications are 

currently being investigated (Cini et al., 2012). These strategies are 

increasingly being used to reduce the risk of pesticide resistance 

development by insect populations and to decrease damages to beneficial 

organisms (Walsh et al., 2011). Monitoring SWD is the first step to an 

integrated pest management program to determine where and when 

populations are present in the field and when to enact control measures (Cini 

et al., 2012). Currently, an accepted commonly used monitoring method for 
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SWD involves the use of traps constructed from a plastic cup with holes at 

the top for fly access. Inside the cup is a yellow sticky card and a mixture of 

apple cider vinegar (ACV) and a surfactant (Burrack et al., 2012; Burgess, 

2013). This trap has the problem of detecting SWD after the insect 

population has already established. By the point of the season when ACV 

traps detect SWD, populations are generally very high, and eradication or 

suppression of the pest population is a serious challenge (Bolda et al., 2010). 

Another drawback of these traps is that they are not specific to SWD and 

tend to capture non-target Drosophilids and other pests (Cini et al., 2012). 

For these reasons, there is a need to create a trap that functions better. A 

species-specific trap containing odorants emitted by host fruit during 

ripening would likely attract SWD earlier in the season, allowing action to 

control the pest on a local level to suppress population numbers (Cini et al., 

2012). One purpose of trapping is to capture the maximum number of insects 

before they reproduce or cause damage to crops (El Sayed et al., 2006; 

Suckling et al., 2015). Another purpose of trapping is to indicate whether the 

pest is present or absent. Effective trapping requires the use of lures that are 

able to attract fruit flies more effectively than natural food sources, such as 

calling virgin females, mating aggregations or food sources, including 

efficient traps or stations or formulations for killing the attracted insects and 

using lures and non-saturating traps that are effective during the entire period 

of adult emergence and mating (Suckling et al., 2015). Accordingly, the 

traps must be visually attractive and capable of capturing and retaining flies 

sufficiently long enough to provide a lethal dose of toxicant or to otherwise 

prevent the escape by drowning or starvation (Lasa et al., 2014). The 

capacity of a trap for retaining flies is likely to be influenced by the bait and 

the retention system used. At present, the most effective traps are those 

baited with vinegar and wine, synthetic compounds identified in their 

headspace (Landolt et al., 2012) or Droskidrink (apple vinegar ¾, red wine 

¼, cane sugar 20 g/L). Control methods based on the activity of volatile 

compounds, such as mass trapping and “attract and kill,” are among the most 

promising methods to control SWD (Grassi et al., 2014). Traps baited with a 

combination of apple cider vinegar, red wine and sugar gave the best results 

when they were inoculated with lactic acid bacteria; SWD showed 
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sensitivity to certain molecules produced by the degradation of the sugars 

present after malolactic fermentation (Guzzon et al., 2014). 

 

6.2 Materials and methods 

 

To compare the effect of novel formulations of Droskidrink (DD) on fly 

capture, standard DD mixture was compared to DD variants containing 

bacterial strains that are used in malolactic fermentation. In this experiment, 

the standard DD mixture contained 20 g of sugar dissolved in 750 mL apple 

cider vinegar (Sysco Corporation, Houston, Texas), 250 mL Merlot red wine 

(Peter Vella, Modesta, California), and a drop of soap as a surfactant to 

prevent captured flies from escaping. Separate DD treatments were 

inoculated with two strains of the bacteria Oenococcus oeni (Garvie) Dicks 

et al. (Enoferm Beta Lallemand, Enoferm Alpha Lallemand). 

 

6.2.1 Fermentation in open field 

 

In the first experiment, the fermentation process occurred in the field. Eight 

treatments (Tab. 1) were tested. Treatment A was composed of DD 

inoculated with 0.5 g/L of Enoferm Beta. For this treatment, pH was raised 

to 3.8 by using KOH (monohydrate granular AR [ARS]) in order to create an 

optimum environment for colonization and reproduction of the bacteria. 

Treatment B was standard DD inoculated with 0.5 g/L of Enoferm Alpha, 

with pH adjusted to 3.8 using KOH. For Treatment C, the same protocol was 

used as in Treatment A, with an additional 1.0 g /L of citric acid (pellets AR 

[ARS]) added to the mixture. Adding citric acid to the mixture results in 

malolactic fermentation that leads to increased production of acetoin, 

diacetyl and 2,3-butanediol (Lonvaud-Funel, 1999). These compounds might 

improve attraction of SWD. Treatment D represented the control standard 

DD bait. Treatment E was composed of normal bait DD with pH increased 

to 3.8 by using KOH. Treatment F was the commercially developed Cha-

Landolt bait. Treatments G and H had the same composition as Treatment A, 

but the trap designs were different. 
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Treatment Trap 

A= Droskidrink, Enoferm Beta, KOH, soap. Cup 

B= Droskidrink, Enoferm Alpha, KOH, soap. Cup 

C= Droskidrink, Enoferm Beta, citric acid, KOH, soap. Cup 

D= Droskidrink, soap. Cup 

E= Droskidrink, KOH, soap. Cup 

F= Cha-Landolt solution. Cup 

G= Droskidrink, Enoferm Beta, KOH, soap. Delta 

H= Droskidrink, Enoferm Beta, KOH, soap. Delta 

 

Tab. 1 - Treatments used to test the efficiency of different baits, bait dipensers and 

traps. 

 

For Treatments A, B, C, D, E, and F, identical traps were used. For these 

treatments, a red plastic cup (532.3 mL) with white lid was used. Polystyrene 

cups were placed inside each cup, to provide a barrier for temperature 

change. To provide access for SWD, six holes (0.5 cm diameter) were 

punched into each cup. Cups were filled with approximately 200 mL of the 

appropriate mixtures as described above. 

Corrugated plastic Delta traps (Suterra, Bend, Oregon) containing a white 

sticky card were used for Treatments G and H. The Delta traps were 

modified with an open hole at the bottom centre of the traps. The head of a 

bottle (Camelbak, Petaluma, California) containing Treatment A was 

inserted inside the hole of each modified Delta trap. This bottle contained a 

pressure valve that allowed for the release of volatile compounds during 

fermentation. Treatments G and H were distinguished by the different type 

of bottle used in the Delta trap. For treatment G, insulated water bottles were 

used, whereas for Treatment H, the water bottles were not insulated. All 

traps were tested with the aim to search a new model trap, which could 

achieve even better results. 

The experiments were conducted in a blueberry field site in Salem, Oregon 

(44°54'34"N; 123°06'51"W). The traps were placed randomly, at a distance 

of about 10 meters apart in the row, were replicated 4 times, and traps were 

placed every 3 rows. The experiment was conducted in the centre of the 
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blueberry field, avoiding the perimeters, so as to ensure a homogenous 

environment. 

The experiment was conducted over four weeks (from August 28 to 

September 25), and the traps were checked on a weekly basis. The mixtures 

and traps were filtered and contents returned to the lab in 70% EtOH. Sticky 

cards (Treatments G and H) were covered by plastic film and transported to 

the laboratory; male and female SWD were counted using a dissecting 

microscope. 

As previously mentioned, treatments inoculated with bacteria were left in the 

field for the four-week duration of the experiment, while Treatments D and 

E were replaced with fresh bait every week , the temperatures of the bait of 

Treatments A, B, C, D, G and H, were monitored, so as to check if the 

conditions were ideal for fermentation. 

 

6.2.2 Fermentation in the laboratory under controlled 

temperatures and different trap design and bait assessment 

 

The second stage of the work was characterized by the replacement of the 

liquid bait on a weekly basis for all treatments. In addition, the amount of 

bacterial inoculum used for the preparation of the treatments was reduced 

considerably from 0.5 g to 0.2 g/L, because in a controlled environment, 

treatments had lower risk of contamination, and moreover, all were 

generated under optimal conditions to ensure colonization by the bacteria 

and the resulting malolactic fermentation. The room temperature was 

controlled at 22 ± 2°C. Eight treatments (Tab. 1) were tested. The same traps 

were used for Treatments A, B, C, D, E, and F, whereas the traps used for 

Treatments G and H were significantly changed. The plastic Delta traps were 

modified to allow insertion of small 30 mL cups (Dart Container 

Corporation, Mason, Michigan) in the centre, while the water bottles were 

eliminated. For Treatment G about 20 mL of DD (Treatment A) were used, 

then the cups were closed with specially prepared covers to exclude entry of 

insects, but which would allow the exit of volatile compounds. For 

Treatment H, approximately 15 mL of DD were used, 2 cotton balls were 

inserted inside the cups, and no lids were used. 
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The same blueberry field was used for the second experiment, traps were 

spaced apart and randomized as was done in the first experiment. 

The experiment was conducted over 4 weeks (from 25 September to 23 

October), traps were checked on a weekly basis, and the composition of the 

traps was identified in the laboratory. 

 

6.2.3 New trap design 

 

The last phase of this work involved the assessment and development of a 

different kind of trap, and the improvement of those traps already used in 

previous experiments. With this test, it was decided to assess the possible 

power of attraction, and whether this new model of the trap could further 

enhance the results that were achieved by the mixtures of DD inoculated 

with bacteria. 

The experiment involved the comparison of 6 treatments (Tab. 2). 

Treatments A, B and C were obtained with the same preparations as in the 

previous experiment, but in this third experiment, the test included the use of 

the most promising trap from the previous studies: the plastic Delta trap with 

30 mL cup inside. This cup was equipped with 2 cotton balls and 15 mL of 

the test mixture. While Treatment D was always composed of the same trap, 

but it was used as normal DD control. Treatments E and F used red plastic 

cups (532.3 mL) with white lid. Treatment E was baited with DD, while 

Treatment F was baited with the commercial Cha-Landolt solution. The trial 

lasted seven weeks and took place in the period between October 30 and 

December 18, during which the temperatures were usually low and, 

consequently, the population of SWD was also reduced relative to the 

periods of the previous experiments. 
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Treatment Trap 

A= Droskidrink, Enoferm Beta, KOH, soap. Delta 

B= Droskidrink, Enoferm Alpha, KOH, soap. Delta 

C= Droskidrink, Enoferm Beta, citric acid, KOH, soap. Delta 

D= Droskidrink, soap. Delta 

E= Droskidrink, soap. Cup 

F= Cha-Landolt solution. Cup 

Tab. 2 - Treatments used to test the efficiency of different baits and traps. 

Also in this case, as in previous experiments, traps were checked weekly and 

the determination of the individuals took place under the dissecting 

microscope in the laboratory. 

 

6.3 Results and discussion 

 

6.3.1 Fermentation in open field 

 

In the first experiment the mixture inoculated with strains of O. oeni was left 

in the field throughout the period of the test. This helped to assess the ability 

of bacteria to perform malolactic fermentation directly under field 

conditions. In an attempt to create optimal temperatures for malolactic 

fermentation (20°C), styrofoam cups were used to buffer against temperature 

changes. The temperatures of the liquid bait were monitored with portable 

data loggers (HOBO pendant loggers, Onset Computer Corporation, Bourne, 

MA). The results showed that the mixtures inoculated with bacteria 

(Treatments A, B, C) were less attractive than standard DD (Treatment D) 

and DD pH adjusted to 3.8 (Treatment E). Although the inoculated 

treatments did capture decent numbers of flies, the reason underlying their 

poor performance relative to uninoculated treatments may be linked to the 

temperatures reached by the liquid during the night and during the hottest 

hours of the day. The temperatures of the mixtures fluctuated as much as 

50°C over the course of the 4-week trial, reaching a minimum temperature of 

10°C and a maximum temperature of more than 60°C. These temperatures 
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are far outside the range required by bacteria to carry out malolactic 

fermentation. 

During testing, it was noted that some treatments experienced fluctuations in 

the number of catches over the weeks of testing. In particular, the increase 

showed very interesting result obtained from Treatment D. The catch 

obtained by using this treatment showed appreciable and significant 

increases (Fig. 4) throughout the experimental period. These increases in 

catches may be linked to the weekly replacement of the liquid bait. This 

confirms, once again, the importance of microbial activity for the 

attractiveness of the mixture. In fact, in the treatments inoculated with 

bacteria and left in the field for the entire period of the experiment, the 

temperature reached by the liquid bait certainly inhibited the development of 

bacterial flora, especially for Treatments A and C that maintained a fairly 

constant number of catches over the 4-week experimental period. Treatment 

B showed a significant increase in catches (Fig. 4) over the weeks of testing. 

Thus, in this test it seems clear that the bacteria inoculated in Treatment B 

are better adapted to high temperatures. Based on the number of flies caught 

in the traps, they are disappointing both in respect to the treatment A and C 

against Treatment D. Even Treatment F showed significant increases in the 

number of catches from a statistical point of view (Fig. 1). However, if 

catches remain insufficient, use of this type of bait cannot be justified. The 

excellent results obtained from Treatment D are probably due to the weekly 

replacement of liquid bait, which probably made it possible to maintain a 

higher concentration of autochthonous bacteria within the liquid bait. 

As for treatments G and H, which included the use of DD inoculated with 

bacterial strains, but using a different model of the trap, numbers of captured 

flies were disappointing (Fig. 1). 

 

6.3.2 Fermentation in the laboratory under controlled 

temperature and different trap design and bait assessment 

 

Given the progress achieved in the first experiment, the methodology was 

adapted in second trial to replace all attractants weekly. 
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The results obtained with the second phase of the experiment shows that 

mixtures inoculated with bacteria, and in particular Treatment A, had better 

capture than in the first trial. In this second round of field trials, Treatment A 

had the highest number of the total catch during the 4-week trial. Moreover, 

this mixture was found achieve better results not only for the total of catches 

made over the 4 weeks of testing, but also for every individual week. The 

data obtained confirm once again, the important action of microbial activity 

and particularly of lactic acid bacteria to increase the attractiveness of the 

base DD mix. In fact, unlike the first cycle of tests, the mixtures were 

maintained in the laboratory at a temperature that allowed the microbial 

component to produce lactic acid capable of attracting SWD during 

fermentation. Treatment A turned out to be significantly more attractive than 

Treatment F (Fig. 2), while it appears to be more attractive than Treatment D 

(Fig. 2), though not in significant ways. 

Compared to the previous test, Treatments G and H showed an important 

increase of catches. The effective capture that characterizes this model of 

trap bodes well for its use in future monitoring efforts. In addition, 

Treatment H showed a significant increase in catches from week to week 

(Fig. 5). Catches increased relative to the total number of flies captured as 

the temperature decreased and the population of SWD fell. Indeed, 

Treatment H had the highest number of catches in the final week (Fig. 5), 

when weather conditions were becoming prohibitive for fly activity as 

opposed to survival because the fly population normally does not die out in 

the Western Oregon winter climate. 

For these reasons, it was decided to try the modified Delta trap with all 

inoculated mixtures of standard DD. 

 

6.3.3 New trap design 

 

For the third and final field test, the modified Delta trap (as it was used in 

Treatment H of the second field study) was evaluated using different 

modifications of DD mixture. The results bode well for further improvement 

of the trap. Mixtures inoculated with lactic acid bacteria, in fact, provided 
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excellent results throughout the 7-week trial in this experiment. The best 

results were achieved with the use of Treatment A, but all treatments 

inoculated with bacteria outperformed the control treatments D and F (Fig. 

3). 

The new trap design was compared with the standard “cup” trap that was 

used during the two previous tests. Also in this case, the numbers of SWD 

trapped with the new design were significantly greater than the numbers 

trapped in the standard cup (as a control was used the mixture attractiveness 

DD, Treatment D on the two models of traps) over the course of 7 weeks 

(Fig. 3). Positive confirmations have occurred with regard to the number of 

catches, when the thermal conditions are at the limit of the tolerance for 

SWD. Another interesting fact revealed in this test, unlike the previous two, 

is linked to the catch of female individuals, in fact, these were found to be 

much more abundant compared to males. 

Further confirmation of a more rapid method of identification and counting 

of insects was obtained during this test. In fact, the estimated time for the 

control of this new trap model was about ⅓ lower than the traps cup. 

 

6.4 Conclusions 

 

In conclusion, it was confirmed that, during the whole period of 

experimentation, the malolactic fermentation operated by lactic acid bacteria 

strains added to variants of DD, appears to be instrumental in boosting 

catches of SWD. It is also clear that, in addition to all other limiting factors 

such as pH, concentration of SO2 etc., certain temperatures must be 

maintained to ensure that the fermentation takes place in an adequate 

manner. For this reason, it is appropriate that the mixtures, once prepared, 

are kept in a place with controlled temperature and that they are maintained 

so as not to suffer any contamination by other microbial species that could 

trigger undesirable fermentations, such as what may occur when leaving the 

liquid bait in the field for several weeks. Also from the results obtained it is 

clear that the bacterial strain Enoferm Beta appears to provide the best 
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results, and that the addition of citric acid is a limiting factor and not an 

improvement for this kind of bait. 

Another factor to be taken into account is the new trap design. This fact 

could be functional for monitoring, because of the speed with which it takes 

to place the monitoring of catches compared to installing the cup traps. But 

above all, this new trap design could be very important if used as a 

component of mass trapping. The characteristics of the trap demonstrated 

during the trial leave no doubt about its great potential during the fall and 

winter seasons when populations of SWD are low. Catches of relatively 

many individuals during this time period could lead to a substantial 

reduction in the number of individuals (especially females) of SWD in the 

spring and summer seasons. 

These traps could be further improved by exploiting the intermediate 

characteristics of the two trap designs, so that only one trap would be even 

more attractive and able to guarantee excellent levels of catches during all 

seasons. 
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6.5 Figures 

 

 

Fig. 1 - Total catches of D. suzukii referred to a 4-weeks period, from August 28 to 

September 25. 

F= Cha-Landolt bait; A= DD + E. β; B= DD + E. α; C= DD + E. β + citric acid; 
D= DD; E= DD pH 3.8; for each treatment was used the cup trap; G= DD + E. β; 

Delta trap with bottle insulated. H= DD + E. β; Delta trap with bottle not  

insulated. 

Different letters indicate significant differences (Siegel & Castellan, 1988) after 

post hoc Friedman test with replicas. 

Test 1.1: differences between different treatments adding with bacteria and control 

(F=7; P<0.001; d.f.= 98.4). Test 1.2: difference between Droskidrink and 

Droskidrink pH adjusted (F=1; P<0.05 N.S.; d.f.= 0.75). Test 1.3: differences 

between different design trap (F=1; P<0.05 N.S.; d.f.= 1.05). ***(P<0.001), 

**(P<0.01), *(P<0.05), N.S. (no statistical differences). 
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Fig. 2 - Total catches of D. suzukii referred to a 4-weeks period, from September 

25 to October 23. 

F= Cha-Landolt bait; A= DD + E. β; B= DD + E. α: C= DD + E. β + citric acid; 

D= DD; E= DD pH 3.8, cup trap; G= DD + E. β, Delta trap without cotton balls; 

H= DD + E. β, Delta trap with cotton balls. 

Different letters indicate significant differences (Siegel & Castellan, 1988) after 

post hoc Friedman test with replicas. 

Test 2.1: differences between different treatments adding with bacteria and control 

(F=7; P<0.001; d.f.= 57). Test 2.2: difference between droskidrink and droskidrink 
pH adjusted (F=1; P<0.05 N.S.; d.f.= 0.08). Test 2.3: differences between different 

design trap (F=1; P<0.01; d.f.= 6.78). ***(P<0.001); **(P<0.01); *(P<0.05); N.S. 

(no statistical differences). 
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Fig. 3 - Total catches of D. suzukii referred to a 7-weeks period, from October 30 

to December 18. 

F= Cha-Landolt bait; A= DD + E. β; B= DD + E. α; C= DD + E. β + citric acid; 

D= DD, Delta trap with cotton balls; E= DD, cup trap. 

Different letters indicate significant differences (Siegel & Castellan, 1988) after 

post hoc Friedman test with replicas. 

Test 3.1: Differences between different treatments adding with bacteria and control 

(F=5; P<0.001; d.f.= 95.3). Test 3.2: differences between different trap designs 

(F=1; P<0.05; d.f.= 6.2). ***(P<0.001); **(P<0.01); *(P<0.05). 
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Fig. 4 - Trend of catches of D. suzukii (as percentage) during a 4-weeks period 

(from August 28 to September 25) observed in traps baited with different attractant 

mixtures. 

F= Cha-Landolt bait; A= DD + E. β; B= DD + E. α; C= DD + E. β + citric acid; 
D= DD; E= DD pH 3.8, cup trap; G= DD + E. β, Delta trap with bottle insulated; 

H= DD + E. β, Delta trap with bottle not  insulated.  

Differences in the trend (either increasing or decreasing) catches of D. suzukii 

analysed by Jonkheere test; ***(P<0.001), **(P<0.01), *(P<0.05). 

 

 

Fig. 5 - Trend of catches of D. suzukii (as percentage) during a 4-weeks period 

(from September 25 to October 23) observed in traps baited with different 
attractant mixtures. 

F= Cha-Landolt bait; A= DD + E. β; B= DD + E. α; C= DD + E. β + citric acid; 

D= DD; E= DD pH 3.8, cup trap; G= DD + E. β, Delta trap without cotton balls; 

H= DD + E. β, Delta trap with cotton balls. 

Differences in the trend (either increasing or decreasing) catches of D. suzukii 

analysed by Jonkheere test; ***(P<0.001), **(P<0.01), *(P<0.05). 
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7. Final considerations 

 

The results obtained from the present study appear to be very promising and 

make a further contribution to the research on D. suzukii. During the study, it 

was demonstrated that the technique for monitoring and mass trapping will 

be held in high esteem to reduce the damage caused by D. suzukii. These 

techniques have been already used for the control of D. suzukii showing 

interesting preliminary results and were based largely on the use of vinegar 

and wine mixtures and synthetic volatile compounds (Landolt et al., 2012). 

The Droskidrink (apple cider vinegar 75%, red wine 25% and brown sugar 

20g /L) attractant mixture seemed to be the one that can guarantee the best 

results, at least in Italy (Grassi et al., 2015). By the present work, it was 

therefore possible to evaluate the importance of the biological component of 

the mixture Droskidrink. It is well known that the Drosophilidae have 

attraction privileged to the wine and, in particular to the vinegar substrates 

deriving from the fermentation made by yeasts and bacteria. Accordingly, 

the thesis had as objective the study of the bacterial component present in the 

above mentioned mixture, since its effect had not yet considered, while the 

importance of the metabolites released during the fermentation produced by 

yeast for D. suzukii attraction was already taken into account.  

The preliminary phase was conducted in the Trentino Alto Adige Region, 

that have already faced considerable damage by D. suzukii (Cini et al., 

2012). We worked on the characterization of bacterial species already 

present in the Droskidrink mixture. The trials have been held both in the 

field and in the laboratory conditions, and due to these tests it was possible 

to identify different species of lactic acid bacteria, in particular O. oeni 

which was the species eliciting the best catching performances. Such 

experiments have also shown that the treatment of these baits with 

antibiotics or microfiltration, which hence deprived the microbiological 

components, reduced dramatically the number of catches. This evidence 

emphasized in unequivocal manner, the importance of microorganisms 

producing volatile compounds by fermentation for the attractiveness of the 

mixture Droskidrink to D. suzukii. 
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After the characterization of the O. oeni strains, we focused our efforts in the 

control and manipulations of the physical and chemical factors which 

potentially may inhibit the metabolism of these bacteria, with the aim to 

further improve the field performance. During this second phase of work, we 

were able to obtain important information that allowed us to confirm and 

improve the results obtained previously.  

Another essential step was to confirm the importance of O. oeni, and prove 

its biological activity towards D. suzukii in different environmental 

conditions. As a matter of fact, in the experiments carried out in a blueberry 

orchard in Salem (Oregon, the United States) at Oregon State University 

excellent results have been obtained. These results further supported the 

accumulating evidence of the huge potential that this bacterial species as D. 

suzukii bait shown in Italy. One of the crucial factors behind the improved 

outcomes observed in the trials performed in Oregon was that the bacterial 

fermentations within the liquid baits were mainly made in laboratory 

conditions and not in the field. This has allowed us to overcome the 

problems previously found that had prevented the total reliability of this 

strategy in the initial stage. 

During the period at the Oregon State University, much attention has been 

made  to the realization of a trap able to improve the efficacy of this type of 

control. The use of a trap that would ensure more easily release of volatile 

compounds, so as to reach a greater area has been a very important key that 

has allowed us to get a good combined effect between the trap and the 

mixture attractiveness. One of the most important results was obtained in 

this work was design of an innovative trap architecture that triggered a more 

powerful attraction and enabled us to capture a much greater number of D. 

suzukii with respect to other tools. In particular, there has been a consistent 

capture of female individuals during the colder periods of the D. suzukii 

flight season comparing to other traps. Moreover, the time needed for 

identification and count of the trapped individuals is practically halved  by 

the use of this new trap. 

For the reasons listed above, we believe that the present work will give a 

relevant contribution to further improve all the monitoring and control 
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approaches based on attractive baits either for D. suzukii or could be a model 

for other insect pests. 

Indeed, our results, especially off-season in relatively cold climatic 

conditions, suggest that the use of the O. oeni-baited trap may provide an 

important contribution for a significant reduction of D. suzukii population. 

We advocate that population control methods based on behavior 

manipulation and applicable at a wide territorial scale, such as mass-

trapping, attract-and-kill and push-and-pull, should be maximized for 

example close to winter shelter areas (reservoir during diapause) as well as 

in wild environments flanking fruit growing areas susceptible to D. suzukii 

attacks. In addition, trapping control methods carried out before the start of 

the flowering and fruiting season and targeting mainly gravid females have 

the potential to be extremely effective because of the lack of competition 

between natural sources and bait traps. 

Furthermore, a great advantage of the model of trap developed in this thesis 

is represented by the fast and easy service which would help to take timely 

actions for the use of insecticides and other control strategies against D. 

suzukii. 

In conclusion, future studies are warranted in order to further ameliorate this 

new tool, considering the many factors contributing to the determination of 

the efficacy of the trap-blend. In perspective, the scale-up of the product for 

the biocontrol market in collaboration with companies that have already 

expressed their interest to the invention under patent registration is one of 

the main goal of our research team. 
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