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New sensors and methods for forest monitoring through remote 

sensing 

Abstract 

Forests are sources of multifunctional services capable of meeting environmental, 

social, cultural, and economic demands. Therefore, climate research and international 

reporting activity need accurate data about forests. Remote sensing technologies 

nowadays provide data useful for such aim. In particular, satellite remote sensing 

technologies generate a constantly updated stream of data from different platforms with 

different characteristics, able to satisfy different purposes. New sensors and platforms 

sprout every year with improved capacity to meet research and operational goals and 

needs. In 2022, NASA alone launched four earth observation missions and planned 

over 10 to launch by 2030. ESA also planned to launch 9 satellite missions within the 

same year. Planned missions will provide new insights into the carbon and water cycle, 

vegetation, radiation budget, atmospheric and oceanic circulation, and much more. In 

parallel with the rapid advance in sensor technologies and available platforms, the 

capabilities for processing raw remotely sensed data into useful information also 

advanced thanks to the use of cloud computing technologies and Artificial Intelligence 

approaches.  

This thesis aims to explore the benefits and drawbacks of new remote sensing data and 

develop new tools and procedures for fully exploiting these emerging technologies. 

Four central studies are here presented. 

Study I was motivated by the very first release of data from the hyperspectral sensor 

carried on board the new PRISMA satellite the first mission for Earth Observation (EO) 

completely developed by the Italian Space Agency (ASI). So due to the very innovative 

type of data it was interesting to investigate their potential contribution for mapping 

forest areas in Italy. We analysed the band separability in two study areas, for two types 

of nomenclature systems and we compared the results against the well-known Sentinel-

2's Multi-Spectral Instrument (MSI). We found that PRISMA sensor, allowed for a 

better discrimination in all forest types, increasing the performance when the 
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complexity of the nomenclature system also increased. PRISMA achieved an average 

improvement of 40% for the discrimination between two forest categories (coniferous 

vs. broadleaves) and of 102% in the discrimination between five forest types based on 

main tree species groups. 

In the second part of my PhD I concentrated my effort on studying the use of remotely 

sensed data for monitoring forests on larger areas, and especially how to integrate this 

data with existing field-based systems such as the National Forest Inventory. 

In study II we investigated on how to optimise the wall-to-wall national growing stock 

volume estimation in Italy based on the lastly available national forest inventory (NFI) 

data (INFC2005). For such a purpose we compared several forest masks (FMs), and for 

each test we calculated model assisted estimations that were compared against the 

official national forest inventory estimates finding a negative correlation between the 

accuracies of the FMs and the differences between the model-assisted growning stock 

volume (GSV) estimates and the NFI estimate, demonstrating that the choice of the FM 

plays an important role in GSV estimation when using the model-assisted estimator. At 

the national and regional levels, the model-assisted GSV estimates based on the FM 

constructed as a mosaic of local forest maps were closest to the official NFI estimates 

with r2 = 0.986 and r2 = 0.972, for total and mean GSV, respectively.  

In Study III presents we were interested in integrating GEDI (Global Ecosystem 

Dynamics Investigation) data into such wall-to-wall spatial estimation of forest 

variables. GEDI is a cutting-edge spaceborne full waveform LiDAR specifically 

conceived to study vegetation dynamics and retrieve vertical vegetation structure. But 

since the elaboration of raw GEDI data is time consuming we presented the 

development of a new open-source R package (GEDI4R) that provides efficient 

methods for downloading, reading, clipping, visualizing, and exporting the new GEDI 

level 4A data.  

Finally, in the last study (IV) we presented a new methodology where the different 

elements developed in the previous studies were used to produce yearly high-resolution 

forest above-ground carbon pools and growing stock volume maps. The idea is to 

provide small-area estimations based on integrating several EO-based products with 

NFI data in a modeling environment. These new products allow the spatial analysis of 
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the annual forest carbon stock changes for Italy to fit better the international reporting 

requirements, consistent with the IPCC guidelines. 

Additionally, during my Ph.D., I participated as a co-author inine otherne papers and in 

21 conference contributions (5 of them as first author). 
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1. Introduction 

Forest ecosystems have the capability to slow anthropogenic climate change (CC) by 

reducing the rate of atmospheric carbon dioxide (CO2) increase through increased 

photosynthetic CO2 assimilation, tree growth, and carbon (C) storage in plants and soil 

(Pugh et al., 2019; Friedlingstein et al., 2020; Dalmonech et al., 2022). Each ton (t) of C 

stored as wood corresponds to 3.67 t of CO2 removed from the atmosphere. 

Approximately half of the weight of dry wood is C, so each t of wood (dry weight) 

stores 1.83 t of CO2 out of the atmosphere (Oliver et al., 2014). Forests are estimated to 

sequester 7.6 Gt CO2 y-1, corresponding to 30% of the total global CO2 released into the 

atmosphere annually (Houghton & Nassikas, 2017), reflecting a balance between gross 

carbon removals and gross emissions from deforestation and other disturbances. 

Increasing the carbon stored in above and below-ground forest biomass is a generally 

accepted mitigation mechanism to fight CC and offset anthropogenic emissions 

worldwide (Di Cosmo et al., 2016; Lippke et al., 2021). A recent initiative considered 

an essential first step to achieve this goal is to increase the photosynthetically active 

area by planting trees (Trillion Trees Act, 2020), increasing the C stored and the wood 

availability. 

Consequently, using wood to substitute for and displace fossil fuel-intensive product 

ensures long-term storage of C. Beyond the undoubted value in the fight against CC, 

forests are also a source of multifunctional services capable of meeting social, cultural, 

environmental, and economic demands (FOREST EUROPE, 2020). In this context, 

forest management practices can be crucial in enhancing the carbon storage potential 

and other ecosystem benefits. In Europe, circa 165 Mha of forests are managed in a 

way that drives a net uptake of CO2, maximizing biomass production rather than the 

yield of timber products (Grassi et al., 2021). The concrete and cost-effective toolset 

aimed at maintaining and preserving the capacity to generate ecosystem services for 

future generations is called sustainable forest management (SFM). SFM aims to 

promote better practices over time and foster the development of healthier and more 

productive forests, taking into account the environmental, economic, social, cultural, 

and spiritual needs of the full range of stakeholder groups in the countries involved. The 

multi-faceted nature of SFM calls for increasingly complex and wide-ranging 
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information at different local and temporal scales, posing new challenges in monitoring 

and evaluating national trends in forest conditions (White et al., 2016). As such, forest 

information must be accurate, spatially detailed, and up to date, and should characterize 

forest composition, structure, and wood supply attributes. 

In this framework, the concept “If you cannot measure it, you cannot improve it” is 

especially true and a key principle for forest ecosystems. Measuring, reporting and 

verification requirements are needed by the international climate policy such as the 

enhanced transparency framework of the Paris Agreement, the Sustainable 

Development Goals, the Glasgow Climate Pact (UNFCCC, 2015; UNDC, 2022; 

UNFCCC, 2021) or in the context of restoration programs (e.g., Reducing emissions 

from deforestation and forest degradation projects, REDD and REDD+). Achieving 

these objectives depends on the international community's ability to measure 

greenhouse gas (GHG) stocks and fluxes accurately and, consequently, to alter their 

emission trends (Perugini et al., 2021). For these reasons, such pivotal ecosystems are 

the target of extensive ad repeated monitoring activity. Tools devoted to quantifying 

and monitoring forest resources that double as primary data sources under national and 

international policies are national forest inventories (NFIs). NFIs use probability-based 

approaches to infer the estimates for large areas such as countries and regions within 

countries (McRoberts et al., 2007, 2013). The most common forest variables needed to 

assess the composition, structure, and distribution of forest vegetation that, in turn, can 

be used as base information for reporting activity and management decisions are forest 

area, growing stock volume (GSV), biomass, and increments (Brosofske et al., 2014; 

Kangas et al., 2018). However, many NFIs are not designed for continuous yearly 

monitoring and cannot cope with the UNFCCC required reporting frequency due to 

longer update cycles (McRoberts et al., 2018). Estimating forest parameters such as 

GSV and carbon stock changes between consecutive NFIs is a critical step in 

accomplishing the international reporting requirements and filling the information gaps 

left by the long updating cycle of periodic NFIs. For this reason, in several countries 

with long NFI histories such as Sweden, Finland, Denmark (Næsset et al., 2004; Nord-

Larsen and Schumacher, 2012; Tomppo et al., 2008), Canada (Boudreau et al., 2008; 

Matasci et al., 2018), Austria (Hollaus et al., 2009) and Switzerland (Waser et al., 2017, 

2015), the typical NFI ground survey is enhanced by spatially continuous and updated 
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predictions of forest variables, characterized as wall-to-wall (WW) maps, which rely on 

models and auxiliary data such as remotely sensed (RS) data. 

 1.1. Remote sensing technologies in forestry 

The inference from ground measurements, such as those made in NFIs, requires spatial 

extrapolation to provide meaningful and sound statistics through design-based methods 

(the traditional approach) or with a vast array of statistical techniques where RS data 

can be used for model based, model-assisted or hybrid inference systems (Ståhl et al., 

2016). Even the traditional design-based methods benefit from using RS data (Goetz & 

Dubayah, 2011); for example, for land cover or land use classification via visual 

interpretation or sampling stratification. RS technologies, which nowadays provide 

high-quality geospatial information, are considered crucial for improving repeatable 

measurements, actions, and processes in forestry (Holopainen et al., 2014; Kovácsová 

& Antalová, 2010). Many authors have already pointed out that RS technologies are 

essential for monitoring, quantifying, and mapping forest variables (Hansen et al., 2013; 

Waser et al., 2017; Kangas et al., 2018; Chirici et al., 2020). There are several ways in 

which airborne or satellite observations can be used in forestry applications and to 

support national and international emission reporting (Lechner et al., 2020; Goetz & 

Dubayah, 2011). This is reflected in the steadily increasing use of these technologies in 

the forestry field, also thanks to the increasing availability of such data in the new open 

access and open data era. 

Spectral data are collected in many forms and scales by satellite, aircraft, and drones, 

with a spatial resolution ranging from tens of meters to a few centimeters. Some data 

are collected daily or at regular intervals across the globe, while others may be collected 

on demand. Optical sensors are then divided into multispectral and hyperspectral 

according to the number of spectral bands in which they measure the reflected 

radiation; for each measurement band, an image is acquired, representing reflectance at 

a precise wavelength, usually in the visible and infrared spectrum. The former is able to 

capture the reflectance from three to the order of tens of bands, while the latter can 

sample hundreds or even thousands of narrower and contiguous bands. Optical sensors 

are usually not designed for specific applications, and today we are witnessing the rapid 
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development of multispectral and hyperspectral image processing technology. For this 

reason, these data are increasingly used in several remote sensing fields such as 

ecology, atmosphere, ocean, agriculture, and forestry (Liu et al., 2020). These sensors 

provide a synoptic view of the forest canopy in a map-like format that provides a 

complete survey of the sensor’s field of view (Lechner et al., 2020). Spaceborne optical 

data are often available everywhere in various temporal scales providing a constantly 

updateable stream of imagery of the entire planet, making them particularly suitable to 

change detection tasks and cloud-free compositions. 

In addition to spectral data, structural or three-dimensional (3D) information can be 

gathered using laser, radar, and also optical data, allowing forests to be measured in 

ways that were not previously possible. Among these technologies, Light Detection 

And Ranging (LiDAR) data collected by airplane or helicopter platforms (Airborne 

Laser Scanning, ALS) and, more recently, by satellite and other spatial platforms (i.e., 

the Geoscience Laser Altimeter System [GLAS] carried by the Ice, Cloud, and land 

Elevation Satellite [ICESat] and the Global Ecosystem Dynamics Investigation [GEDI] 

carried by the International Space Station [ISS]) is considered the most helpful 

technology for forest characterization (Figure 1). 

 

Figure 1. Airborne laser scanning dataset of a mixed forest. From the top: 
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front view of the point-cloud; DTM-normalized point-cloud; a close-up view of individual trees 

( figure courtesy of Francesca Giannetti). 

LiDAR systems are categorized by the mode with which they record the energy 

returning to the sensor. Discrete return systems record single or few returns (Lim et al., 

2003), while a full-waveform system record the returning energy as one continuous 

return or waveform (Lefsky et al., 2002). 

LiDAR sensors have the ability to penetrate the canopy providing a full 3D rendering of 

forest structure (Holopainen et al., 2014, Hyyppa et al., 2008), making it possible to 

estimate biophysical variables easily (e.g., tree heights, vertical structure, GSV, carbon 

stock) (Dubayah & Drake, 2000; Goetz & Dubayah, 2011; Babcock et al., 2015). In the 

last decades, many studies demonstrated the utility of LiDAR data in monitoring forest 

resources (Nelson, 2013; Kangas et al., 2018), biodiversity (Corona et al., 2011; Lim et 

al., 2003; Mura et al., 2015; Valbuena et al., 2016, 2013; Wulder et al., 2008) and in the 

context of NFIs (Chirici et al., 2020; McRoberts et al., 2013; Næsset, 2007; Næsset et 

al., 2004). Given its proven capabilities in mapping forest variables, the use of ALS 

data is increasing rapidly worldwide (Zolkos et al., 2013). LiDAR data are acquired 

explicitly in many countries to enhance forest inventory programs. Operationally, 

LiDAR data are exploited as predictors through the statistical relationship with ground-

based measurements in a two-stage procedure called the area-based approach (ABA, 

Næsset, 2002). ABA has become the standard for supplementing NFI with WW spatial 

prediction of forest variables. Its application in a wide variety of environments and 

management contexts makes it a proven concept (Wulder et al., 2013). 

Regardless of the approach, spatial knowledge of the area covered by forest land is an 

essential prerequisite in WW estimation tasks, both to restrict the establishment of field 

plots and the application of the models. A forest mask (FM) indicates the location of 

forest land and is often in a raster or a spatial polygon database format. Such 

information is crucial to integrate ALS data with other data, such as field surveys 

conducted by the NFI, or to plan future LiDAR acquisitions. The big data availability 

led to an exponential increase in the number of forest maps made available at different 

spatial scales, produced independently by different agencies, each with individual 

weaknesses and strengths. For instance, Italian information about forest area, as defined 

by the FAO Forest Resource Assessment (FRA) (FAO, 2020), can be estimated from 
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any of several FM, including i. the CORINE Land Cover project (Büttner et al., 2004), 

started in 1990 and updated in 2000, 2006, 2012, and 2018 to monitor land‐use 

changes; ii. the forest type maps available among the High-Resolution Layers (HRL) 

covering entire Europe for the years 2012 and 2015 (Langanke, 2017), in the 

framework of ESA Copernicus Land Monitoring Service (CLMS); iii. the global forest 

mask produced by the International Institute for Applied Systems Analysis (IIASA) for 

the reference year 2000 by combining multiple data sets calibrated with FAO FRA 

country statistics (Schepaschenko, 2015), and iv. the Japanese Aerospace Exploration 

Agency (JAXA) provided an FM with a 25 m resolution for the entire globe for the 

years 2007, 2008, 2009, 2010, and 2015 by automatic processing of multi-polarization 

backscatter signals acquired by two Synthetic Aperture Radars missions (JAXA, 2016).  

Spatial differences among these products are relevant at the national scale. They can 

lead to substantial variations when used to infer forest statistics in NFIs (Di Biase et al., 

2018) or to assess forest variables at the national scale. However, few studies have 

examined the effects of using different forest masks on the uncertainty of estimates of 

forest variables. Furthermore, these studies have yet to be done in the Mediterranean. 

1.2. New remote sensing platforms and sensors  

Over the past few decades, increasing attention has been focused on improving remote 

sensing Earth Observation (EO) technologies. Since the 1970s, when the Landsat 

mission, the world's most extended remote sensing program for EO, has been launched, 

new missions and sensors have undergone significant improvements to meet the new 

challenges posed by a rapidly changing world. The main changes concern: i. new 

satellite mission, ii. more satellites in orbit per mission; iii. the increased spectral, 

spatial, and temporal resolution of satellites, and iv. the free-and-open data policy of 

EO programs. 

Some of the most crucial sensors and platforms that joined the ongoing EO programs 

are the Sentinel-2 (S2) mission, in the framework of the Copernicus program, an 

initiative led by the European Commission (EC) in collaboration with the European 

Space Agency (ESA), launched on June 23rd, 2015. S2 comprises a constellation of two 

twin polar-orbiting satellites (Sentinel-2A and 2B) placed in the same sun-synchronous 
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orbit, phased at 180° to each other, ensuring a high revisit time (10 days at the equator 

with one satellite, and five days with two satellites under cloud-free conditions which 

result in 2-3 days at mid-latitudes) with a wide swath of 290 km. S2 Multi-Spectral 

Instrument (MSI) payload acquires high-resolution multispectral imagery in 13 spectral 

bands: four bands at 10 m, six bands at 20 m, and three bands at 60 m spatial resolution. 

The mission will be joined in 2024 and 2025 by two other twin satellites, Sentinel-2C, 

and 2D, to further decrease the revisit time; The Landsat 9 satellite, launched on 

September 27th, 2021, intends to pursue the longest EO mission still active. The 

instruments onboard Landsat 9 are improved replicas of those currently collecting data 

onboard Landsat 8, which already provide radiometrically and geometrically superior 

data than the previous generation Landsat satellites. The platform carries two scientific 

instruments, the Operational Land Imager 2 (OLI-2) and the Thermal Infrared Sensor 2 

(TIRS-2). The OLI–2 captures observations of the Earth’s surface in visible, near-

infrared (VNIR), and shortwave-infrared (SWIR) bands, and TIRS-2 measures thermal 

infrared radiation emitted from the Earth’s surface. OLI-2 will provide data for nine 

spectral bands with 30 m spatial resolution and higher radiometric resolution of 14-bit 

quantization. In the late-2030, Landsat Next will continue the legacy of the Landsat 

mission with a new constellation of three smaller satellites with an enhanced spatial and 

temporal resolution, each able to detect 26 wavelengths of light and thermal energy; 

The new PRISMA (Precursore IperSpettrale della Missione Applicativa) satellite 

launched on March 22nd, 2019. PRISMA is a national EO cutting-edge hyperspectral 

mission fully funded by the Italian Space Agency (ASI). 

The instruments onboard the platform include a Hyperspectral Imager, able to capture 

images in a continuum of 240 spectral bands ranging between 400 and 2500 nm, 66 in 

the VNIR and 173 in the SWIR spectrum, with a spectral resolution smaller than 12 nm, 

and a spatial resolution of 30 m. Nine bands are acquired in a wavelength overlapping 

region between the VNIR and the SWIR cube. The spacecraft also carries a 5 m 

resolution Panchromatic Camera (ASI, PRISMA product specification, 2019). PRISMA 

acquires images on demand, in specific individual locations requested by the users, in a 

“standard” mode, resulting in a 30x30 km scene and a “strip” mode, generating an 

image 30 km wide and having a maximum length of 1800 km. The mission can 

potentially provide major contributions to forest analysis, precision agriculture, water 
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quality assessment, and climate change research. A second-generation satellite, 

PRISMA2G, will continue the mission with an increased spatial resolution of 10 m; 

The GEDI sensor launched on December 5th, 2018, on the ISS. This is the first space 

mission conceived explicitly for retrieving vertical vegetation structures. The sensor 

consists of a geodetic-class full-waveform LiDAR comprised of three lasers emitting 

242 pulses per second at 1064 nm wavelength. Two of the lasers are full power, and 

one is split into two beams, producing a total of four beams. A Beam Dithering Units 

change the deflection of the outgoing laser beams shifting them by 600 m on the 

ground. This produces eight ground tracks, four power, and four cover tracks of 25 m 

footprints separated by 60 m along the track and 600 m across the track, providing 

measurements of forest height in temperate and tropical forests (between 51.6° N and 

51.6° S Latitude). The science of GEDI is centered on quantifying the distribution of 

above-ground carbon stored in forests, assessing vegetation disturbance and recovery 

effects on carbon stock, and quantifying the spatial and temporal distribution of habitat 

structure and its influence on habitat quality and biodiversity. To address these 

scientific goals, GEDI products are supplied at different processing levels that allow the 

derivation of a variety of forest variables, such as foliar canopy profiles, leaf area index 

(LAI), sub-canopy topography, and canopy height. 

The advent of new EO missions and sensors offers unprecedented detailed data through 

higher revisit times and finer spectral and spatial resolution, paving the way for the era 

of big data in forest monitoring. Remote sensing big data computing is challenging due 

to the extensive nature of the analysis, combined with the large amount of data handled 

(Ma et al., 2015). Big data analytics in the EO field relies on processing, analyzing, and 

merging multiple images with other data sources to create previously unavailable 

information that requires heavy computing power. In the meantime, supercomputers, 

high-performance computing systems, frequently provided by cloud platforms 

universally available, as well as classification and processing of remote-sensing 

imagery are advancing in leaps and bounds (Gorelik et al., 2017; Lechner et al., 2020). 

Computer vision, machine learning, and time-series analysis are the next step in 

leveraging the data generated by modern sensors. In this sense, the freely available 

Google Earth Engine (GEE) platform has had enormous uptake in the RS community 
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and beyond. GEE is a combination of an image repository (it includes nearly all freely 

available remote-sensing imagery and products, such as surface reflectance and 

vegetation indices), high-performance computing, and a web-based mapping 

application. GEE reduced the remote RS workflows and opened the possibility of 

processing data at a much larger and even global scale on a simple desktop with an 

internet connection by a single operator (Lechner et al., 2020). 

To keep pace with the unprecedented proliferation of new sensors, it is essential to 

develop new processing techniques and methods able to thoroughly scrape all available 

information from massive datasets, such as those generated by new RS sensors and 

instruments. 
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2. Background motivation and aims 

The availability of new RS data from multiple sources and the possibility offered by 

cloud computing platforms and machine learning techniques inspired the research work 

of this thesis. This research explores the potential of new sources of remote sensing data 

to support national and international reporting activity and forest monitoring. New tools 

and procedures were developed to reduce the gap in research between advances in RS 

technologies and forestry applications. In particular, the focus was on exploring the 

benefits and drawbacks of new RS data and proposing solutions to scientific questions 

and operational needs. The specific objectives of the papers are: 

• to investigate the capabilities of the new PRISMA satellite hyperspectral sensor for 

the recognition of forest categories through a pairwise separability analysis in two 

study areas in Italy, on a band-by-band basis (Paper I); 

• to assess the impacts of the accuracies of different national forest masks on the 

estimation of GSV based on the integration of field information and remotely 

sensed data (Paper II); 

• to develop a specific software and dedicated functions for downloading and 

processing GEDI level 4A data. An R package for downloading and processing 

level 4A data was presented; and applied over the whole of Italy as illustrative 

example (Paper III); 

• to present a new spatial approach for the WW estimation of GSV and carbon stock, 

filling the information gaps left by the long updating cycle of the periodic Italian 

NFI (Paper IV). 
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Sensors-  

Abstract 

Different forest types based on different tree species composition may have similar 

spectral signatures if observed with traditional multispectral satellite sensors. 

Hyperspectral imagery, with a more continuous representation of their spectral behavior 

may instead be used for their classification. The new hyperspectral Precursore 

IperSpettrale della Missione Applicativa (PRISMA) sensor, developed by the Italian 

Space Agency, is able to capture images in a continuum of 240 spectral bands ranging 

between 400 and 2500 nm, with a spectral resolution smaller than 12 nm. The new 

sensor can be employed for a large number of remote sensing applications, including 

forest types discrimination. 

In this study, we compared the capabilities of the new PRISMA sensor against the well-

known Sentinel-2 Multi-Spectral Instrument (MSI) in recognition of different forest 

types through a pairwise separability analysis carried out in two study areas in Italy, 
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using two different nomenclature systems and four separability metrics. The PRISMA 

hyperspectral sensor, compared to Sentinel-2 MSI, allowed for a better discrimination 

in all forest types, increasing the performance when the complexity of the nomenclature 

system also increased. PRISMA achieved an average improvement of 40% for the 

discrimination between two forest categories (coniferous vs. broadleaves) and of 102% 

in the discrimination between five forest types based on main tree species groups. 

 

Keywords: PRISMA; hyperspectral sensor; hyperspectral imagery; forest types 

discrimination; separability analysis 

 

1. Introduction 

Hyperspectral sensors observe the earth’s surface by simultaneously sampling hundreds 

of fine narrow contiguous spectral bands with a resolution of up to 0.01 _m in the 

visible and infrared spectrum. Each pixel in hyperspectral imagery (HSI) corresponds to 

a spectral vector, which reflects the characteristics of the land cover, making it possible 

to derive the reflectance behavior of the pixels in the image [1]. The rich spectral 

information helps to better discriminate surface features and objects than traditional 

multispectral imaging systems [2]. Hyperspectral sensors are not designed for specific 

applications, 

and today we are witnessing the rapid development of hyperspectral image processing 

technology [3] and spaceborne hyperspectral missions [4]. For this reason, 

hyperspectral data are increasingly used in several remote sensing fields such as 

ecology, atmosphere, 

ocean, agriculture and forestry [5]. 

The ongoing spaceborne hyperspectral missions were joined in March 2019 by 

PRISMA (Precursore IperSpettrale della Missione Applicativa), developed and 

operated by the Italian Space Agency (ASI). The purpose of the mission is to evaluate if 

the PRISMA sensor can be successfully used for monitoring natural resources and 

atmospheric characteristics and to evaluate possible new applications for environmental 
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risk management and land observation [6]. The new sensor can be employed for a large 

number of remote sensing applications. Land cover classification and target detection 

are some of the most common hyperspectral remote sensing applications [7] and are 

used to support biodiversity monitoring programs [8]. The underlying assumption in 

these tasks is that different materials of land cover have unique spectral characteristics 

[9]. For a “pure” material, these spectral characteristics are called endmembers [10]. 

Endmembers can be measured in the laboratory, in the field, or can be extracted from 

remotely sensed imagery. However, when manipulating real scenes, the spectral unicity 

assumption is difficult to meet because several factors produce noise in an imaging 

device, e.g., complex atmospheric transmission and interference conditions, as well as 

the aliasing between adjacent but different materials [9]. An unideal electromagnetic 

wave transmission environment means that some bands contain less discriminatory 

information than others [11], and some spectral intervals may not reveal important 

information for some applications [12]. For these reasons, the large number of 

hyperspectral bands may affect image classification due to the size, redundancy, and 

autocorrelation of the data cube. 

A detailed description of hyperspectral sensors from various platforms can be already 

found in several publications [4,12–15], and here we recall their main characteristics in 

Table 1. 

 

Table 1. Main characteristics of spaceborne hyperspectral sensors. 

Sensor 

Spatial 

Resolution 

(m) 

Number of 

Bands 

Swath 

(km) 

Spectral 

Range (nm) 

Spectral 

Resolution 
Launch 

Hyperion, EO-

1 (USA) 
30 196 7.5 427–2395 10 2000 

CHRIS, 

PROBA (ESA) 
25 19 17.5 200–1050 1.25–11 2001 

HyspIRI 

VSWIR (USA) 
60 210 145 380–2500 10 2020 

EnMAP HSI 

(Germany) 
30 200 30 420–1030 5–10 

Not 

launched 

yet 

TianGong-1 

(China) 

10 (VNIR) 

20 (SWIR) 
128 10 400–2500 

10 (VNIR) 

23 (SWIR) 
2011 
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HISUI (Japan) 30 185 30 400–2500 
10 (VNIR) 

12.5 (SWIR) 
2019 

SHALOM 

(Italy–Israel) 
10 275 30 400–2500 10 2021 

HypXIM 

(France) 
8 210 

145–

600 
400–2500 10 2022 

PRISMA (Italy 30 240 30 400–2500 10 2019 

Legend: VNIR (Visible Near InfraRed); SWIR (Short Wave InfraRed); EO-1 (Earth 

observation-1); PROBA (Project for On Board Autonom); VSWIR (Visible Short Wave 

InfraRed); HIS (Hyperspectral Imager); HISUI (Hyperspectral Imager Suite); SHALOM 

(Spaceborne Hyperspectral Applicative Land and Ocean Mission); HypXIM (HYPperspectral-X 

Imagery); PRISMA (Precursore IperSpettrale della Missione Applicativa) 

Several feature selection, spectral feature extraction, and classification methods were 

developed to cope with the challenging intrinsic nature of hyperspectral data. Some of 

the traditional approaches for classification include spectral mixture analysis (SMA), 

multiple endmember spectral mixture analysis (MESMA), and spectral angle mapper 

(SAM). These methods are based on the assumption that a mixed pixel can be resolved 

into a group of spectral endmembers, modeled as a linear or a nonlinear combination of 

these endmembers weighted by their sub-pixel fractional cover [9,16,17]. More 

recently, machine learning algorithms were used to classify HSI, such as supported 

vector machine (SVM), random forests (RF), and artificial neural network (ANN) [18]. 

The latest techniques rely on deep learning, mainly on various convolutional neural 

network (CNN) architectures [19]. 

Before starting with classification activities, it is essential to have a better comprehension 

of the spectral behavior of the different land covers through a discriminatory analysis 

based on spectral separability criteria. These criteria can be grouped into two categories: 

probabilistic distance and divergence. Some of the most common probabilistic distances 

are the Chernoff, Bhattacharyya, and Jeffreys–Matusita (JM) distances, based on the 

conditional density functions of two given land cover classes. The most common 

divergence measures are the Kullback–Leibler (KL) and the transformed divergence 

(TD). These are asymmetrical measures of difference between two probability 

distributions [11]. All these criteria are pairwise measures based on two-land cover 
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problems. Usually, it is possible to extend the validity of such criteria to the multi-class 

cases by averaging all pairwise measures [11]. 

In vegetation studies, and more specifically in forestry applications, several studies have 

used such criteria to discriminate different tree species or groups of species on a band-by-

band basis. Roberts et al. [20] evaluated pairwise forest species separability at leaf to 

stand scale, by means of hyperspectral data. Vaiphasa et al. [21] were able to identify and 

distinguish 16 vegetation types in a mangrove wetland in Thailand, through the JM 

distance. In addition, Dalponte et al. [22, 23] adopted JM distance as a separability 

criterion in the hyperspectral band’s selection task based on a sequential forward floating 

selection algorithm to classify boreal forest species, with different nomenclature systems. 

The JM distance was also adopted as a separability measure to reduce the redundancy of 

the spectral feature extracted from SPOT-5 images, retaining the class separability [24]. 

Aria et al. [25] evaluated the separability of three land cover classes in the USA, based on 

the JM and TD criteria, after applying a spectral region splitting method to three AVIRIS 

hyperspectral scenes. Attarchi and Gloaguen [26] used TD to identify the best 

combination of features, in an L-band Synthetic Aperture Radar (SAR) and Landsat 

classification problem, in the mountain environment of the Hyrcanian forest, Iran. TD 

was also used to assess Sentinel-2’s capability to identify burnt areas in five study areas 

around the world [27]. More recently, the M-statistic was adopted to assess the capacity 

of seven spectral bands and 13 spectral indices to distinguish the burned area from four 

unburned land cover types, in three American states [28]. 

The degree of separability was also useful in feature selection problems. The bands-

selection methods based on separability metrics have shown competitiveness with other 

methodologies, having the advantages of easy implementation and preservation of the 

physical interpretation [11,23,29]. 

This study was aimed at investigating the capabilities of the new PRISMA satellite 

hyperspectral sensor for the recognition of forest categories through a pairwise 

separability analysis in two study areas in Italy, on a band-by-band basis. This study 

was aimed at determining the separability based on two levels of the nomenclature 

system. First, we tried to separate coniferous vs. broadleaves because such wide forest 

categories are adopted in the official third level of the European Corine Land Cover 
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(CLC) [30] and are used in the framework of national and international reporting of 

forest statistics [31,32]. Then, we tried to separate the main groups of tree species 

(called forest types and representing a fourth level of the CLC nomenclature system) 

because this nomenclature is used in local forest management and mapping activities 

[33, 34]. 

In order to understand the improvement of the separability capability of the new 

PRISMA sensor, we compared the result against the spectral separability of the same 

classes with the Sentinel-2’s Multi-Spectral Instrument (MSI) that can be considered for 

the moment a reference benchmark for forest mapping. To the best of our knowledge, 

this represents the first study aimed at investigating the potential of the new 

hyperspectral sensor PRISMA in forestry. 

1.1. Overview of the PRIMSA mission and instruments 

The PRISMA satellite, launched on the 22nd March 2019, has a relook time of 

approximately 29 days. The satellite is in the small size class (830 kg), with an 

operational lifetime of 5 years. The instruments onboard the platform include a 

Hyperspectral Imager, able to capture images in a continuum of 239 spectral bands 

ranging between 400 and 2500 nm, 66 in the Visible Near Infra Red (VNIR) and 173 in 

the Short Wave Infra Red (SWIR) spectrum, with a spectral resolution smaller than 12 

nm, and a spatial resolution of 30 m. Nine bands are acquired in a wavelength 

overlapping region between the VNIR and the SWIR cube. The spacecraft also carries a 

5 m resolution Panchromatic Camera [35]. The images can be acquired in an area of 

interest spanning from 180° W to 180° E longitude and 70° N to 70° S latitude. The 

PRISMA hyperspectral sensor is based on prisms as a dispersive element that projects 

the incoming radiation on a 2-D matrix detector, and the image scanning system is a 

“Pushbroom” type [36]. 

In addition, the platform carried a payload data handling and transmission subsystem 

(PDHT). This unit provides the memory for the temporary storage of the images and 

ancillary data and oversees the data transmission to the dedicated ground segment station. 

The main characteristics of the sensor are listed in Table 2. 
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Table 2. Main characteristics of PRISMA mission.1 

Orbit altitude reference 615 km 

Swath/Field of view 30 km/2.77° 

Ground Sample Distance 
Hyperspectral: 30 m 

PAN: 5 m 

Spatial pixels 
Hyperspectral: 1000 

PAN: 6000 

Pixel size 
Hyperspectral: 30 × 30 μm 

PAN: 6.5 × 6.5 μm 

Spectral range 

VNIR: 400–1010 nm (66 bands) 

SWIR: 920–2500 nm (173 bands) 

PAN: 400–700 nm 

Spectral sampling interval (SSI) ≤12 nm 

Spectral width ≤12 nm 

Spectral calibration accuracy ±0.1 nm 

Radiometric quantization 12 bit 

VNIR Signal to noise ratio (SNR) >200:1 

SWIR SNR >100:1 

PAN SNR >240:1 

Absolute radiometric accuracy Better than 5% 

 

PRISMA acquires images on demand, in specific individual locations requested by the 

users, in a “standard” mode, resulting in a 30 × 30 km scene and a “strip” mode, 

generating an image 30 km width, and having a maximum length of 1800 km. The 

combination of hyperspectral and panchromatic products gives the ability to recognize 

the physical-chemical and geometric characteristics of the target of interest within a 

scene and can potentially provide major contributions in the field of forest analysis, 

precision agriculture, water quality assessment, and climate change research [6,37]. 

To date, the PRISMA mission has acquired 64,504 images around the globe, of which 

58,479 were acquired in 2020 and the remaining in 2019. Searching for images with cloud 

cover lower than 10% and acquisition during the vegetative period (1st April–30th 

September) we resulted in only 23 images available in Italy, all acquired in 2019 in 15 

different areas (Figure 1). 
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Figure 1. Spatial distribution of all the 23 PRISMA images from the portal prisma.asi.it 

available in Italy, all of them acquired in 2019 (with cloud cover lower than 10% and acquisition 

in the vegetative period). 

1.2. Preprocessing levels of PRISMA cubes 

PRISMA images can be freely downloaded after registration at http://prisma-

i.it/index.php/en/ (Figure 1). They can be released with three levels of preprocessing 

[35]: 

1. Level0: The L0 product contains raw data in binary files, including instrument 

and satellite ancillary data, like the cloud cover percentage. 

2. Level1: The L1 product is a top-of-atmosphere radiance imagery organized as 

follows: two radiometrically calibrated hyperspectral and panchromatic 

radiance cubes and two co-registered HYPER and PAN radiance cubes. 

3. Level2: The L2 product is divided in: 

• L2B: Atmospheric correction and geolocation of the L1 product (bottom-of-

atmosphere radiance); 

• L2C: Atmospheric correction and geolocation of the L1 product (bottom-of-

atmosphere reflectance, including aerosol optical thickness and water vapor 

map); 

• L2D: Geocoding (orthorectification) of L2C. 

 

http://prisma-i.it/index.php/en/
http://prisma-i.it/index.php/en/
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Levels 1 and 2 are generated on demand and released in the Hierarchical Data Format 

Release 5 (HDF5). The Level 2 products can be georeferenced with or without ground 

control points (GCP) according to user preference and GCP availability [6]. 

2. Materials and Methods 

2.1. Study area 

This study was conducted in two areas located in central Italy (42°53′ N, 11°6′ E and 

43°17′ N, 12°13′ E) (Figure 2), each one covering 900 km2, just as the PRISMA tiles 

do. The areas were selected based on the availability of reference data and PRISMA 

images with a cloud cover < 10% and an acquisition period during the leaf-on 

vegetation phase. 

The first area is in the Province of Grosseto, Tuscany, in the Colline Metallifere, the 

main and most extensive hilly and mountainous system of the Tuscan Anti-Apennines 

which includes the city of Grosseto. The area is characterized by gentle slopes (mean 

slope = 8%) and large altitude differences (from sea level up to 1000 m a.s.l.). The area 

is dominated by Mediterranean evergreen oaks (Quercus ilex L., Quercus suber L.) and 

mesophilic deciduous forests (Quercus cerris L., Quercus pubescens L., Ostrya 

carpinifolia Scop., Castanea sativa Mill.). Other tree species include domestic pine 

(Pinus pinea L.), maritime pine (Pinus pinaster Aito), and Aleppo Pine (Pinus 

halepensis Mill.). The broadleaves part of the forest was actively managed with coppice 

clearcut for firewood production. 

The second area is in the provinces of Arezzo and Perugia, between the regions of 

Tuscany and Umbria. The area includes the Trasimeno lake, the fourth largest lake in 

Italy, and the city of Perugia. The altitude ranges between 170 and 1100 m above sea 

level, with a steep slope, up to 140%. Broadleaves formations characterized the area, 

dominated by mesophilic deciduous oaks (Quercus cerris L., Quercus pubescens L.) 

and evergreen oaks (mainly Quercus ilex L.). Other tree species include Maritime pine 

(Pinus pinaster Aito) and Black pine (Pinus nigra A.). The management is less active 

than in Area 1, but still dominated by coppice for firewood production. 
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Figure 2. The two study areas. On top: PRISMA false color (RGB 66-35-17); on bottom: 

Sentinel-2A false color (RGB 8-4-3). In yellow: the boundaries of the PRISMA scene in the 

Sentinel one. 

2.2. Reference data 

Reference data consist of 161 polygons digitized from the 5 m resolution panchromatic 

images of the PRISMA satellite to assign the respective third and fourth CLC land 

cover classes, distributed evenly and proportionally to the abundance of forest types, to 

ensure that the spectral signatures are as pure as possible. 

In the 161 polygons, the forest types were identified on the basis of a local land use and 

land cover databases of the Tuscan region based on a network of sampling points that 

are distributed on the basis of an unaligned systematic sampling design [38]. Sampling 

units are located randomly within 250 × 250 m grid cells for a total of 367.760 points. 

The nomenclature system we adopted refers to the third level of the Corine Land Cover 

[26], refined with a fourth level adapted locally (Table 3). 

Table 3. Nomenclature system adopted in this study. 

Third Level Description Fourth Level Description 

3.1.1 Broadleaf 
3.1.1.1 Deciduous evergreen 

3.1.1.2 Deciduous broadleaf 
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3.1.1.5 Azonal formation 

3.1.2 Coniferous 
3.1.2.1 Mediterranean coniferous 

3.1.2.2 Mountain coniferous 

 

A total of 250 ha (78 polygons) and 220 ha (83 polygons) were acquired in Area 1 and 

Area 2, respectively (Figure 3). 

 

Figure 3. Distribution of forest types according to the reference dataset for the two study areas. 

2.3. Remotely sensed data 

To test the spectral separability of the forest types, we used two PRISMA L2D cloud 

free scenes acquired on 16th of June 2019 and the 4th of June 2019, respectively. Each 

image consists of 239 spectral bands at 30 m spatial resolution ranging between 402 

and 2497 nm, with a footprint of 30 × 30 km, atmospherically corrected and 

orthorectified, provided in he5 format. From the overlapping wavelength region, we 
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retained only the bands from the VNIR cube, for a total of 230 considered spectral 

bands. 

For comparison purposes, we also downloaded for the same areas the Sentinel-2A L2A 

scenes. The Sentinel-2 images were acquired on the 18th of June 2019 and on the 13th of 

June 2019, respectively. All the S2 scenes from the Multi-Spectral Instrument (MSI) 

have cloud cover <5% and are composed of 13 spectral bands with a spatial resolution 

of 10, 20, and 60 m depending on the wavelength, ranging between 440 and 2190 nm, 

with a footprint of 100 × 100 km. S2 images were atmospherically corrected and 

orthorectified. For this study, the bands b1, b9, and b10 were not used due to their 

coarse spatial resolution (60 m) and because they are specific to atmospheric 

characterization and not for land monitoring applications. The remaining bands were 

resampled to the PRISMA tiles resolution of 30 × 30 m with the nearest-neighbor 

algorithm. 

All the remotely sensed images resulted cloud-free for the forest part of the study areas. 

2.4. Methods 

The PRISMA scenes were first converted in a suitable format by the R package 

prismaread [39], especially developed to import and convert the PRISMA 

hyperspectral cubes. After the conversion, from the resultant hyperspectral cube, we 

extracted the reflectance values for every pixel within the 161 reference polygons of the 

two study areas for each one of the 230 spectral bands. This procedure allows extracting 

an idealized, pure signature of the spectral classes [40]. These correspond to the full 

reflectance of pixels exclusively occupied by a single forest type. 

The same procedure was repeated for the Sentinel-2A scenes. 

A pairwise land cover spectral separability analysis was then carried out for each band 

of the two sensors. Four commonly used statistical measures were calculated to 

quantify the two-class separability of the different sensors at each one of the study areas 

[41–43]. The analysis was repeated for both the third and fourth levels of the 

nomenclature systems. The separability analysis was performed with the R package 
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spatialEco [44] for all the possible combinations of each forest type. The statistics 

were: 

1. M-Statistic [45] (M): measures the difference of the distributional peaks of the 

reflectance values and is calculated as follows: 

𝑀 =
𝜇𝑎 − 𝜇𝑏
𝜎𝑎 + 𝜎𝑏

 (1) 

where μx is the mean value for class x and σx the standard deviation of class x. A high 

M-statistic indicates a good separation between the two classes as the within-class 

variance is minimized and the between-class variance maximized. The limitation of the 

M-statistic is that when the means of two classes are equal, the M-statistic will always 

be zero and cannot accurately reflect the separability. 

2. Bhattacharyya distance [46] (B): measures the degree of dissimilarity between 

any two probability distributions, and is calculated as follows: 

𝐵 =
1

8
(𝜇𝑎 − 𝜇𝑏)

𝑇 (
𝛴𝑎 − 𝛴𝑏

2
)
−1

(𝜇𝑎 − 𝜇𝑏) +
1

2
𝑙𝑛

𝛴𝑎 − 𝛴𝑏
2

√𝛴𝑎 − 𝛴𝑏
 (2) 

where μx is the mean value for class x and Σx are the covariances. The advantage with 

respect to the M-statistic is that the Bhattacharyya distance takes into account the class 

separability due to the covariance difference, expressed in the second term of the 

equation. 

3. The Jeffries–Matusita distance [47] (JM distance): the JM distance is a function 

of separability that directly relates to the probability of how good a resultant 

classification will be. It is calculated as a function of the Bhattacharyya 

distance: 

𝐽𝑀 = √2(1 − 𝑒−𝐵) (3) 

where B is the Bhattacharyya distance. 

The JM distance is asymptotic to √2, where values of √2 suggest complete separability. 

The JM distance can handle data that follow a multivariate normal distribution. 
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4. Transformed divergence [48,49] (TD): is a maximum likelihood approach that 

provides a covariance weighted distance between the class means to determine 

whether spectral signatures were separable: 

𝑇𝐷 = 2 [1 − 𝑒−
𝐷
8] (4) 

𝐷 =
1

2
𝑡𝑟[(𝐶𝑎 − 𝐶𝑏)(𝐶

−1
𝑎 − 𝐶−1𝑏)] +

1

2
𝑡𝑟[(𝐶−1𝑎 − 𝐶−1𝑏)(𝜇𝑎

− 𝜇𝑏)(𝜇𝑎 − 𝜇𝑏)
𝑇] 

(5) 

where Cx is the covariance matrix of class x, μx is the mean value for class x, tr is the 

matrix trace function, and T is the matrix transposition function. Transformed 

divergence ranges between 0 and 2 and gives an exponentially decreasing weight to 

increasing distances between the classes. As for the JM distance, the transformed 

divergence values are widely interpreted as being indicative of the probability of 

performing a correct classification [48]. 

Lastly, we calculated the percentage variation of the above four metrics obtained by 

PRISMA with respect to Sentinel-2, for both study areas and the two levels of the 

nomenclature system. The increment was calculated based on the maximum 

separability reached in each class pair by the two sensors with the formula: 

𝐼𝑚 =
𝑀𝑎𝑥𝑃𝑚 −𝑀𝑎𝑥𝑆𝑚

𝑀𝑎𝑥𝑆𝑚
. 100 (6) 

where Im is the percentage increment in separability for the metric m, MaxPm and MaxSm 

are, respectively, the maximum value of separability reached by PRISMA and Sentinel-

2 for metric m. 

3. Results 

The spectral signatures derived from PRISMA and Sentinel-2A data are shown in 

Figure 4. These were calculated as the median reflectance value of every pixel fallen in 

the specific forest classes of the two levels of the nomenclature system. As expected, 
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the hyperspectral data allowed a more complete and continuous representation of the 

spectral behavior of the different forest types compared to the multispectral data. 

 

Figure 4. Spectral signatures of the considered forest classes based on PRISMA (blue line) and 

Sentinel-2 (red line). The solid line for Area 1, the dotted line for Area 2: (a) the third level 

nomenclature system; (b) the fourth level. 

Based on the spectral signatures extracted within the 161 polygons, the four separability 

metrics between each pair of classes for each of the 230 bands were calculated for both 

levels of the nomenclature system, and for both the study areas. The results are shown 

in Figure 5 and the eight subgraphs represent the four statistical measurements for the 

two sensors on a band-by-band basis. For the third level, similar trends were observed 

between the two sensors, but with different results in the two study areas. In Area 1, the 

PRISMA data allow a better separability for the single class combination, in the visible 
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ranges. The coniferous–broadleaf combination was better distinguished from PRISMA, 

with a mean separability value of 0.64 occurred in the blue spectrum (between 450 and 

503 nm), against a mean value of 0.13 obtained in the SWIR spectrum for Sentinel-2 

(1613 nm, band 11). For both sensors, the best metrics for distinguishing the 

coniferous–broadleaf combination were the transformed divergence and the Jeffries–

Matusita distance. 

 

Figure 5. Results of the separability analysis for the third level nomenclature system, divided by 

statistical metrics and class pairs. The horizontal and vertical axes represent the wavelength and 

the pairwise vegetation combinations, respectively. The color of each grid cell represents the 

separability of the corresponding band and class pair, as reported by the legend bar at the bottom 

of the sub-panels. The higher the value is, the more separable the two classes become: (a) Area 

1; and (b) Area 2. 
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In Area 2, the coniferous and broadleaf were distinguished only in two small portions of 

the spectrum, near 1380 and 1830 nm, that are not sensed by the Sentinel-2 MSI. In 

these wavelengths, the PRISMA sensor achieved a mean separability value of 0.75, 

against 0.43 of Sentinel-2, reached in bands 7, 8, and 11. 

The results of the separability analysis on the fourth level of the nomenclature system 

are shown in Figure 6. In Area 1, the maximum separability value was reached by the 

PRISMA sensor between 428 and 443 nm, for the pair of Mediterranean coniferous–

azonal formations (mean separability value = 0.69), followed by the pairs of azonal 

formation–evergreen broadleaf (mean separability = 0.68), azonal formation–evergreen 

broadleaf (mean separability = 0.58), and Mediterranean coniferous—evergreen 

broadleaf (mean separability = 0.45). The land cover pairs characterized by the least 

separability were those of Mediterranean coniferous–deciduous evergreen followed by 

the evergreen broadleaf–deciduous evergreen, with a mean separability value of 0.40 

and 0.39, respectively. As for PRISMA, the class pairs better distinguished from 

Sentinel-2 were Mediterranean coniferous–azonal formation and the evergreen 

broadleaf–azonal formation, with a mean separability of 0.45 and 0.38, respectively. In 

Area 2, all the combinations were generally better distinguished by the PRISMA sensor 

in the NIR and SWIR wavelengths (1373 and 1822 nm), with the Mediterranean 

coniferous–evergreen broadleaf separability reached the maximum value of 0.74. 
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Figure 6. Results of the separability analysis on the fourth level of the nomenclature system, 

divided by statistical metrics and forest type pairs. Symbology as in Figure 6: (a) Area 1; (b) 

Area 2. 

In both the study areas, the hyperspectral sensor outperformed Sentinel-2 in the 

differentiation of all the forest type combinations. Table 4 reports the maximum 

separability reached by each class pair in all considered metrics. The table also 

indicates the wavelength at which the maximum separability was reached. The best 

wavelength range for discrimination proved to be the blue and NIR spectrum in Areas 1 

and 2, respectively. 

Table 4. Best separability for each pairwise combination. In blue, the PRISMA sensor; and in 

red, the Sentinel-2 sensor. The number represents the wavelength where the highest separability 

was obtained. B for Bhattacharyya distance, JM for Jeffries–Matusita distance. M for M-

Statistic, and TD for Transformed Divergence. 
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Class Pair 

PRISMA Sentinel-2 

Wavelength B JM M TD Wavelength B JM M TD 

A
re

a 
1
 

3112_3111 48 0.81 1.11 1.27 1.11 782 0.44 0.71 0.93 0.73 

3115_3111 236 2.55 140 0.18 2.00 2202 0.47 0.75 0.43 1.47 

3115_3112 464 2.11 1.36 0.22 2.00 2202 0.63 0.93 0.39 1.88 

3121_3111 696 0.90 1.19 0.03 2.00 1613 0.15 0.27 0.05 0.37 

3121_3112 989 0.77 1.07 1.24 1.07 864 0.57 0.87 1.07 0.90 

3121_3115 1156 3.79 1.42 0.18 2.00 782 0.32 0.55 0.69 0.72 

A
re

a 
2
 

3112_3111 100 1.00 1.27 0.22 2.00 1613 0.20 0.36 0.63 0.36 

3115_3111 375 2.07 1.35 0.24 2.00 664 0.36 0.60 0.05 1.09 

3115_3112 561 1.71 1.224 0.10 2.00 664 0.51 0.80 0.03 1.62 

3121_3111 791 2.41 1.40 0.20 2.00 740 0.31 0.54 0.79 0.54 

3121_3112 1021 2.21 1.38 0.11 2.00 740 0.85 1.15 1.30 1.15 

3121_3115 1190 0.41 0.67 0.89 0.68 782 0.27 0.47 0.73 0.48 

3121_3122 1480 1.25 1.23 0.15 2.00 1613 0.30 0.52 0.77 0.53 

3122_3111 1985 2.10 1.35 0.24 2.00 740 0.61 0.91 1.10 0.92 

3122_3112 2171 1.75 1.25 0.09 2.00 740 1.35 1.28 1.64 1.48 

3122_3115 2380 0.88 1.17 1.33 1.18 782 0.58 0.88 1.07 0.93 

 

In Tables 5 and 6, we present the confusion matrix of two-class separability for 

PRISMA (in blue) and Sentinel-2 (in red), for the third and fourth levels of the 

nomenclature system, respectively. The cells of the matrix indicate the wavelengths at 
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which the separability for the two classes considered is maximum, according to the 

average of the four metrics M, JM, B, and TD. 

In the third level, the two sensors reached the maximum separability at different 

wavelengths, in the red–NIR transition zone (called red edge for the vegetation 

spectrum) for Sentinel-2 MSI and in the blue for the SWIR for the PRISMA sensor. 

Similar results were obtained for the fourth level. The red edge and NIR regions were 

best suited for separating the forest types only in Area 2, while in Area 1 the blue 

channel was particularly adapted to distinguish the azonal formations and deciduous 

broadleaf.  

Table 5. Third level: best wavelength for two-class separability. In blue, the wavelength 

extracted from PRISMA; in red, from Sentinel-2. 

 
Class 2 

Area 1 Area 2 

311 312 311 312 

Class 1 
311 / 864 / 782 

312 450 / 1841 / 
 

Table 6. Fourth level: best wavelength for two-class separability. In blue, the wavelength 

extracted from PRISMA; in red from Sentinel-2. 

 
Class 2 

Area 1 Area 2 

3111 3112 3121 3122 3112 3115 3121 3122 

Class 1 

3111 / 782 664 / 1613 703 740 740 

3112 814 / 864 / / 740 740 740 

3115 443 428 782 / 1373 / 782 782 

3121 443 1029 / / 1373 731 / 1613 

3122 / / / / 1373 1142 1361 / 

 

Based on the results of the separability analysis, we calculated the percentage variation 

of the four metrics obtained by PRISMA concerning Sentinel-2, for both the study areas 

and the two nomenclature levels (Figure 7). 
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4. Discussion 

The separability analysis revealed similar results for the two levels of the nomenclature 

system and the two study areas. At both levels of the nomenclature system, PRISMA 

overcame Sentinel-2, but with different scores. 
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At the third level of the nomenclature system, the broadleaf–coniferous class was well 

separated by PRISMA, in a narrow range of wavelengths not sensed by the Sentinel-2 

MSI, corresponding to the blue (450 nm) and SWIR (1841 nm) bands in Areas 1 and 2, 

respectively. The differences between the two study areas were most probably due to 

the characteristics of the terrain. Area 2 presents a more complex topography, with 

steep slopes and a wide range of elevation, which influence the backscatter of the 

sensors [50,51]. Therefore, in regions of rapid slope or aspect changes, a large 

radiometric noise can be expected [51]. In addition, the presence of many shadow areas, 

due to the forest characteristics, where high and low height trees are mixed, has surely 

affected the results of the separability analysis and could explain most of the differences 

between the study areas. 

In addition, the effects of varying atmospheric and illumination conditions, due to the 

time lag between the scene acquisitions, may be of considerable impact. It is worth 

noticing that the separability was higher in the SWIR channel of PRISMA than in 

Sentinel-2. Thanks to its spectral resolution and band numbers, hyperspectral images 

have many advantages in distinguishing the different forest types. 

For the fourth level of the nomenclature system, the performance of PRISMA data was 

even better when compared to Sentinel-2. We found that the separability of forest types 

was higher in a narrow range of wavelength in the blue channel (430–440 nm) for Area 

1, in the NIR-plateau (approximately at 1370 nm), and in the SWIR spectrum at 1822 

nm in Area 2. These wavelengths were not sensed by the Sentinel-2 MSI, which 

primarily relies on the red-edge bands (b6, b7) to discriminate the forest types, because 

of their high sensitivity to pigment concentration in most leaves and canopies [21]. Our 

study confirms previous results [17,52,53] where the broadleaves were best separated in 

the SWIR and NIR spectral ranges, and the coniferous specifically in the SWIR, in 

bands located directly beyond the water absorption features of the spectrum. This 

region was also critical for the separation of coniferous–broadleaf combinations, 

probably due to the differences in leaf water content and total leaf mass between 

species, which produces a typical species-dependent spectral behavior [53]. The blue 

channel (450–550 nm), associated with the chlorophyll and other pigments content, was 

useful for all comparisons between coniferous and broadleaf forest types in Area 1. The 
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better performance of PRISMA at the fourth level of the nomenclature system derived 

from the combination of the fine spectral resolution and the structural complexity of the 

forest stand. A forest area with a mixed tree species composition with very similar 

spectral signatures needs the use of data with finer spectral resolution, while in a forest 

with few spectrally different species, a coarser spectral resolution can also be used [7]. 

At the pixel level, the structural complexity of the Mediterranean forest, and the 

fraction of non-photosynthetic vegetation (that is, bark, branches, wood) affects the 

extraction of pure spectral signatures. 

The low number of field references, observer bias, and time differences between field 

observation and image acquisition could also influence the results. 

Regarding the spatial resolution, it does not appear that the coarser resolution of 

PRISMA has negatively affected the separability of the classes. As found by Ghosh et 

al. [54] and Liu et al. [55] a finer spatial resolution is not necessarily better. The former 

authors obtained better classification accuracy using Hyperion hyperspectral imagery at 

30 m spatial resolution than HyMAP imagery at 8 m resolution. Roth et al. [56] 

demonstrated that 40 and 60 m resolution hyperspectral data can be used to reliably 

classify most dominant species and plant functional types, in different ecosystem types, 

including a Mediterranean climate region in California. Moreover, other studies [57,58] 

have proven that hyperspectral data are less sensitive than multispectral ones in 

coarsening spatial resolution, due to their greater spectral coverage and finer spectral 

resolution. In Area 1, the use of the PRISMA sensor improved the recognition between 

the coniferous and the broadleaves of the third level, in three metrics out of four. In 

addition, for the fourth level, the fine spectral resolution of the hyperspectral sensor 

leads to a better separation in all the combinations of forest types. In Area 2, the 

differences in the performances between the two sensors were generally lower than in 

Area 1, probably due to the more complex topography and the higher number of forest 

classes. An in-depth analysis of the slope revealed that here most of the vegetation 

categories were on a very steep slope, up to 120%, characterized by abrupt changes that 

caused backscatter interferences and augmented the signal-to-noise ratio of the narrow 

hyperspectral bands. However, the PRISMA sensor allowed better discrimination in all 

class pairs, achieving an average improvement among forest types of over 120% in 
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Area 1 and 84% in Area 2, with maximum improvements for some types of 170% in 

Area 1 and 130% in Area 2. 

5. Conclusion 

In this paper, we evaluated the spectral separability of forest types in two study areas in 

Italy using the new hyperspectral satellite PRISMA, contrasted against the well-known 

Sentinel-2 multispectral sensor. The analysis was carried out in the spectral range 

between 400 and 2500 nm, and with two levels for forest type nomenclature systems. 

The main findings of this study are: 

1. Hyperspectral data were effective in discriminating forest types in both study 

areas and nomenclature system levels (average normalized separability higher 

than 0.50 for four out of six classes in Area 1, and nine out of 10 class pairs in 

Area 2). Only in Area 1 for the third level of nomenclature system the Sentinel-

2 MSI was comparable with the PRISMA sensor. 

2. The SWIR spectral zone resulted as the most suitable for forest type 

discrimination. Other remarkable zones were the blue channel (in Area 1) for 

the broadleaf–coniferous class pair, the red-edge and the NIR-plateau (in Area 

2) for most of the considered class pairs. Sentinel-2 relies primarily on the red-

edge region (b6, b7) in separating the forest classes. 

3. The PRISMA sensor improved the separation between coniferous and 

broadleaves by 50% in Area 1 and 30% in Area 2. At the fourth level, the 

average separability of was 120% higher in Area 1 and 84% in Area 2. 

This study showed that in the two investigated study areas, the PRISMA hyperspectral 

sensor had the capability to better discriminate forest types than Sentinel-2 MSI. This 

was true when the classification requested is for differentiating different forest types, 

while when aggregated forest classes are used (broadleaves/coniferous). Sentinel-2 MSI 

can still compete with the hyperspectral sensor. This study also demonstrated that 

where PRISMA images were not available, Sentinel-2 MSI can be used to separate 

simple forest classes. 
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In the future, as the PRISMA data will increase in availability, the new hyperspectral 

time series can pave the path for more accurate research in plant phenology, forest 

species classification, the recognition of forest disturbances and change detection 

studies, making these data very attractive for the forestry sector and beyond. Other 

fields of expected benefits can be precision agriculture (e.g., crop mapping, crop 

rotation, crop stress analysis, fertilization), inland and coastal waters (e.g., water 

quality, chlorophyll monitoring, alga bloom), as well as climate change and 

environmental research (e.g., desertification, deforestation, vegetation stress, 

environmental degradation, and hazards). 

However, further investigations were needed to explore the full capabilities of the new 

hyperspectral sensor, for example, testing new algorithms for feature selection and band 

extraction, the use of vegetation indices, the possibility of automatic segmentation, and 

object-based classification. 
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Abstract  

Information about forest cover and its characteristics are essential in national and 

international forest inventories, monitoring programs, and reporting activities. Two of 

the most common forest variables needed to support sustainable forest management 

practices are forest cover area and growing stock volume (GSV m3 ha−1). Nowadays, 

national forest inventories (NFI) are complemented by wall-to-wall maps of forest 

variables which rely on models and auxiliary data. The spatially explicit prediction of 

GSV is useful for small-scale estimation by aggregating individual pixel predictions in 

a model-assisted framework. Spatial knowledge of the area of forest land is an essential 

prerequisite. This information is contained in a forest mask (FM). The number of FMs 

https://doi.org/10.3390/rs13051038
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is increasing exponentially thanks to the wide availability of free auxiliary data, 

creating doubts about which is best-suited for specific purposes such as forest area and 

GSV estimation. We compared five FMs available for the entire area of Italy to 

examine their effects on the estimation of GSV and to clarify which product is best-

suited for this purpose. The FMs considered were a mosaic of local forest maps 

produced by the Italian regional forest authorities; the FM produced from the 

Copernicus Land Monitoring System; the JAXA global FM; the hybrid global FM 

produced by Schepaschencko et al., and the FM estimated from the Corine Land Cover 

2006. We used the five FMs to mask out non-forest pixels from a national wall-to-wall 

GSV map constructed using inventory and remotely sensed data. The accuracies of the 

FMs were first evaluated against an independent dataset of 1,202,818 NFI plots using 

four accuracy metrics. For each of the five masked GSV maps, the pixel-level 

predictions for the masked GSV map were used to calculate national and regional-level 

model-assisted estimates. The masked GSV maps were compared with respect to the 

coefficient of correlation (ρ) between the estimates of GSV they produced (both in 

terms of mean and total of GSV predictions within the national and regional 

boundaries) and the official NFI estimates. At the national and regional levels, the 

model-assisted GSV estimates based on the GSV map masked by the FM constructed as 

a mosaic of local forest maps were closest to the official NFI estimates with ρ = 0.986 

and ρ = 0.972, for total and mean GSV, respectively. We found a negative correlation 

between the accuracies of the FMs and the differences between the model-assisted GSV 

estimates and the NFI estimate, demonstrating that the choice of the FM plays an 

important role in GSV estimation when using the model-assisted estimator. 

 

Keywords: forest mask; spatial estimation; growing stock volume; Italy  
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1. Introduction 

Information about forest cover and its characteristics are essential in national and 

international forest inventories, monitoring programs, and reporting activities 

(Schepaschenko et al., 2015; FAO, 2010) such as in the context of international 

agreements (e.g., Kyoto protocol), and restoration programs (e.g., Reducing emissions 

from deforestation and forest degradation projects (REDD+))(FAO UNCCD, 2015). 

Two of the most common forest variables needed to estimate sustainable forest 

management indicators as required by the national and international framework and 

agreements relate to forest cover area (generally according to the international 

definition adopted by the Food and agriculture organization (FAO) and the total 

growing stock volume (GSV, m3) (McRoberts et al., 2013; Witke et al., 2019). These 

data are usually provided by national forest inventory (NFI) programs which use 

probability-based approaches to infer the estimates for large areas such as countries and 

regions within countries. (McRoberts et al., 2013; Hansen et al., 1983; McRoberts et al., 

2006). In several countries with long NFI histories such as Norway (Næsset et al., 

2004), Finland (Tomppo et al., 2008), Austria (Hollaus et al., 2010), and Switzerland 

(Waser et al., 2006; 2015), the typical NFI ground survey is nowadays complemented 

by continuous spatial predictions, characterized as wall-to-wall maps of forest variables 

which rely on models and wall-to-wall auxiliary data such as remotely sensed data 

(Kangas  et al., 2018; White et al., 2016; Næsset, 2014). 

Wall-to-wall GSV data are useful because they can be integrated into decision support 

systems to assess wood production and harvesting activities at small scales (i.e., in 

forest properties) (Puletti et al., 2017; Chirici et al., 2020; Giannetti et al., 2020; 

D’Amico et al., 2021) and to produce small-scale estimates by aggregating individual 

pixel predictions (Särndal et al., 1992; 2003; Breidt et al., 2009; McRobetrs et al., 

2016). In the probability-based framework, multiple estimators including the stratified, 

post-stratified, and model-assisted estimators can be used. The latter is considered 

asymptotically unbiased in the sense that the mean of estimates obtained using the 

estimator for all possible samples approaches the true value as the sample size increases 

(McRobetrs et al., 2016). 
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GSV and above-ground biomass are known to be strongly correlated with three-

dimensional (3D) data such as those acquired through airborne laser scanning (ALS) or 

photogrammetric techniques (Wittke et al., 2019; White et al., 2016; Næsset  et al., 

2008; McRoberts et al., 2010; Giannetti et al., 2018; Goodbody  et al., 2018). However, 

acquiring these data is still expensive, and some countries such as Italy still do not have 

wall-to-wall ALS coverage (D’Amico et al., 2021). Multispectral satellite data are often 

used instead of or with 3D data to predict GSV, thanks to their free availability over 

large areas (Barrett et al., 2016; Saarela et al., 2016; Holm et al., 2017; Nilsson et al., 

2017). 

Several types of models can be used to produce wall-to-wall predictions of forest 

attributes in a model-assisted approach. These models include both parametric and non-

parametric techniques (White et al., 2016; Chirici et al., 2020; Goodbody et al., 2019; 

Barrett et al., 2016; Immitzer et al., 2016), with the recent prevalence of multiple linear 

regression and random forests (White et al., 2016; Karlson  et al., 2015; Belgiu et al., 

2016). Regardless of the estimation approach, spatial knowledge of the area covered by 

forest land is an essential prerequisite, both to restrict the establishment of field plots 

and to restrict the application of the models. A forest mask (FM) indicates the location 

of forest land and is often in a raster or a spatial polygon database format. FMs are 

conventionally obtained by manual delineation of aerial images, or by supervised or 

unsupervised classification of satellite imagery, from both optical or radar imagery 

(Stankiewicz  et al., 2003; Hansen et al., 2013; Dostálová  et al., 2016), and more 

recently ALS data (Eysn et al., 2012; Dalponte et al., 2014; Rudjord et al., 2016; Øivind  

et al., 2018). Remotely sensed data suitable for forest mapping are nowadays frequently 

and freely available( Woodcock et al., 2008; Wulder et al., 2019; Olofsson et al., 2020). 

For this reason, the number of FMs has increased exponentially, creating doubts about 

which is best-suited for specific purposes such as forest area and GSV estimation. 

National information about forest extent can be estimated from any of several FMs 

produced independently by different research agencies globally or for large areas, 

including the European Environmental Agency (EEA) (European Enviromental 

Agency, 2007), the European Space Agency (ESA) (Langanke, 2017), the International 

Institute for Applied Systems Analysis (IIASA) (Schepaschenko et al., 2015), and the 

Japanese Aerospace Exploration Agency (JAXA) (JAXA, 2016). Despite individual 
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weaknesses and strengths, spatial differences among these products are evident and can 

lead to substantial variation in their accuracies (Schepaschenko et al., 2015; Seebach et 

al., 2012). Furthermore, these FMs were developed for different aims and thus have 

different characteristics in terms of minimum mapping unit (MMU) and minimum 

mapping width (MMW), reference forest definition, and year of production. 

Multiple studies have compared land cover maps at global and local levels. Fritz and 

See (2005) and Giri et al. (2005) compared the Global Land Cover 2000 data set and 

the MODIS global land cover product and highlighted areas with strong disagreements. 

Hoyos et al. (2017) compared four global satellite-based land cover maps and showed a 

worsening of area agreements as the spatial scale increases. Neumann et al. (2007) 

provided an assessment of compatibilities and differences between the CORINE2000 

and GLC2000 datasets and reported general disagreement due to the combination of 

thematic similarities, spatial heterogeneity, and classification accuracy. Seebach et al. 

(2011) compared the advantages and limitations of four pan-European forest cover 

maps for the reference years 2000, demonstrating that the spatial agreement between 

the maps ranged between 50% to 70% within a large study area in Europe. The authors 

found the greatest spatial differences among all maps in the Alpine and Mediterranean 

regions. Here, the vulnerability to climate change and anthropogenic disturbance is 

extremely large and will cause an increased demand for accurate wall-to-wall maps 

(Chirici et al., 2020). Only a few studies have analyzed the effects of using different 

FMs on the uncertainty of forest parameter estimates. Rodríguez-Veiga et al. (2016) 

reported a large impact on estimates of national carbon stocks in Mexico caused by 

discrepancies in forest extent estimated from different FMs. In their study, Li et al. 

(2017) considered the uncertainty of the MODIS land cover products, finding 

substantial differences in the regional climate modeling outputs when the uncertainty 

was not considered. Esteban et al. (2020) estimated the effects of the uncertainty of 

forest species maps used in the sampling and forest parameter estimation processes in a 

Spanish study area. Their study revealed that the effects of map uncertainty are not 

negligible, especially for less common Mediterranean forest species. 

The choice of FM can heavily impact the estimation of forest parameters in two 

different manners: i) it affects the number of plots selected for the construction of the 
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predictive model and ii) it affects the total area to which the model is applied (Esteban 

et al., 2020). 

The aim of this paper is to evaluate the impacts of the accuracies of different FMs on 

the estimation of GSV based on the integration of field information and remotely 

sensed data. We constructed a national wall-to-wall GSV map with an optimized 

procedure based on a random forests model with remotely sensed imagery and auxiliary 

data as predictors (Chirici et al., 2020). We used five different FMs to mask out non-

forest areas from the GSV map and then used the model-assisted regression estimator to 

estimate total and mean GSV (m3 ha−1) for the forest portion of the GSV map. We 

then investigated the relationship between mask accuracy and agreement between the 

model-assisted total GSV estimates and the official NFI estimates. The test was carried 

out for the entire area of Italy. Finally, we clarified which product was best-suited for 

total and mean GSV estimation, both at national and regional levels. 

2. Materials and Methods 

2.1. Study area 

The study was carried out in Italy which covers 301,408 km2 (Figure 1). Italy has 

extreme variations in climatic conditions due to proximity to the sea and elevation 

ranges between coastal areas and the Alpine region with elevations as great as 4000 m 

asl. 

The territory falls within the temperate zone of a Mediterranean climatic region (Pinna, 

1970). On the coasts of the main islands, the average annual rainfall is 250 mm but 

reaches more than 3000 mm in the Alpine and pre-Alpine belts. Average yearly 

temperatures vary between 16 °C in the southern coastal areas to 10 °C in the inner 

central regions and the pre-Alps, with temperatures less than 5 °C in the mountain 

ranges and on the highest peaks. 
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Figure 1. The study area with the distribution of the national forest inventories (NFI) plots 

colored by growing stock volume (GSV) expressed in m3 ha−1. On the right, a detail of the 

distribution of sample points used in the study within the NFI 1 x 1 km grid where the third-

phase NFI plots (Section 2.2.2) are depicted in blue and the Inventario dell’Uso delle Terre in 

Italia (IUTI) points (Section 2.2.2) in white. 

 

According to the last Italian NFI (INFC, 2007), forest vegetation and other wooded 

lands occupy 10,467,533 ha, about 34% of the national territory. Forests are dominated 

by deciduous trees (68%), mainly Quercus oak (Q. petrea (M.) L., Q. pubescens W., Q. 

robur L., Q. cerris L.), and European beech (Fagus sylvatica L.). The dominant conifers 

are Norway spruce (Picea abies K.) and pines (Pinus sylvestris L., P. nigra A., P. pinae 

L., P. pinaster A.), which are mainly artificial plantations located in mountain areas or 

near the coast (Figure 1). Seven of the 14 European forest types occur in Italy, of which 

the most common is the thermophilous deciduous forest (White et al., 2016, Barbati et 

al., 2014). 

Italy is divided into 20 administrative regions (NUTS2) for each of which the NFI 

produces estimates of forest area, total and mean GSV, and their standard errors (SEs). 

The average GSV is 144 m3 ha−1 (Gasparini et al., 2009). 
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2.2. Field Data 

2.2.1. Second Italian National Forest Inventory  

The field reference data for the wall-to-wall spatial prediction of GSV were acquired in 

the framework of the second Italian NFI (INFC, 2007) based on a three-phase, 

systematic, unaligned sampling design with 1 x 1 km grid cells (Fattorini et al., 2006). 

In the first phase, N = 301,300 points were selected and classified with respect to 10 

coarse land-use strata using aerial orthophotos. In the second phase, for an n < N sub-

sample of the points in the “forest” stratum of the first-phase points, qualitative 

information such as forest type, management, and property were collected during a field 

survey. In the third phase, for a sub-sample of 6782 points extracted from the second-

phase points, a quantitative survey was carried out for circular plots of 13 m radius (530 

m2). All tree stems with a DBH of at least 2.5 cm were callipered, and for a subsample, 

height was measured. For all 6782 third-phase plots, allometric models (Tabacchi et al., 

2011) were used to predict GSV (m3) which was then aggregated at plot-level and 

scaled to a per unit area basis. For this study, allometric model prediction uncertainty 

and uncertainty due to Global Navigation Satellite System (GNSS) position error were 

expected to be negligible for the spatial resolution adopted (McRobetrs et al., 2015; 

Chirici et al., 2020; McRoberts et al., 2016; McRoberts et al., 2018). The third-phase 

plots have a mean GSV of 145.75 m3 ha−1, with a median value of 102.82 m3 ha−1. 

Official design-based NFI estimates of total forest area and mean and total GSV at 

national and regional NUTS2 levels were acquired online at 

https://www.sian.it/inventarioforestale/ (accessed on: 02-10-2020) (McRoberts et al., 

2018), for the reference year 2005. 

The study area was tessellated into a 23 x 23 m national grid whose pixel area matched 

the area of the NFI ground plots, for a total of 569,769,690 pixels (D’Amico et al., 

2021). The national grid was used as a spatial reference grid for resampling the 

predictor variables and the FM to 23 x 23 m resolution. 

2.2.2. Inventory of Land Use in Italy 

To evaluate the accuracy of the FMs, we used the sample points from the Italian land 

use inventory (Inventario dell’Uso delle Terre in Italia, IUTI). The IUTI has adopted 
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the methodology of approach number three of the Good Practices Guidance for Land 

Use, Land Use Change, and Forestry (GPG-LULUCF) of the Intergovernmental Panel 

on climate change (Penman et al., 2003; Romano et al., 2011; Corona et al., 2012). 

IUTI is a permanent monitoring system that estimates the extent of six land use 

categories identified in the GPG-LULUCF. The IUTI is based on a systematic 

unaligned sampling design with 0.5 x 0.5 km grid cells which is an intensification of the 

NFI sample grid, for a total of 1,202,828 points of which 301,300 are the first-phase 

points of the NFI. The six categories reported by IUTI are urban, agriculture, forest 

land, grassland, wetland, other (Masek et al., 2006). Each point is photo-interpreted in 

three time periods (1990, 2008, 2012) for estimating land-use change using aerial 

orthophotos with spatial resolution ranging between 1 x 1 m for 1990 and 0.5 x 0.5 m 

for 2008. We combined the six land use categories into forest and non-forest and 

assigned the value 1 to all the points classified as forest (class 1.1, 1.2) and 0 to all other 

categories. Subsequently, the forest class included 32% of the total observations with 

387,085 of 1,202,818 points. 

For this study, we used the IUTI points as an independent dataset to evaluate the 

accuracies of the FMs. We used the 2008 photointerpretation to be as consistent as 

possible with the 2005 NFI ground surveys. 

2.2.3. Predictor Variables 

To predict GSV as described in section 3.1, we used predictors obtained from multiple 

sources including remotely sensed variables from multiple sensors, climate, and soil 

characteristics (Table 1). The variables were selected based on their availability 

throughout the national territory as reported by (Chirici et al., 2020). All variables were 

resampled from the original resolution to the 23 x 23 m pixel size of the national grid. 

A more detailed description of the database is provided by (Chirici et al., 2020). 

Table 1. Predictor variables based on remotely sensed and auxiliary data. 

Database Band/information 
Predictor 

variables 

Original spatial 

resolution 

Landsat 7 ETM+  

3 years median of Band 1 Landsat_B1 30 m 

3 years median of Band 2 Landsat_B2 30 m 

3 years median of Band 3 Landsat_B3 30 m 

3 years median of Band 4 Landsat_B4 30 m 
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3 years median of Band 5 Landsat_B5 30 m 

3 years median of Band 6 Landsat_B6 30 m 

3 years median of Band 7 Landsat_B7 30 m 

Global PALSAR/ 

PALSAR-3 

HH polarization SAR_HH 25 m 

HV polarization SAR_HV 25 m 

Climate data 

Total annual precipitation Prec 1 km 

Mean annual temperature temp_mean 1 km 

Maximum annual 

temperature 
temp_max 1 km 

Minimum annual 

temperature 
temp_min 1 km 

European Soil Database 

v2.0 

Subsoil available water 

capacity 
AWC_SUB 1 km 

European Soil Database 

v2.1 

Topsoil available water 

capacity 
AWC_TOP 1 km 

2.2.4. Landsat Composite Image 

We constructed a cloud-free composite image across Italy based on 848 Landsat 7 

Enhanced Thematic Mapper Plus (ETM+) images acquired in the same year as the field 

survey (2005) +/- 1 year (Figure 2). 

We used Landsat 7 Surface Reflectance Tier 1 imagery from the Earth Engine Data 

Catalog, acquired in the vegetation period (1st April– 30th September), atmospherically 

corrected using Landsat Ecosystem Disturbance Adaptive Processing System LEDAPS 

(Masek et al., 2006). We masked out cloud pixels based on the quality assessment (QA) 

band provided with the Landsat 7 database, using the C function of mask algorithm 

(CFMask) (Foga et al., 2017). Finally, for each 23 x 23 m national grid pixel, we 

calculated the median values for each Landsat band (Kennedy et al., 2018). 
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Figure 2. Distribution of Landsat 7 ETM+ images per month, divided by acquisition years. 

2.2.5. SAR Variables 

We used SAR data from PALSAR-2/PALSAR from the Advanced Land Observing 

Satellite (ALOS) and Advanced Land Observing Satellite-2 (ALOS-2) freely available 

at the global level online from the Japan Aerospace Exploration Agency (JAXA) at 25 

x 25 m resolution. We rescaled the raw backscattering coefficients for each polarization 

HH and HV for the year 2007 to the 23 x 23 m pixel of the national grid. For more 

information on this data we refer to 

https://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm (accessed on: 05-11-2019) 

2.2.6. Climate and Soil Variables 

We derived climate data from the 1 x 1 km downscaled climatological maps obtained 

by Maselli et al. (2012) which is representative of the period 1981–2010. The dataset 

includes the following variables: total annual precipitation, mean annual temperature, 

maximum annual temperature, minimum annual temperature. For more details on these 

climate data, we refer to Chirici et al. (2020). 

Soil variables were from the harmonized soil geodatabase of Europe (European Soil 

Database v2.0 - 2004) (Penagis et al., 2004). The subsoil available water capacity and 

topsoil available water capacity soil variables used for this study were selected using 

the optimization phase described in Chirici et al. (2020). 

2.3. Forest Masks 

We obtained five FMs available for the entire Italian territory that potentially reflect the 

forest FAO FRA definition (FAO, 2010). These masks can be divided into two main 

categories: i) FMs obtained by semi-automated classification of remotely sensed data; 

ii) FMs obtained by manual delineation and classification of fine-resolution images. All 

the FMs were first reprojected in the WGS 84 / UTM zone 32 North (EPSG:32632) 

reference system to make them comparable and then resampled at the 23 x 23 m 

resolution of the national grid resulting to produce five comparable FMs. 

https://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm
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2.3.1. National Forest Mask (NFM) 

We used the national forest mask (NFM) which is based on the mosaic of local forest 

maps produced by manual photointerpretation by the Italian regional forest authorities 

(D’Amico et al., 2021). The mosaic was constructed by merging 16 fine resolution 

forest maps with nominal reference scales varying between 1:5,000 and 1:25,000 and 

five land use maps specifically filtered to produce forest cover maps. All the maps were 

based on manual photointerpretation of aerial orthophotos. The local forest maps were 

reclassified into Boolean masks using code 1 for pixels classified as “forest”, and code 

0 for pixels classified as “non-forest”. The NFM is a mosaic of 20 fine-resolution 

regional forest maps resampled at the 23 x 23 m national grid resolution. The mask is 

also available on-line at www.forestinfo.it 

2.3.2. Copernicus Land Monitoring System (CLMS) Forest Mask 

To construct the Copernicus FM, we first used the 2012 Forest Type map 

(https://land.copernicus.eu/pan-european/high-resolution-layers/forests/forest-type-

1/status-maps/2012?tab=download) that uses the Tree Cover Density layer 

(https://land.copernicus.eu/pan-european/high-resolution-layers/forests/tree-cover-

density/status-maps/2012?tab=download) (accessed on: 05-11-2020) to classify all 20 x 

20 m pixels of European lands as forest when the tree cover density is at least 10% and 

when such pixels are aggregated into a continuous patch of at least 0.52 hectares 

(Langanke et al., 2017). We excluded pixels in agricultural and urban contexts from the 

Forest Type map, using the Forest Additional Support Layer also available from 

Copernicus at https://land.copernicus.eu/pan-european/high-resolution-

layers/forests/forest-type-1/status-maps/2012?tab=download (accessed on: 05-11-

2020). The resulting map reflects as closely as possible the international forest 

definition in a raster layer having 23 x 23 m resolution  

2.3.3. JAXA Forest Mask 

JAXA constructed an FM for the reference years 2007±1 with a spatial resolution of 25 

x 25 m based on the HV-polarization backscatter images acquired by the PALSAR and 

PALSAR 2 sensors carried by the ALOS and ALOS2 satellites. The JAXA declares to 

adopt the FAO forest definition (JAXA, 2016) and is available online at 

https://land.copernicus.eu/pan-european/high-resolution-layers/forests/forest-type-1/status-maps/2012?tab=download
https://land.copernicus.eu/pan-european/high-resolution-layers/forests/forest-type-1/status-maps/2012?tab=download
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https://developers.google.com/earthengine/datasets/catalog/JAXA_ALOS_PALSAR_Y

EARLY_SAR (accessed on: 05-11-2020).  

2.3.4. Hybrid Global Forest Mask 2000 (FM00) 

Schepaschenko et al. (2015) constructed a global FM using a hybrid approach 

combining multiple local, national, and global datasets into a single product. This map 

was constructed by converting the global forest probability map into a forest/non-forest 

map using a threshold calculated for each country. The threshold selected for this study 

produced area estimates that matched as closely as possible the official FAO forest area 

statistics. We characterized this map as “FM00”. The map has a spatial resolution of 1 x 

1 km, was produced for the reference year 2000, and is available online at 

https://application.geo-wiki.org/branches/biomass/ (accessed on: 05-11-2020).  

2.3.5. Corine Land Cover 2006 (CLC06) 

The CORINE Land Cover (CLC) project was initiated in 1990 by the European 

Environmental Agency (EEA) (Büttner et al., 2004) and has been updated in 2000, 

2006, 2012, and 2018 to monitor land-use changes in the 39 participating countries 

(EEA, 2007). It consists of land cover maps based on a nomenclature system of 44 

classes produced by photointerpretation of fine-resolution satellite imagery. CLC uses a 

MMU of 25 hectares and a MMW of 100 m. For this study, we acquired the CLC map 

for the reference year 2006±1 (referred to as “CLC06”) obtained by photo-

interpretation of SPOT-4/5 and IRS P6 LISS III dual data images (EEA, 2007) and 

available online in vector format at https://land.copernicus.eu/pan-european/corine-

land-cover/clc-2006?tab=download (accessed on: 05-11-2020). To derive the CLC 

mask, we first rasterized the vector product to the 23 x 23 m spatial resolution of the 

national grid, and then we assigned the categories 2.4.4, 3.1.1, 3.1.2, 3.1.3, 3.2.3, 3.2.4 

to the “forest” class and all the remaining categories to the “non-forest” class. 

2.4. Overview of the Method 

A concise overview of the methodology followed is presented: i) a wall-to-wall GSV 

map was constructed using a random forests model with the NFI plot GSV data and the 

predictor variables; ii) the accuracies of the five FMs were assessed; iii) the wall-to-

https://developers.google.com/earthengine/datasets/catalog/JAXA_ALOS_PALSAR_YEARLY_SAR
https://developers.google.com/earthengine/datasets/catalog/JAXA_ALOS_PALSAR_YEARLY_SAR
https://application.geo-wiki.org/branches/biomass/
https://land.copernicus.eu/pan-european/corine-land-cover/clc-2006?tab=download
https://land.copernicus.eu/pan-european/corine-land-cover/clc-2006?tab=download
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wall GSV map was masked in turn with each of the five FMs, obtaining five masked 

GSV maps; iv) for each masked GSV maps we estimated the mean and total GSV with 

the model-assisted regression estimator, at the national and regional level; v) we 

compared model-assisted estimations for each FM with the official estimation from the 

Italian NFI, in terms of correlation coefficient; vi) we assessed the relationship between 

FMs accuracy and GSV estimates in terms of the correlation coefficient. 

2.5. Wall-to-Wall National GSV Map 

To estimate the effects of FM accuracy on the model-assisted GSV estimates, we 

constructed a GSV map consisting of GSV predictions for all 23 x 23 m pixels of the 

national grid (569,769,690 pixels) using the random forests (RF) prediction technique 

with the NFI plot GSV data and the predictor variables described in Table 1. RF was 

optimized following Chirici et al. (2020) by selecting the combination of predictor 

variables and parameter values (ntree and mtry) that minimized the root mean square 

error (RMSE) calculated using the leave one out cross-validation (LOOCV) technique 

(McRoberts et al., 2015). RMSE was calculated as: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖−𝑦�̂�)

2𝑛
𝑖=1

𝑛
      (1) 

where n is the number of third-phase NFI plots (i.e., 6782), 𝑦𝑖 is the i-th GSV 

associated with the plots and 𝑦�̂� is the i-th GSV predicted by the random forests model. 

The most accurate combination resulting from LOOCV was used to predict the GSV for 

all N pixels of the study area to produce a 23 x 23 m resolution GSV map. The model 

fitting and optimization phase was performed using the randomForest package within 

the statistical software package R 3.6.3 (Devarriva et al., 2020) (https://www.r-

project.org, accessed on: 05-11-2020). For the 6,782 NFI plots, the pixel-level GSV 

predictions ranged between 0 and 690 m3 ha−1 with a standard deviation of 68.5 m3 

ha−1 while the original NFI values ranged between 0.3 and 701 m3 ha−1 with a 

standard deviation of 147 m3 ha−1. The map was found to have a mean deviation of 

−4.3 m3 ha−1. 

https://www.r-project.org/
https://www.r-project.org/
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2.6. Accuracy Assessment of FMs 

We first assessed the five FMs with respect to thematic accuracy using the IUTI dataset 

as reference data. For each of the 1,202,828 points of the IUTI database, we extracted 

the forest/non-forest classification from the five FMs and constructed the respective 

five confusion matrices. For each matrix we calculated four metrics: 

OverallAccuracy =
∑𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+∑𝑇𝑟𝑢𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

∑𝑇𝑜𝑡𝑎𝑙𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
  (2) 

κ = 
𝑝0−𝑝𝑒

1−𝑝𝑒
       (3) 

Where: 

𝑝0 = OverallAccuracy       

𝑝𝑒 =
1

𝑁2
∑ ∑𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 ∗ ∑𝑇𝑟𝑢𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑘    (4) 

for k categories and N observations. 

Precision =
∑𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

∑𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+∑𝐹𝑎𝑙𝑠𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
   (5) 

Recall =
∑𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

∑𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+∑𝐹𝑎𝑙𝑠𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
    (6) 

These metrics need to be used together to correctly describe the quality of classification 

in the case of unbalanced datasets. This is the case for forest masks when the forest and 

non-forest classes cover the land area with very different proportions. In such cases, 

many classification performance indicators including overall accuracy may provide 

misleading information (Devarriva et al., 2020; Jaafor et al., 2012). For this reason, the 

model accuracy comparison should focus on recall as per Equation (6) and, most 

importantly, precision as per Equation (5).  

2.7. Impact of FMs Accuracy on Model-Assisted GSV Estimation 

The five FMs were used to mask out all non-forest pixels in the national GSV map. The 

pixel-level predictions for the resulting five masked GSV maps were used with a 

model-assisted, generalized regression estimator to infer mean and total GSV at both 

national (NUTS1) and regional levels (NUTS2) (Särndal et al., 1992; 2003;  Breidt et 

al., 2009). An initial estimate of GSV can be calculated from the masked GSV maps as, 

μ̂initial =
1

n
∑ ŷi
N
i=1       (7) 
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where N is the number of forest pixels within the masked GSV map and 𝑦�̂� is the GSV 

prediction obtained using the RF model for the i-th pixel. However, this estimator may 

be biased because of systematic prediction error. The bias can be estimated as, 

Biaŝ(μ̂initial) =
1

𝑛
∑ (�̂�𝑗−𝑦𝑗)
𝑛
𝑗=1      (8) 

where n is the NFI sample size, i.e., the number of plots used for constructing the 

model, �̂�𝑗 is the GSV model prediction for the j-th plot and 𝑦𝑗 the observed value of 

GSV for the j-th plot. Subtracting the estimated bias from the initial estimate yields the 

model-assisted estimator as, 

µ̂𝑚𝑎 = μ̂initial − Biaŝ(μ̂initial) =
1

N
∑ yi −

1

n
∑ (ŷj−yj)
n
j=1

N
i=1  (9) 

where ma denotes model-assisted, µ̂𝑚𝑎 is the estimate of mean GSV for the given 

masked GSV map, N is the number of forest pixels within the masked GSV map, 𝑦�̂� is 

the GSV prediction obtained using the RF model for the i-th pixel. The standard error 

(SE) for the estimator is: 

𝑆𝐸(µ̂𝑚𝑎) = √
1

𝑛(𝑛−1)
∑ (𝑒𝑗 − 𝑒�̂�)

2𝑛
𝑗=1               (10) 

where n is the NFI sample size, 𝑒𝑗 = 𝑦�̂� − 𝑦𝑗 and 𝑒�̂� =
1

𝑛
∑ 𝑒𝑗
𝑛
𝑗=1 .  

Similarly, the model-assisted estimator for the GSV total was: 

�̂�𝑚𝑎 = ∑ 𝑦𝑖
𝑁
𝑖=1 −

N

n
∑ (ŷ𝑗 − y𝑗)
n
j=1               (11) 

where �̂�𝑚𝑎 is the estimate of total GSV for the given GSV-masked map, N the number 

of pixels within the masked GSV map, 𝑦𝑖 the GSV prediction obtained using the RF 

model for i-th pixel. The SE for the τ̂𝑚𝑎 is given by d’Oliviero et al. (2012): 

𝑆𝐸(τ̂𝑚𝑎) = √𝑁2 (
1

𝑛
−

1

𝑁
)∑

(𝑒𝑗−𝑒�̂�)
2

𝑛−1
𝑛
𝑗=1              (12) 

where N is the population size, n is the NFI sample size, 𝑒𝑗 = 𝑦�̂� − 𝑦𝑗  and 𝑒�̂� =

1

𝑛
∑ 𝑒𝑗
𝑛
𝑗=1 . 

It is important to note that correction for estimated bias compensates for GSV map 

inaccuracy and makes the model-assisted estimator asymptotically unbiased. 

Using the SEs, it was possible to construct confidence intervals for both estimates of 

mean and total GSV for the entire study area. These intervals are expressed as 

�̂�𝑚𝑎 ± 𝑡𝑛 ∗ 𝑆𝐸(�̂�𝑚𝑎)                (13) 
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where�̂�𝑚𝑎 denotes either the model-assisted estimate of mean GSV or total GSV, 

𝑆𝐸(�̂�𝑚) is the SE of �̂�𝑚𝑎, and the factor tn depends on the desired significance level 

and the distribution of the response variable. For most distributions and applications, tn 

= 2 produces an approximate 95% confidence interval (McRoberts et al., 2008). For 

purposes of constructing confidence intervals, the focus of the study was the estimation 

of mean and total GSV and the SEs using the model-assisted regression estimators. To 

compare the GSV estimates produced with the five masked GSV maps and the NFI 

estimates at national and regional levels, we used the t statistic calculated as follows: 

𝑡 =
�̂�𝑚𝑎−�̂�𝑁𝐹𝐼

√𝑆𝐸2(�̂�𝑚𝑎)+𝑆𝐸
2(�̂�𝑁𝐹𝐼)

                (14) 

where �̂�𝑚𝑎 denotes either the model-assisted estimate of mean GSV or total GSV for 

the masked GSV maps, �̂�𝑁𝐹𝐼 denotes either the NFI estimate of mean GSV or total 

GSV, and 𝑆𝐸2(�̂�𝑚𝑎) and 𝑆𝐸2(�̂�𝑁𝐹𝐼) are the squares of the SEs of the estimates. Values 

of |𝑡| >2 indicates that the two estimates are statistically significantly different. 

Correlations for estimates of both mean and total estimates and the corresponding NFI 

estimates in terms of Pearson correlation coefficient (ρ̂𝑀𝑒𝑎𝑛, ρ̂𝑇𝑜𝑡𝑎𝑙) were also 

calculated. 

In addition, we calculated relative efficiency (RE) to assess the quality of the model-

assisted estimators, compared to the SE obtained by the NFI (Chirici et al., 2020), both 

at national and regional scales. RE was calculated as: 

𝑅𝐸 =
𝑉𝑎�̂�(�̂�𝑁𝐹𝐼)

𝑉𝑎�̂�(�̂�𝑚𝑎)
                (15) 

where 𝑉𝑎�̂�(�̂�𝑁𝐹𝐼) and 𝑉𝑎�̂�(�̂�𝑚𝑎) are the estimated variances of the NFI estimates and 

the model-assisted estimates, respectively. 

Values of RE greater than 1.0 are evidence of greater precision in the model-assisted 

estimates (Moser et al., 2016). RE could be interpreted as the factor by which the 

original sample size would have to be increased to achieve the same precision as that 

achieved using the remotely sensed auxiliary data (Chirici et al., 2020). 

Finally, we evaluated the relationship between the accuracies of the FMs (in terms of 

overall accuracy, κ, precision and recall) and the SEs of the model-assisted estimates 

for the NUTS2 administrative level using the Pearson correlation coefficient (�̂�).  
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3. Results 

3.1. Forest Masks Accuracy Assessment 

At the national level, the most accurate FM was the NFM with an underestimation 

against the NFI estimates of only −2%, followed by the CLC06 with −3%, JAXA with 

−4%, CLMS with +16%, and FM00 with +51% . The same ranking was obtained from 

the comparison with IUTI in terms of OA, k, and precision (Table 2). For 17 of the 20 

regions, the NFM was the most accurate, followed by the CLMS FM in two regions, 

and CLC06 in the remaining region. The confusion matrices for each one of the five 

FMs are shown in Figure 3. 

 

Figure 3. Confusion matrices of each forest mask. 

 

 

Table 2. Accuracy assessment for the five forest masks (FMs) based on the confusion matrices 

with the IUTI. 

Mask 
Accuracy  

OA  κ  Precision Recall  

CLMS 0.88 0.73 0.73 0.92 

JAXA 0.85 0.61 0.71 0.74 

FM00 0.76 0.51 0.55 0.91 

CLC06 0.87 0.70 0.77 0.81 

NFM 0.91 0.79 0.84 0.90 
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We also noted that regardless of the FM used, the islands (Sicilia and Sardegna) and 

some of the southern regions (Calabria, Campania, Puglia) were characterized by small 

precision and recall (sensitivity), leading to numerous misclassifications of non-forest 

as forest (commission errors) (Figure 4). 

 

Figure 4. Comparison of four accuracy metrics among the FMs, calculated at regional level 

(NUTS2). 

 

3.2. GSV Model-Assisted Estimations 

In Figure 5, the GSV map of Italy produced with the random forests model is reported. 



82 

 

 

Figure 5. Growing stock map of Italy generated with random forests model. GSV in m3 ha−1. 

On the right, a detail of the GSV map masked with the five forest masks. 

 

For the five masked GSV maps, �̂�𝑚𝑎 ranged between 125 (CLMS) and 135 (NFM), m3 

ha−1 with a 𝑆𝐸(�̂�𝑚𝑎) between 1.1 and 1.3 m3 ha−1. For comparison, the design-based 

estimation of mean GSV from the NFI was 131 m3 ha−1 with a SE of 1.6 m3 ha−1. 

Three of the five GSV-masked maps (NFM, CLC06, JAXA) produced estimates that 

were not statistically significantly different from the NFI estimate. The value of �̂�𝑚𝑎 

ranged between 1321 (JAXA) and 1525 (CLMS) millions m3, with 𝑆𝐸(�̂�𝑚𝑎) between 

13 (NFM) and 17 (JAXA) million m3, while the official estimate from the NFI was 

1366 million m3 with SE of 14 million m3, demonstrating a general trend towards 

overestimation of total volume (Table 3). The differences between the total GSV 

estimate for two of the five masked GSV maps (NFM, CLC06) and the NFI estimate 

were not statistically significantly different from 0. 
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Table 3. Model-assisted regression estimates for the five maps. The last row has the Italian NFI 

estimates. 

 

Forest mask Model-assisted and NFI estimates (m3) 

 µ̂𝒎𝒂 𝑺𝑬(µ̂𝒎𝒂) 𝒕(�̂�) �̂�𝒎𝒂 𝑺𝑬(�̂�𝒎𝒂) 𝒕(�̂�) RE 

CLMS 125  1.2 −3 1,525,000,000 14,487,500 7.9 1.17 

JAXA 131 1.3 0 1,321,000,000 13,342,100 −2.3 1.09 

FM00 113 1.1 −9.5 1,791,000,000 17,014,500 19.3 1.15 

CLC06 135 1.3 1.94 1,387,000,000 13,572,900 1.0 1.12 

NFM 134 1.2 1.5 1,371,000,000 13,037,800 0.26 1.16 

INFC (NFI) 131 1.6 0 1,366,000,000 13,959,000 0 1 

 

For the 20 NUTS2 administrative regions, the greatest correlation with the NFI 

estimates was achieved by the GSV map masked with the NFM mask with ρ̂ = 0.972 

and ρ̂ = 0.986 for the mean and total GSV, respectively (Table 4). The GSV maps 

masked with the CLMS and FM00 masks, despite their large values of ρ̂, show a 

systematic overestimation of the �̂�𝑚𝑎. 

Table 4. Coefficient of correlation between the mean and total model-assisted estimate and NFI 

estimates for administrative NUTS2 regions (*p-value=0; **p-value < 0.001). 

 

Forest mask �̂�𝑻𝒐𝒕𝒂𝒍 �̂�𝑴𝒆𝒂𝒏 

CLMS 0.978* 0.963** 

JAXA 0.968** 0.971** 

FM00 0.979* 0.949** 

CLC 0.977** 0.970** 

NFM 0.986* 0.972* 

 

Regarding �̂�𝑚𝑎, for 16 of 20 regions, the differences between the model-assisted 

estimates and the NFI estimate were not statistically significantly different from 0 for 

the NFM masked GSV map, for 15 regions for CLMS and JAXA, for 14 regions for 

CLC06, and for 10 regions for FM00. Similar results were obtained for �̂�𝑚𝑎 for which 

the differences for 16 of 20 regions were not statistically significantly different from 0 

for the NFM masked GSV map, 15 for CLC06 and JAXA, six for CLMS, and two for 

FM00. The regions that always showed a statistically significant difference between the 

model-assisted estimates and the official NFI turned out to be the islands (Sardegna, 
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Sicilia) and two regions (Puglia, Umbria), while those which never did were seven, 

distributed in northern and central Italy. 

RE exceeded 1 for most regions, regardless of the FM used. RE < 1 was observed in 

one region for the CLMS and FM00 masks (Toscana), two regions for the CLC06 mask 

(Toscana, Emilia Romagna), and four regions for the JAXA mask (Toscana, Emilia 

Romagna, Sardegna, Umbria). The only masked GSV map that leads to RE coefficient 

always >1 was the NFM.  

3.3. Relationship Between FMs Accuracy and GSV Estimates 

The relationship between the accuracies of the FMs and the SEs of the estimates with 

the model-assisted estimator is presented in Table 5. The correlation was calculated for 

the 20 administrative regions. 

 

Table 5. Correlation coefficient between the accuracy metrics and the SEs of estimates for each 

FM. The overall values were calculated based on all five FMs together. 

 

4. Discussion 

The aim of this study was to assess the effects of using different FMs available for Italy 

for the area-based estimation of GSV. We first constructed a pixel-level GSV map for 

the entirety of Italy based on the procedure recently proposed by Chirici et al. (2020). 

We then acquired five different FMs and, after evaluating their accuracies against an 

independent dataset (IUTI), we used them to mask out non-forest areas from the 

national GSV map produced with the random forest model. We then compared the five 

Forest mask 
�̂� 

Overall Accuracy κ Precision Recall 

CLMS −0.26 −0.43 −0.48 −0.25 

JAXA 0.26 −0.27 −0.36 −0.62 

FM00 0.12 −0.24 −0.57 −0.68 

CLC 0.09 −0.20 −0.39 −0.29 

NFM 0.09 −0.26 −0.26 −0.58 

Overall 0.03 −0.20 −0.32 −0.42 
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resulting model-assisted GSV estimates aggregated at regional levels with the official 

design-based NFI estimates. 

Four of the five FMs achieved overall accuracies > 85%, based on the 2008 land use 

classification of IUTI points, with the CLC06 and NFM outperforming the other 

products. At the national level, the FM that achieved the greatest overall accuracy, κ 

and precision was the NFM, followed by the CLC06. Despite the greatest recall (0.91) 

achieved, the FM00 was affected by systematic overestimation of the regional forest 

area due to the original coarse resolution (Schepaschenko et al., 2015) which made this 

FM unsuitable for GSV estimation. 

In contrast, the JAXA FM produced the smallest recall (0.74), most probably because 

the SAR backscatter in the HV polarization is relatively insensitive to Mediterranean 

vegetation (D’Amico et al., 2021; Bartsch et al., 2020) which probably caused an 

underestimation of the forest area. The photointerpreted FMs, CLC06 and NFM, had 

the greatest precision. This is an expected result because forest land use identification is 

typically done by local experts. However, CLC06 produced less precision than the 

NFM because it was implemented for monitoring land cover, not land uses, adopting a 

MMU and a crown cover threshold greater than that adopted by the INFC 2005 

(Seebach et al., 2011;Vizzarri et al., 2015). In fact, the CLC project did not map forest 

clear-cuts and other natural or anthropic disturbances as forest land use, but rather as 

bare soil or other non-forest classes, affecting the estimation of forest area. Conversely, 

the NFM, as a mosaic of local forest maps, is designed to monitor forest land use, such 

as the NFI. However, the small precision of the accuracy showed that false positives 

were the majority of classification errors. 

At the regional level, OA was greater than 85% for 18 regions for the NFM mask, 

followed by the CLMS mask (14 regions), the CLC06 mask (12 regions), the JAXA 

mask (3 regions), and the FM00 mask (1 region). Regardless of the FM used, the 

greatest uncertainty was found in the southern regions and the islands (Campania, 

Calabria, Abruzzo, Basilicata, Sardegna, Sicilia), most probably because of the complex 

Mediterranean formations and complex agroforestry landscape tiles that characterized 

these regions where the NFI estimates also have larger associated SEs. 

The greatest accuracies were achieved for regions characterized by greater forest cover 

(Liguria, Trentino-Alto Adige, Friuli-Venezia Giulia, Umbria, Toscana). These regions 
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are characterized by extensive forests with continuous coverage and greater 

accumulation of GSV, as in the Apennine and Alpine Mountains, which probably 

reduces the probability of forest misclassifications, regardless of the FM considered. 

Conversely, the forests bordering other land uses, along rivers, and in the coastal and 

rural contexts are typically characterized by a sparse canopy, which makes them more 

difficult to correctly classify, even by manual photointerpretation. 

In conclusion, regarding the qualities of the FMs, the most accurate was the NFM, 

which was comparable with the CLC06, but with the advantage of a finer MMU which 

makes it more suitable for regional and local scale applications.  

Regarding the model-assisted GSV estimates, although all the masked GSV maps 

overestimated total GSV, the NFM masked GSV map was most accurate as a trade-off 

between the national and regional GSV and the SE of estimates. The general 

overestimation was caused by the trend of the prediction model to overpredict GSV for 

pixels with small observed GSV values. (i.e., GSV < 250 m3 ha−1). This evidence, 

along with the limited GSV that characterizes Italian forests, caused the general 

overestimation at the national level. One possible solution is to increase the 

performance of the model, for example, by integrating ALS metrics which is a well-

established data source for enhancing GSV predictions (Næsset et al., 2004; Kangas et 

al., 2018; Næsset et al., 2014). Both the CLMS and FM00 masked GSV maps suffered 

from systematic prediction error which caused the overestimation of �̂�𝑚𝑎, both 

nationally and regionally. For the CLMS masked GSV map, this can be caused by the 

inclusion of many agricultural and rural areas that occur in Italy (Langanke, 2017), and 

for FM00 because of the original coarse spatial resolution (1 x 1 km). The differences 

between the total GSV model-assisted estimates and the official NFI estimate for two of 

the five masked GSV maps (NFM, CLC06) were statistically significantly different 

from 0. At the national level, the mean GSV estimates were comparable for all maps, 

except for the GSV map masked with the FM00 mask. The JAXA masked GSV map 

produced the same value as the NFI for mean GSV but underestimated the total due to 

the underestimation of forest area. However, the SEs were almost comparable for all the 

GSV-masked maps considered. The SE is mainly affected by the number of NFI plots 

used for building the model and calculation of the correction term in the estimator. 
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Despite the differences among the FMs, the NFI plots falling within the forested 

portions of the FMs were similar, ranging between 6100 (CLMS) and 5800 (JAXA). 

Differences in the number of plots selected by each FM are likely to be concentrated at 

the forest edge, where maps are more prone to classification errors. These results 

confirm the findings of Esteban et al. (2020), suggesting that the FM effects on area 

estimates are more important than the effects of field plot sampling variability on the 

uncertainty of the mean and total estimates. 

At the regional level, the NFM produced the greatest �̂� relative to the NFI estimates, 

both for �̂�𝑚𝑎and �̂�𝑚𝑎, with the largest number of regional estimates in accordance with 

the NFI (16 regions out of 20). The NFM was also the only FM that led consistently to 

RE > 1. The CLC06 achieved similar results, with the major exception of Sardegna and 

in general in the southern regions, where, as we reported before, the MMU of the CLC 

project is not fine enough to discern the complex patchwork in the landscape of a rural 

region. 

𝑆𝐸(�̂�𝑚𝑎) was smaller than 𝑆𝐸(�̂�𝑁𝐹𝐼) for 16 regions, which represent 70% of the Italian 

territory. The regions with the greatest 𝑆𝐸(�̂�𝑚𝑎) were Puglia, Valle d’Aosta, Molise, 

Basilicata, and Marche (𝑆𝐸(�̂�𝑚𝑎)> 5%) probably because of the small number of NFI 

plots in these regions. Nevertheless, with the use of the model-assisted estimation 

approach, it was possible to decrease the error of the estimates with respect to the NFI 

estimates, both at the national (NUTS1), and regional levels (NUTS2). 

Regarding the relationship between the FM accuracy and the SEs of the estimates, we 

found small correlation coefficients, in particular with the overall accuracy. The SE 

depends primarily on the sample size, which is less affected by the accuracy of the 

FMs, as reported by Esteban et al. (2020). The accuracy metric was more correlated 

with the SE of the estimates than was the recall, followed by the precision. This is an 

expected result because these metrics are strictly related to the area classified as forest 

which, in turn, affects the number of NFI plots included in the FMs. Of interest, the FM 

with the greatest recall (CLMS) was also the FM that included the greatest number of 

NFI plots. 

However, the negative correlation with the other accuracy metrics demonstrated that a 

more accurate FM leads to a smaller 𝑆𝐸(�̂�𝑚𝑎). 
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It would be interesting to combine the available maps by aggregating their beneficial 

features to overcome the problems associated with each FM as per McRoberts et al. 

(2016). Another option would be to calibrate the FMs using the NFI data as per Næsset 

et al. (2007). 

In conclusion, the differences in the accuracies of the FMs led to different GSV 

estimates, although the SEs were almost comparable. The smallest GSV difference 

against the official NFI estimate was obtained by the most accurate FMs, i.e., the NFM. 

This is likely due to the correct classification of the main, dense forests, which have the 

largest amount of volume and subsequently make the greatest contribution in the 

model-assisted estimation. Presumably, forest misclassification occurs mainly along the 

margins and in boundary areas between different land uses. 

5. Conclusions 

This paper presents a comparative analysis of the impacts of different forest masks on 

the model-assisted estimation of GSV. Several conclusions can be drawn from this 

study. 

At national and regional levels, the masked GSV map constructed using the NFM mask 

produced GSV estimates that were most similar to the official NFI estimates. 

Regardless of the forest mask, the major disagreement with the official estimate was 

found in the southern regions and islands, most probably because of the presence of the 

Mediterranean macchia, which is difficult to classify correctly, even by manual 

photointerpretation of fine-resolution images. These were the regions with the least 

classification accuracies. Regions with abundant forest components (central and 

northern regions) produced the most accurate masks and the most accurate and most 

precise GSV estimates. 

Despite the small correlation coefficients, we found a negative relationship between 

forest mask accuracy and the standard error of the GSV estimate, demonstrating that the 

accuracy of the FM must be considered in the GSV estimation through the model-

assisted estimator. 

The quality of the model-assisted estimation mostly depends on the performance of the 

prediction model. A more accurate FM can compensate for systematic model prediction 
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errors, leading to a greater agreement with official NFI GSV estimates, both at national 

and regional levels. 

In conclusion, we recommend using the NFM, both at regional and national levels, for 

studies aimed at estimating forest parameters related to variables such as forest area, 

GSV, AGB, and carbon stock. However, it is plausible to assume that as the accuracy of 

the model predictions increases thanks to the growing availability of 3D data, the NFM 

will always produce more accurate and precise estimates of total GSV. In this regard, 

we hope that in the future, wall-to-wall ALS coverage will be finally available in Italy, 

to enhance the prediction of forest variables with even greater accuracy. 

Finally, we strongly recommended that the different forest mapping and monitoring 

programs currently active in Italy converge on a common method and lead to 

harmonized, multiscale systems in line with the international forest definition. 
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Abstract  

1. Forest ecosystems' structure and biomass monitoring are crucial for 

understanding the contribution of forests to the global greenhouse gas balance. NASA's 

Global Ecosystem Dynamics Investigation (GEDI) mission collects waveform lidar 

data to estimate Above Ground Biomass Density (AGBD). While of great interest, 

GEDI data are challenging to download and pre-process and require coding expertise, 

limiting their usage. 

2. In this paper, we introduce GEDI4R, an open-source R package providing 

efficient methods for downloading, reading, clipping, visualizing, and exporting GEDI 

data.  

3. GEDI4R was tested throughout Italy, and more than 11 million GEDI pulses 

were downloaded in less than 10 hours. The GEDI pulse density in forests ranged 

between 132 per km2 (in the Friuli Venezia Giulia Italian administrative region) and 61 

pulses per km2 (in Trentino Alto-Adige). A regional-level comparison between the 

official growing stock volume estimates reported in the last Italian forest inventory and 
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the AGBD extracted from the GEDI data acquired over the forest revealed significant 

correlations (r2 = 0.77). 

4. Our package contributes to improving the GEDI AGBD data usage, which 

provides innovative information to monitor carbon cycle dynamics at the global scale. 

Keywords: Lidar, Forest, Biomass, Ecosystem, Remote sensing, Open access  

1. Introduction 

Forest ecosystems cover about one-third of the Earth's lands and play a crucial role in 

the global carbon balance (FAO, 2018), absorbing almost 3 billion tons of 

anthropogenic carbon annually, or 30% of the total emissions associated with fossil fuel 

burning and net deforestation (Canadell & Raupach, 2008). Accurate measurements of 

forest variables at large spatial scales are essential for understanding the global carbon 

cycle and achieving effective carbon mitigation strategies (Chen et al., 2016). Indeed, 

three-dimensional forest structure data acquired by Light Detection And Ranging (lidar) 

sensors are the most valuable to assess forest biomass and biomass changes due to 

human activities or natural hazards mainly related to climate change (Silva et al., 2021). 

On the other hand, the extensive survey and processing cost limit such information, 

which, as a result, is usually available just over small areas limiting consistent and 

large-scale monitoring of forest height and biomass (Dubayah et al., 2020). 

The Global Ecosystem Dynamics Investigation (GEDI) is the first satellite mission 

conceived explicitly for retrieving vertical vegetation structure and has been collecting 

unique data on vegetation structure since April 2019 for a nominal two-year mission 

onboard the International Space Station (ISS). GEDI is equipped with a geodetic-class 

laser altimeter/waveform lidar comprised of three lasers that produce eight transects 

(beams) of structural information, providing 25-meters resolution measurements of 

forest height in temperate and tropical forests (between 51.6° N and 51.6° S latitude). 

GEDI data have already been used to derive various forest-related essential products, 

including canopy height, foliar canopy profiles, Leaf Area Index (LAI), sub-canopy 

topography, and biomass (Coops et al., 2021). Also, GEDI forest canopy height 

measurements have been extrapolated using Landsat data to create a 30 m spatial 
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resolution global forest canopy height map for 2019 (Potapov et al., 2021). Recently, 

GEDI data were related to lidar and forest disturbances predicted using Landsat data to 

study the biomass regrowth following the disturbance (Francini et al., 2022). 

Despite a few studies exploiting GEDI potential, GEDI data present limitations that 

may complicate their further research applicability. First, each GEDI file is represented 

by the sensor track on Earth, which depends on the orbit of the ISS. For this reason, to 

acquire information in a small Area of Interest (AOI), despite the full orbit granules 

being divided in sub-orbit since version 2.0, it is required to download continental-scale 

files, which complicates the analysis. Second, GEDI products are provided at different 

levels and spatial resolutions and correspond to different amounts of pre-processing 

(table 1).  

Table 1. GEDI level data features 

Level Data products Resolution 

1A Raw waveforms 25 m Ø 

1B Geolocated waveforms 25 m Ø 

2A Ground elevation, canopy top height, relative 

height (RH) metrics 

25 m Ø 

2B Canopy Cover Fraction (CCF), CCF profile, 

Leaf Area Index (LAI), LAI profile 

25 m Ø 

3 Gridded level 2 metrics 1 km grid 

4A Footprint level aboveground biomass 25 m Ø 

 

GEDI level 4A data version 2.1 was recently released for 2019-04-18 to 2021-11-23 

(Dubayah et al., 2022, Duncanson et al., 2022) and is the most up-to-date GEDI product 

corresponding to the highest processing level available to date. They represent the 



100 

 

output of models in which footprint metrics derived from level 2 products are used to 

estimate the aboveground biomass density (AGBD). Specifically, AGBD was derived 

from parametric models that relate GEDI level 2A (L2A) waveform relative height 

(RH) metrics to field plot estimates of AGBD (Dubayah et al., 2021). For each level of 

pre-processing, specific software or dedicated functions are required to download and 

elaborate the data. While the rGEDI R package (Silva et al., 2020) allows downloading 

and processing level 1 and 2 data, no software has been implemented to work with 

GEDI level 4A data. Although GEDI level 4 data is of great interest, very few studies 

are published as of now using not simulated data (Francini et al., 2022), possibly due to 

the lack of ready-to-use analysis procedures specifically conceived for GEDI level 4 

data. 

This paper aims to (i) present the GEDI4R R package for GEDI level 4 data processing 

and (ii) test the package in Italy. First, we provide a detailed description of GEDI4R 

functions and features (section 2.). Second, we show an illustrative example by 

applying GEDI4R over the whole of Italy and by comparing GEDI AGBD estimates to 

estimates produced by the most recent (2015) Italian national forest inventory (NFI) 

(section 3.). Third, we explore the impact of this new package by highlighting the 

scientific and operative contribution of GEDI4R (section 4.). 

2. Design and implementation 

2.1. Workflow summary 

GEDI4R is an R package written in R 4.0 (R Core team 2017) designed to facilitate the 

download and pre-processing of the GEDI level 4A data (figure 1). The package 

follows a simple name convention: all function names start with the prefix "l4_" and are 

followed by a verb indicating the function's primary purpose. GEDI4R uses the 

data.table package (https://r-datatable.com) for the data structure, allowing fast and 

memory-efficient data aggregation and manipulation. Typically slower operations, such 

as downloading and reading files, are performed in parallel thanks to the functionalities 

of the snowfall and foreach R packages. The output of each function is standardized to 

be compatible with the most common R packages for spatial analysis and plotting, such 
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as raster, sf, and ggplot2. GEDI4R provides functions for i) downloading, ii) reading, 

iii) clipping, and iv) visualizing data (figure 1), for which we provide a summary below 

and detailed information in subsequent sections. 

 

Figure 1. Workflow of the package 

Following the connection to the GEDI level 4A repository using the user's Earth 

Explorer Login Information, the l4_download  function can download data based on a 

user-defined Area Of Interest (AOI) and time range (section 2.2.). Then, the package 

provides a function to read the original h5 file format (section 2.3.). Using the l4_clip, 

GEDI data can be constrained over the AOI (section 2.4.) and then saved on a local 

machine (section 2.5.). All the mentioned steps can be executed at once using the 

l4_process function (section 2.6.). Finally, two functions are available to plot footprints 

location and biomass distribution as a function of elevation (section 2.7.). Please refer 

to the package documentation for detailed information on the functions and their use. 

2.2. Downloading 

The first step of GEDI4R is to establish a connection to the GEDI level 4A repository 

using the user's Earth Explorer Login Information (please see the package readme or 

functions documentation for more detail about the registration), from which data can be 

downloaded. The GEDI4R function l4_download interfaces with the NASA-developed 

Earth Observing System (EOS) Common Metadata Repository (CMR) 
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(https://cmr.earthdata.nasa.gov/search) to find and access GEDI level 4 data through the 

doi value and concept ID of the GEDI level 4 collection. It allows finding GEDI level 

4A data paths intersecting a user-defined study area and date range. The resulting file 

paths are then downloaded in parallel using the foreach package. At the first run of 

l4_download, users will need to enter their NASA Earth Explorer Login Information in 

a pop-up window. The function will create a text file in the user-defined directory that 

stores the login credentials to the ORNL DAAC database, where GEDI level 4A 

datasets are stored. The function is called for its side effects and returns the path of the 

downloaded GEDI level 4A files. 

2.3. Reading 

After the download, files can be read into the R environment from the original file 

format with the function l4_getmulti as data.table objects. The function can read one 

file at a time or accept a list or a vector of file paths (as the output of l4_download) and 

read them in parallel, using the snowfall package. l4_getmulti offers the option to merge 

files into one single database of class data.table, preserving the information of the file 

source for each footprint. 

The function removes by default footprints with AGBD values corrupted (AGBD <0) 

and can be used to filter footprints based on the tree cover threshold derived for the year 

2010 from Hansen et al. (2013) and encoded as a percentage per output grid cell. 

The function returns a data.table object with AGBD of each GEDI footprint, along with 

other auxiliary information. See the details section of l4_getmulti documentation for 

more details of the default variables returned and other variables that can be added to 

the default output dataset. 

2.4. Clipping 

In their first version, GEDI products were released in files containing all the footprints 

that constitute the ground track during the entire orbit of the ISS (full-orbit granules). 

Starting from version 2.0, each GEDI product has been divided into four sub-orbit 

granules covering an extent of the order of one continent. The l4_clip function clips 

footprints over an AOI. Currently, the AOI can be a path to Shapefiles or Tif files but 
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also an object of class sf, Raster, numeric vector of coordinates, or other objects from 

which an extent can be extracted, specified with the argument clip. The function will 

convert the extent of the spatial object to the GEDI default coordinate system 

(longitude/latitude, WGS84 - EPSG 4326) to ensure compatibility during the clip. 

Depending on the usegeometry argument, footprints can be clipped on the boundary of 

the geometry or the extent of the file defining the AOI. Depending on the usegeometry 

argument, the function returns a data.table object or an sf object. In particular, if 

usegeometry=TRUE the function returns an sf object. It returns a data.table otherwise. 

2.5 Saving 

After the above pre-processing step, usually, data are converted and saved in a user-

defined vector format. The function l4_convert reprojects footprint coordinates to a 

user-defined coordinate reference system (by specifying the EPSG code), converts data 

to an sf object, and exports them in vector format (l4_convert uses sf::st_write to save 

files in vector format, so all file formats supported by sf::st_write are possible. See 

https://gdal.org/drivers/vector/index.html for full driver documentation and the help 

page of sf::st_write). Note that column names will be abbreviated with a warning when 

converting data to ESRI Shapefile. Use other formats such as gpkg to avoid this 

behavior. 

2.6. Full processing chain 

The processing steps of l4_getmulti, l4_clip, and l4_convert can be easily performed in 

chunks of files with the function l4_process. This function is designed to be used in real 

case studies, where files to be processed can be hundreds or thousands, and allows a 

faster application of functions already described. The function allows the processing of 

each chunk in parallel. Users can specify the number of cores and the dimension of 

chunks that should depend on the maximum available RAM: the larger the RAM, the 

larger the number of per-chunk files that could be processed at once. By default, this 

function automatically guesses the best number of cores based on the number of 

available cores and the number of files to be processed. Footprints are clipped on the 

geometry boundary by default in the clipping step, which is usually the desired choice. 
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2.7. Plotting 

The package implements two functions for creating default plots from the processed 

data: l4_plotagb and l4_plotprofile. The former returns the location of footprints, the 

distribution of AGBD against the elevation, or both. The latter produces the plot of 

AGBD against the elevation profile along the GEDI track. These functions simplified 

the visualization and interpretation of the GEDI level 4A data. Figures 2 and 3 show the 

default output of the two plot functions, using a single GEDI track acquired over Italy 

as input. 

It has to be noted that plotting elevation profiles from GEDI data (i.e., with the function 

l4_plotprofile) is only advisable for single beam/track pairs. Plotting profiles from 

multiple GEDI files (orbits) can be misleading by forcing overlapping data from tracks 

at different locations.  

 

Figure 2. Example plots generated with the function l4_plotagb. Left panel: the location of 

footprints; right panel: the distribution of AGBD against the elevation. Points color encoded the 
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point density, while points size encoded the amount of AGBD

 

Figure 3. Example plots generated with the function l4_plotprofile. Each panel corresponds to 

one of the eight laser beams. 

 

3. GEDI4R application 

The following section illustrates the capabilities of the GEDI4R package with a real-

case application aimed at downloading and pre-processing all GEDI level 4A tracks 

available in Italy. 

 

3.1. Study area 

The study was carried out in Italy (figure 4), which has a considerable climate and 

geomorphological variability, with a flat coastal strip, hilly hinterland part, and two 

main mountain ranges, the Apennines along the peninsula length and the Alps in the 

north with peaks over 4800 m a.s.l. The country is divided into 20 local administrations 

(called Regions) or NUTS2 according to the Nomenclature of Territorial Units for 
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Statistics, following the European Statistical Office. According to the finest national 

forest mask, Italian forests cover about 11 million hectares (D’Amico et al., 2021; 

Vangi et al., 2021). Forests are distributed mainly in hills and mountains (INFC, 2007), 

mainly with broadleaf species (68% of forest area). 

 

Figure 4. A: Italian forest area; B: Percentage of forest area per region.   

 

3.2. Methods 

All the analyses were performed using an AMD Ryzen workstation with 3.00Ghz of 

clock speed, 64 Gb RAM, a Hard disk drive of 4 Tb, 48 logical cores, and 640 Mbps in 

download. Using the l4_download function, we downloaded all GEDI footprints 

acquired between 2019-04-18 and 2021-11-23 over Italy. Downloading was performed 

in parallel using 47 cores out of the 48 available. Then, all preprocessing steps were 

performed using the l4_process function. We set 10% as the tree canopy threshold, 20 

as the number of files to be processed in each chunk, and ESRI Shapefile as the format 

to save each chunk. With this parameters configuration, 20 cores out of 48 were used to 

read each chunk of files, and two cores to loop over chunks. The resulting files were 

merged in a single layer with all pulses. 
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3.3. Results 

2175 files were downloaded, requiring approximately 3 hours and a storage capacity of 

620 Gb (average file sizes of 280 Mb). A total of 107 Shapefile were created in about 6 

hours, for a total of 8.36 Gb of data (average file sizes of 3 Mb). 

Based on the processing settings, more than 11 million pulses (11,427,184) fall on the 

Italian territory (figure 5), of which 3,144,283 were acquired in 2019, 5,246,897 in 

2020, and 3,037,077 in 2021. A total of 9,758,758 pulses fall within the national high-

resolution forest mask produced by D'Amico et al. (2021) for Italy.  

The Italian Region with the highest number of pulses was Tuscany with 1,183,864 

pulses, while the lowest was Aosta Vally with 79,434. The Italian Region with the 

highest percentage of forests covered by GEDI pulses was Friuli Venezia Giulia (with a 

pulse density of 132 per km2), while the one with the lowest was Trentino Alto-Adige 

(with 61 pulses per km2). The mean AGBD in the forest was 124.3 t ha-1 with a 

standard deviation of 7.5 t ha-1. For instance, the official estimation of AGBD from the 

last Italian NFI (INFC 2015) was 114.9 t ha-1, with an increase of 19% between 2005 

and 2015 (De Laurentis et al., 2021), which is consistent with the one estimated with 

the GEDI L4 data. 
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Figure 5. The forest coverage of GEDI level 4A footprints in Italy. 

 

Finally, a regional-level comparison between the official growing stock volume (GSV) 

data reported in the last Italian NFI (INFC, 2015) and the AGBD extracted from the 

GEDI data fallen in the forest mask was performed (figure 6), resulting in a coefficient 

of determination (r2 ) of 0.77. It was impossible to compare AGBD between GEDI and 

NFI due to the lack of available biomass data at the regional level. 

 

Figure 6. Comparison between NFI GSV density and GEDI AGBD at the regional level.  
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4. Final consideration 

Accurate measurements of the forests ecosystem’s vertical structure are essential for 

assessing forests biomass variations due to natural growth but mainly to decline related 

to human activities or events often connected to the evolution processes related to 

climate changes (Dubayah et al., 2020). On the other hand, due to data acquisition's 

high costs, lidar coverage was constrained in both time and space before the launch of 

the GEDI in December 2018. 

Recent studies confirm GEDI data as a game-changer for three-dimensional forest 

structure and biomass monitoring. In addition, starting from August 2021, GEDI 

provides an additional product related to the AGBD (Dubayah et al., 2020), data that 

are crucial for studying forest ecology and forest ecosystems evolution over time and 

space. However, very few studies using not simulated GEDI level 4 data exist so far. 

Sharing knowledge and experience on lidar data acquired from space should allow a 

complete understanding of its strengths and limitations. To do this, as many people as 

possible should have easy access to every piece of information provided by the GEDI 

mission, the benchmark for future and more advanced lidar missions from space. 

GEDI represents critical advancement in earth observation for forest monitoring, but 

some tasks - such as downloading GEDI data - are challenging due to the global 

coverage of each acquisition, which implies huge file sizes. Our package provides a 

ready-to-use tool that enables getting pre-processed data, allowing many researchers, 

students, technicians, foresters, or managers worldwide to make the most from GEDI 

level 4A, focusing on scientific research and avoiding repeating the work we did related 

to data understanding organization, download, and pre-processing. In addition, the 

simplicity of the developed functions allows even people with minimal knowledge of 

the R programming language to successfully interact with GEDI level 4 data. Plus, the 

function's parameters settings are intuitive, straightforward, and documented in detail 

within the package. 

A first version of the presented GEDI4R package was recently used to analyze the 

forest ecosystems’ biomass trend following forest disturbances (Francini et al., 2022). 

Data obtained using our package can be further used to derive various forest products, 
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such as wall-to-wall maps of biomass, carbon stock, and plant functional types.. Using 

it with multispectral satellite data such as Landsat or Sentinel-2 can improve the forest 

variables estimates at local and global scales (Potapov et al., 2021), and integrating 

GEDI data with Landsat time-series is expected to enable a multidecadal historical 

analysis of forest ecosystems dynamics and disturbance trend. Our package is designed 

to simplify and facilitate all mentioned tasks and help research in the ecological field, 

enhance biomass and carbon stock estimates, and answer how forests contribute to 

carbon sequestration, habitat restoration, and global biodiversity. 

GEDI4R represents the first step toward several future advancements in forest 

monitoring, from which researchers can take advantage and minimize the effort to make 

the most of innovative and groundbreaking GEDI level 4 data. 

5. Code availability 

The source code of the GEDI4R package is accessible via GitHub at 

https://github.com/VangiElia/GEDI4R. After the download and installation disk 

occupancy of the GEDI4R package is approximately 3MB and it works on Microsoft 

Windows and Apple macOS platforms (Table 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://github.com/VangiElia/GEDI4R
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Table 2. Package metadata 

Code metadata description   

Current code version v0.0.1 

Operating system and platform Microsoft Windows10 and above, Apple macOS. 

 

Permanent link to 

code/repository used for this 

code version 

https://github.com/VangiElia/GEDI4R  

 

Legal code license GNU GPLv3.0 

Code versioning system used git 

 

Software code languages, tools, 

and services used 

R version 4.0.3 

 

Compilation requirements, 

operating environments, and 

dependencies 

R packages: data.table, httr, hdf5r, rGEDI, snow, 

snowfall, doParallel, foreach, raster, sf, ggplot2, 

proj4, ggExtra, gridExtra, viridis 

If available, link to developer 

documentation/manual 

https://github.com/VangiElia/GEDI4R  

 

Support email for questions elia.vangi@unifi.it, saverio.francini@unifi.it, 

giovanni.damico@unifi.it 

  

https://github.com/VangiElia/GEDI4R
https://github.com/VangiElia/GEDI4R
mailto:elia.vangi@unifi.it
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Enviromental Modeling and Software- 

Abstract 

Within the Paris Agreement's Enhanced Transparency Framework, consistent data 

collections are the prerequisite for a successful reporting of GHG emissions. For such 

purposes, NFIs are usually the primary source of information, even if they are 

frequently not designed for producing estimations on a yearly basis and in the form of 

wall-to-wall high-resolution maps. In this framework, we present a new spatial model 

to produce yearly growing stock volume (GSV), above-ground biomass (AGB), and 

carbon stock wall-to-wall estimates. We tested the model in Italy for the period 2005–

2018, obtaining a time-series of yearly maps at 23 meters spatial resolution. Results 

were validated against the 2015 Italian NFI reaching an average RMSE% of 19% for 

aggregated areas. Results were also compared against data reported by the Italian GHG 

inventory, reaching an RMSE% of 28% and 20% for GSV and carbon stock 

respectively.  

https://unfccc.int/enhanced-transparency-framework
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We demonstrated that the modeling approach can be successfully used for setting up a 

forest monitoring system to meet the interests of governments in inventories of GHG 

emissions and private entities in carbon offset investments. 

 

Keywords: National Forest Inventory, GSV, carbon stock, forest modeling, spatial 

modeling, Italy. 

 

1. Introduction 

Under the enhanced transparency framework of the Paris Agreement, each country 

Party must report every two years an inventory of their anthropogenic greenhouse gases 

(GHGs) emissions by sources and removals by sinks following the Intergovernmental 

Panel on Climate Change (IPCC) guidelines and guidance (IPCC, 2006). The GHG 

emission inventory has to fulfill the IPCC key principles: transparency, accuracy, 

completeness, consistency, and comparability while providing helpful information for 

assessing the climate impacts. The "Land Use, Land-Use Change and Forestry" 

(LULUCF) is exceptionally demanding, dealing with natural carbon dynamics and 

aiming to assess emissions and removals related to the impact of anthropogenic 

activities. The LULUCF sector is responsible for significant GHG emissions globally, 

mainly due to deforestation activities. In this framework, forests are pivotal ecosystems, 

being a substantial and growing atmospheric carbon sink (Sellers et al., 2018). Forests 

are estimated to sequester 30% of the total global CO2 released into the atmosphere 

annually (Houghton and Nassikas, 2017), corresponding to 7.6 Gt CO2 y−1, reflecting a 

balance between gross carbon removals and gross emissions from deforestation and 

other disturbances (Harris et al., 202; Xu et al., 2021). Increasing the carbon stored in 

the above and below-ground forest biomass is a mitigation mechanism to fight climate 

change and offset anthropogenic emissions worldwide (Di Cosmo et al., 2016). 

Despite the UNFCCC requirements related to the provision by Parties of biennial 

forestry-related carbon stock change, many National Forest Inventories (NFI) are not 

designed for continuous yearly reports and cannot cope with the required reporting 

https://agupubs.onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Nassikas%2C+Alexander+A
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frequency due to longer update cycles (McRoberts et al., 2018). Estimating carbon 

stock changes between consecutive NFIs is a pivotal step in accomplishing the 

reporting requirements. The methodology should be based on year-to-year measured 

forest variables or prediction models to extend NFI-based estimates to assessment years 

rather than a simple interpolation between estimates produced by NFIs at different 

years (Federici et al., 2008). 

Even if the main source of information for such reporting activities are NFIs (Tomppo 

et al., 2010, Condes and McRoberts, 2017; Kulbokas et al., 2019), in recent times, 

considerable efforts have been laid out to integrate remotely sensed (RS) data in the 

process. Examples are available to provide spatially continuous (also referred to as 

wall-to-wall maps) and updated estimations of several forest variables such as: the 

growing stock volumes (GSV), the above-ground biomass (AGB) (Kangas et al., 2018; 

Chirici et al., 2020; Vangi et al., 2021), and the rate of forest disturbances (Hansen et 

al., 2013; van der Werf et al., 2017; Francini et al., 2021; Francini et al., 2022, a; 

Francini et al., 2022, b). Coupling traditional NFI information acquired in the field with 

such wall-to-wall maps based on remotely sensed data is the basis for evolving from 

traditional NFIs to the new so called Enhanced Forest Inventory (EFI) framework 

(White et al., 2016). This has already been carried out by Countries with a long history 

in NFIs, such as those in the Scandinavian area (Næsset et al., 2004; Nord-Larsen and 

Schumacher, 2012; Tomppo et al., 2008), Canada (White et al., 2016), Austria (Hollaus 

et al., 2009) and Switzerland (Waser et al., 2017). The EFI approach has several 

benefits (Chirici et al., 2020): it enables the estimation of forest attributes from a local 

to national scale to support local management and national planning; it can provide 

estimates of forest removals due to logging and other disturbances, which are essential 

in the context of carbon cycle assessments (Francini et al., 2021). But evolving from 

traditional NFIs to EFIs requires elaborating a huge amount of remotely sensed (RS) 

data which in turn requires investments in software and hardware resources for their 

processing (D’Amico et al., 2021). Conversely, field activities can be reduced by 

optimizing the sampling strategy by integrating RS data (Corona, 2010). For example 

biomass density maps constructed from remotely sensed data can be used to enhance 
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the stratification of ground inventories, to supply carbon stock changes estimates in 

poorly-sampled or unapproachable areas, or for verification purposes (ISPRA, 2021, a). 

Coming more specifically to the problem of how to estimate forest carbon stock 

changes, there are at least three approaches reported in literature that are based on 

different level of data availability (Williams et al., 2012). The first one is the gain-loss 

method, a process-based approach, which estimates emissions and removals from 

changes in carbon stocks due to forest land and related land-use changes. Default data 

are provided in each land-use category chapter to allow the estimation of biomass 

carbon stock changes in case of missing country-specific data. This is the method 

recommended only for countries without an NFI and poor data collection. 

In the second approach, forest carbon sinks are estimated by coupling estimates of 

forest age with age-specific carbon sequestration models. These models are derived 

from yield tables, expressing carbon stocks as a function of age stand.  

The third approach, called the stock-change approach, requires bi-temporal biomass 

carbon stock measurements; therefore, its application is suitable in countries having 

NFI systems and other land-use categories, where stocks of different biomass pools are 

surveyed with a regular frequency. This method results in considerably less uncertainty 

(McRoberts et al., 2018; ISPRA, 2021a). 

Examples of these approaches are presented by Harris et al. (2021) and Xu et al. (2021), 

they both integrated spatially explicit datasets and ground-measured forest inventories 

data to provide global estimates of temporally averaged global forest carbon emissions 

and removals for the 21st century, founding that woody carbon stocks increased slowly 

but significantly at a local and regional scale.  

Saatchi et al. (2011) presented a benchmark map of biomass carbon content across the 

world’s tropical forests for 2000 by combining ground data with airborne laser scanning 

(ALS), multispectral, and radar data: their map provided estimations of carbon stocks 

for countries where prior estimates were scarce or not complete. With the stock-change 

approach, Paul et al. (2021) assessed the carbon stock and changes in New Zealand 

using the NFI data from 2002 to 2014, showing that national forests are carbon-neutral 

but with wide variation in carbon stocks between different forest categories. In Russia, 
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Shepashenko et al. (2021) used multiple RS-based maps and NFI data to estimate CO2 

sequestration founding figures 47% higher than the national GHG inventory. 

In Italy, Dalponte and Coomes (2016) developed an approach to map the carbon density 

of the Italian Alps through ALS and hyperspectral data. Nonini and Fiala (2020) 

developed a model to assess the forest biomass and carbon stock at stand-level with a 

gain-loss approach in a northern region in Italy.  

Federici et al. (2008) developed a model to estimate carbon stock change data for the 

carbon pools to be reported under the forest land category in the LULUCF sector in the 

GHG inventory. The For-est (Forest – estimates) is a bookkeeping model that 

calculates the above-ground biomass pool C stock annually by adding the annual net 

increment and subtracting yearly losses associated with harvest (industrial roundwood 

and fuelwood), forest fires, and other mortality. A detailed description of the modeling 

approach is reported in IMELS, 2019 (section 3.3). The annual GSV is converted to 

AGB and then to carbon stock by species-specific parameters. The model is currently 

used by Italy to estimate carbon stock changes for the national GHG inventory under 

UNFCCC (ISPRA, 2021, b). 

The aim of this study is to present the development of a spatial approach for the wall-

to-wall estimation of GSV and carbon stock to fill the information gaps left by the long 

updating cycle of the periodic Italian NFI, under the framework for a new EFI that 

better fits the international reporting requirements. 

To do so, we propose a new methodology to produce a yearly high-resolution (23 m) 

forest above-ground carbon pools and GSV maps. Our approach is initiated by a 23 m 

resolution wall-to-wall GSV map of 2005 constructed by combining Landsat imagery 

with NFI data (Vangi et al., 2021). We then applied yearly increments with species-

specific growth models derived from yield tables driven by the forest GSV to estimate 

the annual current increment (Federici et al., 2008). We take into account removals due 

to forest disturbances predicted using Landsat imagery and the 3I3D forest disturbance 

detection algorithm (Francini et al., 2021; Francini et al., 2022, a). The approach was 

tuned against a set of independent field observations, and the final pixel-level estimates 

were aggregated at the regional level and validated against the design-based estimation 
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from the last Italian NFI completed in 2015, obtaining an RMSE% at a regional level of 

19% and 17% for GSV and carbon stock, respectively. Our estimates were also 

compared with official data reported in the Italian GHG inventory.  

To the best of the author’s knowledge, this represents the first attempt to provide high-

resolution wall-to-wall yearly time-series maps of forest growing stock volume and 

carbon stock in Italy. These new products allow the spatial analysis of the annual Italian 

forest carbon stock changes, consistently with the IPCC guidelines.  

2. Materials  

The study was carried out in Italy, covering 301,408 km2 (Figure 1). Italy has a wide 

range of climatic conditions due to its proximity to the sea and the presence of two 

main mountain belts with elevations ranging between sea level up to 4000 m a.s.l. Italy 

has mainly a temperate Mediterranean climate (Pinna, 1970). According to the 2015 

Italian NFI (INFC, 2021), forest vegetation and other wooded lands occupy 11,054,458 

ha, about 36% of the national land. Deciduous species cover 68% of the forest area and 

are represented mainly by Quercus oak (Q. petraea (Matt.) Liebl., Q. pubescens Willd., 

Q. robur L., Q. cerris L.), and European beech (Fagus sylvatica L.). Coniferous 

species, such as Norway spruce (Picea abies (L.) H.Karst.) and pines (Pinus sylvestris 

L., P. nigra J.F.Arnold, P. pinae L., P. pinaster Aiton), form vast plantations, 

especially in the northern regions and coastal areas (Figure 1).  

Italy is divided into 20 administrative regions (NUTS2); the NFI produces every ten 

years regional estimates for several variables including forest area, total and average 

GSV, and biomass with the relative associated standard errors (SE) with a traditional 

design-based approach. According to NFIs, at the country level, the average GSV was 

121 m3 ha-1 and 135 m3 ha-1 in 2005 and 2015, respectively. 
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Figure 1. The study area (the whole of Italy) with the location of the independent plots was used 

for optimizing and validating the model. 

 

In this area, poplar plantations are intensively managed and primarily targeted to 

plywood production, with rotations usually about 10-12 years and tree spacing between 

36 m2 (6 x 6 m) and 49 m2 (7 x 7 m) (Corona et al., 2018b, Puletti et al., 2019). In about 

three-fourth of the poplar plantations, the ‘I-214’ (Populus × euroamericana) hybrid 

clone is used (Chianucci et al. 2020a, 2020b). 

2.2. Growing stock volume baseline map 

For the assessment of forest GSV and above-ground carbon stock in the years following 

the last NFI, we used the 2005 GSV map produced by Vangi et al. (2021) for Italy as 

the initial GSV baseline data (GSV2005). This map consists of GSV predictions by 

Landsat and other RS imagery at 23x23 m resolution for all forest pixels. The full 

description of the methodology is available from Chirici et al. (2020). The model fitting 

and tuning steps were carried out using the randomForest package in the statistical 
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software R 4.0.5 (Liaw and Wiener, 2002) (https://www.r-project.org, accessed on: 

June 16th, 2021). The pixel-level estimations of the GSV range between 0 and 690 

m3ha-1 with a mean value of 134 m3ha-1 and a standard deviation of 41.5 m3ha-1 (for 

comparison the official NFI estimates range between 0 and 950 with a mean value of 

145 and a standard deviation of 69 m3ha-1). Using a model-assisted estimation approach 

(Corona, 2010), the 2005 growing stock volume map led to a standard error of 1.2% 

and 1% for the mean and total national GSV estimation, respectively (Vangi et al., 

2021). 

2.3. Forest category maps 

In Italy, a forest category map with a spatial resolution consistent with the input GSV 

map used in this study is not yet available. For this reason, the distribution of forest 

categories was derived from the Corine Land Cover (CLC) maps, which are available 

for the reference years 2006, 2012, and 2018. In Italy, CLC is the only spatial source 

that provides consistent information on forest category distribution across different 

years on a national scale. The CLC project was started in 1990 by the European 

Environmental Agency (Buttner et al., 2004) and consists of a European-scale land-use 

monitoring program with a 44-class nomenclature system produced by 

photointerpretation of high-resolution satellite imagery. CLC uses a minimum mapping 

unit (MMU) of 25 hectares and a minimum mapping width (MMW) of 100 meters 

(EEA, 2007). The original CLC nomenclature system classifies the forest into three 

classes: broadleaves, coniferous, and mixed forests. In the Italian implementation the 

CLC maps produced by the Istituto Superiore per la Protezione e la Ricerca 

Ambientale (ISPRA) classify forests into 28 classes (Bologna et al., 2004). In this 

study, we re-classified forests into 18 classes (Annex I). Forest category maps were 

obtained from the original CLC vector products by rasterizing at the same spatial 

resolution as the baseline GSV map. Then we masked out the non-forest categories by 

assigning them to the “non-forest” class. 

Our spatial approach requires for each year a newly updated forest category map. Since 

the CLC project is not updated yearly, we used the forest category map of 2006 for the 

years 2005-2009, that of 2012 for 2010-2014, and that of 2018 for 2015-2018 (Figure 
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2). This procedure was considered appropriate since the percentual change of forest 

area based on the CLC maps is limited. In the period 2006-2012, considering both 

increments and decrements, the forest area changed only by 741 km2 (the 0.74 % of the 

forest area) while in the period 2012-2018, it changed only by 705 km2 (the 0.70% of 

the forest area). 

 

Figure 2. Corine Land Cover (CLC) forest category maps used for each year of the study period. 

 

2.4. National collection of yield tables 

The national collection of yield tables from Federici et al. (2001) was used to model the 

current increment of forests as a function of GSV and the GSV as a function of forest 

age. Yield tables reported the GSV and current increment as a function of forest age for 

27 species within 13 genera. The 27 species were linked to the 18 forest categories 

derived from CLC (see section 2.3), with ad-hoc harmonization bridges developed for 

this study. Bridges preserve data attributes based on different definitions, allowing their 

comparison at a higher hierarchical level (Annex I). 

2.5. Forest disturbances time series maps 

Data on the spatial distribution of forest disturbances in the period 2004-2018 were 

needed to account for forest harvesting and other disturbances in GSV and the carbon 

stock estimation process. These data were produced with the 3I3D algorithm (Francini 

et al., 2021) recently implemented in Google Earth Engine (GEE) (Francini et al., 2022, 
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a), a cloud-based platform that can process massive amounts of remotely sensed data 

(Gorelick et al., 2017).  

3I3D is an unsupervised algorithm that predicts forest disturbances requiring no input 

parameters or calibration. It analyses the pattern over three sequential years of three 

indexes (3I) of photosynthetic activity used as three-dimensional (3D) space axes. 3I3D 

was applied using yearly cloud-free composites of Landsat surface reflectance images 

atmospherically corrected with LEDAPS (Wolfe et al., 2004) and acquired with a solar 

zenith angle smaller than 76°. Candidate images were acquired during the vegetative 

season (between Jun and Aug), with a cloud cover lower than 50% in the scene. As a 

result, we obtained a collection of about 800 images per year. We excluded those pixels 

covered by clouds, shadows, water, and snow (Foga et al., 2017) and pixels with an 

opacity value greater than 0.3. For each year, we then selected the ”best” pixels among 

the remaining ones using the Best Available Pixel procedure (BAP) (Griffiths et al., 

2013; White et al., 2014), obtaining a BAP-collection of cloud-free composite for each 

year between 2004 and 2018. Specifically, the BAP pixel selection is based on a set of 

scores, among which i) the sensor, ii) the day of the year, iii) the distance to cloud or 

cloud shadows, and iv) the opacity. The BAP was recently implemented in GEE, with 

the full code openly available. A detailed description of the application, guidance, and 

suggestions on BAP parameters setting is provided on GitHub 

(https://code.earthengine.google.com/?accept_repo=users/sfrancini/bap). 

We used BAP cloud-free composites as input for the 3I3D algorithm to predict forest 

disturbances with a MMU of 500 m2 over the study period. Official forest data on 

burned areas, annually produced and released for the same period by the Italian Forest 

Service (Comando Unità Forestali, Ambientali e Agroalimentari of Carabinieri), have 

been also used. This dataset includes burnt areas from forest fires acquired through a 

ground survey with the Global Navigation Satellite System (GNSS). 

We merged the official national database of forest fires with the forest disturbances map 

produced by 3I3D (with an OR logical operator), classifying forest pixels for each 

investigated year in “disturbed” or “undisturbed”. Based on these maps, we finally 

produced the “age” of disturbed forests for each investigated year as the number of 

years since the last disturbance event (YSLD).  
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2.6. Calibration data 

To optimize and calibrate the procedure, we used 9258 circular plots where the GSV 

was measured in the field between 2006 and 2019 in the framework of local forest 

inventories (Figure 1). The plots are distributed under different environmental 

conditions and forest categories over the whole country. The same survey protocol of 

the Italian NFI was adopted in all these plots. The tree-level GSV was determined by 

the allometric models used for the Italian NFI (Tabacchi et al., 2011), and then tree-

level data were aggregated at the plot level. For this study, allometric model prediction 

and GNSS position uncertainties are expected to be negligible for the spatial resolution 

adopted (McRoberts et al., 2013, 2016, 2018; Chirici et al., 2020). The mean GSV in 

this calibration dataset is 216 m3 ha−1, with a maximum of 1482.4 and a standard 

deviation of 155 m3 ha−1. To find the most appropriate solution, we evaluated the 

models in terms of RMSE% at the plot level, comparing GSV estimates with the 

observed one. 

2.7. Validation data 

To validate the results, we compared aggregated regional GSV and carbon stock 

estimates for 2015 based on the pixel level values we produced (the GSV2015 23 m 

resolution map) with official regional estimates from the Italian NFI. We also compared 

aggregated values of GSV and carbon stock produced by our method with the official 

estimates reported in the Italian 2006-2019 GHG inventory. Just as in the calibration, 

we compared the accuracy of our results in terms of RMSE%, calculated as the percent 

of RMSE against the mean official values. 

3. Methods 

3.1. Overview of the spatial approach 

For the years not covered by the periodic Italian NFI, our spatial approach for 

predicting GSV and carbon stocks was carried out differently for pixels belonging to 

disturbed and undisturbed forests. Annual stock changes were predicted for each 
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23 m pixel, using the GSV2005 mapped for 2005 and the YSLD as unique 

drivers. The GSV2005 was selected since it is strictly related to the above-ground 

biomass and carbon stock, and it is directly measured by the NFI in the field. While the 

YSLD was selected because it can be easily obtained based on change detection 

algorithms, such as the 3I3D, and it is the primary driver of forest variables in yield 

tables. 

Our approach uses the first derivative of the Richards function (Eq. 1) to calculate the 

current increment (Eq. 2) as a function of the GSV in undisturbed forests for each of the 

18 CLC forest categories (Federici et al. 2008). The following equation defines the 

Richards function: 

𝑑𝑦

𝑑𝑡
=

𝑘

𝑣
∙ 𝑦 [1 − (

𝑦

𝑎
)
𝑣

] + 𝑦0 first derivative                             (1) 

its analytical solution defines the Richards growth curve: 

𝑦 = 𝑎 ∙ [1 − 𝑒(𝛽−𝑘𝑡)]
−
1

𝑣                                                                    (2)                                                         

Where the general constraints for the parameters are a, k > 0; -1 ≤ β ≤ ∞; v ≠ 0. 

The curve is bounded and monotonic, highly flexible thanks to its four parameters. It 

can be efficiently approximated to a logistic (a→∞, v>0), exponential (v>1), or other 

most used growth curves. However, due to the number of parameters and their high 

covariance, the curve is difficult to fit and can cause problems during the non-linear 

regression (Federici et al., 2008). The current increment represents the dependent 

variable, while the independent variable is the GSV map.  

In disturbed forest areas, different potential models were evaluated for estimating GSV 

as a function of YSLD for each forest category. Using the data in the yield tables 

collection, we tested four regression models, two non-parametric, random forests and 

Support Vector Machine (SVM), and two parametric, polynomial, and linear 

regression. The GSV represents the dependent variable, while the independent variable 

is the forest age from yield tables. 

The optimization was fine-tuned by picking the most accurate model based on the 

correlation coefficient (r2). All four regression models yielded comparable results with 
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only slight differences. The SVM model slightly outperformed other approaches, with 

an average r2 among the forest categories of 0.91, against 0.90 of random forests and 

0.88 of polynomial and linear regression.  

After the model fitting for each category in undisturbed and disturbed forest areas, the 

above-ground carbon stock is predicted in the five steps described below: 

1. Starting from the initial GSV2005 map, the current increment is estimated via the 

Richards function in undisturbed forest areas for each year and for each forest 

category, based on the relationships between GSV and current increment 

derived from yield tables. 

2. Similar to point 1, GSV in disturbed forest areas is estimated for each year, and 

forest category with the corresponding SVM model, based on the relationships 

between YSLD and GSV derived from the yield tables. 

3. For each year and forest category, the GSV is calculated as the sum of the 

previous year’s GSV and the estimated current increment, subtracting the losses 

due to natural mortality and adding the GSV in disturbed forest areas calculated 

in step 2. 

4. For each year and forest category, the GSV (m3 ha-1) is converted in above-

ground biomass (AGB) (Mg d.m. ha-1) with the equation: 

𝐴𝐺𝐵 = 𝐺𝑆𝑉 ∗ 𝐵𝐸𝐹 ∗𝑊𝐵𝐷                                                             (3) 

Where GSV is the growing stock volume calculated in step 3, BEF is the category-

specific biomass expansion factor (dimensionless), and WBD is the wood basal density 

(Mg d.m. m-3). 

5. Carbon stocks are derived from AGB by applying the default carbon fraction 

factor of 0.47 (IPCC, 2006). 

Following the IPCC Good Practice Guidance for LULUCF (IPCC, 2003), the average 

rate of natural mortality was set equal to 0.116% for evergreen categories, 0.117% for 

deciduous categories, and 0.1165% for mixed categories, while BEF and WBD are 

those applied by the For-est model (Federici et al., 2008). 
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The detailed methodology is described here below. 

3.2. GSV estimation in undisturbed forests 

 

In undisturbed forests, the GSV for the year n was computed at pixel level by adding the 

current increment of the year n-1 to the GSV of the year n-1 and subtracting losses due 

to natural mortality. We used an age-independent model to create annual maps of the 

current increment. Category-specific growth models were constructed using the data of 

the national yield tables collection to calculate the current increment (m3 ha-1 y-1) as a 

function of GSV (m3 ha-1), using the first derivative of the Richards function (eq. 1). 

The GSV represents the independent variable x, while the dependent variable y is the 

correspondent current increment. The forest category-specific Richards functions were 

fitted using all the fertility classes of the yield tables. The parameterization was based 

on a 25 iterations-bootstrap-cross-validation procedure. For each bootstrap iteration and 

species, the RMSE was calculated, and the model which reported the lowest RMSE was 

chosen as the final model,. RMSE was calculated as: 

𝑅𝑀𝑆𝐸𝑠𝑝 =√
∑ (𝑦𝑖−𝑦�̂�)

2𝑛
𝑖=1

𝑛
                                                                  (4)                                                                                                                          

where n is the number of observations in the yield tables for the species sp, 𝑦𝑖 is the 

current increment value reported in the yields table for the i-th observation and 𝑦�̂� is the 

current increment predicted from the model for the i-th observation. 

We started the process based on the GSV2005 map produced by Vangi et al. (2021), and 

we produced the updated GSV2006 map applying, for each 23 x 23 m undisturbed forest 

pixel, the current increment per hectare predicted for each forest category with the 

corresponding growth curves and subtracting the natural mortality. Then, the process 

was repeated for 2007 based on GSV2006 and so on until 2018. 

By applying the Richard first derivative approach, the current increment was estimated 

with an average RMSE (as per eq. 4) of 49.4% across all forest categories, with 

significant variations among forest categories, mainly due to the number of 

observations and fertility classes available in the yield tables. Some of the most 
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frequent forest categories in Italy obtained the best results, such as the maple-ash-

hornbeam mixed forests (RMSE = 22%), the Mediterranean maquis (RMSE = 13%), 

and the chestnut forests (RMSE = 26%), which altogether represent more than 25% of 

the national forest area. 

The best results were obtained by the exotic plantations category with an RMSE of 

3.2%, most probably because of their homogeneous growth behaviour. In comparison, 

the mixed conifers category obtained the worst result with an RMSE of 95% (but they 

cover only 4.4 % of the forest area), most probably because of their heterogeneous 

composition. 

3.3. GSV estimation in disturbed forests 

We already know that forest age is not an appropriate predictor for estimating the 

productivity of undisturbed forests in Italy since they are mainly uneven-aged and are 

characterized by a complex mosaic of different ages or cohorts (Federici et al., 2008; 

Frate et al., 2015). Instead, in most disturbed forests, trees regrowing after the 

disturbance results in even-aged stands, at least for the first years after the disturbance. 

This is particularly true for clearcuts in coppice forest (Chirici et al., 2020), which 

represent the most common forest disturbance in Italy, based on Francini et al. (2022, 

a), representing 80% of all forest loggings in Italy. In such a situation, forest age can be 

used to predict GSV growth in disturbed stands using the data in the national yields 

table collection. We used forest categories-specific SVM models to predict the GSV 

based on forest age with a radial basis kernel function. SVM approaches are known to 

be robust against outliers and overfitting and are well-suited for approaching problems 

with a limited amount of training data. These algorithms can generate non-linear 

decision surfaces by mapping the data into a high-dimensional space through non-linear 

mapping functions called kernel functions (Cortes and Vapnik, 1995; Pal and Mather, 

2003), allowing the separation of the data through linear hyperplanes (Dixon and 

Candade, 2008). Among the kernel functions, one of the most used is the radial basis 

function, which has two tuning parameters C (regularization parameter) and ɣ (kernel 

width) (Kavzoglu and Colkesen, 2009). An in-depth explanation of SVM-based models 

and kernels is presented in Smola and Schölkopf (2004) and Kavzoglu and Colkesen 
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(2009). Implementations of SVM models in RS can be found in Mountrakis et al. 

(2011). In this study, the parameters of SVM and radial kernel (C, ɣ) were determined 

by bootstrap cross-validation with 25 iterations using the grid search method, by 

selecting the pairs of parameters that produce the lowest cross-validation RMSE among 

an exponentially growing sequence of the parameters (C=21/2, 21, …, 25; ɣ=2-5, 2-4, 

…, 20). For each bootstrap iteration and species, the RMSE was calculated as per eq. 4, 

and the model which obtained the lowest RMSE was chosen as the final model. 

In disturbed areas identified by the 3I3D algorithm, the GSV was computed for each 

year and forest category by applying the category-specific SVM models fitted from the 

yield tables data. The YSLD for the year n was used as the independent variable to 

predict the GSVn in each disturbed pixel, obtaining a GSV map of forest disturbances 

for each year between 2005 and 2018.  

The complete GSVn map was produced by overlaying the GSVn maps of disturbed and 

undisturbed forests. 

The SVM models led to an average RMSE of 35.9%, with a maximum of 64% for the 

mixed forests with the prevalence of coniferous and a minimum of 5% for the maple-

ash-hornbeam mixed forest. As for the Richard models, we observed significant 

variations depending on the number of fertility classes in yield tables. 

3.4. Carbon stock conversion 

Once estimated the GSV, amounts of AGB are consequently assessed. For every forest 

typology, starting from the GSV, the AGB (Mg d.m. ha-1) is calculated, through 

equation (3), following the approach presented in Federici et al. (2008). 

Carbon stock maps were derived from AGB maps by applying the default factor for 

carbon fractions of 0.47 (IPCC, 2006).  

The pixel-level predictions of GSV and stocked carbon were aggregated at the regional 

level for each year.  
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4. Results 

4.1. GSV and carbon stock estimation 

The spatial approach for estimating annual GSV and above-ground carbon pool was 

applied to produce 23 m resolution yearly pixel-level estimates from 2005 – 2018. 

Based on our results, the GSV increased in Italy by 522 million m3 moving from an 

average of 130 m3 ha-1 to 180 m3 ha-1. GSV and above-ground carbon stocks time series 

are reported in Annex II. Carbon stock increased by 206 million of t in the same period, 

moving from 36.9 Mg C ha-1 to 59.3 Mg C ha-1, with an average accumulation rate of 

14.7 mln Mg C y-1. Regionally, most of the GSV and carbon gains dominate mountain 

landscapes of the Alps and Apennines mountains. In the years 2005-2018, among all 

forest categories, beech forests accumulated the most GSV, with about 3926 mln of m3 

corresponding to 54 mln Mg C of above-ground carbon stored (about 28.3 % of the 

total carbon absorbed by national forests), followed by mixed broadleaf forests (34 mln 

Mg C, about 18 % of the total) and the fir/spruce forests (23 mln Mg C, 12% of the 

total). Regardless of the forest category, in the study period, carbon accumulation is 

reflected mainly in the increase of the carbon density rather than the increase of the 

total forest area, which amounts to 145,000 ha according to the CLC maps.  

Northern regions (Trentino-Alto Adige, Piemonte, Lombardia, Veneto, Friuli Venezia 

Giulia) have the highest GSV accumulation in terms of absolute and per hectare figures, 

accounting for 54% of the national total. Other regions with significant GSV 

accumulation are Toscana, Sardegna, and Emilia-Romagna, contributing 20% to the 

national GSV growth (each up to 20 mln m3 in the study period). In contrast, most 

southern regions (Molise, Campania, Puglia, Basilicata, Sicilia) show the least 

accumulation of GSV, less than 8 mln m3 between 2005 and 2018. Carbon uptake has 

similar patterns, exhibiting higher absolute and per hectare storage in many northern 

regions (Trentino-Alto Adige, Piemonte, Lombardia, Veneto) and lower in the southern 

ones (Molise, Puglia, Umbria) (Figure 4). Also, at the regional level, the accumulation 

of GSV and carbon stock is primarily driven by the increase of GSV and carbon density 

rather than the total forest area. This is probably due to a decrease in the harvested area 
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over the last two decades, which allowed for significant growth in GSV per unit area 

(Francini et al., 2022, b). 

In figure 3 is reported the overall absolute accumulation of GSV and carbon stock at the 

regional level over the study period. 

 

Figure 3. Annual GSV (left) and carbon stock (right) at the regional level from 2005-2018.  

 

Figure 4. Left:  Pixel-level carbon accumulation rate in forests (Mg C ha-1 y-1) for 2005-2018.  



133 

 

4.2. Validation and comparison of results 

During the optimization phase the 23 m resolution pixel level estimations of GSV 

estimates obtained applying the best configuration of our models where compared 

against the GSV measured in the field in 9258 independent plots acquired in different 

years in the period 2006-2018. From such comparison the average RMSE% was 57% 

ranging between 89.6% in 2009 and 34% in 2015, (Figure 5). The bias across years was 

-3.7 m3 ha-1, with the minimum in 2010 (-0.2 m3 ha-1) and the maximum in 2013 and 

2015 (-70.3 and -60.2 m3 ha-1). These values are in the range of previous experiences 

(Immitzer et al., 2016; Chirici et al., 2020; Vangi et al., 2021).  

 

Figure 5. Left: observed GSV in the field plot against predicted GSV; Right: observed against 

predicted GSV for each year. Blue is the regression line. 

Pixel level estimations for the year 2015 where aggregated for administrative Regions 

and compared with the official 2015 NFI estimates (INFC 2015), resulting in a 6.2 % 

and 1.1% difference at the national level for GSV and carbon stock, respectively 

(calculated as the mean value of the difference between predicted and observed results). 
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We obtained an RMSE of 19.5% and 17.8% at the regional level and an r2 of 0.94 and 

0.92 for GSV and carbon stock, respectively (Figure 6). RMSE was calculated as: 

𝑅𝑀𝑆𝐸𝑁𝐹𝐼 =√
∑ (𝑦𝑁𝐹𝐼𝑖−𝑦�̂�)

2𝑛
𝑖=1

𝑛𝑟𝑔
                                                           (5) 

where 𝑛𝑟𝑔 is the number of Italian regions, 𝑦𝑁𝐹𝐼𝑖 is the official NFI value (of GSV and 

carbon stock) for the i-th region and 𝑦�̂� is the aggregated estimation (of GSV and carbon 

stock) produced by the spatial approach for the i-th region. 

The data for the comparison against the 3rd Italian NFI (INFC 2015) are presented in 

Annex III. 

 

Figure 6. Left:  INFC 2015 GSV against predicted GSV; Right: INFC 2015 carbon stock against 

predicted carbon stock. The dotted line is the y=x line, and the blue is the regression line. 

Finally, following the same procedure, our GSV predictions aggregated for Italian 

Regions were compared with official estimates of Italian GHG inventories for 2005-

2018, obtaining an overall RMSE% of 28.6% and an r2 of 0.77 with a growing trend 

over time. Here the RMSE was calculated as: 

𝑅𝑀𝑆𝐸𝐺𝐻𝐺 =√
∑ (𝑦𝐺𝐻𝐺𝑖−𝑦�̂�)

2𝑛
𝑖=1

𝑛𝑟𝑔
                                                         (6) 
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where 𝑛𝑟𝑔 is the number of Italian regions,𝑦𝐺𝐻𝐺𝑖 is the official GHG inventoriy value 

(of GSV and carbon stock) for the i-th region and 𝑦�̂� is the aggregated estimation (of 

GSV and carbon stock) produced by the spatial approach for the i-th region. 

The carbon stock was also compared against the official Italian GHG inventory 

(LULUCF sector, forest land remaining forest land category) for the same period 

(ISPRA, 2021, b), yielding an r2 of 0.88 and an overall RMSE% (as per equation 6) of 

23.1% and 17.2% among years and regions, respectively. As for the GSV, consistency 

with official estimates has worsened over the years, while at the regional level reached 

the minimum in Piemonte (RMSE 2.5%) and the maximum in Trentino-Alto Adige 

(RMSE 48.6%). Thirteen out of 20 regions showed an RMSE% less than 15%, with 

seven regions less than 10%. Figure 7 reports the regional comparison between our 

results and the official estimates from the national GHG inventory (ISPRA, 2021, b) 

regarding GSV and carbon stock. 

 

Figure 7. Comparison of GSV (right) and carbon stock (left) at the regional level against the 

Italian GHG inventory LULUCF sector, forest land remaining forest land category) for each 

year of the study period. 
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4. Discussion 

The main objective of the study was to develop a new spatial approach for producing 

wall-to-wall high-resolution yearly GSV and carbon stock predictions between 

consecutive NFI field measurements, exploiting remotely sensed and auxiliary data, 

which could be used for operational application and to respond to international 

reporting tasks. Empirical models developed by interpolating data from NFI field plots 

could produce updated estimates only for short-term predictions, for which growth 

conditions such as climate and management regimes are expected to be stable (Peng, 

2000). Moreover, in such models, stand variables are driven by the age of the forest, but 

in natural conditions, growth is strictly related to species and local environmental 

conditions. For these reasons, our novel approach for estimating carbon stocks and 

changes at the national and regional level in the above-ground carbon pool is driven 

only by NFI GSV data and yield models.  

The yearly wall-to-wall maps of GSV and carbon stock can support reporting activities 

and forest management at any scale by aggregating pixel-level predictions producing 

small-area estimations, for example, using the estimators proposed by Chirici et al. 

(2020). 

Our results agreed with those reported by the official Italian GHG inventory and show 

an increasing trend in the above-ground carbon pool that reflects both the expansion of 

forest areas (according to NFI, in the period 2005-2015, forest areas increased by 

58,692 ha y-1, approximatively 0.5% of total forest area in 2015) and the increased 

growing stock resulting from a forest harvest rate lower than the current increment. The 

organic carbon in the above-ground biomass of the Italian forest exceeded 566 million 

Mg C in 2018, with a different contribution of regions and forest categories in terms of 

fixed organic carbon. GSV and carbon stock distribution among forest categories 

comply with the 2020 Italian FAO FRA report for 2005 and 2010, with beech and 

spruce/fir forests accounting for 40% and 36% of the total GSV and carbon stock, 

respectively. Due to their limited area nationwide, the forest categories contributing the 

least to carbon storage (less than 0.5% of the total) are exotic conifers, broadleaf 

plantations, wood arboriculture, and riparian formations. It is worth noting that other 
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wooded vegetation in open and shrublands has a relatively significant contribution to 

terrestrial carbon sinks, storing more than seven mln of Mg C of carbon (approximately 

5% of the national total). 

Large forest areas characterize regions with the most GSV and carbon stock and highly 

carbon-storing forest categories (beech, mixed broadleaf, fir/spruce, larch, 

Mediterranean pines, exotic plantations), despite most of these categories are subject to 

intense forest harvesting, as resulted from 3I3D disturbances maps. In this regard, it is 

worth noting that the major disagreement between our approach and the official ISPRA 

estimates is found in the northern regions and particularly in Trentino-Alto Adige, 

which leads to the maximum relative RMSE (for which the GHG inventories estimate a 

decrease in GSV and carbon stock over the study period). This mismatch is primarily 

due to underestimating the number of forest disturbances, especially in high-forest 

stands of the main mountain ranges, where silvicultural treatments are based on 

continuous canopy cover approaches that are difficult to detect by optical satellite 

imagery. The lack of fire data compounds the underestimation of disturbances before 

2007 and after 2017. 

Moreover, for the Autonomous Provinces of Trento and Bolzano, the database of forest 

fires includes only fires greater than 20 ha, potentially increasing the underestimation of 

the total number of disturbances. Without offsetting for forest harvests and forest fires, 

the GSV builds up rapidly, driven by the increase of the current increment of highly 

productive forest categories, leading to significant overestimates and large values of 

RMSE. However, in Trentino-Alto Adige, the mismatch between our results and the 

2015 NFI is less evident, with an underestimation of only 13% and 15% for GSV and 

carbon stock, respectively. 

Another source of uncertainty is the overestimation of the current increment with the 

Richard first derivative compared to the 2nd NFI field measurement. This finding 

contrasts with the underestimation reported by Federici et al. (2008) compared to the 1st 

NFI data. The discrepancy between the predicted and reported current increment of NFI 

is likely driven by three factors: i) an outdated collection of national yield tables which 

no longer reflect the country’s real average quality of forest sites; ii) Richard’s first 

derivatives were fitted against all species quality class data in yield tables, and since 
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species data were aggregated to match the species composition of each forest category 

as closely as possible, the predicted current increment of less productive species can be 

overestimated, especially for mixed forest categories; iii) the overestimation of the GSV 

in the initial 2005 GSV map, used as the independent variable for Richards functions. 

This evidence was reported by Vangi et al. (2021). SVM models generally performed 

better than the Richards function for the same forest categories, except for chestnut, 

hygrophilous formations, exotic broadleaf plantations, larch, and stone pine categories. 

For those forest categories, the SVM model underestimates GSV for older age classes, 

for instance, over ten years for exotic broadleaf plantations and riparian formations, 25 

years for chestnut, and more than 80 years for the remaining forest categories. Hence, 

the effect of underestimation only affects categories of hygrophilous formations and 

non-native species plantations, as the years since the last disturbance can be at most 

equal to 13 years (2018-2005). 

During the optimization phase using the dataset of independent field plots the 

differences between pixel-level measured and estimated GSV increased over time.  This 

bias with under-predictions for plots with high values of GSV, especially for years 

2009, 2012, and 2015, can be caused by the well-known saturation effect, especially in 

dense crown cover and steep terrain (Nilsson et al., 2017; Giannetti et al., 2018; Chirici 

et al., 2020). Such dataset was acquired for those years in forests managed for 

productive purposes or, more in general, with an average GSV much greater (420 m3 

ha−1) than those measured in INFC plots (140 m3 ha−1).  In this phase the largest bias 

was observed in southern regions and in the islands, that are characterized by sparse 

Mediterranean vegetation where modelling the GSV resulted more difficult in previous 

experiences too (D’Amico et al., 2021; Vangi et al., 2021). But it is important to note 

that wall-to-wall spatial predictions from NFI field observations should never be used at 

the pixel level since the single pixel predictions may be affected by a consistent bias 

(McRoberts and Tomppo, 2007). 

However, when we aggregated the pixel level estimations at the regional level, we 

obtained very satisfying results consistent both with the Italian GHG inventory and the 

3rd NFI (INFC, 2021). It is worth noting that, concerning the 3rd NFI in 2015, the carbon 

stock difference at the regional level was minor than the GSV difference (Fig. 7). This 
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is interesting because it proves that the species-specific BEF and WBD together with 

the spatial distribution of forest categories can compensate for the overestimation of 

GSV. Under this point of view, our estimates are conservative since the approach 

neither overestimates increases nor underestimates decreases in carbon stocks with 

respect to the NFI official estimations. 

As soon as new high-resolution forest types maps will be available, the use of the CLC 

maps should be reconsidered. Several studies have already highlighted the limitations 

of CLC maps in forestry, primarily because of the wide MMU of 25 ha (Seebach et al., 

2011; Vizzarri et al., 2015; Vangi et al., 2021).  

5. Conclusion 

To the best of our knowledge, this is the first study to provide yearly high-resolution 

GSV, AGB, and carbon stock wall-to-wall time-series maps for the whole national 

territory in Italy, allowing an in-depth analysis of the forest carbon stock changes, 

consistently with the IPCC guidelines. The spatial nature of our results enables small-

scale estimates by aggregating individual pixel predictions, enhancing the spatial 

resolution of traditional NFI design-based estimates (Chirici et al., 2020), and can be 

embedded into decision support systems to support sustainable forest management and 

precision forestry activities. Furthermore, the knowledge of the spatial distribution of 

carbon among forest categories can be of fundamental importance under the climate 

mitigation goals of the Paris Agreement (UNFCC, 2015). 

The growing need for new information and technological advances is driving the rapid 

evolution of forest monitoring and assessment. However, the exploitation of the latter 

and their implementation within international reporting processes should be evidence-

based (Corona, 2018). 

This study provides an innovative spatial framework to track GSV and carbon stock 

changes between NFI surveys at local to national scales, providing a reliable monitoring 

approach to meet the increasing interests of non-government and private entities in 

carbon offset investments. Our new method incorporates forest disturbance 

between surveys, such as forest fires and harvesting, thanks to Landsat-based 
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time-series metrics exploited by the 3I3D unsupervised change detection 

algorithm, which has already proved to be a better solution in the Mediterranean 

environment than previous algorithms (Francini et al., 2021). The 3I3D algorithm 

here demonstrated to be a valid solution for deriving forest age to track the GSV 

regrowth after disturbances by applying age-dependent relationships in yield tables. 

The approach could be improved with 2015 NFI data, as well as updated information on 

allometric models and yield tables, allowing better model calibration and quality 

assurance routines. It is worth remembering that although GHG inventories are not 

measured on the ground, they represent official data sources used for national and 

international reporting activities. 

Nevertheless, the availability of ground-based carbon content data to calibrate and 

validate the method is desirable. For this reason, as soon as they will be available 2015 

NFI carbon stock ground data will allow the evaluation of the pixel-level performance 

for the carbon stock map for 2015, providing insight into the method’s effectiveness. 

The availability of an official high-resolution national forest map and wall-to-wall 

multitemporal ALS data could also be fundamental for improving the quality of GSV 

and carbon stock spatial estimations.  
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4. Conclusions 

Innovation in technologies and techniques is rapidly shaping forest monitoring and 

simultaneously leading to new information needs. The plethora of data from new 

sensors, continuously updated and increasingly rich in the information they carry, and 

the ease of acquisition and processing have enabled unprecedented development in 

forestry research and operations. This scenario of emerging new data was the basis of 

my Ph.D., in which, the main objective was to explore the capability and possibility 

offered by these new RS data. Each paper is focused on a specific questions, attempting 

to answer and to contribute to the increase of scientific community knowledge. In this 

thesis some of the first applications of these new RS technologies in the forestry field 

were presented. New software and methods have been developed in an effort to 

reducing the gap between technology development and end users, and to meet 

compelling reporting needs.  

The new PRISMA mission is expected to deliver imagery with a new level of quality in 

the hyperspectral filed with the finest spectral resolution, making it potentially suitable 

for application in all areas of EO. Its capacity in discriminating the main species groups 

in a Mediterranean environment bodes well for its future application in plant 

phenology, forest species classification, forest disturbances and change detection 

studies.  

The new GEDI level 4A data, recently released, is expected to change biomass 

estimation studies, providing new knowledge in regions of the earth where it is 

challenging to obtain ground-based data for model calibration and validation. The new 

above-ground biomass data will be crucial for studying forest ecology and forest 

ecosystem evolution over time and space. Sharing knowledge and experience on lidar 

data acquired from space should allow a complete understanding of its strengths and 

limitations. To do this, as many people as possible should have easy access to every 

piece of information provided by the GEDI mission and the GEDI4R package provides 

a ready-to-use tool to get started. 

The first comparative analysis of the FMs available in Italy was carried out, finding a 

negative relationship between FM accuracy and the standard error of the GSV estimate. 

This highlights the need to consider the quality of the FM in the estimation of forest 
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variables through the model-assisted estimator. An inadequate FM could bias the results 

of the estimates leading to errors in international reports. 

Finally, an innovative spatial framework to track GSV and carbon stock changes 

between NFI surveys at local to national scales was set up, providing a reliable 

monitoring approach to meet the international reporting requirements and the climate 

mitigation goals. 

This new method incorporates forest disturbance, such as forest fires and harvesting, 

the natural mortality rate and the current GSV increment, as well as the starting GSV, to 

estimate the above-ground carbon stock time series between two NFI. The reliability of 

the approach was assessed by comparing the results with the official estimates of GHG 

inventories and the last Italian NFI 2015, obtaining a promising performance. 

In this thesis, the main objective has been to increase the knowledge of new space 

missions and the possibilities they offer to the forest monitoring sector by increasing the 

availability of consistent and reliable spatial data potentially useful in supporting the 

understanding of CC dynamics and its solutions. The data that RS provides is so unique 

that has the potential to not only augment traditional ground-based methods, but to open 

up wholly new research avenues in EO science. 

Finally, I feel compelled at this stage to clarify a critical point: As should be clear from 

reading the papers, I do not mean by any means de-emphasizing the importance of in 

situ measurements and inventory-based approaches, rather these are essential datasets 

that should be used in synergy with remote sensing observations to improve what can 

be accomplished with one or the other alone.   
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