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ABSTRACT 

ITALIAN: 

Con base in ortofoto aeree ad alta risoluzione sono stati sviluppati modelli per la 

stima della biomassa di foreste xerofile capoverdiane. 

Il metodo proposto si basa sull'integrazione di tecniche di clustering in 

combinazione con l'indice VARI (Visibile Atmospherically Resistant Index) e algoritmi 

di segmentazione per l'estrazione chiome degli alberi. Questo procedimento ha 

permesso la minimizzazione dei problemi dovuti alla scarso contrasto spettrale tra il 

suolo e le chiome nelle parti più luminose e quelle in ombra. 

Sono stati testati metodi basati sul singolo albero e per area (area based) e le loro 

prestazioni sono state contrastate con i dati dell´inventario forestale nazionale di 

Capo Verde (CV-IFN). Nel primo approccio la biomassa è stata calcolata in funzione 

della larghezza della chioma e l'altezza degli alberi, utilizzando le equazioni 

allometriche sviluppate appositamente per l´inventario CV-IFN. Nel secondo 

approccio si è usata l'analisi di regressione per derivare modelli per la stima della 

biomassa in funzione dell'area proiettata della chioma. 

L´accuratezza delle stime è stata misurata analizzando l´ RMSE (Root Mean Square 

Error) tra la biomassa stimata e quella osservata. 

L´errore osservato nei due modelli è simile, variando tre il 42% del primo approccio 

e il 45% del secondo. 
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La biomassa media calcolata per l´intera area di studio (14.399 ettari) con base nei 

dati del CV-IFN, è di 12,701 Mg ha-1. Questo a fronte di 11,380 Mg ha-1 stimato dal 

modello per area (area based) e 10,278 Mg ha-1 per il modello per singolo albero. 

Una stratificazione dell´immagine per aree omogenee, definite da mappe del 

soprassuolo più precise, può portare a stime di biomassa piú accurate. I modelli 

proposti aprono spazi per l´applicazione pratica sia a fini di monitoraggio che di 

gestione delle risorse forestali. 

 

ENGLISH: 

Models to estimate the AGB over dry Cape Verdean woodlands were developed 

using visible high-resolution aerial orthophotography.  

The proposed method is based on the integration of clustering techniques 

combined with the Visible Atmospherically Resistant Index (VARI) and segmentation 

algorithms for tree crowns extraction. This allowed for the minimization of 

constraints due to poor spectral contrast between the background and tree crowns, 

especially for brighter parts of the crowns and shadowed parts of the scene.   

Both single tree and area based approaches were tested and their performances 

compared on the basis of field data from the National Forest Inventory of Cape 

Verde (CV-NFI). In the first approach, AGB was calculated as a function of crown 

width and tree height by the allometric equations developed specifically within the 

CV-NFI. In the second approach, regression analysis was used in deriving models for 

biomass as a function of the crown projected area.  
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The accuracy of the values predicted was measured by the Root Mean Square Error 

(RMSE) against the allometric-based (field-measured) biomass.  

The models produced similar accuracy in the AGB predictions with NRMSE% of 42% 

for the first approach and 45% for the second.  

The mean AGB as estimated from the CV-IFN data for the study area of 14399 ha 

was 12.701 Mg ha-1. This compared with 11.380 Mg ha-1 predicted by the area 

based model and 10.278 Mg ha-1 by the single tree model. 

The findings demonstrate that promising results can be achieved and as expected, 

the reliability increases with the area for which mean values are presented. 

Improvements  of the forest maps and the stratification  in homogeneous layers can 

lead to enhanced AGB estimations, something which opens opportunities for the 

practical application of the models for monitoring and management purposes. 

 

KEYWORDS 

Aboveground biomass, high spatial resolution visible aerial imagery, remote sensing, 

xerophytic forests, Prosopis sp., Cape Verde. 
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1. INTRODUCTION 

Tree biomass is useful in assessing forest structure and condition to estimate forest 

productivity and carbon fluxes; in providing a means of assessing sequestration of 

carbon in wood, leaves, and roots; and also as an indicator of both the biological 

and economic value of a forest ecosystem. Thus, the estimation of forest biomass at 

different geographical scales (from local to global) becomes significant in reducing 

uncertainty of carbon emission and sequestration, measures of land degradation or 

restoration, and understanding the roles that forests play in environmental 

processes and sustainability (Foody 2003).  

In arid and sub-arid areas, rural populations depend greatly on the sparse 

scrublands and woodlands for fuelwood and pasture for animals. In such contexts, 

quick and cost-effective estimation of biomass availability and variation is crucial to 

implementing proper management practice. This is the case of Cape Verde where, 

since independence, nationwide campaigns and relevant efforts were realized to 

promote afforestation of vast arid areas. These woodlands, composed by shrub-like 

xerophytic trees, although expressing a limited economic value, support significant 

socio-economic and ecological functions. In this context, the accessibility of simple, 

fast and inexpensive methods for biomass and forest cover estimation are essential 

to promoting the monitoring and management of these resources.  

The most accurate method by which to estimate forest biomass is based on field 

measurements, but collection of field measurements is time-consuming and labor-

intensive.  Moreover, it is impossible to census large geographic areas (Segura and 

Kanninen 2005; Seidel et al. 2011; Wang et al. 2011), thus it is only suitable for a 
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small area and cannot provide spatial distribution. Thus, direct collection is 

generally used to obtain biomass reference data and to develop species-specific 

allometric models based on measured attributes, such as diameter at breast height 

(DBH), tree height, crown projected area (CPA) and/or wood density (table 1). Then 

the allometric models can be used to estimate the AGB for a specific tree, as a 

function of these parameters for stand biomass inventories.  

Table 1: A summary of major characteristics of biomass calculation from field measurements 
(adapted from Lu et al. 2014) 

 

Regional or national forest inventories have large tree-volume datasets at plot level 

and forests stand so the conversion of tree volume to biomass on the basis of the 

average wood density can greatly reduce time and cost (Lu et al. 2014). However, 

this approach is not appropriate in woodlands, composed of shrub-like xerophytic 

Methods Major characteristics Advantages Disadvantages References 

Destructive 
sampling 

A tree is cut and dried, 
and all masses are 
weighed. 

The most accurate 
approach. An input 
for development of 
allometric models. 

Destroying trees 
is time-
consuming and 
labor-intensive 
and suitable only 
for small areas. 

(e.g. Klinge et 
al. 1975)  

Allometric 
models 

Established for each 
tree species with linear 
or nonlinear regression 
models based on the 
relationships between 
biomass and diameter 
at breast height, tree 
height, and/or wood 
density. 

Many previous field 
measurements can 
be used to calculate 
biomass. 

Not all species 
have allometric 
models. 
Environmental 
and climatic 
conditions may 
affect their 
applications. 

(e.g. Overman 
et al. 1994; 
Nelson et 
al.1999; Henry 
et al. 2010; 
Chave et 
al. 2014) 

Conversion 
from 
volume 

Biomass can be 
converted from volume 
at individual tree level 
or at plot level using 
volume expansion 
factor, average wood 
density, and biomass 
expansion factor. 

Many previous 
sample plots can be 
used to calculate 
biomass. 

Species 
composition and 
environmental 
conditions may 
affect the 
biomass 
estimation. 

(e.g. Brown 
and Lugo 1984; 
Brown et 
al.1989; 
Lehtonen et 
al. 2004; 
Segura and 
Kanninen 2005) 

http://www.tandfonline.com/doi/full/10.1080/17538947.2014.990526#cit0104
http://www.tandfonline.com/doi/full/10.1080/17538947.2014.990526#cit0104
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trees, where the ecological and economic interest is focused on the biomass and 

the measurement of the volume is a challenging task. 

A wide range of techniques has been used for biomass estimation. For example, 

Wang et al. (2009) divided estimation approaches into (1) process model-based; (2) 

empirical model-based; (3) biomass expansion/conversion factor or coefficient-

based; and (4) integration of plot and remotely sensed data (Lu et al. 2014).  

Process-based ecosystem models employ biogeochemical processes, including 

photosynthesis, absorption, and carbon allocation. The models generally include 

biology, soil, climate, hydrology, and anthropogenic effects (Smyth et al. 2013). 

Constraints in data source (e.g. climate data, soil, and topography), spatial 

resolution, and inaccuracy of models often result in high uncertainties in biomass 

estimates (Rivington et al. 2006; Zhang et al. 2012). Process-based ecosystem 

models assume homogeneous stands and lack the ability to provide spatial 

variability in forest biomass. Conversely, remote sensing has the capability to 

consistently capture land surface features over large areas. (Lu et al. 2014).  

In past decades, an increasing number of researches have explored the suitability 

and applied remote sensing-based models to provide accurate biomass estimation 

across different ecosystems and at different geographical scales. 

Remotely sensed data collected by optical multispectral and hyperspectral sensor, 

radar and Lidar combined with techniques based on empirical regression models 

and nonparametric algorithms are commonly used to estimate above ground 

biomass (AGB) of forested landscapes (Goetz et al. 2009), (Gleason and Im 2011), 

(Katoh and Gougeon 2012), (Vaglio Laurin et al. 2014), (Huang, Y. P., and J. S. Chen. 
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2013), (Hudak, A. T., et al, 2012), (Muukkonen and Heiskanen 2007; Blackard et al. 

2008; García et al. 2010; Mitchard et al. 2011) (table 2). 

Category Variables Description References 

Optical 
sensor data 

Spectral 
features 

Spectral bands, vegetation indices, and 
transformed images 

(e.g. Foody et 
al. 2003; Zheng et 
al.2004) 

Spatial features 
Textural images and segments from the 
spectral bands 

(e.g. Lu and 
Batistella 2005)  

Subpixel 
features 

Fractional features such as green 
vegetation and NPV by unmixing the 
multispectral image 

(e.g. Lu et al. 2005)  

Combination of 
spectral and 
spatial features 

Combination of images such as spectral 
bands, vegetation indices, and textural 
images as extra bands 

(e.g. Lu 2005; Lu et 
al. 2012)  

Active sensor 
data 
  
  

Radar 

Backscattering coefficients, textural 
images, interferometry SAR, and 
Polarimetric SAR interferometry can be 
used as variables 

(e.g. Mitchard et 
al. 2011; Nafiseh et 
al. 2011; Saatchi et 
al. 2011b; Carreiras et 
al. 2012; Sarker et 
al.2012) 

Lidar 

Lidar metrics based on statistical 
measures of point clouds or estimated 
products (e.g. CHM or individual trees) 
can be used as variables 

(e.g. Popescu et 
al. 2011; Nelson et 
al.2012; Chen 2013; 
Skowronski et 
al.2014) 

Combination of 
radar and lidar 
data 

For mapping biomass over large areas 
where field plots are scarce, lidar 
samples (e.g. strips) can be taken. Lidar-
derived biomass calibrated by field data 
is then used as dependent variable, and 
radar data are used as independent 
variables for developing biomass 
estimation models. Lidar-derived 
biomass serves as “virtual” field data to 
create a spatially representative biomass 
“truth” dataset for mapping biomass 
wall-to-wall using radar data. 

(e.g. Sun et al. 2011; 
Tsui et al. 2013) 

Integration 
of optical 
and/or active 
sensor data 
  

Fusion of 
different sensor 
data e.g. optical 
and radar data 

Fusion of Landsat and radar data to 
generate an enhanced multispectral 
image using different techniques such as 
wavelet-merging. 

(e.g. Chen 2013; 
Montesano et 
al.2013) 

Combination of 
optical and 
radar or lidar as 
extra variables 

Lidar and/or radar data are combined 
with optical-sensor multispectral bands 
as extra variables 

(e.g. Nelson et 
al. 2009; Chen et 
al.2012; Selkowitz et 
al. 2012; Pflugmacher 
et al. 2014; Vaglio 
Laurin et al. 2014) 

Table 2: Potential variables used in a biomass estimation procedure (adapted from Lu et al. 2014) 

http://www.tandfonline.com/doi/full/10.1080/17538947.2014.990526#cit0129
http://www.tandfonline.com/doi/full/10.1080/17538947.2014.990526#cit0129
http://www.tandfonline.com/doi/full/10.1080/17538947.2014.990526#cit0131
http://www.tandfonline.com/doi/full/10.1080/17538947.2014.990526#cit0132
http://www.tandfonline.com/doi/full/10.1080/17538947.2014.990526#cit0132


5 
 

Optical sensor data are commonly used for biomass estimation; they can produce 

data at various spatial, spectral, radiometric, and temporal resolutions that are 

suitable in extracting variables for biomass estimation. Many techniques, such as 

vegetation indices, image transformation algorithms (e.g. principal component 

analysis, PCA; minimum noise fraction transform; and tasselled cap transform, TCT), 

texture measures, and spectral mixture analysis (SMA), have been used to produce 

new variables from optical multispectral data (Lu 2006).  

The methods are based on spectral responses (spectral bands or vegetation indices 

and transformed images) (Bannari et al. 1995; McDonald et al. 1998 Foody et al. 

2003; Zheng et al.2004), textural images (e.g. the gray level co-occurrence matrix 

(GLCM)-based texture measures) (Lu and Batistella 2005; Kuplich et al. 2005; 

Kayitakire et al. 2006; De Grandi et al. 2009; Sarker et al. 2012) or the combination 

of both (Lu 2005; Lu et al. 2012). 

Several studies establish that methods based on spectral responses perform better 

when the forest stand structure is relatively simple (Lu et al. 2004; Lu 2005), while 

the textural images are more important in complex forest stand structures. The 

combination of the two methods improved biomass estimation compared to the 

use of individual spectral responses or textural images alone (Lu 2005). 

Limitations in the application of optical sensors are related to saturation problems 

for forest sites with high biomass density and the influence of external factors such 

as atmosphere, soil moisture, vegetation phenology, and growth vigor spectral-

based variables. They are suitable for the retrieval of horizontal vegetation 

structures such as vegetation types and canopy cover, but not for estimation of 
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critical parameters for biomass estimation such as tree and canopy height. Some 

optical sensor data such as ALOS/PRISM, Terra ASTER, and SPOT provide a stereo-

viewing capability that can be used to develop vegetation canopy height, thus 

improving biomass estimation performance (St‐Onge et al. 2008; Ni et al. 2014). 

Long wavelength radar data are an important data sources for biomass estimation, 

especially when optical sensor data are not available due to the cloud cover in 

tropical regions.  

Synthetic aperture radar (SAR) is a promising approach for studying forest biomass 

because of its ability in penetrating forest canopy to a certain depth, its sensitivity 

to water content in vegetation, and weather independency (Le Toan et al. 1992, 

2011; Dobson et al. 1995; Kasischke et al. 1997; Huang and Chen 2013). The 

regression technique based on backscattering amplitudes (Santos et al. 2002; 

Sandberg et al. 2011; Rahman and Sumantyo 2013) and the interferometry 

technique based on backscattering amplitudes and phases (Balzter et al. 2007) are 

commonly used in biomass estimation (Lu et al., 2014). Because of the high 

correlation between vegetation canopy height and biomass, InSAR capability in 

providing vegetation height feature provides a promising tool for large-scale 

biomass estimation. This is especially important for tropical and subtropical regions 

because of the cloud-cover issue (Kellndorfer et al. 2004; Solberg et al. 2014).  

The Polarimetric SAR interferometry (Pol-InSAR), a combined polarization and 

interferometry, is a recently developed radar remote sensing technology. Pol-InSAR 

produces more sensitive characteristics in spatiality as well as in shape and 

direction than interferometry or polarimetry for forest diffusions (Lu, et al., 2014). A 
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common biomass estimation procedure is primarily to estimate forest height using 

coherence information (Cloude and Papathanassiou 2003) and then convert it to 

biomass through correlation analysis (Garestier and Le Toan 2010). 

The major limitations are connected to the possibility of distinguishing vegetation 

types (Li et al. 2012) and to the noise and outliers in the data, thus resulting in 

difficulty in biomass estimation. Nevertheless, these techniques are attracting 

increasing interest considering the referred capacity in penetrating complex forests 

structures, the high correlation between vegetation canopy height and biomass and 

weather independency. 

Data saturation in optical and radar data is an important factor influencing the 

accuracy of biomass estimation in forests with complex stand structures, on the 

contrary lidar is capable to extract canopy height information even at high levels 

(>1000 Mg ha-1; e.g. Means et al. 1999). 

Because of the capability of lidar in providing both horizontal and vertical 

information of the canopy structures, its use leads to better biomass estimation 

performance than individual optical or radar data (Clark et al. 2011). In airborne 

lidar data, metrics can be extracted on the basis of either individual trees or areas 

(Chen 2013; Barbati et al, 2009; Corona and Fattorini 2008). The individual tree-

based approach requires identifying tree features such as treetop (e.g. Popescu et 

al. 2002; Chen et al. 2006), crown radius (e.g. Popescu et al. 2003), or crown 

boundary (e.g. Chen et al. 2006; Zhen et al. 2014). Mapping individual trees requires 

high lidar data point density (generally 10 points per m2 or higher) and is 
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challenging in closed and multilayer canopies such as tropical rainforests (Lu e t al., 

2014).  

The area-based approach, which generates statistical metrics from laser returns or 

canopy height model (CHM) constructed from the returns, has been widely used 

(e.g. Lim et al. 2003; Chen et al. 2012; Lu et al. 2012; Chirici et al. 2016).  

In the past, airborne lidar data were mainly applied in small areas due to high costs 

and large volume. As technologies advance, the use of airborne lidar data for 

biomass mapping will expand from local to regional levels (e.g. Skowronski and 

Lister 2012). For regional- to global-scale applications, spaceborne lidar – ICESat 

GLAS – was available between 2003 and 2009, and the use of GLAS data for biomass 

estimation has been shown to be valuable (Lefsky et al. 2005; Simard et al. 2008; 

Nelson 2010; Miller et al. 2011; Popescu et al. 2011; García et al. 2012). 

The combination of airborne lidar and satellite imagery is another promising 

approach for large-area biomass mapping. Optical sensors, radar, and lidar each 

have pros and con and proper integration of them can improve biomass estimation 

accuracy (Walker et al. 2007; Kellndorfer et al. 2010). 

Optical sensor data mainly represent land cover surface features, and radar data, 

especially with long wavelengths, can penetrate forest canopies to a certain depth 

capturing information about stems, branches, and understories. This providing 

more vertical stand structure information for vegetation types (Lu at al., 2014).  

Lidar data are powerful for estimating canopy structure but has limited spectral 

information because laser point intensity is from one wavelength. Optical sensors 
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provide rich spectral information but the spectral reflectance does not have a 

strong relationship with canopy structure. Thus, lidar and optical sensor data are 

highly complementary. However, earlier studies that integrated lidar with optical 

data have reported mixed results. Some studies have shown that the addition of 

optical to lidar data registered only slight or no improvement in biomass estimation 

(e.g. Hyde et al. 2006; Clark et al. 2011; Latifi et al. 2012). Conversely, Anderson et 

al. (2008) and Vaglio Laurin et al. (2014) found that integration of lidar and 

hyperspectral data significantly improved biomass estimation. 

The extent and complexity of a study area are the conditioning elements in the 

selection of suitable remote sensing data and biomass estimation algorithms. Thus, 

the integration of the proprieties of the different remote sensing data sources 

allows sufficient flexibility to cover different scales and conditions. Multiscale data 

from high spatial resolution datasets, such as QuickBird and lidar, medium spatial 

resolution datasets, such as Landsat and radar, and coarse spatial resolution 

datasets, such as MODIS, can improve the biomass estimation over the most 

diverse environments (Lu et al. 2014). 

Biomass estimation at continental and global scales has gained increasing attention 

in the last decade due to the concerns over global climate change and daily 

availability of coarse spatial resolution images from MODIS and AVHRR (Hame et al. 

1997; Baccini et al. 2008; Du et al. 2014) 

Medium spatial resolution images such as Landsat are a common data source for 

biomass or forest attributes estimation on a regional scale (Chirici et al., 2008; 

Maselli et al., 2005). Previous research has indicated that spectral, spatial, and 
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subpixel fractional features are important variables for biomass estimation. In 

particular, integration of spectral and textural images provides more accurate 

biomass estimates than either dataset alone (Lu 2005). 

On a local scale, biomass estimation results are typically used as reference data for 

validation or evaluation of other estimates from relatively coarse spatial resolution 

images. Therefore, local biomass estimations must be highly accurate and spatially 

precise. Optical sensor data such as QuickBird and IKONOS are common sources for 

this purpose (Thenkabail et al. 2004; Leboeuf et al. 2007). However, complex forest 

stand structures, tall tree-induced shadow problems, and high spectral variation in 

the same vegetation types reduce estimation accuracy. Use of textural images or 

object-based methods has the potential of solving these problems (Kayitakire et al. 

2006). Nevertheless, use of the spectral and/or spatial information for biomass 

estimation modeling is often insufficient for obtaining accurate biomass estimates. 

Substantial research has indicated that at this scale, lidar-based biomass estimation 

can lead to better performance than optical sensor-based approaches (e.g. Zhao et 

al. 2009; Chen et al. 2012; Næsset et al. 2013; Tian et al. 2012). 

At the finest scale is required single tree related information for more precise 

estimation of biophysical parameters, forest management and environmental 

planning. Single tree extraction has been commonly exploited in the field of forestry 

to reduce the manpower and cost needs in the traditional forest inventories. This is 

generally obtained by the usage of Airborne Laser Scanner (ALS) data by applying 

different algorithms for the extraction of pattern of single tree crowns (Gupta et al., 

2010; Vauhkonen, et al., 2009; Hyyppä and Inkinen 1999;  Persson, et al., 2002; 
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Koch, B et al.,  2006; Morsdorf et al., 2004; Steinmann et al. 2012) or by high 

resolution multispectral or hyperspectral airborne Digital Data (Katoh, et al., 2012).  

Techniques for tree-crown delineation are often based on first finding local maxima 

and then locating crown edges. A fundamental assumption inherent to crown 

delineation methods is that the main part of a crown is brighter than the lower edge 

of the crown, particularly at the boundary between crowns. Tree counting, tree-

crown delineation, species identification, crown density estimation and forest stand 

polygon delineation have been made possible with high-resolution data such as that 

collected via the airborne Multi-detector Electro-optical Imaging Sensor (MEIS), the 

Compact Airborne Spectrographic Imager (CASI) and the Leica Airborne Digital 

Sensor (ADS),( Katoh, et al., 2012). 

Biomass estimation exclusively from airborne visible imageries is not commonly 

reported in literature. The development of forest inventory has focused on high 

resolution images and especially on digital airborne measurements for forest survey 

and management (Leckie, 1990; Dralle and Rudemo, 1996). Several studies are 

reported about computerization and the analysis of digital aerial photographs for a 

determination of forest attributes (Greer, 1993; Holopainen and Lukkarinen, 1994; 

Blackburn and Milton, 1997; Tuomineen and Haapanen 2011; Uuttera et al., 1998). 

However, these studies are mainly based on CIR digital aerial imagery (containing 

near-infrared, red and green bands) that enhances the vegetation spectral contrast. 

The limitations and constraints occurring from the absence of NIR, SAR or LIDAR 

signals in the extraction of suitable variables for AGB estimation are the main 
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obstacles. These constraints are increased with the structural complexity of the 

stands.  

Nevertheless, the sahelian xerophytic woodlands are characterized by simple 

structure and non-contiguous canopy cover with reduced vertical variation, 

compared to crown variability. Under these conditions, the capabilities of the lidar 

in capturing the vertical variability of the stands is not essential as they occur in 

other environments.  Here, as observed in the data collected during the CV-NFI, a 

key variable associated with the AGB is the crown size and its horizontal projection 

that can be retrieved by optical sensors. Studies using very high spatial resolution 

satellite or airborne imagery have demonstrated that it is possible to accurately 

delineate single tree crown areas (Ke and Quackenbush 2011a and 2011b)  in arid 

(Gärtner et al., 2014) or urban ( Ardila et al., 2012) environments. Additionally 

several studies are reported on monitoring of vegetation status, phenology and 

variability of canopy structural parameters, based on ground visible digital imagery 

(Migliavacca et al. 2011; Vanamburg et al., 2006).  

This left open the possibility of more investigation beyond the correlation between 

the vegetation cover and the visible signatures in order to retrieve variables for 

biomass estimation at least in the simple forest, like the one proposed in this study.  

Considering the general availability of visible high spatial resolution, aerial imagery 

at low or no cost, and the speed, with which the data can be collected and 

processed, the investigation on the potential and limitations of these sources 

deserves some attention where simple and fast methods are required. Under these 

conditions, the opportunity to improve the biomass estimation, with an easily 
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accessible dataset can be considered an alternative or complement to ground-

based methods, LiDAR and multispectral and hyperspectral satellite data remote 

sensing.  

Traditional regression analysis is a method commonly utilized in developing biomass 

estimation models with remote sensing data. Parametric algorithms assume that 

the relationships between dependent (i.e. biomass) and independent (derived from 

remote sensing data) variables have explicit model structures that can be specified 

a priori by parameters. However, the relationships between biomass and remote 

sensing variables are often too complex to be captured by parametric algorithms. 

The biomass is usually nonlinearly related to remote sensing variables, and 

therefore, nonlinear models such as power models (Næsset et al. 2011; Chen et al. 

2012) and logistic regression models (McRoberts et al. 2013) were often used to 

estimate biomass.  

Nonparametric data-driven algorithms (often called machine-learning algorithms) 

have become popular in biomass modeling as they may provide more accurate 

estimates than linear regression models, especially when multisource data are used 

in large study areas. However, the model structure derived from these algorithms is 

often difficult to interpret (e.g. ANN). In other words, despite these algorithms 

possibly exceling in ‘mapping’ biomass, they do not help the ‘understanding’ of 

biomass estimation (Lu et al., 2014). 

On the other hand, most biomass estimation models are only suitable for the 

specific study areas in which the models are developed and they are not 

transferable due to the effects of biophysical environments on remote sensing data.  
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The present study defines a simple and easily understandable method that can 

permit easy applicability and interpretation of the relation between observed 

variables and AGB. Moreover, it is expected that the developed model can be 

generally applied in other stands with similar characteristic, so the transferability is 

an essential element to consider. These peculiarities are essentials for the practical 

application, by the national entities, in the environment in which it is developed.  

This is the reason to focus on a parametric linear approach that assumes the 

relationship between biomass as dependent variable and CPA as independent 

variable, investigating the most suitable scheme for its extraction from remote 

sensing data.  

The fact that the AGB is calculated as a function of the crown projected area makes 

this method universally applicable in woodlands with similar characteristics being 

the only constraints the availability of proper imagery and allometric equations. As 

a consequence, the proposed method is easily explicable and its practical use, 

clearly understandable by users.  

Resuming, the objective of this investigation is to assess the performance of single 

tree and area based approaches for AGB estimation, using high spatial resolution 

aerial visible color imagery over Cape Verdean xerophytics woodlands. 

The hypothesis is that by analysis and processing of the image it is possible to 

classify and extract the tree crowns and calculate the biomass at tree and area level, 

using the available allometric equations and the defined models. 
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2. MATERIALS 

2.1 STUDY AREA 

 

Figure 1: Localization of Cape Verde 

 

Cape Verde is an archipelago of ten islands (nine inhabited) and five islets located in 

the eastern Atlantic Ocean, approximately 570 kilometres (km) from the coast of 

Senegal, West Africa (16N, 24W) (Figure 1).  

These islands occur in two groups, the Barlavento (in the north) and Sotavento (in 

the south). Total land area for the archipelago is 4,564 km2.The archipelago is 

volcanic in origin, and is situated in the southwestern portion of the Senegalese 

continental shelf, on the oceanic crust.  

The landscape is rugged on the younger islands (Fogo, Santo Antão, Santiago, and 

São Nicolau), with peaks reaching over 2,000m (highest mountain is Mount Fogo, 
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2,829 m), but relatively flat on the older islands (Maio, Sal, and Boa Vista). The 

degree of topographical variation is mainly related to the age of the islands and the 

presence of volcanoes. The major rocks are basalt and limestone, and there are 

deposits of salt and kaolin. 

Cape Verde is on the edge of the North African arid climatic zone and has been 

heavily influenced throughout the last decade by the Sahelian drought. The climate 

is dry tropical with a strong oceanic influence that temperate thermal fluctuations. 

The dry season runs from December to July and the warm and wet season runs 

between August and November. Temperatures range between 20°C and 35°C, and 

average between 25°C and 29°C. Rainfall is irregular with great variability inter and 

intra annual, periodically the islands experience prolonged droughts. The torrential 

character of the rains cause heavy soil erosion and reduced water infiltration. 

Rainfall in most of the country ranges between 100 to 250 mm annually. 

The climate is influenced by the cold current of the Canary Islands and three 

principal winds: the Northeast trade winds (80%), the South West monsoon (5%) 

and Harmattan from Est (6%) (Brochmann et al, 1997). The first is constant and 

blows from November to June. The second is hot and humid, irregular and unstable, 

blows between August and October and gives rise to rains.  The third is dry wind 

that blows occasionally between October and June and carries large amounts of 

Saharan dust. 

The combination of these winds with the orographic variability, locally influences 

the climate by creating a variety of microclimates.  
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The islands are divided into five climatic zones: Extremely arid (H1), dry (H2), semi-

arid (H3), sub-humid (H4) and humid (H5) (Brochmann, et al, 1987). 

Climate types H4 and H5 are on exposed slopes in the sector between N and E from 

the 500 meters altitude where the mists carried by trade winds determine a 

significant contribution in horizontal precipitation. In other sectors, the climate 

ranges from extremely arid to semi-arid, with the latter at higher elevations or in 

the watersheds. 

Cape Verde's flora consists of 621 species of which 240 are indigenous and 84 

endemic (Brochmann, et al., 1997). 

The current vegetation is the result of significant human impact that led to the 

introduction of nearly two thirds of the current species and substantial changes in 

the ecosystem. 

Much of the territory is covered by open or semi-desert herbaceous vegetation. 

Exotic species such as Lantana camara and Furcraea foetida become naturalized 

and invasive in the humid areas. Other areas are dominated by agriculture and 

forests of anthropic origin. 

The original natural vegetation remains but in few areas of the country. In the past, 

it was likely represented by riparian formations of Tamarix sp. and  Ficus sycomorus 

along the streams, by Phoenix atlantica dominating the sands dunes and savanna 

formations dominated by Acacia albida on the southern islands and local shrub 

formations dominated by Nauplius daltonii. 
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The rocky slopes were covered by Sarcostemma daltonii and humid mountain 

slopes by continuous shrub vegetation with emerging trees of Dracaena draco and 

Sideroxylon marmulano. On semi-arid and sub-humid slopes Periploca laevigata ssp. 

Chevalieri occurred frequently.  

In that period, it seems as if there never were true forests, as the indigenous tree 

species of Dracaena draco, Sideroxylon marginata, Ficus sycamorus, Tamarix 

senegalensis, Acacia albida, and Phoenix atlantica lack the ability to form 

continuous forest cover (Brochmann, et al., 1997). 

The Cape Verdean forests are the result of afforestation programs created over past 

decades. The first afforestations, in order to minimize the adverse effects of 

ecosystem degradation, were initiated during the period of Portuguese colonization 

from 1930 with plantation of Eucalyptus sp. in the humid areas. Starting in 1950 

onward, the introduction of new species such as Pinus canariensis, P. radiata, P. 

halepensis, P. pinaster, Cupressus arizonica, C. sempervirens, C. lusitanica, Grevillea 

robusta, Eucalyptus camaldulensis, E. globosus, E. citriodora and E. gomphocephala 

and Kaya senegalensis (Silva de Carvalho, 1994). 

After the country's independence (1975) the afforestation was intensified (Table 3) 

in order to control the soil erosion, and increase the fuelwood and fodder 

availability.  

During that period, the afforestation was concentred in the arid and semi-arid 

climatic zones introducing Prosopis juliflora and Prosopis pallida, Parkinsonia 

aculeata and numerous species of Acacia, among which Acacia mollissima, 

A.cyanophilla, A. holosericea Acacia bivinosa, Acacia seleciana, Acacia Vitorie.  
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Among these species, Prosopis sp., for its ability to adapt to the soil and climate of 

cape Verdean islands, currently represents the 61% of wood species in terms of 

frequency throughout the country and 91% on Santiago Island (National Forestry 

Inventory 2012). 

Period Up to 1975 1976-1993 Total 

Island Area (ha) N° trees Area (ha) N° trees Area (ha) N° trees 

S. Antão 432 324,000 5,049 2,401,262 5,481 2,725,262 

S. Vicente     1,378 684,595 1,378 684,595 

S. Nicolau 135 78,500 2,100 962,530 2,235 1,041,030 

Sal     2 803 2 803 

Boa Vista     3,180 1,238,724 3,180 1,238,724 

Maio 500 75,000 2,404 785,464 2,904 860,464 

Santiago 1,130 837,000 40,908 16,035,702 42,038 16,872,702 

Fogo 725 500,000 8,943 4,262,077 9,668 4,762,077 

Brava 37 15,000 1,966 914,699 2,003 929,699 

tot 2,959 1,829,500 65,930 27,285,856 68,889 29,115,356 

Table 3: Afforestation of cape Verdean islands (source Direcção dos Serviços Florestais) 

The study area is located in the south sector of Santiago Island, coordinates upper 

left  15°0´33.368"N; 23°37´42.82"W – lower right 14°56’11.818"N; 

23°27’40.946"W (Figure 2).   

2.1.1 STUDY AREA CHARACTERIZATION 

The study area covers a surface of 14399 ha in the arid and semi-arid climatic zones 

representatives of xerophytics woodlands of the island. 
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Approximately 44% of the land area is covered by forests, (Figure 2); the remaining 

non-forested land includes non-productive areas, agriculture and urban areas. 

 

Figure 2: Localization of the study area in Santiago Island 
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Figure 3: Aspects of the woodlands that are object of this study 

These woodlands are composed by shrub-like growing species (Figure 3), Prosopis 

sp. represents the 95% in frequency, of the total fifteen wood species observed. 

Other species with some noticeable participation are Jatropha curcas, Acacia 

nilotica, Acacia Senegal, Parkinsonia aculeata and Acacia albida. The average 

canopy cover is 43%, and the mean tree density is 252 trees ha-1. The main 

dendrometric parameters describing the forest type in the study area, based in the 

field data (184 plots and 2218 trees), are reported are reported in table 4. 
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 Crown area , m
2
 Tree Height, m Tree Biomass, Kg Mean AGB, Mg ha

-1
 

Mean 19.29 3.52 63.21 12.701 

SD 12 1.19 58 8978 

CV 64% 34% 92% 71% 

Table 4: Mean, standard deviation and coefficient of variation of main dendrometrics parameters describing the 

forest type in the study area 

Due to the adverse edaphoclimatic conditions and goat grazing, trees in the area 

are characterized by small dimensions, reduced crowns and low stature. When the 

local microclimate is more favorable, as in the streams and valleys protected from 

the winds, trees are bigger with denser canopies that can create continuous canopy 

cover. The soil is covered by grass only in the humid season (from August to 

November) and in the remaining months it is generally bare or covered by dried 

grass. These characteristic are favorable for tree crown extraction from images, 

since there is not overlap of canopies, the individuals can be easily detected and the 

bare soil is generally spectrally different and well defined from the crowns. On the 

other hand, the reduced crowns which are small and leafless, exhibit limited 

greenness and pose additional challenges to estimate correctly the sparsely existing 

biomass. The correct balance of these characteristics is essential in the image of 

processing to define an accurate method for tree crowns extraction and biomass 

calculation.  

  



23 
 

2.2 FIELD DATA  

The data used as ground truth for the study are based on the fieldwork that was 

carried out during the first phase of the CV-NFI (2009) under the coordination of the 

author.  

A forest non-forest map was created by manual delineation of high-resolution aerial 

orthophotography.  During the first step, a grid of 150 m squares was overlapped to 

the image, and every square was classified according to the observed land cover. 

The minimum mapping area for each land cover class was defined at 5000m2. 

Following this scheme, all the squares that presenting in their centre a forest cover 

of > 10 % with a minimum area of 5000m2 were classified as forest and those with a 

forest cover >5% and <10% were classified as open forest. Only forest area is 

considered in the present study. 

 

Figure 4: Detail of forest map and field plots in the study area.  

A subset of the central points classified as forest was selected with a sampling 

intensity of 10% by means of simple random sampling without replacement 
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(SRSWOR) and surveyed in the field (figure 4). The plots were configured as circles 

of 500 m2. 

All trees in the plot with a height more than 50 cm were mapped and described. 

The data collected are the following: 

Tree base position, Tree species, Tree height (m), Crown projected area (based on 4 

perpendiculars radius). 

The field work was realized using the Field Map system. The system is composed of 

GNSS equipment (GPS II SXBlue), laser rangefinder/hypsometer ForestPro and 

electronic compass MapStar Module II, connected to a field computer with the field 

application (software Field-Map Data Collector). The location and navigation to the 

sample plots was conducted with the aid of GNSS equipment, connected to the field 

computer with a digital background map with the sampling plots. The position was 

recorded by averaging the GSSN position (at list 20 records) in open sky conditions 

and then completed by compass navigation until the center of the plot. Then all the 

trees were mapped and measured. Four pictures were taken, from the center to the 

four major directions (North, East, South and West) in each inventory plot. The data 

collected were directly stored in the database in the field computer.  

Data processing was realized with Field-Map Inventory Analyst (FMIA) software in 

order to calculate the secondary variables such as crown width, canopy cover, 

aboveground biomass and the aggregation of the data from tree to plot level.   
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2.3 AERIAL PHOTOS 

The imagery dataset used for this study is an aerial RGB orthophoto acquired in 

January 2010 with spatial resolution of 40cm (Table 5).  

Radiometric & spectral 

resolution 

Natural colour (RGB) 24-bit colour (3 x 8 bits per band) 

Red, blue, green 

Horizontal accuracies ±3 pixels 

Sensor information Analogic camera 

Image width, height (pixels) 100000 x 125000 

Ground sample distance (GSD) 0.4x0.4 m 

Sun angle >40o 

Fly altitude 3800 m 

Source Geodata Air S.A. 

Table 5: The characteristic of the imagery used in the study 

The image was pre-processed by clipping the region of interest and converting from 

*.ecw to GeoTIFF format.  

The Visible Atmospherically Resistant Index in the form 

VARI=(Green−Red)/(Green+Red−Blue) (Gitelson et al. 2002) was calculated at this 

step and used as an additional band in the  image processing. 
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3. METHODS 

3.1 AGB ESTIMATION USING IMAGERY DATA  

The AGB was calculated at single tree level and area based. The following scheme 

was applied: (1) tree crown mapping, (2) Tree crown extraction and crown 

projected area (CPA) calculation, (3) tree height modeling (only for single tree 

approach), (4) biomass calculation. 

The vector layer as forestry area, field plots and crowns polygons from field 

measurements were organized in a GIS for the following steps. 

3.1.1 TREE CROWN MAPPING 

Several techniques and algorithms were tested to define the best scheme for 

vegetation mapping. 

The processes tested as follows: 

1. Image segmentation followed by a supervised classification of the segments 

using the k-nearest neighbour, SVM, Decision and Random Trees classifiers.  

2. Image segmentation and extraction of signatures from the segments. These 

segment-based training sites were used as input into pixel-based classifiers 

and were finally used for further classification by combining the pixel-based 

and the segment-based methods. Maximum Likelihood, Fisher and K -

nearest neighbor classifiers were tested in this process. 
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3. Unsupervised classification using the ISOCLUST, ISODATA and KMEANS 

clustering techniques followed by a threshold segmentation/classification 

algorithm and multiresolution segmentation based on the region grow on 

object algorithm (Adams 1994), (Shih and Cheng 2005). 

After a number of tests we decided to apply the process nr.3 described in detail 

below.  

The first step performed was a classification of the image using the ISOCLUST 

algorithm. ISOCLUST is an iterative self-organizing, unsupervised classifier based on 

a concept similar to the well-known ISODATA routine of Ball and Hall (1965) and 

cluster routines such as the H-means and K-means procedures. On the basis of a 

histogram, indicating the frequency of pixels that belong to each seed cluster (figure 

5), a decision was made to perform the classification on 8 cluster bases.  

 

Figure 5: Histogram indicating the frequency of pixels that belong to each seed cluster 
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Figure 6: Result of ISOCLUST classification 

 

 

Figure 7: Tree canopy map obtained by VARI image processing 

Following the classification, a visual analysis was performed in order to identify the 

clusters representing the tree crowns and soil (figure 6). 
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The result of ISOCLUST classification permits an initial identification of clusters 

representing soil and trees but some clusters are mixed between soil and crowns, 

avoiding a correct extraction of the canopies for biomass calculation.  

Complementary the analysis of the VARI image showed good results in separating 

the trees from the soil (figure 7). In this case, the soil is completely excluded and the 

big and green canopies perfectly identified. The problem in this case is posed by the 

smallest and leafless crowns that are lost. 

With the purpose of cleaning and separating and the mixed clusters, a process of 

fusion and resampling of the two images was performed.  On this basis, the 

ISOCLUST image was reclassified assigning negatives numbers to the clusters 

representing soil and high positives numbers to the ones representing the canopies.  

The mixed clusters, that include canopies portions, shadowed areas and bright parts 

of canopies and soil were reclassified to intermediary values (table 6).  

Cluster Nr. Description Value assigned  

Cluster 1  Bright side of crowns and soil 10 

Cluster 2 Soil -10 

Cluster 3  Trees and some dark soil areas 20 

Cluster 4 Soil -10 

Cluster 5 Scattered pixel of crowns  5 

Cluster 6 Light soil -10 

Cluster 7 Trees and shadows 50 

Cluster8  Scattered  pixels of soil and crowns 3 

Table 6: Description of the clusters resulting from the ISOCLUST classification and new values 

assigned by reclassification algorithm 
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This reclassified image was then fused with the VARI image.  The fusion was realized 

by a sum between the two images. To amplify the difference between the negative 

numbers, representing the soil pixels, and positive numbers representing the tree 

pixels (figure 8), the VARI image was previously reclassified in the range   -200 +200.  

The resulting image was then reclassified to increase the difference between the 

soil and canopies pixels, for this, all the values between the minimum (-210) and -5 

were reclassified to -10 and all the values >20 to 100. The process was followed by 

mean filtering with a 3 × 3 window followed by reclassification in equal intervals of 

1-255. The accuracy of the result was assessed by visual interpretation over the 

scene on the basis of the RGB image (figure 9). 

  



31 
 

 

Figure 8: The VARI of a portion of the scene. 

 

Figure 9: Overlap between the RGB and the ISOCLUST+VARI reclassified image for classification 

accuracy assessment 

  



32 
 

3.1.2 TREE CROWN EXTRACTION AND CPA CALCULATION 

 

Figure 10: Sequential steps of image processing from the composite RGB image (a) to the ISOCLUST 

+VARI fusion (b) and threshold classification (c) and segmentation (d). 

 

Two different approaches were followed: area based and single tree level. 

Area Based: 

The classified image was processed by reclassification to the values 0-1 (soil–tree 

respectively) with a sequence at different thresholds. The accuracy of crown 



33 
 

mapping was tuned by an iterative process. The first level was assessed by 

contrasting the crown map image with the RGB.   

The image was then generalized, reducing the pixel size to 22.4m x22.4 m (equal to 

the field plot area of 500 m2), using the pixel aggregation as the contraction rule. 

The total CPA per pixel was then calculated. 

The final tuning of the model was realized by regression analysis between the true 

and image retrieved CPA. During this process a sequence of decreasing threshold 

levels was tested and the resulting Pearson correlation coefficient and Normalized 

Root Mean Square Error (NRMSE) was observed in order to define the optimal 

threshold level (table 7). 

Threshold NRMSE CPA Coeff. of Det. % AGB NRMSE  biomass 

15 59% 49.64% 59% 

12 55% 51.41% 55% 

10 51% 53.23% 51% 

9 49% 54.28% 50% 

7 46% 55.35% 48% 

5 46% 55.35% 48% 

Table 7: Variation of the R
2
 and RMSE% at different thresholds  

  



34 
 

Single tree approach 

 

Figure 11: Comparison between field measured crowns (red polygons) and segments obtained by 

image processing (green polygons). 

 

The image was processed by the threshold segmentation/classification algorithm 

(figure 10) followed by the subsequent step of multiresolution segmentation based 

on the region grow on object algorithm (figure 11).  

Similar to the area based approach, the first step was to define the optimum 

threshold by testing a sequence of decreasing values.  

At the next step, different combinations of the settings, such as the scale factor, 

color/shape, smoothness/compactness were iteratively tested (figure 12) in order 
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to define the best combination that minimizes the RMSE of the crown area and 

biomass estimation.  

 

Figure 12: Comparison between different setting of color/shape and smoothness/compactness. The 

blue lines represent the results of higher compactness (1) and the red lines higher smoothness (0), 

the black lines represent the field plot and crowns. A) color/shape 0.5 smoothness/compactness 1; 

B) color/shape 0.5 smoothness/compactness 0; C) color/shape 1 smoothness/compactness 1; D 

color/shape 0 smooth-ness/compactness 0. 

The objects were converted into vectors and processed by GIS software.  

The following steps were: area calculation and selection of tree crown polygons 

corresponding to each field plot for model accuracy assessment. In order to 

minimize the edge effect, and simulate the same process of tree mapping in the 
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field, the selection of the polygons was performed using the spatial selection 

function “target layers features have their centroid in the source layer feature” 

where the target layers are the tree crowns polygons and the source layer are the 

field plots polygons.    

3.1.3 TREE HEIGHT MODELLING 

The tree height for each segment was calculated by the horizontal crown 

projection-height relation. The model was calculated on the basis of field data 

collected in 630 plots from Santiago Island for the Cape Verdean National Forest 

Inventory (CV-NFI) from Prosopis sp.  (n=7171) (figure 13). The model is based on 

the equation: 

Tree height = 1,2757CPA0,3683     (R² = 0.5331) 

 

Figure 13: Relation between horizontal crown area and tree height for Prosopis sp.  in Santiago island 

y = 1.2757x0.3683 
R² = 0.5331 

0

2

4

6

8

10

12

0 50 100 150

Tr
e

e
 h

e
ig

h
t,

 m
 

Crown area, m2 

Crown area m2  vs Tree height m n=7171 



37 
 

3.1.4 BIOMASS CALCULATION 

According to the approach as we tested, single tree and area based, the AGB was 

calculated in two different ways.  

In the first approach and for the field data, the AGB was calculated by the allometric 

equations developed specifically within the CV-NFI (Cienciala et al. 2013). The study 

on biomass models used destructive sampling of Prosopis juliflora that was carried 

out on three islands, namely Santo Antão, Santiago and Maio. 

The equation used is the one based on the crown width (CW) and tree height (Ht): 

AGB = 1,098*EXP(-0,23+0,528*LN(Ht)+2,159*LN(CW)) (n=237 r2=0.729) 

The biomass was calculated at single tree level, using as input variables the CPA, 

extracted from the images, and the modeled tree height. The biomass at plot level 

was then calculated as a sum of the individual AGB.  

In the second approach, regression analysis, was used in deriving models for 

biomass as function of CPA. The AGB was calculated by the equation that minimizes 

the RMSE (figure14) using as input the total CPA of each 500m2 pixels. 
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Figure 14: Relation between tree crown area and biomass. 

3.2 ACCURACY ASSESSMENT 

Biomass estimates and CPA measured from field plots were used as ground truth 

data to evaluate predictions of biomass obtained from the models. 

The validation of AGB imagery estimation models was done against allometric-

based (field-measured) biomass. 

Traditionally, the accuracy of forest biomass/carbon estimates is assessed by 

calculating the root mean square error (RMSE) and the Pearson’s correlation 

coefficient of the estimated and observed values (Congalton 2001; Congalton and 

Green 2009; Wang and Gertner 2013).  

Accordingly, the accuracy of the values predicted was measured by RMSE (Equation 

1) and the normalized root mean square error (NRMSE) to the mean of the 

observed data (Equation 2). 
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Equation 2: NRMSE 

 

The relationship between the different parameters was studied by linear and power 

correlations and the correspondent Pearson correlation coefficient and coefficient 

of determination (r2). 
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4. RESULTS  

4.1 TREE CROWNS MAPPING 

The visual assessment of the classification accuracy shows good results all 

throughout the image (fig.15); good identification of the trees is reached even for 

the smallest crowns and in the most complex structures.  

 

Figure 15: The final result of tree crowns mapping in a portion of the scene.  

Only some localized and well identified areas, where the soil is darker or covered by 

grass, was impossible to completely separate the tree crowns from the background 

at the selected threshold. During image processing was observed that the use of 

higher threshold values can increase the accuracy in the shadowed and dark areas 

on the contrary lower threshold where better defining the tree crowns in the and 

the lighter parts of the scene. Obviously in the first case, the smallest trees and 

bright parts of the tree crowns are lost and in the second a quick increase in the 

noise and incorrect classification was observed. Increased results can be reached 
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working in sub datasets divided by more homogeneous characteristics of 

background and tree size and by using different thresholds for each condition.   

4.2 MODELS TUNING 

The tuning process performed in the image processing indicated that the primarily 

factor influencing AGB estimation accuracy is the classification of the image, 

followed by the scale applied in the image segmentation for the tree crown 

extraction in the single tree scheme. Threshold levels above seven resulted in a 

rapid increase of the RMSE whereas below five there was no change detected. 

Little influence was observed in the fine tuning of color/shape and 

smoothness/compactness settings. In the tests performed a maximum of 2% of the 

total NRMSE of biomass estimation was affected by setting the color/shape and 

smoothness/compactness parameters to extremes values. The better results were 

observed in middle range of values reaching the minimum RMSE with the 

color/shape defined at 0.3 and smoothness/compactness at 0.6. 

4.3 TREE CROWN PROJECTED AREA CALCULATION 

The analysis of the data exhibits the possibility of an accurate calculation of the tree 

crown projections with a NRMSE of 40%. Analogous results are observed in the 

single tree and area based approaches at plot level and original resolution (figure 16 

and 17a). The generalization at 500m2 pixels, applied in the area based approach, 

produces a decrease of the estimation accuracy. It seems due to the resampling 
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that enhances the edge effect when comparing the circular plots data samples with 

square pixels. 

 

Figure 16: Relation between observed and predicted CPA, m
2
 per plot (500m

2
), in the single tree 

approach. The CPA is the sum of the individual’s segments area having their centroid inside the plots 

 

Figure 17: Relation between observed and predicted CPA, m
2
 per plot (500m

2
), in the area based 

approach. Figure A is the extracted CPA from the circular plots at original resolution. Figure B 

represents the CPA extracted from the spatialized map at 500m
2 

pixel resolution. 
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4.4 TREE DENSITY 

The single tree approach assumes that each segment corresponds to an individual 

tree. On this base, the tree height of each segment is modelled and then the AGB is 

calculated. Nevertheless, in the segmentation of the image it is necessary to use a 

low scale that permits the mapping of the smallest trees that are widely present in 

the scene. As a consequence, the medium and big crowns are divided into multiple 

parts. The result is that the predicted number of trees is notably higher than the 

true value and the resulting RMSE is high and the correlation between the two 

values is weak (R2=0.28) (figure 18). 

 

Figure 18: Relation between predicted and observed tree density nr ha
-1

 

4.5 BIOMASS CALCULATION 

The biomass is estimated with similar values of NMRSE such as CPA, ranging from 

39% to 55%. This suggests that the models used to estimate the AGB from the CPA 

R² = 0.28 

0

100

200

300

400

500

600

700

0 200 400 600

P
re

d
ic

te
d

 

True 

RMSE 269 
NRMSE 116% 



44 
 

do not add relevant bias to the final results. The lowest RMSE is obtained by using 

the area based approach when the AGB is estimated from the circular plots at 

original resolution (Figure 20A). Similar results are obtained by the single tree 

approach when the biomass is calculated as the sum of all the segments having 

their centroid inside the plot (Figure 21A). In the first case, the performance is 

slightly better because the model is positively affected by the plots edges, where 

the field measured emerging canopies are defining the area of interest (fig. 19). 

When extracting the attribute values, the 

feature definition image artificially 

contributes to the exact extraction of the 

edge pixels.  

The RMSE increases (48%) when the 

biomass is modelled from the spatialized 

image at 500m2 pixel resolutions. 

Nevertheless, this second scheme seems to 

be the correct one, considering the above 

observations. 

In the single tree approach, the RMSE ranges from 42% to 55% (figure 21). In the 

first case, the ground truth AGB is contrasted with the sum of individual segments 

AGB having the centroid inside the corresponding plot. This should to be the correct 

scheme for the application of this approach. In the second case, the ground truth 

AGB, is compared with the AGB extracted from the spatialized map at 500m2 pixel 

resolution. 

Figure 19: The edge effect in the area based 

approach (model) when the field plot with the 

emerging crowns shapes (green area) are 

used as feature definition image  
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Figure 20: Relation between observed and predicted AGB, Kg per plot (500m
2
), in the area based 

approach. The figure A is the estimated AGB from the circular plots at original resolution. Figure B 

represents the AGB extracted from the spatialized map at 500m
2
 pixel resolution. 

 

Figure 21: Relation between observed and predicted AGB, Kg per plot (500m
2
), in the single tree 

approach. The figure A is the AGB calculated as sum of the individual’s segments AGB having their 

centroid inside the plots. Figure B represents the AGB extracted from the spatialized map at 500m
2 

pixel resolution. 
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In this case, a significant decrease of the model accuracy is observed when 

spatializing the AGB data to the new resolution. 

 It is necessary to consider that the single tree model simulates the same process of 

the field data collection. All the trees, with the base inside the plot, are measured 

and the crown portions following outside the plot area are accounted for the plot 

AGB estimation. When the single tree estimated AGB is spatialized to 500m2 pixels, 

the biomass associated with each segment is proportionally attributed to the 

adjacent pixels. This reduces the predicted AGB for the reference plot introducing a 

bias in the comparison of the two values.  

 

 

Figure 22 Relation between observed and predicted AGB, Kg per plot (500m
2
) when the reference 

AGB is calculated using only the crowns portions falling inside the plots. In the figure A is contrasted 

with the AGB predicted by area based approach and in figure B with the single tree approach. 
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When the AGB extracted from the spatialized map at 500m2/pixel resolution is 

contrasted with a reference AGB, resulting only from the portions of tree crowns 

contained within the plot, the RMSE drop from 55% to 48% and from 48% to 45% in 

the single tree and area based approaches respectively (figure 22). This indicates 

that the bias due to the edge effect is stronger in the single tree model and an 

increase of the plot sizes can reduce the observed RMSE.   
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5. DISCUSSION AND CONCLUSIONS 

The goal of this study was to evaluate the general applicability of models based on 

visible aerial imagery processing for single-tree and area based biomass estimation. 

The findings demonstrate that an accurate identification of trees crowns, horizontal 

crown area extraction and biomass estimation is possible in woodlands with the 

given characteristics.   

The proposed method is based on the integration of clustering techniques 

combined with the Visible Atmospherically Resistant Index (VARI) and segmentation 

algorithms for tree crown extraction. This permitted the minimization of constraints 

due to poor spectral contrast between the background and tree crowns especially 

for brighter parts of the crowns and shadowed parts of the scene.   

The prediction of single tree and plot AGB as a function of CPA as independent 

variables was both viable and accurate.   

When observing the real distribution of biomass (figure 22), values between 0 and 

750 kg/500m2, the predicted values are similarly distributed to the observed ones. 

The mode is situated between 250 and 300 Kg both in the observed data and in the 

single tree predictions; it is slightly higher in the area based model. 
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On the other hand, at greater values, the two models tend to underestimate the 

biomass, this is more evident in the single tree approach.  

A consistent group of points in the range between 1000 and 1500 kg is 

underestimated by the two models (figure 23 and 24).  

 

Figure 23: Distribution of the biomass observed and predicted by the two models. 
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Figure 24: Distribution of the biomass in the single approach 

  

 

Figure 25: Distribution of the biomass in the area based approach 
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A possible explanation for this is that individual tree crowns are mapped basically 

on bases of the darker areas of the canopy and shadows. On the contrary, the 

brighter crown portions tend to be confused with the background. Therefore, in the 

crown extraction, part of the crown is lost and this is proportionally greater the 

bigger the tree is. This occurs because the tree height variation is considerably 

lower than the variation of the projected area of the crown. Moreover, in the sites 

with greater biomass, a partial overlap of tree crowns that is not gathered by the 

models is present, introducing an additional element of underestimation. This is 

combined with the edge effect described above, the plots with higher biomass 

contains a heightened proportion of tree canopies emerging from the plot 

boundary. 

The additional difference observed in the single tree scheme can be explained by 

the fact that the model used to estimate the AGB uses as a variable the tree height 

that is modelled from the CPA. As previously discussed, the bigger crowns are 

segmented in more than one object; this determines a negative bias in the tree 

height estimation, something which is proportionally higher at increasing number of 

subdivisions. To find an approximation for an optimal scale, we applied the root 

mean square error, as error criterion. Accordingly, the scale defined in the 

segmentation is the one that minimizes the overall RMSE. Considering that the 

mode is situated in the lower biomass classes, the selected scale is low; this allows 

the accurate extraction of the smallest crowns but, as a consequence, splits the 

bigger canopies in more than one object. This can be seen in figure 24, in which AGB 

values up to 500 kg are equally distributed along the 1 to 1 line and increasing 

values are mainly positioned under the line.  
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A similar trend can be observed in the distribution of the points in the area based 

approach (fig 25).  However, in this case, the predictions are evenly distributed 

along the 1 to 1 line in the middle range, while they are generally above at the 

lowest values.  

It is necessary to point out that the models were tested in challenging conditions 

with a very fine scale and taking into account even the smallest trees. As an 

example, a plot with mean CPA of 1,37 m2 and tree height of  1m (n=12) is in the 

sample and its biomass is estimated  by the single tree model with an error of 20%.   

The AGB estimation at on very fine level is a challenging task due to the increased 

spectral signature heterogeneity (Lu et al. 2008). Moreover, the assessment of AGB 

estimation results at a per-pixel level is often difficult, and the accuracy may be 

misleading due to the registration errors between field collection data and the 

image (Lu, 2006). In general, the assessment of AGB estimation results can be 

conducted based on different levels, such as per-pixel level, per-field level or 

polygon level, and the total amount for the study area (Lu 2006). Several studies 

have demonstrated that the estimates using high-resolution data have high root 

mean square error (RMSE) on a pixel level (e.g., Tokola et al., 1996; Trotter et al., 

1997). The reliability increases with the area for which mean values are presented 

(Tokola and Heikkila 1997). 

This is confirmed by the means values of the predicted AGB by the different models 

over the total study area presented in table 8. At this scale, the predicted biomass 

results are very close to observed values. The mean AGB as estimated from the IFN-

CV data for the study area of 14399 ha was 12.701 Mg ha-1. This compared with 



53 
 

11.380 Mg ha-1 (APE 10 %) predicted by the area based model and 10.278 Mg ha-1 

(APE 19 %) predicted by the single tree model.  

Model 
Observed AGB 

Mg ha-1 

Predicted 
AGB Mg 

ha-1 

Absolute 
deviation 
Mg ha-1 

Absolute 
percentage 
error (APE) 

% 

Area based model 12.701 12.568 0.1335 1% 

Area based spatial 12.701 11.380 1.321 10% 

Single tree model 12.701 10.278 2.423 19% 

Single tree spatial 12.701 8.891 3.810 30% 

Table 8: Comparison between predicted versus observed AGB in the study area (14399 ha) 

 

In summary, the two approaches produced similar results in the overall 

performance of AGB estimation. In the lowest biomass classes more accurate 

performance is achieved with the single tree approach. The area based model 

demonstrates a more uniform prediction, even in the middle range but with higher 

deviation.  Improvements for the area based approach can be reached mainly by 

improving the image classification, while in the single tree scheme is also possible to 

improve the predictions by tuning the scale values to better extract the tree crowns.  

According to Katila and Tomppo, stratification of the remotely sensed data based on 

ancillary data are an effective way to improve estimation accuracy within each 

stratum (Katila and Tomppo, 2001 and 2002). 

Thus, the improvement of forest mapping and division in strata, homogeneous per 

forest type, age, crowns size, ant tree height and the use of different scales in the 

segmentation can lead to enhanced AGB estimations. 
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5.1 SOURCES OF ERROR  

Several sources of error are associated with the AGB estimation both from ground 

truth data and form image processing.   

Primary sources of error associated with AGB prediction include allometric errors, 

modeling/measurement errors, and sampling errors (Montesano et al., 2013) 

Allometric errors are associated in this study with the relationship between crown 

width and tree height to AGB.  The allometric equation used in this study is quite 

robust and was developed specifically for Cape Verde and the observed species 

(n=237; r2=0.729).  Thus, so can be expected that this component is marginally 

influencing the overall accuracy of reference AGB estimation, where the CPA and all 

three heights are directly measured in the field.  

In the case of AGB predicted by the single tree model, the height is derived by the 

CPA as independent variable. In this case, the relation between the two parameters 

is weaker (n=7171; R² = 0.533). This introduces an additional source of error in the 

estimations. In the area based model, the AGB is directly estimated as dependent 

variable of the CPA.  In this case, the relation explains the 70% of variability (n=183; 

R2 =0.701).  Nevertheless, the results demonstrate similar levels of NRMSE%, both 

for CPA and AGB estimation, indicating that these factors are not a critical source of 

uncertainly. 

Modeling/measurement errors arise from the relationship of field-measured to 

remotely sensed data. In this case, the accuracy of tree crown measurements both 

in the field and from the imagery plays an essential role.   
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The importance of geometric accuracy of field sample plots and remotely sensed 

data is obvious because poor geometric accuracy could result in spurious 

relationships between AGB and the remotely sensed data. 

The field data used in this study were collected on the basis of an accurate plot 

center location and tree position mapping that was realized with a real-time DGPS, 

electronic compass navigation and laser rangefinder. Considering the data 

collection technique used, it can be affirmed that the geometric accuracy of field 

data is assured.    

Nevertheless, the measurement of the tree crown projected area in the field is a 

challenging task that is achieved by an approximation based on four or more points. 

Taking into account the great irregularity and variability of crown shapes, it is 

evident that this can be an important source of error that affects the comparison 

with the remote sensing retrieved data. Moreover, the crown width that is the 

input in the AGB allometric equation is calculated assuming that the crowns have a 

circular shape. The associated error becomes greater when the crowns have 

irregular shapes.   

The extraction of the tree crowns from remote sensing data is a critical point in the 

model. The spectral response of a single tree on remotely sensed images may be 

affected by the crown shape, yielding brighter sun-facing sides and darker sides 

facing away from the sun combined with the background. In dark soil, tree canopies 

tend to be overestimated because parts of the soil are classified in the same cluster 

of the tree crowns. On the contrary, in the areas with a light soil was observed a 

loss of crown brighter parts as result of the filtering and reclassifying process. As 
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discussed above, the proposed method permitted the minimization of the 

constraints due to poor spectral contrast between the background and tree crowns. 

However, it was observed that a certain number of the pixels in the lighter and 

shadowed parts of the scene are misclassified. Additionally, the shadows of the 

buildings, slopes, rocks and some artificial surfaces have similar signatures to the 

trees and tend to be classified in the same cluster of the tree canopies, thus 

introducing uncertainty in the spatialization of the variables over large areas.  

The inaccurate segmentation is another important source of error that amplifies the 

bias in the tree height modeling. As discussed above, in certain cases a single tree 

canopy is represented by more than one segment and in others cases two or three 

canopies are grouped in one segment. In this case, a bias is introduced in the AGB 

estimation. 

Another possible source of error in the remotely sensed data is related to CPA 

calculation where an overlap of crowns layers in denser stands exists.   

Finally, the edge effect described above (paragraph 4.5), affects the comparison 

between observed and predicted data. 

Sampling errors occur when points are used to characterize areas. They are a 

function of the number of observations available, their spatial resolution, and the 

spatial variability (heterogeneity) of the area being evaluated.  

In the present study, taking into account the number of samples observed and the 

variability of forest structure, it can be affirmed that that this source of error has 

limited impact on the uncertainty of the final results (table 9 and figure26). 
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Estimation ABG Mg ha-1 n RSE% Confidence interval α=0.1 

Study Area (CV-NFI) 12.7 183 5% 10.9 – 14.4 

Table 9: Average AGB, confidence interval and relative standard error (RSE %) for the study area. 

 

 

Figure 26: Trend of the relative standard error at increasing number of sampling plots for the 

observed AGB variability in the study area. The point represents the RSE at the given number of 

samples in the study area.  

5.2 LIMITATIONS AND RECOMMENDATIONS FOR FUTURE INVESTIGATION 

The applicability of the proposed method is limited to simple forest stands with no 

overlap between the crowns.   

In the course of this investigation, several research limitations were identified. 

These can be categorized into two general areas: (1) field data limitations, and (2) 
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data limitations demonstrated have a limited impact and the greatest challenges 

are identified in tree crown extraction from remote sensing data.   

Overall, rather than detracting from the research findings, the limitations identified 

here represent opportunities for future research.  Considering the number of 

samples involved and the data collection technique, the field data can be 

considered a representative biomass reference for further analysis and 

investigation.   

A next step should be to test the potential of estimating AGB over areas outside the 

area from witch ground data were used for deriving models and the accuracy at 

different scales. 

A further improvement of the method should be the stratification of the remotely 

sensed data on the basis of background characteristics and ancillary data permitting 

finer tuning during image processing.  

Deeper GIS analysis oriented to the elaboration of more detailed forest maps can 

play a significant role in improving accuracy. This can be the basis for an iterative 

process of tuning the models and mapping the biomass and forest cover throughout 

the country. Additional meta-information about forest stands, site characteristics, 

or species-specific information can be used in the context of this methodology. 

Additionally the proposed techniques can be used for change detection in forest 

cover and biomass over the time. 
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7. ANNEXES 

 

Figure 27: AGB map of the study area expressed in Mg Ha
-1
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