
University of Molise

Bioscienze e Territorio XXXIV cycle

Curriculum

Informatico-Matematico

The Close Enough Traveling Salesman
Problem: enhanced heuristics,

applications and variants

Tutor Candidate

Prof. Carmine Cerrone Andrea Di Placido

PhD Coordinator

Prof. Giovanni Fabbrocino

Contents

1 Literature review 7

2 Close Enough Traveling Salesman Problem 18
2.1 Introduction . 18
2.2 Problem Definition . 19
2.3 Genetic Algorithm . 20

2.3.1 Preprocessing Procedures 20
2.3.2 Chromosome encoding and Fitness function 21
2.3.3 Initial Population . 22
2.3.4 Generation of new individuals 22
2.3.5 Crossover . 23
2.3.6 Mutation . 24
2.3.7 Improvement Procedures 26
2.3.8 Stopping Criteria . 29

2.4 Metrics . 29
2.4.1 Overlap Ratio . 29
2.4.2 TSPDegree . 30
2.4.3 OverlappingCenter . 31

2.5 Computational results . 33
2.5.1 GA performance . 33
2.5.2 Metrics analysis . 41
2.5.3 Solar Panels Diagnostic 52
2.5.4 Problem definition and notations 56
2.5.5 Mathematical Formulation 58
2.5.6 Computational results . 60

2.6 Conclusions . 64

3 Mixed Constrained Generalized Routing Problem 65
3.1 Introduction . 65
3.2 Problem Definition . 66
3.3 Methodology . 66

3.3.1 Conversion Algorithm . 66
3.4 Computational Results . 69
3.5 Conclusions . 69

1

4 Generalized Close Enough Traveling Salesman Problem 71
4.1 Introduction . 71
4.2 Problem definition and notations 72
4.3 Methodology . 73

4.3.1 Genetic algorithm . 73
4.3.2 nearOpt . 76

4.4 Computational tests . 78
4.4.1 Instance generation . 78
4.4.2 CETSP comparison . 80
4.4.3 GA performance . 84

4.5 Conclusions . 92

5 Conclusions and future works 93

2

Outline

The traveling salesman problem (TSP) is widely studied in the literature for
its ability to model a wide range of problems. The goal is to identify the mini-
mum path that visits each city (target, customer, etc.) of a given set precisely
once and returns to the starting city, commonly referred to as the depot. The
TSP has several practical applications concerning planning, logistics, microchip
manufacturing, and even DNA sequencing. In recent years, generalizations of
the TSP are highly treated for logistics purposes that are the close enough trav-
eling salesman problem (CETSP) and the close enough arc routing problem
(CEARP). In the CETSP, each target has a range of action that is considered
visited if traversed. Then, the salesman is not bound to reach the customer
location but must get close enough to each customer to visit it. We are not
constrained to a road network in this problem, so the distance between points is
Euclidean. Instead, in the case of CEARP, we follow the same logic as CETSP,
but we are constrained to follow a set of arcs (e.g., road network) to define our
tour. The CETSP and CEARP have practical applications in several real-world
scenarios. For instance, suppose we need to perform meter readings in a neigh-
borhood. Typically, this is done by arriving on-site and performing the reading.
If the meters are equipped with systems that allow remote reading, such as
radio-frequency identification systems (RFID), the reading can be done by sim-
ply crossing the RFID range. An RFID system consists of a radio transponder
that transmits data about its tag when interrogated by an electromagnetic pulse
from another RFID system. We develop a genetic algorithm to solve CETSP.
In this algorithm, we combine several techniques to provide excellent solutions.
The algorithm exploits 2opt to improve the route length and solves a conic pro-
gramming problem to optimize the position of points given a fixed sequence.
The conic model is solved sporadically and replaced by a bisection algorithm
that can provide results comparable to the model. More explanation of the
procedures described above can be found in the section 2.3.7. Also, we provide
the concept of turning point, which is a point related to a specific target, s.t.
the distance between the point and the target is within the range. We compare
the results to those produced by three methods presented in the literature. Our
approach provides the best output in 59 out of 62 cases.

Moreover, we formulate two metrics for evaluating a CETSP, TSPDegree
(TSPD) and OverlappingCenter (OC). TSPD uses the distances between tar-
gets and radii to estimate the morphology of an instance, while OC assesses

3

its difficulty through the conformation of the solution. We compared our met-
rics to the overlap ratio (OR), a measure already in the literature presented by
Mennell. We evaluated a set of instances to see if common patterns identified
difficult instances. By challenging, we mean a set of computationally burden-
some instances to solve in terms of time. The results show that TSPD and
OC provide more information about the characteristics of instances than OR.
Furthermore, we found that difficult instances correspond to average values of
TSPD and OC.

Finally, we presented a case study related to solar panel diagnostics. Specif-
ically, a drone equipped with a thermal camera was used to check the correct
operation of a photovoltaic field. The thermography of a panel gives information
on the operating temperature of the entire panel and the individual cells which
compose it. The following conditions must be met to ensure that a thermal
photo can be used for diagnostics.

• The photo must be taken in such a way that the panel is framed correctly
(see Figure 2.16, page 54), i.e., the flight level and the position in which
the photo is taken with respect to the panel inclination should be such
that the panel is correctly detected.

• Photos should be taken as quickly as possible to ensure their correct use
during diagnosis.

• The time available for determining the drone’s route is limited.

Given the application scenario just described, it was necessary to design an
algorithm to solve the CETSP by producing high-quality solutions in short
computation times (a few minutes). Before developing the GA algorithm pro-
posed in this dissertation, the drone’s route was determined as the TSP route
over the centers of the circles. The savings obtained by applying the GA
amounted to 15% of the route length.

As part of this project, it was necessary to develop an approach capable
of producing convolution filters to identify artifacts or patterns present in an
image. Comparing the thermographs of the panels connected to the same in-
verter is crucial to verify the correct functioning of the individual panels. The
comparison is necessary to understand if there is an overuse of some panels
connected to the same String or some Strings compared to other Strings with
the same energy absorption by the inverter. Moreover, the image analysis in
question could be disrupted by anything from scratch or erosion of the panel
itself. One of the basic techniques used for image processing is convolution and
its inverse, deconvolution. Convolution is a mathematical operation that, given
two functions f and g as input, produces a third that expresses how the first
one has been modified by the other. In contrast, deconvolution is an algorith-
mic process used to reverse convolution effects on data. Specifically, it aims
to identify the function h such that f × g = h. While it is always possible to
compute convolution, it is not always possible to compute deconvolution due to
loss of information. Therefore, it was necessary to define an approach capable of

4

extracting convolution filters from the original and filtered images. We defined
a mathematical formulation that extracts filters equal to or equivalent to the
filter applied on the original image. The importance of this approach concerns
the possibility of modeling the problem exactly and allows us to certify the
goodness of the obtained filter. In this way, it is possible to certify that a given
transformation results from a convolution. The results show that our approach
is competitive with the state of the art when the images are free of noise.

The mixed constrained generalized routing problem (MCGRP) generalizes
both CETSP and CEARP. Considering the CETSP as closely related to drones,
it refers to a drone flying freely in space. Unfortunately, this scenario is not
always true. If we consider locations such as schools, hospitals, military or
residential areas, flying over these areas is usually prohibited for several reasons
such as safety, public order, privacy, etc. In the MCGRP, we introduce the
concept of a flight zone. We differentiate two: one in which the drone can fly
freely, called free-flight zone (FFZ), and a second one in which the possibility of
flight is limited to specific corridors (e.g., roads) or prohibited, called constrained
flight zone (CFZ). Given a graph G = (V,A,M,Z), where V is the set of targets
to serve, A is the set of arcs (e.g., roads), M is the set of nodes (e.g., crossing
between streets), and Z is the set of CFZ, we need to find the route that starts
and ends at the depot, and minimize the total sum of edge lengths. We have
formally defined the problem and examined it in its CEARP and especially
CETSP edge cases. Future developments include defining approaches that can
also handle intermediate situations, with variable mixes of CFZs and FFZs, and
examining its behavior concerning its boundary cases.

The generalized close enough traveling salesman problem (GCETSP) is a
variant of the CETSP in which a set of areas is associated with each target. We
identified these areas as concentric disks with variable radius in the specific case
considered. Each of these disks is associated with a prize. Formally, let C be a
set of customers in a Euclidean plane, and let c0 be the first customer, named
depot. For each customer c ∈ C\c0, a set of K disks are defined, all centered
at c and with increasing radius, i.e., rkc < rk+1

c , k = 1, ..., |K| − 1, where rkc is
the radius of the disk k centered at c. In addition, a prize pkc is associated with
each disk k, with pkc > pk+1

c , k+ 1, ..., |K| − 1. The depot is associated with one
disk of radius 0 and prize 0. The GCETSP aims to determine the route that
maximizes the difference between the total collected prize and the route length
and visits one disk per customer. The GCETSP can model several application
scenarios where major benefits occur through attaining proximity to the targets.
For example, in RFID meter reading systems, prizes may represent the prob-
ability of a successful meter reading at a customer’s home (the target in this
case). This probability decreases as the distance from the customer increases,
which explains why the prize decreases with respect to the disk’s radius. We
reconsidered the instances of CETSP found in the literature for this new vari-
ant and defined a new set of instances for GCETSP. We formulated constructive
heuristics for resolution and adapted the previously developed genetic algorithm
for CETSP to this new variant. The results show that the GA can solve the
problem correctly, defining excellent solutions. Comparing the two approaches,

5

GA produces the best solutions in most cases, while the heuristic approach still
provides reasonable solutions comparable with those of the genetic.

This dissertation will report in detail on all of the above. Following this
outline, we will thoroughly review the literature and state of the art. In chapter
2 we report everything about CETSP, while in chapter 3 and 4 we show in detail
the variants we proposed for this problem. Finally, in chapter 5 we will discuss
the conclusions and future developments of this thesis.

6

Chapter 1

Literature review

Over the years, technological advancement has motivated new problems in op-
erations and logistics research. CETSP and CEARP are some of these. The
classic TSP requires a salesman to visit customers at their precise location.
For example, utility companies send their workers to read meters in residential
neighborhoods. However, it is possible to read meters remotely with radio fre-
quency identification technology. Nowadays, instead of visiting each customer
on-site, we need to be close enough to serve them. Similarly, if many customers
are evenly distributed on the street, crossing that street corresponds to serving
those customers.

Generally, this problem is defined on a Euclidean plane. The salesman must
start and complete his route to the depot. Each customer has a region where
he can be served and is considered visited when the salesman passes through or
touches the region. The goal is to visit all customers and return to the depot
by traveling the minimum distance. The customer action area is assumed to
be circular (a disk), with a specific radius greater than zero, and with a center
at the customer’s location. If all radii are zero, then the CETSP reduces to a
TSP and the CEARP to a Rural Postman Problem (RPP). In the general case,
where all customer radii are positive, the location where the salesman will visit
the customer is not known a priori. Therefore, it is necessary to define the se-
quence of customer visits and in which position those customers will be served.
In CETSP, we can place the points on the circumference surrounding the cus-
tomer, while in CEARP, the intersections between the arcs and circumferences
determine the position of the points.

[Gulczynski et al., 2006] were among the first to examine a common case
of CETSP where the areas around all nodes are disks of the same radius. This
problem describes situations where RFID tags are used to deliver data for col-
lection remotely. The use of RFIDs allows utility companies to read meters
remotely. Then an operator can take the reading without visiting the customer
but pass within a certain radius of each customer. This concept allows us to
translate the problem from a TSP to a CETSP. The authors investigated six

7

different heuristics produced to solve the problem. All six heuristics follow three
general steps: given an initial set of customers C, the first step focuses on cre-
ating a set of eligible supernodes S. An admissible set of supernodes is a set
of points (also containing the depot) with the property that for each customer
node, a point in the set is within its range. In Figure 1.1, the set of asterisks
represents an admissible supernode set since for each customer (circle), there is
an asterisk in the radius of r units (r = 9). After producing S, the second step
is to define a near-optimal TSP tour, T , on the points of the set S. For the
definition of supernode set, we can guarantee that the tour T traverses all cus-
tomers in their neighborhoods. Thus, T is an eligible tour for CETSP. Since the
cardinality of the supernode set is smaller than the number of clients, sometimes
meaningfully, it turns out to be more efficient to generate the tour on S. Thus,
running step 1 before step 2 takes significantly less computational time than
starting to generate the TSP tour from C. The last step is an economizing rou-
tine that reduces the traveled length of T while maintaining its eligibility. The
results show that these heuristics produce CETSP tours that are significantly
shorter in length than the TSP tour for customers.

Figure 1.1: An example CETSP tour on 100 nodes, with radius 9, and the depot
located at (50,10). The circles represent the customer nodes, and the asterisks
are the supernodes. The red path represents the results of an economization of
the tour. [Gulczynski et al., 2006]

[Shuttleworth et al., 2008] also proposed other heuristics to solve the au-
tomatic meter reading shortest tour problem (AMRSTP) on a road network.
The solutions generated by the proposed heuristics were compared to those of
the rural postman problem solvers and showed improvements in solution values.
In addition, [Dong et al., 2007] also introduced two heuristics, based on the
concept of supernodes, to approach the AMRSTP problem. The supernodes
are generated using convex hull and clustering techniques. Moreover, a mixed-
integer nonlinear programming formulation is provided for CETSP, but it is not
explicitly used in the algorithm design since the exact resolution is impractical.
The algorithms were tested on various datasets, and the results report that both
heuristic algorithms perform effectively and efficiently.

[Yuan et al., 2007] presented a new algorithm for solving the traveling sales-
man problem with neighborhoods (TSPN). Specifically, the authors report a

8

case of robot routing problems in wireless sensor networks. The innovation
proposed by the authors with the approach is to build the TSP tour from the
beginning, starting from the initial position and disk centers. Then, advanced
optimization techniques are built to improve the produced route. The validity
of this heuristic was evaluated by a direct relationship between the TSPN and
the TSP. For instance, when the size of the disks is equal to zero, the TSPN is
identical to the TSP. Despite very high computational times, the methodology
can identify the shortest tour in all benchmark instances, providing significant
improvements over the last approximation algorithm for the problem. A visual
comparison between a TSP tour and a TSPN tour is shown in fig. 1.2.

9

Figure 1.2: An example of TSP optimal tour vs TSPN optimal tour [Yuan et al.,
2007]

[Arkin and Hassin, 1994], [Mata and Mitchell, 1995], and [Dumitrescu and
Mitchell, 2003] described some approximation algorithms that can solve special
cases of CETSP in polynomial time.

[Arkin and Hassin, 1994] provided an approximation algorithm that uses
symbolic points for each neighborhood. The algorithm was implemented for a

10

particular case in which all neighborhoods have diameter segments parallel to
a common direction, and the ratio between the largest and smallest diameter
is fixed by a constant. [Mata and Mitchell, 1995], on the other hand, produced
approximation algorithms in the case where the neighborhoods had an arbitrary
polygonal shape.

[Dumitrescu and Mitchell, 2003] obtained several results on the TSPN
geometric: first, they extended the approaches defined in [Arkin and Hassin,
1994] and obtained the first O(1)-approximation algorithm for a particular case
of TSPN, in which there are connected regions with the same diameter. Next,
they provided a polynomial-time approximation scheme in the case of disjoint
disks. Finally, they obtained improvements on the previous approximation of
[Arkin and Hassin, 1994].

[Mennell, 2009] has recently produced a heuristic that has been tested on
large-size problems. Based on the 3-steps scheme, the author implemented this
heuristic using the concept of Steiner-zones, non-empty intersections between
neighborhoods. Based on this, first, the algorithm identifies a set of Steiner-
zones that includes all the neighborhoods; then, it discretizes the Steiner-zones
into a collection of points and computes the TSP tour on them. Finally, the
tour is enhanced by improving the position of the discretization points. The
results show that the approach can identify good quality solutions reasonably. In
addition, the author provided a new set of instances for CETSP: 48 fixed-radius
and 14 variable-radius. For more details on them, refer to sec. 2.5. Finally,
[Mennell et al., 2011] provided a second-order cone programming model (SOCP)
to solve the touring Steiner zones problem (TSZP) when the tour sequence is
given and a first mathematical formulation for the CETSP.

[Behdani and Smith, 2014] have tried to solve CETSP at the optimal. The
authors proved two fundamental properties of optimal solutions to the problem:
the first exposes how all optimal solutions are composed of a finite number of
connected segments, where at least one point lies on the perimeter of a target
neighborhood. The second proves that if a tour T is an optimal tour, then
the points that make up the tour lie within the convex hull. These assump-
tions allowed the authors to devise a discretization scheme. They produced
valid inequalities and attempted to solve the problem at the optimum via three
procedures:

1. a mixed-integer program formulation;

2. benders decomposition,

3. an iterative algorithm.

They produced 240 new test instances with different cardinalities, from 7 to 30
nodes. The authors tested their procedures on these instances, and the results
show that no instance was solved to the optimum. Nevertheless, reasonable
upper and lower bounds were obtained for these instances.

11

[Carrabs et al., 2017b] introduced a novel discretization model that im-
proves the results of [Behdani and Smith, 2014]. They showed that a better
neighborhood approximation can be obtained by considering interior instead of
exterior points. For example, a fairly intuitive discretization scheme consists of
placing points associated with targets on the perimeter. This scheme is called
the perimeter discretization (PD) scheme. In detail, let k be the number of
points used to discretize each neighborhood N(v). Then the PD scheme divides
each circumference Cv into k equal arcs, and places the discretization points
at the ends of these arcs. Let α be the angle associated with each arc d̂1, dj ,
then α = 2π

k . A PD scheme with k = 3 is shown in Fig. 1.3, resulting in
α = 120 and N(v) = {d1, d2, d3}. Evaluating the maximum discretization error
associated with a PD scheme, the worst case happens when the point pi of the
tour T∗ touches the circumference Cv in the middle of the arc d̂1, dj . In fact,
in this case the distance between p1 and the nearest discretization point d1 (or
d2) is maximal. Hence, w(p1, d2) = 2rvsin(α4) and then ξ(v) = 4rvsin(α4)). In
general, given the number of discretization points k, the maximum error for a
PD scheme is ξ(v) = 4rvsin(π2k).

Figure 1.3: Perimetral discretization for k = 3, with N(v) = {d1, d2, d3} and
α = 120. The scheme is shown on the left, while the maximum discretization
error is reported on the right.[Carrabs et al., 2017b, Carrabs et al., 2017a].

The new discretization scheme proposed by the authors is called internal
point discretization (IP). Given the number of discretization points k, the
IP scheme divides the circumference Cv into k circular arcs and, for each arc
â, b places a discretization point in the middle of the chord a, b. An example is
shown in Fig. 1.4. Applying the IP scheme ensures that when a contact point
p1 of the tour T∗ lies on the arc â, b, the maximum distance between p1 and the
nearest discretization point is equal to half the length of the segment w(a, b).
Consequently, for a fixed number k, the maximum error associated with an IP
scheme is equal to ξ(v) = 2rvsin(πk).

12

Figure 1.4: Internal discretization for k = 3 and k = 4. The scheme are shown
on the left, while the maximum discretization error is reported on the right.
[Carrabs et al., 2017b, Carrabs et al., 2017a].

The authors provided improved upper and lower bounds for instances of
[Behdani and Smith, 2014] in a reasonable time.

[Coutinho et al., 2016] proposed an exact branch-and-bound (B&B) algo-
rithm that can provide optimal solutions for instances of [Behdani and Smith,
2014] and [Mennell, 2009]. The method works as follows: each B&B node is as-
sociated with a partial optimal tour that needs to visit only a portion of vertices
in a particular order. The algorithm chooses three vertices to generate an initial
sequence: the first vertex to be chosen is necessarily the depot. The next vertex
to be chosen is the one furthest from the depot. The third to be inserted leads
to the largest lower bound value. Specifically, the method solves a SOCP for all
remaining candidates and selects the vertex associated with the sequence to the
best relaxation. An example with seven vertices is illustrated in Fig. 1.5. We
can observe how the depot (vertex 0) is the first to be chosen for the sequence,
followed by vertex 6 (the farthest from the depot) and vertex 3, following the
previously mentioned insertion criterion.

Figure 1.5: Example of the procedure to find a valid root relaxation. [Coutinho
et al., 2016].

Since only three vertices are involved in this sequence and the symmetric
costs, their order does not affect the solution. Therefore, this partial tour is a
good relaxation for the main problem. Choosing the exact coordinates of the
tour points to be visited can be formulated as a SOCP. Then, if the associated
solution is admissible, i.e., all the customers are visited, the obtained solution is

13

optimal, and the problem is solved. Otherwise, the algorithm defines three more
branches of subproblems where, in each of them, a vertex that is not present in
the sequence is inserted in a different position. A node in the B&B is pruned if
its cost is greater than or equal to the best upper bound known at the time or if
the associated solution is admissible. Otherwise, the algorithm creates branches
using the same reasoning applied for the root node. The presented approach
can solve at the optimum all instances of [Behdani and Smith, 2014]. Relative
to the instances of [Mennell, 2009], it solved several instances at the optimum,
including large ones, and improved the known lower bounds of the remaining
ones.

More recent techniques for solving CETSP have been proposed by [Yang
et al., 2018], [Wang et al., 2019] and [Carrabs et al., 2020].

[Yang et al., 2018] presented a hybrid algorithm (HA) that combines a ge-
netic algorithm (GA) with particle swarm optimization (PSO) to solve CETSP
with arbitrarily shaped neighborhoods (it trivially reduces to a CETSP if the
neighborhoods are disks). The PSO algorithm has been presented by [Kennedy
and Eberhart, 1995] as a metaheuristic inspired by the behavior of flocks of birds
and fish, capable of exploring large portions of the space of candidate solutions.
GA was introduced by [Holland et al., 1992] and is a global optimization algo-
rithm inspired by biological evolutionary processes such as inheritance, natural
selection, genetic crossing over, and mutation. HA is a hybrid collaboration-
based optimizer for which hybridization occurs at the component level of the
solution, and two-parent optimizers operate in different component spaces. PSO
is used to generate a point set and iteratively improve it, while GA identifies
the TSP sequence and minimizes it in terms of distance traveled. The combina-
tion of the two techniques ensures high-quality solutions in short computational
times. HA has been tested on instances of [Mennell, 2009] and the results are
comparable with other approaches in the literature.

[Wang et al., 2019] have recently proposed a new approach based on Steiner-
zones, referred to as Steiner zone variable neighborhood search (SZVNS). The
algorithm works in three steps. The first one is a phase of reducing the tar-
gets to be covered: it is possible to reduce the problem size according to some
observations. For example, it is possible to eliminate a target Ci if its disk
contains that of another target Cj ; any tour that visits Cj will surely visit Ci as
well. However, if all targets have disks with the same radius, no target can be
eliminated unless they coincide. Similarly, if a disk contains the depot inside it,
it is automatically visited. The second step concerns finding the Steiner zones
and constructing an admissible tour that traverses all of them. Finally, the
third phase is all about improving the solution iteratively. The approach has
been tested on instances of [Mennell, 2009], and the results show that SZVNS
produces better and comparable results in less time than state-of-the-art algo-
rithms.

14

[Carrabs et al., 2020] have recently proposed a new iterative procedure,
called (lb/ub)Alg, which can further improve the results obtained so far. The
algorithm calculates the lower and upper bound at each iteration using the lbc
(lower bound procedure) and ubc (upper bound procedure). These functions
are influenced by parameters that are updated at each iteration. The lbc pro-
cedure selects a subset of targets and discretizes their neighborhoods. Then,
it defines a tour by solving a generalized traveling salesman problem (GTSP)
on the graph induced by the discretization points. Finally, the lower bound is
computed by subtracting the errors of each discretization on each node. The
focal point of lbc is the choice of subset, which is performed through a greedy
carousel [Cerrone et al., 2017a]. The greedy carousel is an enhanced greedy
algorithm for which its effectiveness and computational efficiency have been
demonstrated on a wide variety of subset selection problems. The selection
of the most promising target points is performed by the FindNextPoint pro-
cedure: this assigns to each unselected target v a value val(v) based on the
distance from the previously defined subset points. More considerable distances
correspond to a higher value. Then, a subset of vertices with the lowest values
is chosen. The weighted average µ is computed, and, finally, the score val(v)
is computed by multiplying µ with two parameters ∆ and Γv and subtracting
the result with the discretization error. The most promising target is the one
with the maximum score. (lb/ub)Alg focuses on these parameters since they
condition the construction of the tour and the lower bound quality produced by
lbc. Also, providing several starting tours to ubc is more likely to improve the
final upper bound. (lb/ub)Alg obtains good results on the majority of instances
of [Mennell, 2009] by providing new upper and lower bounds for these instances.

Regarding CEARP, the first to introduce the problem were [Drexl, 2014].
The authors considered many practical applications of single-vehicle routing
problems that can be modeled with a generalization of the rural postman prob-
lem, the generalized directed rural postman problem (GDRPP). Specifically,
they considered cases such as problems with real constraints, such as turn penal-
ties, street segment side, zigzag service, use of public transport, etc.; hierarchical
postman problem, and generalized traveling salesman problem. Among these
cases, it has also been considered the arc routing problem modeled on a directed
graph, duplicating the arcs of the graph for both travel directions. The authors
demonstrated the versatility of the GDRPP as a unique model for postman
problems. In addition, they presented a solving heuristic and an exact model
for its resolution and tested it on two large sets of benchmark instances.

[Ha et al., 2012] have studied a variant of CETSP in which there are con-
straints on the coverage of the arches. This problem was introduced in utility
companies that use RFID-enabled automatic meter reading technologies. The
authors propose a mathematical formulation and an exact algorithm for solving
the problem. The results show that the exact approach can solve realistic size
instances with 1000 arcs and 9000 customers in less than two hours. Next, [Ha

15

et al., 2014] considered CEARP and its interesting practical applications. In
[Ha et al., 2014], the authors provide a new mathematical formulation for the
problem, comparing it with those found in the literature. They also present a
branch-and-cut algorithm for the optimal resolution of the problem.

[Cerrone et al., 2017b] proposed a novel graph reduction technique and flow
formulation for CEARP. The graph reduction technique is based on the fact that
only a subset of arcs are needed and, therefore, many others are redundant. An
example is shown in Figure 1.6.

Figure 1.6: Example of the redundant arches procedure proposed in [Cerrone
et al., 2017b].

Next, a vertex cover problem is solved to identify which nodes are needed
to obtain an acceptable solution. Based on this preprocessing, the authors
defined a new MIP formulation for the problem, which we report below. Given
a directed graph G = (V,A,M), where V is the set of nodes, A is the set of
arcs, and M is the set of targets positioned along the arcs. Let N be the set
of pairs (m, a) with m ∈ M and a ∈ A such that a traverses the target m. Let
cij be the cost associated with the arc (i, j). For each arc (i, j) ∈ A, let xij
be a variable indicating the number of times the arc is crossed, and fij be the
associated flow variable. We want to optimize the objective function:

Minimize
∑

(i,j)∈A

cijxij (1.1)

s.t.

16

∑
a=(i,j)∈A|(m,a)∈N

xij ≥ 1 ∀m ∈M (1.2)

xij ≥ 1 ∀(i, j) ∈ Â (1.3)∑
j∈V |(i,j)∈A

xij −
∑

j∈V |(j,i)∈A

xji = 0 ∀i ∈ V (1.4)

∑
(0,j)∈A

f0j ≥ 1 (1.5)

∑
j∈V |(i,j)∈A

fij −
∑

j∈V |(j,i)∈A

fji = 0 ∀i ∈ V (1.6)

(V C
⋃
{0}) (1.7)∑

j∈V |(i,j)∈A

fij −
∑

j∈V |(j,i)∈A

fji = 1 ∀i ∈ V̂ {0}) (1.8)

∑
j∈V |(i,j)∈A

fij −
∑

j∈V |(j,i)∈A

fji =
∑

j∈V |(i,j)∈A

xij ∀i ∈ V C\(V̂
⋃
{0}) (1.9)

fij ≤Mxij ∀(i, j) ∈ A (1.10)

xij ∈ Z+
0 ∀(i, j) ∈ A (1.11)

fij ∈ R+
0 ∀(i, j) ∈ A (1.12)

The constraints (2.2) ensure that every target is covered by at least one
arc in the solution, and the constraints (2.3) ensure that every necessary arc is
present in the solution. The family of constraints (2.4) ensures that the number
of outgoing arcs selected for each node is equal to the number of incoming ones.
Constraint (2.5) sets the outgoing flow from the depot equal to zero. Constraint
set (2.6) prevents flow from passing through all unneeded vertices, asserting the
connectivity of the final solution, while constraints (2.7) force the presence of
flow at all vertices necessary for the admissible solution. Constraints (2.8) set
that for every vertex that could be used to ensure connectivity of the solution,
the incoming flow is equal to the time the vertex is traversed in the solution.
Finally, the set of constraints (2.9) ensures that flow is only present in the arcs
used in the solution. The authors performed several experiments on oriented
graphs and showed the effectiveness of the graph reduction technique. In ad-
dition, the proposed mathematical formulation was compared with other exact
methods in the literature, showing that their approach is efficient in practice.

17

Chapter 2

Close Enough Traveling
Salesman Problem

2.1 Introduction
The close enough traveling salesman problem (CETSP) is a generalization of
the classical traveling salesman problem (TSP) problem. A set of nodes (cus-
tomers, targets) is defined, and each node is associated with an area, called
a neighborhood, surrounding it. Generally, this area is circular. The goal of
CETSP is to determine the shortest tour that starts at a point, defined as de-
pot, traverses the neighborhood of each target once, and returns to the depot.
CETSP models several real-world applications: e.g., meter reading using RFID
systems [Shuttleworth et al., 2008], forest fire localization using aerial vehicles
[Poikonen et al., 2017], robot monitoring of wireless sensor networks [Yuan et al.,
2007]. This dissertation also introduces a novel application regarding solar panel
diagnostics via aerial vehicles, such as drones. While CETSP has been studied
in the past under several names, such as the covering salesman problem [Cur-
rent and Schilling, 1989], the geometric covering salesman problem [Arkin and
Hassin, 1994], the covering tour problem [Gendreau et al., 1997], the Euclidean
TSP with neighborhood [Dumitrescu and Mitchell, 2003], the problem was first
named CETSP by [Gulczynski et al., 2006]. Several algorithms have been pro-
posed in the literature to provide reasonable upper and lower bounds regarding
the solving methods for the problem. For an in-depth discussion on this, refer
to the previous chapter. The main contributions made to the literature are as
follows:

• We propose a genetic algorithm (GA) for solving CETSP. As reported
in [Wang et al., 2019], there is room for improvement on the state-of-the-
art solving heuristics. GA provides solutions comparable to or better than
those produced by the approaches in the literature in relatively little time.

• We propose metrics based on the characteristics of the problem instances

18

to identify which has the greatest impact on the difficulty of solving the
problem. We also revise the metric already proposed by [Mennell, 2009],
overlap ratio, and correct its calculation made in previous works.

• We present a case study related to reconnaissance for solar panel diag-
nostics. The case study is related to a research project developed at the
University of Molise. We show how the problem under study is modeled
perfectly through a close enough traveling salesman problem, and there-
fore solvable with GA, focusing on the benefits of this solving approach.

These results have been compiled into [Di Placido et al., 2021] and submitted to
the journal Computers and Operations Research. The work has been accepted
and is under review. The chapter is structured as follows. The problem and
the notation used are described in section 2.2. Section 2.3 is devoted to the
solving approach, while in section 2.4 we present the proposed new metrics for
classifying the instances of the problem and also present the corrected overlap
ratio calculations. The computational results and the case study are given in
the 2.5 and 2.5.3 sections, respectively. Finally, in the ?? section, we give a brief
abstract of the work [Capobianco et al., 2021], as it is an integral part of the
above project.

2.2 Problem Definition
We report below the definition and notations found in the work [Di Placido
et al., 2021].

"Let N be a set of nodes in a plane, and let p0 be starting node named depot.
We refer to the elements of N as targets. Each target vi ∈ N is associated with
a neighborhood N(vi) corresponding to a circle (disk) with outer circumference
Cvi centered in vi and with radius rvi . The goal of the close enough traveling
salesman problem(CETSP) is to find the shortest tour T = {p0, pi, ..., pk, p0},
k = |N |, that starts from the depot p0, traverses every neighborhood N(vi), and
ends in p0. Points pi, i 6= 0, visited in tour T are called turning points. Each
turning point pi is associated with a target vi, i.e., d(pi, vi) ≤ ri, where d(pi, vi)
is the Euclidean distance between pi and vi. This means that a turning point
pi is the point in which the tour intersects the neighborhood of target vi. For
target vi ∈ N , the turning point pi could be unique or any point of the segment
which traverse N(vi). An illustrative example is provided in Fig. 2.1

19

p0

v1

v2

v3

v4

p1

p2

p3

p4

p0 v1

v2

v3

v4

p′1 p
′′
1

p2

p3

p4

A B

Figure 2.1: Examples of CETSP solutions. Each target vi is associated with a
neighborhood N(vi) and a turning point pi. The red lines represents the tour
T that starts from the depot p0, touches neighborhoods N(vi) in the turning
points pi, and ends in p0. On the left, the turning point p1 is unique, while on
the right it could be any point on the segment AB. [Di Placido et al., 2021]

Given a pair of turning points pi and pj , the distance between them is given
by the Euclidean distance d(pi, pj). Thus, the total cost of a tour T is equal to∑|N |−1
n=1 d(pi, pi+1).
We say that a tour T covers a target vi if T intersects N(vi) in at least one

point. The goal of the CETSP is to determine the shortest tour T covering all
targets."

2.3 Genetic Algorithm
Genetic algorithms (GAs) are evolutionary algorithms introduced by [Holland
et al., 1992] that have been widely used to solve combinatorial optimization
problems. GA applies the Darwinian concept of natural selection on a set of
admissible solutions. Each solution is composed of genes that evolve over gen-
erations through techniques inspired by biological processes such as selection,
mutation, and [Mitchell, 1998] crossover. Through GA, it is possible to explore
a large portion of the solution space by modeling different admissible solutions
(population) and carefully choosing the behavior of the biological operators.

In the following, we describe how we devised and designed a GA to solve
CETSP.

2.3.1 Preprocessing Procedures
We perform two preprocessing procedures to reduce the magnitude of the prob-
lem by removing targets that are automatically visited when covering other
ones, as reported in the following observations:

20

O1: Consider a target vi ∈ N for which p0 ∈ Cvi . Then, as any feasible
CETSP solution visits p0, vi is included in any feasible solution and can be
removed.

O1 is provable by hypothesis: given the definition of CETSP, p0 is the
depot from which all eligible tours begin and end. If the depot is contained in
the neighborhood of a target N(vi), it means that the target vi is automatically
visited, since all tours will pass through p0, hence through N(vi). To be clear,
p0 is contained in N(vi) if d(p0, vi) ≤ rvi

O2: Let v1, v2 ∈ N be two targets. If N(v2) ⊂ N(v1) then v1 is covered by all
the feasible tours passing through N(v2) and can thus be removed.

O2 is easily deduced: an eligible tour T must cover all targets contained in
N . Since all points of N(v2) are contained in N(v1), v1 is visited collaterally
when v2 is covered. Trivially, it is easy to see that if all targets have the same
radius, then O2 is only verified if v2 is exactly v1 (the targets are perfectly
coincident).

2.3.2 Chromosome encoding and Fitness function
The chromosome is a representation of a solution for CETSP. Each chromosome
is an ordered sequence of genes, where each represents a turning point. Note
that a turning point pi of the target vi is the point where the path crosses the
neighborhood of target vi. Hence, the coordinates (xi, yi) of a generic turning
point pi are unfixed and can vary between chromosomes in the population. Thus,
each chromosome has its turning point pi relative to the target vi, which provides
more heterogeneity among individuals in the population. Since the chromosome
describes an acceptable solution to the problem, the size of a chromosome |c| is
equal to the number of targets plus the depot, i.e., |c| = |N | + 1. We show an
example of a chromosome in fig. 2.2.

21

p0 p1 p3 p4 p2

(x0, y0) (x1, y1) (x3, y3) (x4, y4) (x2, y2)

p0

p1

p2

p3

p4

Figure 2.2: Example of chromosome with the corresponding turning points.
[Di Placido et al., 2021]

A fitness function accurately evaluates each chromosome. Trivially, the fit-
ness function is based on the total tour length w(T) corresponding to the turn-
ing point sequence T . Better solutions are associated with lower fitness values,
which means a tour of shorter length.

2.3.3 Initial Population
The population of each generation has a fixed number of chromosomes popsize.
We generate the initial population by defining popsize chromosomes randomly.
Specifically, for each target vi ∈ N , we identify a turning point pi. The location
of this point is chosen randomly on the circumference Cvi . Then, an eligible tour
T is obtained by considering a random permutation of these turning points with
the depot p0 at the beginning and end of the tour. This process is repeated until
the entire population is filled. Finally, the improvement procedures described
in 2.3.7 are applied to all individuals.

2.3.4 Generation of new individuals
The population of each generation is obtained through the generation of two
population halves in two different steps. Let P = {c0, c1, ..., ck} be the current

22

population, where ci ∈ P is a generic chromosome. The elements of P are sorted
in ascending order by fitness value. By doing so, the top ranges of the population
contain the best individuals for that population. From P , we preserve the first
|P |
2 chromosomes for the next generation P ′, where |P | is assumed to be even.
Then, to complete P ′, the second half of the population is obtained by applying
the crossover operator described in sec. 2.3.5. This operator works by taking
into account two chromosomes to define a third. The chromosomes on which
the crossover is applied are selected: let ci ∈ P/P ′ be a generic chromosome
from the remaining population. A chromosome cj ∈ P ′ is randomly chosen to
pair with ci, such that the crossover is applied on the pair (ci, cj). This process
is repeated ∀ci ∈ P/P ′.

2.3.5 Crossover
The crossover operator is inspired by the two-point crossover proposed in [Booker,
1987]. Specifically, given two chromosomes c1, c2 we define a third cchild from
the combination of the two. The composition of the new chromosome is done as
follows: two random indices i and k are computed, where i is the starting index
and k is the number of genes to be considered. Starting with i, we select k genes
from c1 and return them to cchild. Then, starting with (i+k)mod |c1|, we select
k genes from c2 and return them to cchild. In this procedure, in case some genes
inherited from c2 were already present in the new chromosome, they are dis-
carded. By already present genes we mean turning points associated with targets
with which a turning point is already associated. Finally, if |cchild| = |c1| = |c2|,
then cchild is an eligible tour, otherwise it is incomplete. The remaining turn-
ing points are included by determining the minimum cost inclusion as follows:
∀pj ∈ c2 : pj /∈ cchild, we determine the segment pi, pi+1 : pi, pi+1 ∈ cchild for
which the distance d(pi, pj) +d(pj , pi+1) is minimal. Therefore pj is included in
the tour between pi and pi+1. An example of how the operator works is shown
in Figure 2.3. The crossover terminates when |cchild| = |c1| = |c2| and returns
cchild as output. Alg. 1 presents the pseudocode of the operator.

23

c1

p0 p1 p3 p2 p4

p0 p1 p3 p2 p4

p0 p1 p3 p2 p4

c2

p0 p2 p3 p4 p1

p0 p2 p1 p3 p4

p0 p2 p1 p3 p4

cchild

p0

p0 p1 p3

p0 p1 p3 p4

p0

p1

p2

p3

p4

p0

p1

p2

p3

p4

p0 p1 p3 p4 p2

Figure 2.3: Illustration of crossover operator. In this example, the starting index
i = 1 and the number of genes k = 2. From c1 we take the genes from p1 to p3,
while from c2 we consider from p3 to p4. Since p3 was already included from c1,
it is not repeated. Then, cchild is incomplete, since the point p2 is not visited and
it is necessary to add it into the sequence. The operator determines the nearest
segment to the unvisited point, in this case p4p0, and adds the unvisited point
between the vertices of the segment, as showed on the right picture. Finally,
the completed cchild is {p0, p1, p3, p4, p2}. [Di Placido et al., 2021]

2.3.6 Mutation
The mutation operator aims to diversify individuals and prevent premature
convergence. In our implementation, it is applied with a certain probability
prob on every chromosome c in the first half of the population. The value of
prob corresponds to the number of generations without improvement divided
by 100. Thus, the more the genetic algorithm iterates without improving the
incumbent, the higher the probability of the mutation operator occurring on the

24

Algorithm 1 Crossover operator pseudocode

1: procedure CrossoverOperator(Chromosome c1, Chromosome c2)
2: Let size be the length of a chromosome
3: Let visited be an array of booleans that tells if v ∈ N is covered
4: cchild ← ∅
5: i = random(0, size− 1)
6: k = random(1, size− 1)
7: for j from 0 to k do
8: cchild ← gene(i+i)mod size from c1
9: visitedj = true

10: end for
11: i = i+ k
12: for j from 0 to k do
13: cchild ← gene(i+j)mod size from c2 s.t. visitedj = false
14: visitedj = true
15: end for
16: if |cchild| < size then
17: for all vj unvisited do
18: find pi, pi+1 ∈ cchild : d(pi, pj , pi+1) is minimum, with pj ∈ c2
19: cchild ← pj between pi, pi+1

20: visitedj = true
21: end for
22: end if
23: return cchild
24: end procedure

25

chromosomes. The best individual is omitted from this process.
The operator chooses an arbitrary interval [i1, i2] computed randomly. Then,

every turning point pj ∈ c that belongs to the interval is replaced by a random
point in the neighborhood N(vj). An example of the application of this operator
is illustrated in fig. 2.4.

p0 p1 p3 p4 p2

p0

p1

p2

p3

p4

p0 p1 p′3 p′4 p′2

p0

p1

p2

p3

p4

Figure 2.4: Example of mutation. On the left we have a tour T . The random
interval computed is [2, 4], corresponding to the turning points p3, p4, p2. Fi-
nally, the new points are generated randomly and included into the sequence.
[Di Placido et al., 2021]

2.3.7 Improvement Procedures
Enhancement procedures are performed when a chromosome is generated or
modified. We defined three different approaches to chromosome enhancement:
a 2opt local search to improve the tour crossing sequence, a second-order cone
programming algorithm, and a bisection algorithm, called 3Alg, used to adjust
the position of turning points, given a fixed sequence. The 3Alg procedure was
introduced to speed up the algorithm’s execution, as we were initially using
SOCP to improve the position of the points in a sequence. 2opt and 3Alg are
applied sequentially, while SOCP is applied occasionally to a chromosome in the
population. Using these procedures allows us to refine the individuals generated
during execution and permits us to classify our algorithm as amemetic algorithm
[Moscato et al., 1989].

26

2opt

The procedure takes the points in pairs, excluding the depot, and considers the
swap. If by making the swap we have an improvement on the length of the tour,
then it is made effective, and the procedure restart. 2opt ends when all possible
pairs have been considered. In Alg. 2 we show the pseudocode. It is important
to note that applying 2opt, we do not change the position of the turning points,
but if the sequence is changed, the modification is recorded on the chromosome.

Algorithm 2 2opt pseudocode

1: procedure 2opt(T)
2: loop:
3: for i from 1 to |T | − 2 do
4: for j from i+ 1 to |T | − 1 do
5: T ′ ← ∅
6: T ′ ← T , from 0 to i− 1
7: T ′ ← T , from i to k in reverse order
8: T ′ ← T , from k + 1 to |T |
9: if w(T) < w(T ′) then

10: T = T ′

11: goto loop
12: end if
13: end for
14: end for
15: return T
16: end procedure

Second-Order Cone Programming Algorithm

Given an eligible tour T , the second-order cone programming algorithm (SOCP)
improves the length of the tour by changing the position of the visited turning
points without impacting the sequence with which the targets are traversed.
Specifically, [Mennell, 2009] showed how, when a tour sequence is fixed a priori,
CETSP matches the touring Steiner zones problem. The above problem can be
formulated as a second-order cone programming and solved in polynomial time.
We report and describe the formulation proposed in [Mennell et al., 2011] and
used in the GA below. The goal of SOCP is to determine the optimal position
of the turning points pi, i = 0, ..., |N |+ 1, given a fixed sequence. p0 and p|N |+1

correspond to the depot. The location pi is defined by the variables xi, yi. Let
xi, yi be the coordinates of the target covered by the turning point pi. The
SOCP is formulated as follows:

min
∑

zi (2.1)

27

s.t.

wi = xi − xi+1 ∀i ∈ 0, ..., |N | (2.2)
ui = yi − yi+1 ∀i ∈ 0, ..., |N | (2.3)
si = xi − xi ∀i ∈ 0, ..., |N | (2.4)
ti = yi − yi ∀i ∈ 0, ..., |N | (2.5)

z2i ≥ w2
i − u2i ∀i ∈ 0, ..., |N | (2.6)

s2i + t2i ≤ r2i ∀i ∈ 0, ..., |N | (2.7)
zi ≥ 0 ∀i ∈ 0, ..., |N | (2.8)

wi, ui, si, ti, xi, yi, free ∀i ∈ 0, ..., |N | (2.9)

We remind that the depot position is fixed, then x0 = x0 and y0 = y0. The
variable zi represents the Euclidean distance between the turning point pi and
its successor pi+1. The objective function minimizes the sum of the distances
between the turning points visited by the tour. The variables wi and ui are
used to compute the Euclidean distance zi, while the variables si and ti are
used in the constraints (2.4) and (2.5) to ensure that the location of the turning
points pi is within the neighborhood N(vi). Solving to the optimum, the SOCP
provides the best possible location of the turning points. Nevertheless, solving
the above formulation on all chromosomes can increase the computation time.
Therefore, we only solve the SOCP for one random individual per generation.
Thus because we have noticed empirically that the application on an individual
can speed up the time of convergence of the algorithm without impacting the
execution time. We use a greedy algorithm, 3Alg, described in the next section
for the remaining ones.

3Alg

The 3Alg improvement procedure is a greedy heuristic that determines the lo-
cation of turning points, given a fixed sequence of targets. The 3Alg is a variant
of the Steiner point selection presented in [Wang et al., 2019]. The method
considers a triple of turning points {pi, pj , pk} and the target vj associated with
the intermediate point pj ; the points pi, pk are stable, while pj is the point to be
repositioned. The goal is to reposition pj such that the distance of the points
is minimized and pj belongs to the neighborhood of vj . Formally, we want to
find the coordinates of pj that can minimize d(pipj) + d(pjpk) and such that
d(vjpj) ≤ rj . From this, if we consider the segment pi, pk, we have two different
possible scenarios as shown in Fig.2.5: the segment either traverses N(vj) or is
outside of it. In the case where the segment intersects the circle at two points
A,B, we can choose any point on the segment AB. In our implementation, the
point pj is chosen randomly between A and the midpoint of AB. In the case
where the segment does not intersect the circle, then pj must be located on the
circumference Cvj . To identify the position of pj , we used the bisection algo-
rithm proposed by [Wang et al., 2019]. Unlike them, 3Alg is applied iteratively
on all the turning points of the tour following the sequence of traversals. In

28

[Wang et al., 2019], the algorithm is applied by alternating even and odd points
and vice versa. From our experiments, we noticed that the results obtained
from 3Alg are comparable with those obtained with SOCP. Moreover, we no-
ticed that there is no apparent difference with the version proposed by [Wang
et al., 2019].

Cvj

pjpi pk

Cvj
pj

A B

pi pk

Figure 2.5: The two different scenarios for 3Alg. On the left pipk does not
traverse Cvj , while on the right it does. [Di Placido et al., 2021]

2.3.8 Stopping Criteria
The genetic algorithm terminates when it reaches a number of iterations equal
to itsize or when there is no improvement on the best fitness value after a specific
number of generations itimpr. At the end of execution, the best chromosome in
the current population is returned as output.

2.4 Metrics
In this section, we propose two new metrics and show their interaction. In
addition, we revised the overlap ratio metric used in previous work on CETSP,
for which we discovered an error in the calculation of its value. The purpose is
to identify problem features related to the difficulty of solving the problem and
the structure of the solution

2.4.1 Overlap Ratio
The overlap ratio (OR) is a metric introduced by [Mennell, 2009] that estimates
the possible improvement of a solution over a TSP solution. Below, we report
the definition presented in [Mennell, 2009]: "for a given CETSP instance, let
lcontain be the length of a side of the smallest square containing all n disks.
The overlap ratio is the ratio of r to lcontain." Formally, The overlap ratio is
the ratio between the average value of the radii of all targets and lcontain, i.e.
OR =

∑n
i=1 ri

lcontain
. Figure 2.6 shows an example of the same instance with two

different overlap ratios. We can see that large radii of the targets result in more
significant improvements in the route length. While studying and calculating
the OR on the benchmark instances of CETSPs, we noticed that our values
differ with those proposed in [Mennell, 2009, Coutinho et al., 2016] on several
instances. The reason is that, in these works, the OR is computed considering

29

a rectangle that always has a vertex in (0,0). It is not always accurate since we
can have points with negative coordinates or points with positive coordinates
but different from (0,0). Therefore, we corrected the OR calculation by setting
the smaller side of the rectangle containing all targets as min(∆x,∆y), where
∆x and ∆y are the differences between the highest and smallest value of the
coordinates. The correct values are shown in bold in the tables we present in
the following sections.

Despite this, OR does not provide a good prediction of the difficulty of the
instance. Therefore, we provide two complementary metrics that can measure
the complexity of an instance through its morphology and the shape of its
solution.

Figure 2.6: Instance kroD100 with two different overlap ratio. On the left, OR
is 2.00%, while on the right is 10.00% [Di Placido et al., 2021]

2.4.2 TSPDegree
The TSPDegree (TSPD) measurement is a metric based on the distances be-
tween targets and their radii. The goal is to understand what impact the radii
have on the path based on the distance between targets. Let vi, vj be two tar-
gets, we calculate mij =

d(vi,vj)
ri+rj

. The value of the ratio mij provides a measure
of the condition of the two targets, specifically whether they are overlapped or
not:

• if mij = 0, the targets are concentric;

• if 0 < mij < 1, the targets overlap and their intersection is nonempty,

• if mij ≥ 1, the targets have no areas in common (empty intersection).

In the case where mij > 1, we set it equal to 1. From here, if we extend this
concept to the k targets closest to a target vi, it is possible to estimate the
degree of overlap relative to vi, which we will denote as Mk

i . The value of Mk
i

is computed as Mk
i =

∑
j∈Sk

i
mij

k , where Ski is the set of k targets closest to vi.
Thus, the value of TSPD(k) corresponds to the average of Mk

i of all targets.
This measure allows us to estimate the composition of a CETSP instance

at a morphological level: If the value of TSPD is low, it means that there is a
high degree of overlap between the disks of the targets, so the main problem is

30

to determine the positions of the turning points. On the contrary, if the value
of TSPD is high, the instance is more sparse, i.e., the instance is traceable to a
TSP. An explanatory example is illustrated in the figure 2.7

Figure 2.7: Example of two instances with different TSPDegree. On the left, the
instance team5_499rdmRad (OR 2.00%) with TSPD equals to 8.49%, while on
the right the instance rd400rdmRad (OR 0.99%) with TSPD equals to 96.91%
[Di Placido et al., 2021]

2.4.3 OverlappingCenter
A second metric we propose is Overlapping Center (OC), a metric by which we
estimate the difficulty of an instance based on the conformation of the solution.
For example, if we consider an instance with a high number of targets, we might
trivially assume that it is computationally difficult to solve. However, this is not
always the case. Figure 2.8 shows the instance team6_500 and an admissible
solution of it in red. As can be seen, although the number of targets is 500,
the solution consists of only six segments. The above instance is solved to the
optimum by the exact approach proposed by [Coutinho et al., 2016] in 0.43
seconds.

31

Figure 2.8: Instance team6_500, with OR 27.06%, TSPD 6.87% and OC 1.20%.
[Di Placido et al., 2021]

The goal of the OC metric is to evaluate the overlap between target disks.
The value of OC is computed by constructing a solution heuristically in which
the smallest possible number of segments forms the tour T . The tour T is
defined as follows. Starting from an empty T , for each target vi, we consider
the number of targets covered by its center and sort all targets in descending
order by this value. Then, we insert in T the turning points corresponding to
the centers of the targets following this order until all targets are covered. Note
that, when the procedure stops, T can include a number of turning points less
than |N | since several targets can be covered by turning points associated with
neighboring targets. The crossing sequence of T is identified by applying the
2opt procedure described in 2.3.7. Finally, excess turning points are removed as
follows: starting with a triplet of turning points {pi, pj , pk} visited sequentially
in T , and the target vj associated with pj , if the segment pi, pk crosses N(vj),
then pj is removed from T . This step is repeated for all consecutive triplets of
T and continues to iterate until no further turning points are removed. At the
end of this process, the number of segments is minimized, resulting in a tour
eligible T s.t. |T | ≤ |N |. The value of the OC measure is given by OC = |T |

|N |
and varies in the range (0, 1]. Trivially, OC can never be equal to 0 because at
least one turning point must be visited. On the contrary, OC is equal to 1 when
the tour has the same number of turning points as the number of targets.

32

2.5 Computational results
This section is devoted to computational experiments and results. It is divided
into three macro categories. In the section 2.5.1 we evaluate the performance of
our genetic algorithm by comparing it with state-of-the-art approaches. Then,
in the 2.5.2 section, we focus on analyzing the metrics and their validity. Finally,
in the 2.5.3 section, we present a real-world application related to solar panel
diagnostics.

2.5.1 GA performance
We performed several tests to verify the effectiveness and efficiency of the GA.
The algorithm was written in Java language (JDK 13.0), and the tests were
performed on a Windows 10 Home machine equipped with an AMD Ryzen 7
3750H 2.30 GHz processor and 16 GB of RAM. The parameters described in
2.3 were set as follows: the number of individuals per population popsize was
set equal to 50; the number of generations itsize was set equal to 1000, and
the number of generations without improvement to stop the GA itimpr was
set equal to itsize

20 . This configuration has been defined empirically and has
been demonstrated to be that one with the just compromise between times of
computation and the obtained solution. In addition, the results described below
regarding the genetic algorithm are obtained by a single run of the approach.

The benchmark instances used for the tests are those proposed in [Mennell,
2009]. These are divided into three groups, named Teams, Geometric, and
TSPLIB. The Teams instances are six instances whose names begin with team,
along with the bonus1000 instance. The number of targets is given in the name,
excluding the depot. For example, the instance team2_200 has 201 targets,
including the depot. All instances are characterized by constant radius targets.

The Geometric instances are fixed-radius instances where the morphology
of the instance refers to geometric shapes. This set includes the five rotating-
Diamonds, five concentricCircles, and nine bubbles, for a total of 19 instances.
The TSPLIB instances are created from the TSPLib library. The name infers
the number of targets, including the depot. For these instances, we have three
different fixed-radius scenarios: low overlap ratio (0.02), medium overlap ratio
(0.1), and high overlap ratio (0.3).

For the instances Teams and TSPLIB there are variable radius counterparts,
identified by the suffix rdmRad at the end of the instance name.

Comparison with optimal solutions

[Coutinho et al., 2016] identified several optimal solutions for the instances
considered by our tests through the B&B algorithm. The approach was coded
in the C++ language and tested on a Linux Mint 13 machine with an Intel Core
i7 3.40 GHz processor and 16GB of RAM. The table 2.1 shows the GA solutions
compared to the optimal ones. We compared only the solutions for which the
B&B does not exceed the time limit of four hours (14400 seconds). The table

33

is structured as follows: the first column shows the name of the instances; the
second and third columns show the value of the solution produced by the GA and
the computational time to find it (in seconds), while the fourth and fifth columns
present the value of the exact solution and the computational time of the exact
approach. Finally, the last column reports the percentage GAP, calculated using
the formula: GA−Opt

Opt × 100, where Opt is the value of the optimal solution and
GA is the value of the solution found by the GA. Instances are grouped based
on radii. Specifically, we identify three different groups: Varied overlap ratios,
which includes instances with fixed radii for all targets but with different overlap
ratios between instances; Overlap Ratio, which comprises instances where the
radii are modified to obtain a specific OR value; and Arbitrary Radius, which
contains instances where the targets have variable radii.

Instance GA Opt GAP
Value Time (s) Value Time (s)

Varied overlap ratios
bubbles1 349.13 2.21 349.13 0.10 0.00%
bubbles2 428.28 2.22 428.28 0.22 0.00%
bubbles3 529.96 7.29 529.96 193.12 0.00%

concentricCircles1 53.16 0.94 53.16 5.18 0.00%
rotatingDiamonds1 32.29 0.80 32.29 0.09 0.00%
rotatingDiamonds2 140.48 1.94 140.48 730.07 0.00%

team1_100 307.34 3.86 307.34 9.61 0.00%
team2_200 246.68 23.75 246.68 0.72 0.00%
team6_500 225.22 518.12 225.22 0.43 0.00%

Overlap ratio 0.1
d493 101.31 345.37 100.72 53.28 0.59%

kroD100 89.67 3.92 89.67 1.86 0.00%
lin318 1404.89 74.77 1394.63 8541.19 0.74%
rat195 68.14 21.31 67.99 17.32 0.22%

Overlap ratio 0.3
d493 69.76 233.54 69.76 0.32 0.00%

dsj1000 199.95 1181.44 199.95 0.75 0.00%
kroD100 58.54 2.20 58.54 0.07 0.00%
lin318 765.96 29.69 765.96 0.24 0.00%
pcb442 83.54 121.23 83.54 0.31 0.00%
rat195 45.70 6.49 45.7 0.13 0.00%
rd400 224.84 67.12 224.84 0.33 0.00%

Arbitrary Radius
rat195rdmRad 68.22 1.35 68.22 5.16 0.00%

team1_100rdmRad 388.54 1.84 388.54 269.31 0.00%
team3_300rdmRad 378.09 3.75 378.09 682.39 0.00%

Table 2.1: Comparison with optimal solutions.

34

GA is able to identify all optimal solutions across 23 instances, except for
three instances where the overlap ratio is fixed at 0.1: d493, line318, and rat195.
The solutions produced are still reasonably good for these instances, with a
maximum gap of 0.74%.

Comparison with heuristic approaches

We compared the solutions of our GA with state-of-the-art approaches: the
double-loop hybrid algorithm (HA) presented by [Yang et al., 2018]; the adaptive
heuristic approach ((lb/ub)Alg) proposed by [Carrabs et al., 2020], and the
variable neighborhood search heuristic (SZVNS) provided by [Wang et al., 2019].
Each algorithm was tested on its machine, which we report below:

• The HA experiments were conducted on a PC equipped with an Intel Core
i5-4590 3.3 GHz CPU and 4GB of RAM;

• The (lb/ub)Alg trials were carried out on a PC equipped with an Intel i5
2.3 GHz as CPU and 8GB of RAM,

• SZVNS simulations were performed on a PC with a 2.6 GHz CPU and
4GB of RAM.

We report the results in the tables 2.2, 2.3, and 2.4, for which we apply the
same instance categorization as applied for the table 2.1. The tables are orga-
nized as follows: the first column reports the name of the instances; in the second
column, we record the best result found among the considered approaches; in
the remaining four columns, we display the data for the solutions provided by
GA, HA, (lb/ub)Alg and SZVNS respectively. In each of the columns for the
approaches, we list the value of the solution, the computation time in seconds
(Time), and the percentage gap from the best solution (GAP). The value of the
percentage gap is calculated through the formula: UB−Best

Best × 100, where UB
is the value of the approach we are considering, and Best is the value of the
best solution found. Finally, in the last three rows of the tables, we report for
each algorithm: the average of the values (Mean), the number of best solutions
found (#Best), and the number of best solutions found only by the considered
approach (#U.Best).

35

In
st

an
ce

B
es

t
G

A
H

A
(l

b
/u

b
)A

lg
S
Z
V

N
S

w
(T

)
T

im
e

G
A

P
w
(T

)
T

im
e

G
A

P
w
(T

)
T

im
e

G
A

P
w
(T

)
T

im
e

G
A

P
bo

nu
s1

00
0

38
7.

13
41

1.
85

87
86

.9
1

6.
39

%
40

8.
44

15
08

.1
0

5.
50

%
38

7.
13

11
6.

63
0.

00
%

40
3.

06
11

09
.6

7
4.

11
%

bu
bb

le
s1

34
9.

13
34

9.
13

2.
21

0.
00

%
34

9.
14

55
.4

0
0.

00
%

34
9.

13
11

.4
2

0.
00

%
34

9.
14

0.
24

0.
00

%
bu

bb
le

s2
42

8.
28

42
8.

28
2.

22
0.

00
%

42
8.

28
97

.5
0

0.
00

%
42

8.
28

22
.6

8
0.

00
%

42
8.

28
1.

09
0.

00
%

bu
bb

le
s3

52
9.

96
52

9.
96

7.
29

0.
00

%
53

2.
28

14
6.

20
0.

44
%

52
9.

96
13

0.
17

0.
00

%
53

2.
21

2.
51

0.
42

%
bu

bb
le

s4
80

5.
46

80
5.

46
27

.8
4

0.
00

%
83

2.
27

20
2.

90
3.

33
%

80
5.

56
13

0.
11

0.
01

%
82

5.
33

9.
53

2.
47

%
bu

bb
le

s5
10

38
.1

6
10

38
.1

6
45

.0
7

0.
00

%
10

67
.9

6
23

4.
90

2.
87

%
10

61
.6

4
11

6.
63

2.
26

%
10

73
.4

3
37

.3
7

3.
40

%
bu

bb
le

s6
12

29
.6

6
12

29
.6

6
17

6.
16

0.
00

%
13

94
.1

4
28

4.
90

13
.3

8%
13

13
.0

2
21

7.
20

6.
78

%
12

63
.6

8
14

.0
0

2.
77

%
bu

bb
le

s7
16

07
.3

1
16

07
.3

1
80

9.
15

0.
00

%
17

35
.3

8
52

1.
00

7.
97

%
16

50
.0

4
30

4.
46

2.
66

%
16

39
.3

3
50

.2
9

1.
99

%
bu

bb
le

s8
19

46
.7

2
19

46
.7

2
12

30
.2

7
0.

00
%

21
20

.9
8

41
2.

50
8.

95
%

20
21

.2
7

41
6.

30
3.

83
%

19
72

.9
9

11
0.

30
1.

35
%

bu
bb

le
s9

22
59

.2
2

22
59

.2
2

26
55

.5
0

0.
00

%
24

56
.2

7
41

5.
50

8.
72

%
24

13
.3

1
29

6.
14

6.
82

%
23

30
.3

1
16

8.
18

3.
15

%
ch

ao
Si

ng
le

D
ep

10
39

.6
1

10
39

.6
1

10
.6

9
0.

00
%

10
42

.8
2

20
1.

40
0.

31
%

10
39

.6
1

89
.6

9
0.

00
%

10
39

.6
3

12
.6

7
0.

00
%

co
nc

en
tr

ic
C

ir
cl

es
1

53
.1

6
53

.1
6

0.
94

0.
00

%
53

.1
6

18
.5

0
0.

00
%

53
.1

6
6.

43
0.

00
%

53
.1

6
0.

10
0.

00
%

co
nc

en
tr

ic
C

ir
cl

es
2

15
3.

13
15

3.
13

2.
77

0.
00

%
15

3.
13

40
.1

0
0.

00
%

15
4.

81
51

.9
6

1.
10

%
15

4.
88

0.
27

1.
14

%
co

nc
en

tr
ic

C
ir

cl
es

3
27

0.
04

27
0.

04
2.

79
0.

00
%

27
1.

08
7.

60
0.

39
%

27
2.

69
36

2.
24

0.
98

%
27

2.
49

1.
28

0.
91

%
co

nc
en

tr
ic

C
ir

cl
es

4
45

2.
64

45
2.

64
12

.5
6

0.
00

%
45

5.
62

10
5.

70
0.

66
%

46
6.

52
98

.8
6

3.
07

%
46

1.
36

5.
82

1.
93

%
co

nc
en

tr
ic

C
ir

cl
es

5
63

2.
99

63
2.

99
26

.0
4

0.
00

%
64

7.
64

14
1.

20
2.

31
%

65
9.

36
35

1.
21

4.
17

%
64

7.
84

10
.0

6
2.

35
%

ro
ta

ti
ng

D
ia

m
on

ds
1

32
.2

9
32

.2
9

0.
80

0.
00

%
32

.2
9

16
.6

0
0.

00
%

32
.2

9
7.

06
0.

00
%

32
.3

9
0.

12
0.

31
%

ro
ta

ti
ng

D
ia

m
on

ds
2

14
0.

48
14

0.
48

1.
94

0.
00

%
14

0.
48

58
.9

0
0.

00
%

14
0.

48
17

6.
13

0.
00

%
14

0.
48

0.
54

0.
00

%
ro

ta
ti

ng
D

ia
m

on
ds

3
38

0.
88

38
0.

88
10

.6
0

0.
00

%
38

2.
50

19
2.

10
0.

43
%

38
0.

89
61

5.
47

0.
00

%
38

0.
89

8.
81

0.
00

%
ro

ta
ti

ng
D

ia
m

on
ds

4
77

0.
66

77
0.

66
41

.8
5

0.
00

%
77

7.
05

25
7.

10
0.

83
%

77
2.

00
27

1.
20

0.
17

%
77

0.
68

18
.4

9
0.

00
%

ro
ta

ti
ng

D
ia

m
on

ds
5

15
10

.7
5

15
10

.7
5

37
6.

41
0.

00
%

15
30

.3
1

76
5.

40
1.

29
%

15
31

.7
4

21
0.

99
1.

39
%

15
10

.8
8

53
.6

2
0.

01
%

te
am

1_
10

0
30

7.
34

30
7.

34
3.

86
0.

00
%

30
7.

34
12

2.
60

0.
00

%
30

7.
34

78
.8

6
0.

00
%

30
7.

34
3.

20
0.

00
%

te
am

2_
20

0
24

6.
68

24
6.

68
23

.7
5

0.
00

%
24

7.
48

33
6.

20
0.

32
%

24
6.

68
36

.0
6

0.
00

%
24

6.
69

16
.2

1
0.

00
%

te
am

3_
30

0
46

4.
20

46
4.

20
99

.3
0

0.
00

%
46

6.
12

36
6.

20
0.

41
%

47
6.

43
56

.8
8

2.
63

%
46

5.
80

31
.4

8
0.

34
%

te
am

4_
40

0
68

5.
52

68
5.

52
42

8.
43

0.
00

%
68

6.
76

47
4.

80
0.

18
%

70
2.

69
12

0.
25

2.
50

%
69

8.
05

43
.4

7
1.

83
%

te
am

5_
49

9
70

0.
50

70
0.

50
99

5.
23

0.
00

%
71

1.
14

44
7.

20
1.

52
%

70
8.

45
82

8.
33

1.
13

%
70

3.
38

88
.1

7
0.

41
%

te
am

6_
50

0
22

5.
22

22
5.

22
51

8.
12

0.
00

%
22

7.
50

81
9.

90
1.

01
%

22
5.

22
8.

15
0.

00
%

22
6.

18
71

9.
32

0.
43

%
M

ea
n

69
0.

63
69

1.
55

60
3.

66
0.

24
%

72
0.

65
30

5.
57

2.
25

%
70

8.
51

19
0.

06
1.

46
%

70
1.

11
93

.2
2

1.
09

%
#

B
es

t
26

7
12

8
#

U
.B

es
t

13
0

1
0

T
ab

le
2.
2:

C
om

pu
ta
ti
on

al
re
su
lt
s
fo
r
th
e
va
ri
ed

ov
er
la
p
ra
ti
os

in
st
an

ce
s.

36

In
st

an
ce

B
es

t
G

A
H

A
(l

b
/u

b
)A

lg
S
Z
V

N
S

w
(T

)
T
im

e
G

A
P

w
(T

)
T

im
e

G
A

P
w
(T

)
T

im
e

G
A

P
w
(T

)
T

im
e

G
A

P
O

ve
rl
ap

ra
ti
o

0.
02

d4
93

20
2.

23
20

2.
23

86
4.

47
0.

00
%

20
3.

84
43

5.
90

0.
80

%
20

5.
39

24
7.

04
1.

56
%

20
5.

74
69

.7
2

1.
74

%
ds

j1
00

0
93

8.
71

93
8.

71
20

32
5.

36
0.

00
%

94
9.

37
84

1.
50

1.
14

%
95

5.
57

99
8.

99
1.

80
%

94
3.

83
15

1.
77

0.
55

%
kr

oD
10

0
15

9.
04

15
9.

04
9.

05
0.

00
%

15
9.

05
85

.1
0

0.
01

%
16

0.
09

16
7.

14
0.

66
%

15
9.

04
9.

34
0.

00
%

lin
31

8
28

38
.5

4
28

38
.5

4
17

4.
28

0.
00

%
28

83
.1

7
24

5.
00

1.
57

%
29

02
.5

3
29

2.
90

2.
25

%
28

42
.3

2
31

.1
7

0.
13

%
pc

b4
42

32
2.

54
32

2.
54

82
6.

50
0.

00
%

32
5.

05
38

1.
40

0.
78

%
37

7.
51

80
5.

44
17

.0
4%

32
5.

02
52

.8
8

0.
77

%
ra

t1
95

15
8.

32
15

8.
32

55
.2

3
0.

00
%

15
8.

79
16

2.
30

0.
30

%
16

6.
51

56
9.

55
5.

17
%

16
0.

06
11

.1
6

1.
10

%
rd

40
0

10
32

.0
4

10
32

.0
4

68
6.

27
0.

00
%

10
41

.7
7

30
8.

00
0.

94
%

10
85

.7
5

66
2.

60
5.

20
%

10
39

.7
7

27
.7

0
0.

75
%

O
ve

rl
ap

ra
ti
o

0.
1

d4
93

10
0.

72
10

1.
31

34
5.

37
0.

59
%

10
1.

75
68

9.
00

1.
02

%
10

0.
72

33
.8

7
0.

00
%

10
2.

92
14

2.
94

2.
18

%
ds

j1
00

0
37

4.
06

37
6.

87
39

51
.0

5
0.

75
%

38
0.

59
13

72
.9

0
1.

75
%

37
4.

06
83

.0
0

0.
00

%
39

3.
06

35
6.

79
5.

08
%

kr
oD

10
0

89
.6

7
89

.6
7

3.
92

0.
00

%
89

.6
7

12
5.

30
0.

00
%

89
.6

7
19

3.
44

0.
00

%
89

.9
2

1.
99

0.
28

%
lin

31
8

14
04

.8
9

14
04

.8
9

74
.7

7
0.

00
%

14
10

.2
5

44
4.

50
0.

38
%

14
05

.0
7

26
.5

0
0.

01
%

14
14

.6
6

65
.9

8
0.

70
%

pc
b4

42
14

5.
82

14
5.

82
46

6.
16

0.
00

%
14

8.
74

65
3.

00
2.

00
%

14
6.

03
22

4.
95

0.
14

%
15

2.
73

54
.9

9
4.

74
%

ra
t1

95
68

.1
4

68
.1

4
21

.3
1

0.
00

%
68

.2
4

26
9.

30
0.

15
%

68
.1

4
95

.1
9

0.
00

%
68

.3
2

9.
47

0.
26

%
rd

40
0

45
8.

41
45

8.
41

61
2.

93
0.

00
%

46
9.

19
56

0.
80

2.
35

%
46

0.
21

10
1.

27
0.

39
%

47
4.

78
96

.9
8

3.
57

%
O

ve
rl
ap

ra
ti
o

0.
3

d4
93

69
.7

6
69

.7
6

23
3.

54
0.

00
%

70
.4

0
98

3.
40

0.
92

%
69

.7
9

2.
72

0.
04

%
69

.9
0

58
.0

7
0.

20
%

ds
j1

00
0

19
9.

95
19

9.
95

11
81

.4
4

0.
00

%
20

2.
94

17
66

.6
0

1.
50

%
19

9.
95

6.
89

0.
00

%
20

3.
07

31
6.

41
1.

56
%

kr
oD

10
0

58
.5

4
58

.5
4

2.
20

0.
00

%
59

.0
3

18
9.

80
0.

84
%

58
.5

4
0.

37
0.

00
%

58
.5

4
4.

58
0.

00
%

lin
31

8
76

5.
96

76
5.

96
29

.6
9

0.
00

%
77

0.
08

58
9.

80
0.

54
%

76
5.

96
1.

21
0.

00
%

76
6.

16
49

.0
1

0.
03

%
pc

b4
42

83
.5

4
83

.5
4

12
1.

23
0.

00
%

84
.0

2
84

6.
70

0.
57

%
83

.5
4

0.
58

0.
00

%
83

.8
0

19
6.

54
0.

31
%

ra
t1

95
45

.7
0

45
.7

0
6.

49
0.

00
%

48
.5

0
37

1.
20

6.
13

%
45

.7
0

0.
33

0.
00

%
45

.7
0

19
.0

1
0.

00
%

rd
40

0
22

4.
84

22
4.

84
67

.1
2

0.
00

%
22

6.
09

74
3.

90
0.

56
%

22
4.

84
4.

19
0.

00
%

22
4.

98
74

.8
6

0.
06

%
M

ea
n

46
3.

88
46

4.
04

14
31

.3
5

0.
06

%
46

9.
07

57
4.

54
1.

15
%

47
3.

60
21

5.
15

1.
63

%
46

7.
82

85
.7

8
1.

14
%

#
B

es
t

19
2

10
3

#
U

.B
es

t
9

0
2

0

T
ab

le
2.
3:

C
om

pu
ta
ti
on

al
re
su
lt
s
fo
r
in
st
an

ce
s
w
it
h
di
ffe

re
nt

ov
er
la
p
ra
ti
o.

37

In
st

an
ce

B
es

t
G

A
H

A
(l

b
/u

b
)A

lg
S
Z
V

N
S

w
(T

)
T

im
e

G
A

P
w
(T

)
T

im
e

G
A

P
w
(T

)
T

im
e

G
A

P
w
(T

)
T

im
e

G
A

P
bo

nu
s1

00
0r

dm
R

ad
93

2.
07

93
2.

07
48

0.
23

0.
00

%
10

01
.1

0
10

43
.7

0
7.

41
%

95
5.

41
72

8.
55

2.
50

%
93

8.
27

3.
93

0.
67

%
d4

93
rd

m
R

ad
13

4.
28

13
4.

28
5.

58
0.

00
%

14
1.

34
77

0.
70

5.
26

%
13

4.
74

93
.3

4
0.

34
%

13
5.

02
0.

26
0.

55
%

ds
j1

00
0r

dm
R

ad
62

4.
75

62
4.

75
25

.8
6

0.
00

%
65

9.
64

15
94

.6
0

5.
58

%
62

5.
92

28
6.

23
0.

19
%

62
5.

25
2.

73
0.

08
%

kr
oD

10
0r

dm
R

ad
14

1.
83

14
1.

83
6.

97
0.

00
%

14
1.

84
11

0.
70

0.
01

%
14

2.
39

46
.2

5
0.

39
%

14
1.

83
87

.1
6

0.
00

%
lin

31
8r

dm
R

ad
20

47
.4

2
20

47
.4

2
8.

71
0.

00
%

20
79

.4
9

48
3.

00
1.

57
%

20
55

.7
7

59
.5

2
0.

41
%

20
82

.2
5

3.
18

1.
70

%
pc

b4
42

rd
m

R
ad

22
0.

00
22

0.
00

16
.1

6
0.

00
%

23
4.

15
62

0.
80

6.
43

%
22

0.
44

15
3.

38
0.

20
%

22
1.

16
1.

36
0.

53
%

ra
t1

95
rd

m
R

ad
68

.2
2

68
.2

2
1.

35
0.

00
%

68
.2

2
42

7.
10

0.
00

%
68

.2
2

9.
97

0.
00

%
68

.2
2

10
.5

7
0.

00
%

rd
40

0r
dm

R
ad

12
46

.6
9

12
46

.6
9

70
1.

06
0.

00
%

12
52

.2
2

27
7.

30
0.

44
%

13
05

.4
6

11
10

.3
5

4.
71

%
12

57
.7

3
0.

67
0.

89
%

te
am

1_
10

0r
dm

R
ad

38
8.

54
38

8.
54

1.
84

0.
00

%
39

0.
23

12
9.

70
0.

43
%

38
8.

54
20

.8
0

0.
00

%
38

8.
54

3.
89

0.
00

%
te

am
2_

20
0r

dm
R

ad
61

3.
66

61
3.

66
16

.0
4

0.
00

%
62

4.
79

21
1.

80
1.

81
%

61
6.

82
20

9.
44

0.
51

%
62

6.
90

0.
93

2.
16

%
te

am
3_

30
0r

dm
R

ad
37

8.
09

37
8.

09
3.

75
0.

00
%

38
2.

16
48

8.
00

1.
08

%
37

8.
51

16
.6

5
0.

11
%

37
9.

84
34

.5
1

0.
46

%
te

am
4_

40
0r

dm
R

ad
10

00
.3

1
10

00
.3

1
31

7.
04

0.
00

%
10

20
.1

6
34

8.
50

1.
98

%
10

25
.7

6
65

8.
03

2.
54

%
10

06
.7

1
2.

62
0.

64
%

te
am

5_
49

9r
dm

R
ad

44
6.

19
44

6.
19

2.
52

0.
00

%
45

8.
35

87
4.

90
2.

73
%

44
6.

51
51

.4
3

0.
07

%
44

6.
19

5.
05

0.
00

%
te

am
6_

50
0r

dm
R

ad
62

0.
98

62
0.

98
26

.1
5

0.
00

%
67

2.
36

70
1.

20
8.

27
%

62
6.

18
34

7.
08

0.
84

%
62

1.
99

19
.7

7
0.

16
%

M
ea

n
63

3.
07

63
3.

07
11

5.
23

0.
00

%
65

1.
86

57
7.

29
3.

07
%

64
2.

19
27

0.
79

0.
92

%
63

8.
56

12
.6

2
0.

56
%

#
B

es
t

14
2

2
4

#
U

.B
es

t
10

0
0

0

T
ab

le
2.
4:

C
om

pu
ta
ti
on

al
re
su
lt
s
fo
r
th
e
ar
bi
tr
ar
y
ra
di
ii
ns
ta
nc
es
.

38

For the first group of instances, GA can identify 13 new best solutions out of
27 instances, while in the other 13, it still finds the best-known solution. Only
in one case, GA performs worse than its counterparts. For the second group,
GA finds 9 out of 21 new unique best solutions, while in 10 other instances, it
identifies the best-known solution. For the last group of instances, GA can find
10 new unique best solutions out of 14 instances, while for the remaining 4, it
identifies the best-known solution. The results clearly show that GA performs
significantly better than existing approaches on all categories of instances in
terms of solution quality, identifying the most significant number of unique best
solutions and generating solutions with the smallest gap compared to the best-
known solutions.

Overall, GA identified 32 new best solutions and 27 best-known solutions
out of a total of 62 instances. GA produces an improvement in all categories of
instances. In the variable overlap ratio instances, we obtain the most consid-
erable improvement, obtaining solutions ranging from a minimum percentage
gap of 0.18% to a maximum of 3.15% from the current best solution; on the
overlap ratios we obtain an improvement ranging from a minimum of 0.04% to
a maximum of 0.80% GAP. Finally, on the arbitrary radius instances, we span
from a minimum of 0.11% to a maximum of 0.66% GAP.

As for computational times, overall, they are reasonable. The GA is much
slower in the varied overlap ratio instances than the other approaches. On the
other hand, GA is the second-fastest approach in arbitrary radii instances after
SZVNS.

To further evaluate GA performance, we performed additional comparisons
with other approaches. Specifically, we examined the speed of convergence of our
approach by comparing it to the performance of others, noting how quickly GA
achieves counterpart results. We considered a small set of instances for which
GA takes more than 100 seconds to produce a solution, namely team4_400,
team5_499, bubbles7, and bubbles8. We only show results for this small set
w.l.o.g. since the behavior is the same in the other instances. The results are
shown in the graphs in Figures 2.9 and 2.10, in which the computational time
is shown on the abscissa and the solution value on the ordinate. As we can see,
GA obtains the solutions of the other approaches in lesser or comparable times,
except for SZVNS.

39

Figure 2.9: Time to target comparison of GA with respect to the other ap-
proaches for the instances team4_400 and team5_499. [Di Placido et al., 2021]

40

Figure 2.10: Time to target comparison of GA with respect to the other ap-
proaches for the instances bubbles7 and bubbles8. [Di Placido et al., 2021]

2.5.2 Metrics analysis
We conducted several analyses to verify the validity of the proposed metrics.
We used the instances proposed by [Mennell, 2009] for these tests. The value of
the metrics for each instance is reported in the tables 2.5, 2.6, and 2.7. For the
calculation of the TSPD measure, we used k = 5.

41

Instance |N | OR TSPD OC
Varied overlap ratios (Teams and Geometrics)
bonus1000 1000 12,26% 10,88% 1,70%
bubbles1 36 11,11% 78,70% 19,44%
bubbles2 76 9,09% 58,90% 15,79%
bubbles3 126 7,69% 57,28% 21,43%
bubbles4 184 6,67% 56,47% 15,22%
bubbles5 250 5,88% 55,99% 18,40%
bubbles6 324 5,26% 55,67% 15,43%
bubbles7 406 4,76% 55,44% 12,32%
bubbles8 496 4,35% 55,27% 13,31%
bubbles9 594 4,00% 55,14% 14,48%

chaoSingleDep 200 2,84% 52,78% 17,50%
concentricCircles1 16 15,00% 86,01% 37,50%
concentricCircles2 36 7,50% 89,99% 50,00%
concentricCircles3 60 5,00% 90,76% 45,00%
concentricCircles4 104 3,75% 90,16% 40,38%
concentricCircles5 148 3,00% 90,13% 36,49%
rotatingDiamonds1 20 20,00% 77,66% 30,00%
rotatingDiamonds2 60 5,00% 84,74% 18,33%
rotatingDiamonds3 180 3,33% 81,32% 10,56%
rotatingDiamonds4 320 1,43% 84,37% 8,13%
rotatingDiamonds5 680 1,11% 81,99% 5,00%

team1_100 100 9,33% 36,68% 15,00%
team2_200 200 20,06% 16,61% 4,50%
team3_300 300 7,02% 28,60% 11,00%
team4_400 400 5,01% 43,45% 17,00%
team5_499 499 2,00% 53,78% 23,05%
team6_500 500 27,06% 6,87% 1,20%

Table 2.5: Metrics values for the varied overlap ratios instances. The values
in bold are the OR values that do not correspond to the ones proposed in the
literature.

42

Instance |N | OR TSPD OC
Overlap ratio 0.02

d493 492 2,00% 46,68% 19,51%
dsj1000 999 2,00% 43,67% 16,92%
kroD100 99 2,00% 93,08% 54,55%
lin318 317 2,00% 76,22% 32,18%
pcb442 441 2,00% 82,41% 39,91%
rat195 194 2,00% 96,40% 47,94%
rd400 399 2,00% 88,31% 46,37%

Overlap ratio 0.1
d493 492 10,00% 10,08% 2,03%

dsj1000 999 10,00% 8,98% 1,40%
kroD100 99 10,00% 34,41% 14,14%
lin318 317 10,00% 19,94% 5,68%
pcb442 441 10,00% 19,09% 3,40%
rat195 194 10,00% 27,09% 8,25%
rd400 399 10,00% 23,94% 6,02%

Overlap ratio 0.3
d493 492 30,00% 3,36% 0,61%

dsj1000 999 30,00% 2,99% 0,40%
kroD100 99 30,00% 11,47% 2,02%
lin318 317 30,00% 6,65% 0,95%
pcb442 441 30,00% 6,36% 0,68%
rat195 194 30,00% 9,03% 1,03%
rd400 399 30,00% 7,98% 1,75%

Table 2.6: Metrics values for instances with different overlap ratio

43

Instance |N | OR TSPD OC
Arbitrary Radius

bonus1000rdmRad 1000 6,13% 27,12% 11,20%
d493rdmRad 492 13,44% 9,89% 5,28%

dsj1000rdmRad 999 12,47% 9,66% 4,30%
kroD100rdmRad 99 4,03% 74,97% 31,31%
lin318rdmRad 317 10,05% 24,65% 12,62%
pcb442rdmRad 441 9,39% 26,14% 14,74%
rat195rdmRad 194 42,60% 8,65% 6,19%
rd400rdmRad 399 0,99% 96,91% 67,67%

team1_100rdmRad 100 7,69% 48,80% 26,00%
team2_200rdmRad 200 5,19% 64,44% 32,50%
team3_300rdmRad 300 23,70% 11,60% 5,33%
team4_400rdmRad 400 2,05% 79,72% 40,00%
team5_499rdmRad 499 20,14% 8,49% 4,01%
team6_500rdmRad 500 10,02% 22,99% 10,60%

Table 2.7: Metrics values for the arbitrary radii instances. The values in bold
are the OR values that do not correspond to the ones proposed in the literature.

44

Note that several OR values differ from those presented in [Mennell, 2009,
Coutinho et al., 2016], as we corrected the computational error. Values that
differ are highlighted in bold.

The first analysis conducted aims to test whether there is a correlation be-
tween OR and the new TSPD and OC metrics. The figure 2.11 depicts the
values of the metrics with respect to OR for each instance.

Figure 2.11: Values of the metrics TSPD and OC with respect to OR for each
instance. On the x-axis, we have OR values, while on the y-axis, we have the
values of TSPD and OC. [Di Placido et al., 2021]

TSPD and OC appear to have similar trends in most cases. In fact, in
general, high values of TSPD seems to be correlated with high values of OC
and low values of OR. It is reasonable since if the targets span the entire plane
with little overlap (high value of TSPD), more segments are needed to reach
them. An illustrative example of this case is shown in Fig. 2.12.

45

Figure 2.12: Instance rd400rdmRad : OR 0.99%, TSPD 96.91%, OC 67.67%.
[Di Placido et al., 2021]

A notable exception occurs on some instances with low OR values, specif-
ically from 0% to 5%. These instances relate low to medium OC values and
high TSPD values. Based on this, the instances present targets far apart, and
their solution is composed of a small number of segments. These instances are
specific to instances that have several dense groups of targets that are far apart
and that follow a geometric shape in their placement, i.e., Geometrics instances.
Two examples are shown in Fig. 2.13. Hence, comparing the two instances in
the figure shows that both have a low OR value, 2.05%, and 5%, respectively.
Despite this, we can graphically see that the solution of rotatingDiamonds2 is
much easier to find than that of team4_400rdmRad. It is related to the route’s
greater regularity (and the position of the targets), a characteristic apprehended
by the low OC value but not by the OR value.

46

Figure 2.13: Example of two instances with high TSPD value and mid-low OC
value: team4_400rdmRad (OR 2.05%, TSPD 79.72%, OC 40.00%) on the left
and rotatingDiamonds2 (OR 5.00%, TSPD 84.74%, OC 18.33%) on the right.
[Di Placido et al., 2021]

A second conducted analysis aims to verify a correlation between the metrics
and the computation times employed for the different algorithms. As shown
above, for several instances, the optimal solution is known [Coutinho et al.,
2016]. We examined the latter to see a common pattern in the metrics. The
values of the metrics of the instances solved to the optimum are reported in
the table 2.8, organized as follows: the first column reports the name of the
instance, while the following two columns record the computational times and
the number of targets of the instance. Finally, the last three columns list the
values of the metrics.

47

Instance Time |N | OR TSPD OC
concentricCircles1 5.18 16 15.00% 86.01% 37.50%
rotatingDiamonds1 0.09 20 20.00% 77.66% 30.00%
bubbles1 0.10 36 11.11% 78.70% 19.44%
rotatingDiamonds2 730.07 60 5.00% 84.74% 18.33%
bubbles2 0.22 76 9.09% 58.90% 15.79%
kroD100 0.07 99 30.00% 11.47% 2.02%
kroD100 1.86 99 10.00% 34.41% 14.14%
team1_100 9.61 100 9.33% 36.68% 15.00%
team1_100rdmRad 269.31 100 7.69% 48.80% 26.00%
bubbles3 193.12 126 7.69% 57.28% 21.43%
rat195 0.13 194 30.00% 9.03% 1.03%
rat195 17.32 194 10.00% 27.09% 8.25%
rat195rdmRad 5.16 194 42.60% 8.65% 6.19%
team2_200 0.72 200 20.06% 16.61% 4.50%
team3_300rdmRad 682.39 300 23.70% 11.60% 5.33%
lin318 0.24 317 30.00% 6.65% 0.95%
lin318 8541.19 317 10.00% 19.94% 5.68%
rd400 0.33 399 30.00% 7.98% 1.75%
pcb442 0.31 441 30.00% 6.36% 0.68%
d493 0.32 492 30.00% 3.36% 0.61%
d493 53.28 492 10.00% 10.08% 2.03%
team6_500 0.43 500 27.06% 6.87% 1.20%
dsj1000 0.75 999 30.00% 2.99% 0.40%

Table 2.8: Metric values for the instances solved to optimality

48

We can observe that, in general, high OR values correspond to greater ease
of resolution. Regarding the TSPD metric, we can see that on large instances,
the value of TSPD (and also OC) is low, as expected. However, we notice how
they take relatively long to resolve if we focus on the smaller instances. For
example, referring to the instances team1_100rdmRad and bubbles3, for both
the TSPD value is around 50%. It means that the solution of these instances is
very far from being a TSP on targets, a condition that occurs when the value
of TSPD is high. Hence, although the TSP and CETSP are both NP-Hard, the
CETSP is more complex since it is the combination of defining the route and
choosing the position of the turning points. On the other hand, the value of
TSPD is not low enough to get an "easy" instance to solve, as in the case of
instances with a low OC value. Another ambiguous case is rotatingDiAmonds2
for which we did not find an explanation for the relatively high computational
time.

Finally, OC values follow an increasing trend, i.e., instances in which the tour
consists of a few segments are resolved in less time. Furthermore, OC provides
the most meaningful information regarding the computational complexity of the
instance. For example, if we examine instances dsj1000 with OC value 0.40%,
and concentricCircles1 with OC value 37.50%, these are solved in 0.75 and
5.18 seconds, respectively. Hence, although dsj1000 has 999 targets, this one
is solved in less time than concentricCircles1, which has only 16 targets. The
two instances are shown graphically in Fig. 2.14. We can conclude that the
number of segments composing a solution discriminates on the complexity of an
instance of CETSP than the size of the instance itself.

Figure 2.14: Instance dsj1000 (OR 30%, TSPD 2.99%, OC 0.40%) on the
right and instance concentricCircles1 (OR 15%, TSPD 86.01%, OC 37.50%).
[Di Placido et al., 2021]

Related to this issue, we performed further analysis by considering the ap-
proaches presented in 2.5.1. The goal is to determine whether a specific metric
is related to the computational difficulty of the instance. To determine this, we
defined five different classes for each metric: low, low-mid, mid, mid-high, and

49

high. The table 2.9 shows the ranges of each class for each metric.

Metrics Classes Range

TSPD

1 - Low 0%-20%
2 - Low-Mid 20%-40%
3 - Mid 40%-60%
4 - Mid-High 60%-80%
5 - High 80%-100%

OC

1 - Low 0%-5%
2 - Low-Mid 5%-15%
3 - Mid 15%-20%
4 - Mid-High 20%-40%
5 - High 40%-100%

OR

1 - Low 0%-5%
2 - Low-Mid 5%-10%
3 - Mid 10%-15%
4 - Mid-High 15%-30%
5 - High 30%-100%

Table 2.9: Metrics classes based on range

The measures span different ranges. for OR, we considered the estimate
proposed by [Mennell, 2009, Coutinho et al., 2016], in which OR = 0.02 is
defined as low, OR = 0.1 as mid, and OR = 0.3 as high. On the other hand,
for TSPD the values increase homogeneously in the interval [0,100], so it is
reasonable to consider an equal division of classes. Finally, the OC values are
concentrated under the threshold of 30%. Therefore, the high class ranges above
30%, while the rest are generated based on the density of instances in each class.
Next, we categorized the instances by class for each metric and calculated the
average gap from the best-known solution and the average computational time
of the approaches relative to the class of the metric.

The categorization is shown in the table 2.10. The table is defined on three
macro rows, one for each metric. Each row is organized as follows: the first
column reports the classes of the metrics, while the columns for the approaches
provide the average times and gaps. The computational times have been nor-
malized to the number of targets of each instance to have a more homogeneous
estimation. Finally, the columns Mean exhibit the total average of the ap-
proaches relative to the class.

50

T
S
P

D
eg
re
e

T
im

es
G
ap

s
C
la
ss
es

G
A

H
A

(l
b
/u

b
)A

lg
S
Z
V
N
S

M
ea
n

G
A

H
A

(l
b
/u

b
)A

lg
S
Z
V
N
S

M
ea
n

T
S
P
D

1
0,
96

1,
71

0,
09

0,
27

0,
76

0,
41
%

1,
98
%

0,
05
%

1,
08
%

0,
88
%

T
S
P
D

2
0,
33

1,
33

0,
61

0,
06

0,
58

0,
00
%

3,
32
%

0,
87
%

0,
94
%

1,
28
%

T
S
P
D

3
2,
35

1,
03

0,
68

0,
11

1,
04

0,
00
%

3,
34
%

1,
96
%

1,
34
%

1,
66
%

T
S
P
D

4
0,
27

1,
03

0,
79

0,
17

0,
57

0,
00
%

0,
90
%

0,
95
%

0,
54
%

0,
60
%

T
S
P
D

5
0,
50

0,
88

2,
12

0,
05

0,
89

0,
00
%

0,
60
%

3,
12
%

0,
70
%

1,
11
%

O
ve
rl
ap

p
in
g
C
en
te
r

T
im

es
G
ap

s
C
la
ss
es

G
A

H
A

(l
b
/u

b
)A

lg
S
Z
V
N
S

M
ea
n

G
A

H
A

(l
b
/u

b
)A

lg
S
Z
V
N
S

M
ea
n

O
C

1
1,
16

1,
68

0,
11

0,
30

0,
81

0,
48
%

2,
02
%

0,
11
%

1,
17
%

0,
95
%

O
C

2
0,
67

1,
30

0,
69

0,
09

0,
69

0,
00
%

3,
34
%

1,
16
%

0,
87
%

1,
34
%

O
C

3
2,
42

1,
06

0,
76

0,
07

1,
08

0,
00
%

2,
20
%

1,
49
%

1,
27
%

1,
24
%

O
C

4
0,
52

1,
00

1,
09

0,
13

0,
69

0,
00
%

0,
99
%

2,
55
%

0,
65
%

1,
05
%

O
C

5
0,
59

0,
77

2,
50

0,
04

0,
98

0,
00
%

0,
39
%

2,
98
%

0,
96
%

1,
08
%

O
ve
rl
ap

R
at
io

T
im

es
G
ap

s
C
la
ss
es

G
A

H
A

(l
b
/u

b
)A

lg
S
Z
V
N
S

M
ea
n

G
A

H
A

(l
b
/u

b
)A

lg
S
Z
V
N
S

M
ea
n

O
R

1
2,
06

0,
91

1,
38

0,
14

1,
12

0,
00
%

2,
05
%

3,
23
%

0,
89
%

1,
54
%

O
R

2
0,
21

1,
07

1,
15

0,
04

0,
62

0,
00
%

2,
47
%

1,
30
%

1,
11
%

1,
22
%

O
R

3
1,
19

1,
43

0,
40

0,
18

0,
80

0,
55
%

2,
42
%

0,
17
%

1,
67
%

1,
20
%

O
R

4
0,
24

1,
51

0,
14

0,
33

0,
56

0,
00
%

1,
03
%

0,
04
%

0,
24
%

0,
33
%

O
R

5
0,
28

1,
93

0,
01

0,
18

0,
60

0,
00
%

1,
38
%

0,
01
%

0,
27
%

0,
42
%

T
ab

le
2.
10
:
M
ea
n
co
m
pu

ti
ng

ti
m
es

an
d
ga
ps

of
th
e
he

ur
is
ti
c
ap

pr
oa
ch
es

fo
r
ea
ch

cl
as
s
of

th
e
m
et
ri
cs

51

In general, the values of the gaps for the OR metric follow a decreasing trend,
supporting the hypothesis that instances with high OR values are easier to solve.
Nevertheless, if we observe the computational times, the trend is inconstant. On
the contrary, TSPD and OC have more homogeneous trends. For both metrics,
the most difficult class is the third one, i.e., the mid class for both metrics.
Thus, the approaches tend to have more difficulty when defining the tour and
determining the location of the turning points have the same impact on the
solution implementation, i.e., when the targets are arranged heterogeneously on
the plane, and it is necessary to identify a tour with an intermediate number
of segments to traverse them all. This classification includes all those instances
that are neither too simple at the tour level (i.e., a fairly reasonable number of
segments are required), nor too similar to a TSP. An example is illustrated in
figures 2.15.

Figure 2.15: Instance team4_400 with TSPD value equal to 43.45% (3rd class)
and OC value equals to 17.00% (3rd class). [Di Placido et al., 2021]

2.5.3 Solar Panels Diagnostic
In this section, we present a real case study related to the diagnostic reconnais-
sance of solar panels. Specifically, in this case, we plan to use a drone equipped
with a thermal camera to perform diagnostic reconnaissance tours to deter-
mine the operational status of photovoltaic fields. Therefore, it is necessary to

52

determine the tours of the drone.
To simplify the structure of a photovoltaic field, we can say that the solar

panels are connected in series through a structure called String. A set of Strings
is connected in parallel to an inverter. The purpose of the inverter is to trans-
form the direct current coming from the panels into alternating current. The
maintenance of photovoltaic systems to ensure their proper functioning can be
carried out through drones capable of taking thermal images. The thermog-
raphy of a panel provides information about the operating temperature of the
entire panel and the cells that compose it. Many conditions must be met in
order to use a thermal photo for diagnosis:

• The photo must perfectly frame the panel, as shown in the figure 2.16,
i.e., the position where to take the photo with respect to the inclination
and the altitude must be suitable for the correct identification.

– This is necessary to guarantee the image processing algorithm a cor-
rect recognition and to allow it to analyze it automatically.

• Photos should be captured as quickly as possible to ensure the validity of
the diagnosis.

– To verify the correct operation of the individual panels, it is nec-
essary to compare the thermographs of the panels belonging to the
same inverter. Through this comparison, we can understand if there
are overloads on some panels of the same String or compare different
strings with the same degree of energy absorption. The change of
atmospheric agents or temperature changes affects the thermal im-
ages. So, if environmental conditions changes occur, and the drone
goes too long in the tour, the comparison would be compromised.

• The available tour identification time is limited.

– Thermal images should be taken in stable weather conditions. The
presence of atmospheric agents such as wind or clouds impacts tem-
peratures, and electricity production, resulting in inaccurate analysis.
Keeping in mind that the calculation of the target area associated
with each panel depends on the position of the sun, which constantly
changes over time, it is necessary to have an algorithm fast enough
to define the tour, to ensure the launch of the drone as soon as the
weather conditions are stable.

53

Figure 2.16: This image shows how to identify the area in which to take a
thermal photo of the solar panel. From the center of the panel, trace the normal
line to the panel up to the pre-established flight level. A sphere with a radius
depending on the type of camera used is determined at the point of intersection
between the normal line and the plane of flight. The intersection between the
sphere and the plane of flight gives the circle to take a thermal image. It is
essential to point out that the sphere’s position and its radius can vary based
on the position of the sun and the panel inclination. [Di Placido et al., 2021]

We modeled this scenario with a CETSP, whose resolution returns the drone’s
path to take thermal images. The implementation details and how we generated
the instance are outside the scope of this dissertation. They cannot be described
in detail as they were developed for a private partner company and are subject
to disclosure agreements. In compensation, we report in figures 2.17 an exam-
ple of an instance obtained from 48 solar panels. The instance files contain the
positions of the targets with their rays (red circles). Note that the position is
based on the position of the sun and the inclination of the panel. From this, the
circles can translate with respect to the position of the panels. The position of
the photovoltaic panels (blue squares) has been provided for graphical reasons.

54

Figure 2.17: Example instance consisting of 48 solar panels connected to the
same inverter and divided into 6 Strings. The circles in red represent the target
areas associated with the photovoltaic panels represented by blue squares. Note
that the circles’ position can be shifted to the panels’ position because of the
panels’ inclination. The icon representing a drone shows the starting point of
the drone’s route. In black, the path associated with the solution obtained with
the algorithm proposed in this work. [Di Placido et al., 2021]

From the application scenario just described, it was necessary to define an
algorithm capable of solving the CETSP effectively and efficiently. The goal
is to identify the shortest route to produce high-quality photos for all targets.
Hence, in terms of time and space, the route length is critical, both for critical
drone-related and weather issues. Having a short route allows us to reduce the
drone battery’s problems and reduce the possible error due to weather factors.
Another possible solution to reduce the travel time can be to increase the drone’s
speed, yet this could negatively impact the quality of the images due to the lack
of stability.

A third party provided the radii of the targets based on the flight height
and the lens mounted on the drone. Before the GA development, the route was
determined by solving a TSP on the centers of the circles. The savings achieved
in route length with the GA application amounts to 15%. Also, the number of
photos produced compared to the TSP route is the same. Regarding the quality
of the photos, they turn out to be qualitatively comparable or even better than
those produced with the previous approach. For disclosure reasons, we cannot
provide graphical examples. As part of this project, it was necessary to develop
an approach capable of producing convolution filters to identify artifacts or
patterns present in an image. It is crucial to compare the thermographs of the
panels connected to the same inverter to verify the correct functioning of the
individual panels. The comparison is necessary to understand if there is an
overuse of some panels connected to the same String or some Strings compared
to other Strings with the same energy absorption by the inverter. In addition,
the image analysis in question could be disrupted by anything from scratch or
erosion of the panel itself. One of the basic techniques used for image processing

55

is convolution and its inverse, deconvolution [Nussbaumer, 2012]. Convolution
is a mathematical operation that, given two functions f and g as input, produces
a third that expresses how the first one has been modified by the other. It has
several applications such as image quality improvement, e.g., denoising, feature
extraction problems, object detection and recognition, motion tracking, and
many other problems related to automatic photo and video processing [Chen
and Fomel, 2015, Bovik, 2010, Alpaydin, 2009]. In contrast, deconvolution is an
algorithmic process used to reverse convolution effects on data. Specifically, it
aims to identify the function h such that f × g = h. One possible approach to
solving this equation is through the convolution theorem.

Theorem 1 The Fourier transform of a convolution of two functions is equal
to the product of the Fourier transform of the two functions.

Nevertheless, this strategy is not applicable since the function g may not
be unique, the function h may contain zeros, and the data may be affected
by noise. Therefore, while convolution is always possible, deconvolution is not
always feasible. Several methods have been developed in order to calculate
the best possible inverse convolution, such as: Van-Cittert-Deconvolution [Xu
et al., 1994]; Wiener-Deconvolution [Dhawan et al., 1985]; Blind deconvolution
[Michailovich and Tannenbaum, 2007]; Gaussian elimination [Zhao and Desilva,
1998]; Singular value decomposition (SVD) [Sadek, 2012]; Truncated singular
value decomposition (TSVD) [Wu et al., 2017]. The above problem is modeled
as a filter retrieval problem (FRP), in which the main goal is to identify the
filter f ′ such that, starting from the original image I and the filtered image
f(I), f ′(I) = f(I). Most existing techniques in the literature can retrieve the
filter through a dataset of possible filters. Others use linear programming or
integer linear programming, neural networks, or genetic algorithms to generate
filters that reproduce the considered transformation.

We formulated a method capable of recovering the filters applied during the
convolution step from the original image and the filtered one. To do so, we
propose a mathematical formulation capable of generating filters that minimize
the Mean Absolute Error (MAE). We define the average of the differences be-
tween the output obtained and the one we are looking for as MAE. Relative
to images, this corresponds to the average pixel-by-pixel differences in absolute
value between the two images.

2.5.4 Problem definition and notations
This section presents the notation used and the definition of the problem con-
sidered. We also provide an example describing the application of a filter to a
specific image and MAE computation.

During our tests, w.l.o.g., we used grayscale images. In addition, we con-
sidered pixel values in a continuous range [0, 1], although these are generally
represented in the discrete range [0, 255].

Given an image I and a filter f = k × h, we denote by I ′ = f(I) the image
resulting from applying the filter f on the image I. The filter matrix is applied

56

pixel by pixel to obtain the output image I ′; specifically, the value of a generic
pixel I

′

i,j is calculated through the formula:

f(Ii,j) = I
′

i,j =

k∑
a=1

h∑
b=1

I(i−b k2 c+a−1)(j−b
h
2 c+b−1)

× fab (2.10)

Fig. 2.18 shows an example of applying a filter f to an image I, with subse-
quent output I ′. If h and k are even, the indices must be changed accordingly.
In the continuation, we assume that these are odd.

(a) (b) (c) (d)

(e) (f) (g)

Figure 2.18: Example of filter applied to an image I. Figure 2.18a and 2.18b
show the original 5 × 5 images and the matrix of pixels values, respectively.
Figure 2.18c shows the filter matrix applied on the input image in Figure 2.18d.
Figure 2.18g shows the resulting filtered images and 2.18e shows the result-
ing matrix of pixels values after the convolution. Figure 2.18f highlights the
resulting matrix after the threshold cut application. [Capobianco et al., 2021]

Considering the example shown in Fig. 2.18, equation 2.10 can be exploded
as follows:

I ′i,j = Ii−1,j−1 × f1,1 + Ii−1,j × f1,2 + Ii−1,j+1 × f1,3+

Ii,j−1 × f2,1 + Ii,j × f2,2 + Ii,j+1 × f2,3+

Ii+1,j−1 × f3,1 + Ii+1,j × f3,2 + Ii+1,j+1 × f3,3
(2.11)

We use MAE in such a way that we compute the difference between two
images. We calculate MAE as the average of the pixel-by-pixel differences in
absolute values of the images. Formally, let I ′ and I ′′ be two images, the MAE
between these images is calculated according to the formula:

57

MAE(I ′, I ′′) =

w(I′)∑
i=1

h(I′)∑
j=1

|I ′

i,j − I
′′

i,j |

w(I ′)× h(I ′)
(2.12)

We propose a mathematical formulation capable of generating filters that
minimize the Mean Absolute Error. Formally, given an image I and a filtered
image I ′ = f(I), we define a mathematical formulation that, from the two im-
ages, can define a filter f ′ that minimizes the MAE between I ′ and I ′′ = f ′(I).
In real application cases, I ′ is not exactly equal to f(I) but differs by a certain
ε due to errors on the output image (e.g., noise, threshold). Our formulation is
able to produce a filter f ′ that can be equivalent to f (ε = 0) or similar to less
than a constant (ε > 0). We propose a linear programming formulation (LP)
that does not consider any cutoffs or thresholds on the pixel values. Then, we
propose an integer linear programming formulation (ILP) where the pixel values
are in the interval [0,1]. Finally, we propose a third integer linear programming
formulation that uses activation variables for image thresholding. Mathemat-
ically formulating the problem allows us to model the FRP to the optimum
and certify the goodness of the obtained filter. In particular, it is possible to
ascertain whether, given a transformation, it can be obtained using a f filter.
The results obtained show that our approach is competitive with the state of
the art for noise-free images. This work has been published in the journal Soft
Computing [Capobianco et al., 2021]. In the following sections, we will briefly
describe only the first two models, as they are not properly the scope of the
proposed work. For more details, refer to [Capobianco et al., 2021].

2.5.5 Mathematical Formulation
LP-Model: Given an input image I, we want to identify

f ′ =

x11 . . . xh1
...

. . .
...

x1k . . . xhk


such that MAE(I ′, f ′(I)) is minimal. For any xij ∈ f ′, xij ∈ [−δ, δ], with

δ ∈ <. Let ci,j be an auxiliary variable used to represent the value of pixel
i, j ∈ I after applying the filter f ′ on it. Let ei,j be a variable representing the
error committed between the original filtered image and the one produced by
f ′, i.e., the difference in absolute value of ci,j and I

′

i,j . The objective is:

Minimize
∑
i,j

ei,j ∀i, j ∈ I (2.13)

s.t.

58

ci,j = f ′(Ii,j) ∀i, j ∈ I (2.14)

ci,j − I
′

i,j ≤ ei,j ∀i, j ∈ I (2.15)

I
′

i,j − ci,j ≤ ei,j ∀i, j ∈ I (2.16)

xi,j ∈ [−δ, δ] ∀i, j ∈ I (2.17)
ei,j , ci,j ∈ < ∀i, j ∈ I (2.18)

The constraint 2.14 ties the pixel value i, j ∈ I to be equal to f ′(Ii,j), while
the constraints 2.15 and 2.16 force ei,j to be larger than or equal to the error
between I

′

i,j and ci,j in absolute value.
This formulation provides the solution in polynomial time since the model is

composed of linear equations with no integer variables. Nevertheless, applying a
filter to an image may cause some pixel values to exceed the limits of the interval
[0,1], as illustrated in Fig. 2.18e. Hence, the LP model generates an implicit
error during filter identification due to the truncation of pixel values reflected in
the MAE calculation, where we compare the already thresholded images and not
the obtained values. We defined a second mathematical formulation of integer
linear programming that considers this limitation.

ILP-Model: In this model, we introduced three new auxiliary variables, c
′

i,j ,
c0i,j , c1i,j , defined as follows:

c
′

i,j =


0 if ci,j ≤ 0

ci,j if ci,j ∈ (0, 1)

1 if ci,j ≥ 1

ci,j ≥ 1 =⇒ c1i,j = 1

ci,j ≤ 0 =⇒ c0i,j = 1

c
′

i,j is a variable representing the value of the pixel i, j ∈ I after applying
the filter f ′ on it. c0i,j and c1i,j are two variables used to normalize the value of
c
′

i,j . Let M be a sufficiently large number1, we want to minimize the objective
function (2.13) such that the constraint (2.14) and all subsequent constraints
are satisfied:

1The value of M is computed by considering the maximum value that can be taken by a
pixel after applying the f ′ filter on it. Based on the equation (2.10), to obtain the maximum

value we will have that
k∑

a=1

h∑
b=1

I
(i−b k

2
c+a−1)(j−bh

2
c+b−1)

= k × h and fab = δ, for a =

1, ..., k and b = 1, ..., h. Thus, M = k × h× δ

59

c0i,j + c1i,j ≤ 1 ∀i, j ∈ I (2.19)

ci,j +Mc0i,j ≥ 0 ∀i, j ∈ I (2.20)

ci,j −Mc1i,j ≤ 1 ∀i, j ∈ I (2.21)

c
′

i,j ≤ ci,j +Mc0i,j ∀i, j ∈ I (2.22)

c
′

i,j ≥ ci,j −Mc1i,j ∀i, j ∈ I (2.23)

c
′

i,j ≥ c1i,j ∀i, j ∈ I (2.24)

c
′

i,j ≤ 1− c0i,j ∀i, j ∈ I (2.25)

c
′

i,j − I
′

i,j ≤ ei,j ∀i, j ∈ I (2.26)

I
′

i,j − c
′

i,j ≤ ei,j ∀i, j ∈ I (2.27)

xi,j ∈ [−δ, δ] ∀i, j ∈ I (2.28)

ei,j , ci,j , c
′

i,j ∈ [0, 1] ∀i, j ∈ I (2.29)

c0i,j , c
1
i,j ∈ {0, 1} ∀i, j ∈ I (2.30)

The constraint 2.19 assures us that at most one variable between c0i,j and
c1i,j is active, i.e., equal to 1. The constraints 2.20 and 2.21 force the variables
c0i,j and c1i,j to be equal to 1 when ci,j ≤ 0 and ci,j ≥ 1 respectively. The
constraint 2.22 guarantees that the value of c

′

i,j will be less than or equal to the
value of c1i,j in the case where c0i,j is inactive, i.e., equal to 0. The counterpart is
the constraint 2.23, which ensures that the value of c

′

i,j will be greater than or
equal to the value of ci,j if c1i,j is inactive. Finally, the constraints 2.24 and 2.25
respectively require c

′

i,j to be equal to 1 if c1i,j = 1, and equal to 0 if c0i,j = 1.
The combination of the constraints ensures us that c

′

i,j , c
1
i,j and c0i,j are set

correctly: the constraints 2.20 and 2.21 do not force the variables c1i,j or c0i,j to
be inactive in the case where ci,j ∈ (0, 1). In fact, this condition is satisfied by
the constraints 2.22 and 2.23. Moreover, 2.24 and 2.25 force c

′

i,j to be equal to
1 or 0, respectively, which may not happen by considering only 2.22 and 2.23.

Finally, the constraints 2.26 and 2.27 are used to greater or at most equal
the error between I

′

i,j and c
′

i,j in absolute value.

2.5.6 Computational results
We ran several tests to verify the effectiveness of our methods. These were run
on a machine running Windows 10 OS, with AMD Ryzen 7 3750 Processor 2.3
GHz and 16GB of RAM. The formulations were implemented in Java language
(JDK 14.0) and were solved using CPLEX ver. 12.9. In our experiments, if
not explicitly described, we considered a 3x3 matrix and a range [−10, 10] as
the filter size, δ = 10. We restricted the filter size since most common kernels
are of this size [Simonyan and Zisserman, 2014]. In addition, another crucial

60

parameter is the range of values of the filter elements. As mentioned, we set the
range to [−10, 10], even though it is unlimited; yet, after some testing, we can
say that the performance of our framework does not deteriorate by setting the
range to [−10, 10].

Several experiments have been conducted to study the behavior of the im-
plemented models. In test A we analyzed the ability of the models to identify
filters applied on the reference images. Test B focuses on the robustness of the
proposed approaches, specifically their tolerance in images affected by noise.
In Test C, we examine the ability of our formulations to define filters capable
of emphasizing specific characteristics of an image. Test D aims to verify the
impact of an image sample’s choice on the solution produced. Finally, in test
E, we check how the model behaves when the filter size and the range of values
are varied.

In the following, we will briefly describe the results obtained from the tests
without going into too much detail. For more information on the tests just
mentioned, refer to the results section of [Capobianco et al., 2021].

Test A: We performed our experiments using benchmark images with geo-
metric figures and images in this specific test. On these, filters known from
image processing, such as Sobel or blur, and filters defined by us were applied
(fig. 2.19). The results show that the ILP model identifies all applied filters to
the optimum in 0.30 seconds, except for one case where the image produced by
the obtained filter has an MAE of 0.2% compared to the original. At the same
time, the LP model produces filters capable of producing filtered images with
relatively low MAE.

(a) Original (b) Filtered

Figure 2.19: Racoon Test images. 2.19a is the input image and 2.19b is the
output images obtained applying a filter on it. [Capobianco et al., 2021]

Test B: For this test, we perturbed the filtered images with noise at different
percentages, i.e., 1%, 3%, 5%, and 10%, to see how this impacts the solution
produced by our models. The results show that the applied perturbations do
not overly impact the results of the ILP model, which provides filters with

61

MAE ≤ 4%.

Test C: We examined the ability of our approaches to store filters capable of
accentuating image features that were manually marked. To do this, we used
samples of different shapes, such as hexagon, flower, rectangle, and triangle. For
each of these, we manually emphasized features, such as edges or vertices. We
divided the test into two steps: First, we produced the filter considering the
images as a whole. In the second, we use only the feature sample we want to
highlight to identify the filter (feature extraction). The results indicate that our
approaches can reasonably identify all those filters that emphasize continuous
areas of the image (e.g., edges). If we want to emphasize discontinuous areas,
such as vertices, our approaches approximate them to continuous. Finally, LP
and ILP work best for feature extraction, drastically reducing the MAE of the
produced images.

Test D: We consider a fragment of the image on large images to reduce com-
putation time. Therefore, we performed several tests to understand the impact
of the selected sample on the final result. The experiments carried out are two:
in the first, we examined the effect of size, considering sizes from a minimum
of 20x20 to a maximum of 200x200. In the second one, we examined the effect
that the choice of different portions of the image has, considering four different
fragments for the identification of the filter. The features considered are illus-
trated in fig. 2.20. The results show that the LP model is both sample and
size-dependent, while these choices do not affect the ILP model. It successfully
identifies the applied filters with computational times that do not exceed 0.30
seconds in all cases.

62

Figure 2.20: The features considered for the test D. These feature are: TopLeft
((0,0)-(19,19)), Nose ((600,450)-(619,469)), Eye ((550,300)-(569,319)), and Ear
((450,50)-(469,69)). [Capobianco et al., 2021]

Test E: Finally, in this test, we examined the behavior of the models in the
case in which we want to identify a filter with different characteristics from the
original. Specifically, we conducted tests looking for filters f ′ of size different
from f (different k × h), and filters considering different ranges [−δ, δ].The re-
sults show that ILP’s model is filter-size dependent and range dependent: for
the former, if the filter to be identified has a magnitude greater than the se-
lected magnitude, then the model reaches the time limit, identifying filters that
produce images with MAE ≤ 12%, instead, selecting a size greater than or
equal to the original, ILP identifies the applied filter correctly. For the latter,
letMax(f) be the element of f with the absolute maximum value, the closer δ is
to Max(f), the smaller the MAE between images. Moreover, the times follow a
decreasing trend for δ ≤Max(f), until they become constant for δ ≥Max(f).

From the results, we can say that our formulations, especially the ILP one,
identify a wide range of filters applicable on the input image, even if the final
image is affected by noise, and with a simple 20x20 fragment of the image.
In addition, our approaches can identify filters for emphasizing manually high-
lighted features. Finally, having formulated the problem mathematically, our
approaches certify the presence of a k × h filter capable of emphasizing the se-
lected feature. Another fundamental characteristic is their low computational
complexity, which makes them usable in contexts where energy consumption
must be minimized, as in our case.

63

2.6 Conclusions
The close enough traveling salesman problemis a generalization of the classical
traveling salesman problem. The goal is to determine the shortest route that
traverses all the neighborhoods of a given set of targets. This problem can model
several real-world application scenarios such as meter reading. Moreover, the
application potential of this problem may grow soon, given the introduction of
drones.

This dissertation proposes a genetic algorithm for solving CETSP, supported
by two local searches and a mathematical model. The results show that GA out-
performs all other approaches in the literature, providing 32 new best solutions
out of 62 instances and 27 solutions already found by others. In addition, we
present two new metrics regarding instance characteristics to identify features of
the problem that condition the difficulty and the structure of the solution. We
performed an extended analysis to show that these new metrics provide addi-
tional information to the overlap ratio, a metric already found in the literature.

We presented a new real-world application scenario of CETSP related to so-
lar panel diagnostics using drones. The problem is identifying the route that the
drone should follow to perform a reconnaissance flight over the PV array. The
application is related to a research project involving the University of Molise.
With the application of the genetic algorithm presented in the previous sections,
we show how we obtain considerable savings on the drone route, a key factor in
the correct detection of solar panel performance.

The above work is collected in [Di Placido et al., 2021], which has been
submitted to and accepted by the journal Computers and Operations Research.

Finally, still within the research project, we present three mathematical for-
mulations for the Filter Retrieval Problem: two concerning the deconvolution
process and one concerning thresholding. We formulated a linear programming
(LP) and integer linear programming (ILP) model to identify deconvolution fil-
ters and performed several tests to prove their validity and performance. We
can see from the results that our formulations, especially the ILP one, iden-
tify several filters applied on the input images, even if the output images are
affected by noise, with a small 20x20 sample of the total image. The output
images produced by the filters produced by the models have a low MAE by
considering the original image as an oracle. In addition, our models can bring
out features with a single manually produced image. Finally, if our approach
cannot identify a filter that reliably accentuates certain features, we can argue
that it is impossible to bring out those features using filters.

The results of this second part of the project were collected in the paper
[Capobianco et al., 2021] and published in the journal Soft Computing.

64

Chapter 3

Mixed Constrained
Generalized Routing Problem

3.1 Introduction
Real-world application scenarios of CETSP and CEARP have been studied in
recent years due to the spread of radio-controlled or autonomous vehicles that
can fly (e.g., drones). The most common case is meter reading through RFID
systems [Shuttleworth et al., 2008], but it has been shown how these prob-
lems are adaptable in different contexts [Poikonen et al., 2017, Yuan et al.,
2007, Di Placido et al., 2021]. Nevertheless, in a real-world scenario, the drone
cannot always fly freely (CETSP) or follow the road network (CEARP). Sup-
pose that our drone needs to fly over a school, a hospital, or a private residential
area. Moreover, in the case of military or high-security zones, the crossing is
forbidden. This chapter introduces the mixed constrained generalized routing
problem (MCGRP), a generalization of both CETSP and CEARP. Our medium
has a different degree of freedom depending on its zone. With MCGRP, we can
model a mixed situation between CETSP and CEARP by combining them. We
introduce the concept of flight zones associated with different flight rules. We
formally present the mixed constrained generalized routing problem, a gener-
alization, and a combination of CETSP and CEARP to model real air routing
situations. Also, we provide a series of steps to follow when defining benchmark
instances for the problem. Finally, we propose a phased approach to solve the
problem as one of its parent problems, namely CETSP or CEARP. The chapter
is structured as follows: in the section 3.2 we formally introduce the problem
and the concept of flight zone. In the 3.3 section, we describe the approach used
to relate the problem to others already known. In the 3.4 section we show the
computational results.

65

3.2 Problem Definition
To define the mixed constrained generalized routing problem (MCGRP), we
introduce the concept of flight zones. We differentiate between two of them:
one in which it is possible to fly freely, called free-flight zone (FFZ), and a
second one in which the possibility of flight is restricted to specific corridors
(e.g., roads) or prohibited, called constrained flight zones (CFZ). Let N be the
set of nodes on the plane, and let p0 be the starting point named depot. We
refer to the elements of N as targets. With each of them vi ∈ N is associated an
area or neighborhood N(vi) of circular shape, with center in vi and radius rvi .
The goal of the mixed constrained generalized routing problem (MCGRP) is to
find the shortest tour T = {p0, pi, ..., pk, p0}, k = |N |, which starts in depot p0,
traverses all disks N(vi), and ends in p0.

The problem is defined on a graph G = (N,A, V, Z), where N is the set of
targets, A is the set of arcs, V is the set of auxiliary nodes (e.g. crossing between
streets), and Z is the set of CFZs. The points pi, i 6= 0 visited by the tour T
are called turning points. Each turning point pi is associated with a target vi,
i.e., d(pi, vi) ≤ ri, where d(pi, vi) is the Euclidean distance between pi and vi,
This means that a turning point pi is the point where the tour intersects the
neighborhood of the target vi. For any target vi ∈ N belonging to the FFZs,
the turning point pi can be unique or any point in the segment that through
N(vi). Instead, for each target vi ∈ N belonging to CFZs, let ai ∈ A be an
arc through N(vi), the turning point pi corresponds to one of the intersection
points between ai and N(vi), or any point of ai contained in N(vi).

Given a pair of turning points pi and pj , the distance between them is given
by the Euclidean distance d(pi, pj) plus the distance of the arcs that make up the
spline pipj . Hence, the total cost of the tour T is equal to

∑|N |−1
n=1 d(pi, pi+1) +

pipj . Note that if pi, pj ∈ FFZ, pipj = 0, whereas if pi, pj ∈ CFZ, d(pi, pj) =
0.

3.3 Methodology
This section will present the techniques used to solve the MCGRP. Specifically,
we have defined a pipeline of operations to reduce this problem to an already
known one to use existing algorithms to solve it.

3.3.1 Conversion Algorithm
it is possible to trace the problem back to one already known in the literature:
MCGRP with only CFZs is reducible to a CEARP; similarly, an instance of
MCGRP with only FFZs can be traced back to a CETSP. From this, we can
make the problem solvable as a CETSP or CEARP through a series of graph
reduction transformations. In the present case, we have made the problem a
CETSP so that it is solvable with the GA presented in 2.3. The following
paragraphs describe the steps to solve the problem as a CETSP.

66

Graph Reduction: The first step is to reduce the complexity of the instance
through some observations. Since the MCGRP can be traced to CETSP, we
can carry over the considerations made in the section 2.3.1 for this problem as
well. In addition, we can remove arcs and nodes within the FFZs. Trivially,
nodes and arcs outside the CFZs are not needed since we can move freely in
space. If arcs inside CFZs continue to FFZs, these are split so that only those
inside CFZs are considered. Finally, we can model the perimeter of CFZs with
arcs so that we also have tours that follow the perimeter without entering the
zone directly. An explanatory example is shown in the figure 3.1

Figure 3.1: Example of graph reduction. On the top, we have the initial instance,
while on the bottom we have the reduced instance.

67

Targets discretization: The second step consists in discretizing the targets
into point sets. Given the presence of two different zones, the targets are differ-
ently discretized if they belong to an FFZs or a CFZs. For the former, we used
the discretization models described in [Carrabs et al., 2017b, Carrabs et al.,
2017a], where a k number of points are identified on the circumference of each
target as follows. Given k, we decide on a random angle ang. We place the
first discretization point; then, to obtain the remaining points, we iteratively
compute ang such that k points are equidistant from each other. While for the
second, we use the intersection points between the arcs and the neighborhoods
of the targets. An example is shown in figure 3.2.

Figure 3.2: Example of targets discretization

Arches generation: After defining the discretization points for each target,
we need to connect them through arcs. To do this, we consider the discretization
points in pairs and generate an arc between them. The points belong to different
targets since, trivially, it is not necessary to connect points that discretize the
same target. The second set of generated arcs connects the discretization points
with the intersection points of the CFZs to the FFZs. Finally, an additional set
of arcs joins the intersection points of the CFZs to each other to connect the
various CFZs. Figure 3.3 shows the result of creating the arcs on an instance.

68

Figure 3.3: Result of the arches generation step

Graph generalization: After creating the additional arcs, the problem is
solvable as a CEARP. In fact, the end result of the previous steps is a graph
G′ = (N,A′, V), where A′ contains all the arcs of A with the addition of the
newly generated arcs. On the contrary, an additional step is required to lead it
back to a CETSP. Starting fromG′ we define the complete graphG′′ = (V ′′, A′′),
where V ′′ is the set of nodes corresponding to the targets of the graph G, and
A′′ is the set of arcs connecting the nodes. Specifically, let v′′i ∈ V ′′ a generic
node of graph G′′, a generic arc a′′ = (v′′i , v

′′
j) ∈ A′′ is a path defined by a subset

of arcs {a′i, a′j , ..., a′k} ⊆ A′ such that the starting point is v′′i and the ending
point is v′′j . The set A′′ is easily obtained by solving a shortest path problem
on the graph G′ for each pair of nodes vi, vj ∈ V . At this point, G′′ configures
a GTSP and can be solved through algorithms known in the literature, such as
the one presented in [Carrabs et al., 2017b] for solving CETSP.

3.4 Computational Results
Several tests have been conducted to verify the validity of our methods. In
the context of this work, we mainly focused on the study of the limiting case
containing only FFZs, then on CETSP. A genetic algorithm, presented in section
2.3, was implemented and tested on the instances of the literature for CETSP.
For more information on this, refer to section 2.5.

3.5 Conclusions
CETSP and CEARP have been extensively studied in recent years for their
ability to model a large number of real-world applications, especially related

69

to drone use. The most common case is meter reading through RFID systems
[Shuttleworth et al., 2008], but it has been shown how these problems are adapt-
able in different contexts [Poikonen et al., 2017, Yuan et al., 2007, Di Placido
et al., 2021]. Nevertheless, in a real-world scenario, the drone cannot always fly
freely (CETSP) or follow the road network (CEARP). Suppose that our drone
needs to fly over a school, a hospital, or a private residential area. Moreover, in
the case of military or high-security zones, the crossing is forbidden. We pre-
sented a mixed constrained generalized routing problem generalization of both
CETSP and CEARP problems. Our medium has different degrees of freedom
depending on the area it is traversing. This generalization can model a mixed
situation where both problems are present together. We introduced the concept
of flight zones, where different flight rules are associated with each of them. We
have presented a simple scheme to follow to define benchmark instances, and,
further, we have defined a pipeline of operations to relate the above problem to
the parent ones. As part of this work, we traced the original problem back to a
CETSP and tested our approach, presented in the 2.3 section.

70

Chapter 4

Generalized Close Enough
Traveling Salesman Problem

4.1 Introduction
The introduction of drones as a means of freight transportation opens up re-
search to various applications in logistics and reconnaissance. The generalization
of the classical traveling salesman problem, presented as the close enough trav-
eling salesman problem, has attracted researchers in recent years because of its
ability to model most of the real-world applications possible with drones. We
recall that the CETSP perfectly describes all those applications. It is necessary
to determine the shortest tour that starts at a specific point, called depot, crosses
a set of areas associated with the customers to be covered, generally circular
returns to the depot. In the literature, we find several examples of real-world
problems modeled through CETSP [Shuttleworth et al., 2008, Poikonen et al.,
2017, Yuan et al., 2007, Di Placido et al., 2021], and we find as many solv-
ing methods, ranging from exact algorithms [Behdani and Smith, 2014, Carrabs
et al., 2017b, Carrabs et al., 2017a, Coutinho et al., 2016] to heuristics and meta-
heuristics that can provide reasonable upper and lower bounds for the problem.
Furthermore, metrics for examining the instance complexity from its morphol-
ogy and resolution have also been defined and studied [Yang et al., 2018, Wang
et al., 2019, Carrabs et al., 2020, Di Placido et al., 2021].

This chapter presents a generalization of CETSP called the generalized close
enough traveling salesman problem (GCETSP). Each customer has several ac-
tion areas (neighborhoods), instead of only one, all centered on its location with
radii that differ from each other. To each of these areas is associated a prize
collected to the passage of that region. Introducing different neighborhoods for
each customer allows modeling of different real-world application contexts, in
which we get greater rewards if we approach close to the targets. For example,
when considering RFID meter reading systems, the rewards can represent the
probability of successful meter reading. This probability decreases as we move

71

away from the customer, which explains the decreasing reward with respect to
the length of the disk radius. The goal of the GCETSP is to determine an al-
lowable route that maximizes the difference between the total collected reward
and the route length. By an eligible route for the problem, we mean a route
that visits exactly one disk per customer and depot.

This part of the dissertation is structured as follows. The problem and the
notations used are described in the 4.2 section, while the 4.3 section is devoted
to the solving approaches. In the section 4.4 we present instance generation,
computational results, and additional analysis.

4.2 Problem definition and notations
Let N be the set of customers arranged on a Euclidean plane, and let n0 be the
starting point named depot. For each customer ni ∈ N\n0, we define a set of
concentric disksKi in ni of varying radius, i.e., rjni

< rj+1
ni

, j+1, ..., |K|−1, where
rjc is the radius of the diskKj with center in ni. Each diskKj is associated with a
premium pjc that grows as the radius decreases, i.e., pjc > pj+1

c , j+ 1, ..., |K| − 1.
The depot is associated with a circle of radius 0 with prize 0. The goal of
GCETSP is to determine the tour that maximizes the difference between the
total prize collected and the length of the tour, and that visits at most one circle
per customer.

We refer to the points visited by tour T that traverse a single disk associated
with customer ni as turning point tpi. Unlike CETSP, in this problem we
define as a generic turning point tpi a triple (xi, yi, r

t
i) associated with customer

ni ∈ N , where xi, yi are the coordinates of the point on the Euclidean plane such
that d(tpi, ni) ≤ rti , where d(tpi, ni) is the Euclidean distance between points
tpi and ni. This means that tpi is that point where the tour crosses customer
ni on the circumference Kt

i . An explanatory example is shown in figure 4.1.

72

p0

Figure 4.1: Example of GCETSP instance. The point p0 is the depot. Each
target has three concentric disks categorized as follows: the green ones are the
outer, the black ones the mids, and the blue ones the inners.

4.3 Methodology
In this section we describe two solving heuristics for solving GCETSP. The
first is the genetic algorithm (GA), described in 4.3.1, while the second is a
constructive algorithm called nearOpt, described in 4.3.2.

4.3.1 Genetic algorithm
The genetic algorithm we propose below is an adaptation of the one presented
in 2.3 to solve CETSP. Given the similarity between the two problems, we
adapted our approach for CETSP to this new variant. Below, we provide a brief
description of the GA highlighting the changes applied to handle GCETSP.

Chromosome encoding and fitness function The chromosome is a repre-
sentation of the solution for GCETSP. Each chromosome is an ordered sequence
of genes, each representing a turning point in the tour they describe, as shown
in figure 4.2

73

tp0 tp1 tp3 tp4 tp2

(x0, y0, r
0
0) (x1, y1, r

0
1) (x3, y3, r

0
3) (x4, y4, r

1
4) (x2, y2, r

2
2)

p0

tp1

tp2

tp3

tp4

Figure 4.2: Example of chromosome with the relative turning points. Each
target ci has three concentric disks: mid (black circle), inner (blue circle), and
outer (green circle), with different radii r0i , r1i and r2i , respectively. The tour
derived by the chromosome is highlighted in red.

As mentioned above, the turning points also have information about the
disk on which they are placed, since each customer has more than one disk from
which we can choose.

Each chromosome is evaluated through a fitness function. In the case of
GCETSP, this function is the difference between the collected reward P (T) and
the total length of the tour w(T) corresponding to the sequence of turning points
T .

f(T) = P (T)− w(T)

Initial population and generation of new individuals The population
of each generation has a fixed number of chromosomes, popsize. We generated
the population randomly, as in the first version of the approach. The significant
difference is the random choice of disks on which the turning points are placed.

74

Specifically, for each customer ni ∈ N − {n0}, we randomly choose a disk Kt
i

and generate a turning point that crosses it. The location is chosen at random
on the circumference. Finally, we obtain an admissible tour T by considering a
random permutation of these turning points with the addition of the depot at
the beginning and end of the tour. This process is repeated until the population
is filled.

The population of each generation is obtained in the same way as the pre-
vious version of the GA. We define two population halves by two steps: Let
P = {c0, c1, ..., ck} be the current population, where ci ∈ P is a generic chromo-
some, we sort the elements of P in descending order by fitness value. From P

we extract the first |P |2 to be preserved for the next generation P ′. Finally, to
fill P ′, we generate the second part by applying the crossover operator described
in 2.3.5.

In addition, we use a mutation operator to avoid premature convergence of
the algorithm and preserve heterogeneity in the population. The operator is
applied with a certain probability on every chromosome in the first half of the
population. The value of this probability is equal to the number of generations
without improvement divided by 100. The operator chooses an arbitrary interval
[i1, i2], with i1, i2 computed randomly. Then, each gene belonging to the interval
is replaced with another random one. Unlike CETSP, in GCETSP, we have
multiple neighborhoods for each customer. For this, the position of the new
turning point is determined on a randomly chosen Kk

j disk.

Improvement procedures Enhancement procedures are used when a chro-
mosome is created or modified to improve its fitness value. For CETSP, we im-
plemented three procedures: a 2opt, intending to improve the crossing sequence
of the turning points without changing their position, and a second-order cone
programming algorithm (SOCP) and a bisection algorithm (3Alg), to optimize
the position of the turning points by fixing the visiting sequence. We remem-
ber that the bisection algorithm has been introduced to lighten computation
times. Although the SOCP supplies the optimal position of the turning points,
if executed repeatedly, it burdens the execution of the GA, even if the resolu-
tion happens in polynomial time. In contrast, the bisection algorithm supplies
a heuristic solution to the problem of determining the optimal position of the
turning points.

In this variant, in addition to the three procedures described above, we
propose a fourth, called improveSolution, to improve the rewards collected by
modifying the disks on which the turning points are placed. This procedure
works as follows.

Starting from a tour T , improveSolution considers all consecutive triplets of
turning points tpi, tpj , tpk of T . For each triplet, the extreme points are fixed,
while the intermediate point is the one to be repositioned. The goal is to identify
the disk Kt

j of target nt such that the difference between the reward collected in
crossing the disk and the length of the triplet is maximized. Let rkj be the radius
of the current disk currently associated with tpj , we compute tp

′

j = (x
′

j , yj
′, rtj)

75

s.t. rtj 6= rkj . This point is identified through the bisection algorithm introduced
above and described in section 2.3.7. Then, if ptj − d(tpitp

′

j) + d(tp
′

jtpk) ≥
pkj−d(tpitpj)+d(tpjtpk), then tp

′

j replaces the old turning point of the target nj .
This step is repeated ∀rtj 6= rkj associated with nj . The procedure ends when all
triplets are considered. In case a point is replaced by another one on a different
disk, the procedure resumes from its predecessor, since it may be convenient to
move the previous point as well. An example of how improveSolution works is
shown in Figure 4.3

Figure 4.3: Example of improveSolution application. On the left we have the
original tour, while on the right the improved one.

Stopping criteria The genetic algorithm terminates when it reaches itsize it-
erations or when there is no improvement on the best fitness value after a specific
number of generations itimpr. At the end of execution, the best chromosome in
the current population is returned as output.

4.3.2 nearOpt
nearOpt is a constructive algorithm that works as follows. Initially, it identifies
the traversal sequence of the customers, e.g., by solving a TSP considering only
the location of the customers. Once the sequence is known, we only need to
identify which disks to traverse for each customer. Then, for each customer
ni ∈ N − n0, we produce |Ki| points, one for each disk. The algorithm uses
SOCP by considering one disk at a time. For example, if we consider K0

i ,∀ni ∈
N − {n0}, using SOCP the result is a set of turning points T 0, positioned at
the optimum according to the considered sequence, such that tpini ≤ r0i , i =
1, ..., |N |. nearOpt solves the shortest path problem on these points to obtain a
solution for GCETSP. Let Qi = {tp0i , tp1i , ..., tp

|Ki|
i } be the set of turning points

on the neighborhoods relative to customer ni. We construct a graph where the
first and last nodes correspond to the depot n0. Then, the |Ki| points associated
with customer ni are connected only with the predecessor and successor of the
sequence. For each of these, we have an incoming edge from each predecessor’s
points and an outgoing edge to each successor’s point. Trivially, the first node

76

has no incoming edges, while the last node has no outgoing edges. Unlike the
classical shortest path problem, the weight of the edges also includes the rewards
related to the disks. Specifically, since each point is located on a specific disk,
it reaps the reward associated with that disk if crossed. From this, the weight
of each arc is calculated as:

w(e) = tpki tp
j
i+1 − p

j
i+1

Where tpki is the point associated with the customer ni placed on the Kk
i

disk, tpji+1 is the point associated with the successor ni+1 placed on the Kj
i+1

disk, and pji+1 is the collectible prize relative to the Kj
i+1 disk. For the first and

last nodes, there is only one point with associated edges having prize equal to
0. An example of the graph produced is shown in figure 4.4.

Figure 4.4: Example of the graph associated with the sequence
{n0, n1, n2, ..., n|N |−1, n0} on an instance with three disks for each target. The
red points are the depot. The green points are related to the outer disks, the
black ones to the mid disks, and the blue ones to the inner disks. The points
associated with a customer are connected only with the points of the successor.
The edges’ weights are calculated as the difference of the points’ distance and
the prize collected by traversing the destination point. For instance, the weight
of e1 is equal to tp0tp11 − p11.

The solution of the shortest path problem determines which disks are tra-
versed for the various customers so that the maximum gain is obtained while
minimizing the tour length at the same time. Finally, we apply a SOCP to
improve the turning points’ location further.

77

4.4 Computational tests
We devote this section to the results and analysis of the experiments performed.
Given the novelty of the problem, the first part is devoted to the description of
instance generation for GCETSP. Then, a second section emphasizes the differ-
ences between the original CETSP problem and its GCETSP variant through
the conformation of the solutions. Finally, we evaluated the performance of the
GA and nearOpt presented in the 4.3 section. The experiments were conducted
on a machine equipped with Windows 10 Home as the OS, an AMD Ryzen
7 3750H 2.30 GHz processor, and 16 GB of RAM, and both algorithms were
written in the Java language (JDK 13.0). The GA parameters were set as in the
tests performed for CETSP: the number of individuals per population popsize
was set to 50, the number of generations itsize equal to 1000, and itimpr equal
to itsize

20 .

4.4.1 Instance generation
GCETSP is a new variant of the famous CETSP and needs a set of benchmarks
to test the solving approaches. Given the similarity to its main problem, it is
possible to use the instances proposed for CETSP in [Mennell, 2009] and adapt
them for GCETSP. It was possible by adding two disks together with the one
already present in the CETSP instances. Let r0i be the radius of the original
disk K0

i a of generic customer ni ∈ N − {n0}; the inner disk K1
i has radius

r1i =
r0i
3 , and the outer disk K2

i has radius r2i = 2r0i .
We classified the instances following the logic presented in the section 2.5.

Varied overlap ratios includes the instances with a fixed radius for all customers
but with different overlap ratios between them. Overlap Ratio contains the
instances whose radii have been adjusted to have a specific OR value, and in
Arbitrary Radius we find all the instances for which the customers have different
radii.

In addition to these instances, we propose a second set of instances, called
convex hull instances, for which the optimal solution is easily obtained or de-
duced. These are produced as follows: given a set of points randomly arranged
on the plane, we determine the smallest convex polygon containing them (con-
vex hull). The polygon’s vertices will make up the set of N customers, while
the remaining points are discarded. Finally, we add the depot n0 = (0, 0) to the
set. For each customer except the depot, we define three disks: ∀ni ∈ N−{n0},
r0i = 10, r1i =

r0i
3 , r

2
i = 2r0i . Figure 4.5 shows an example of a convex hull

instance.

78

Figure 4.5: Example of an instance produced by the convex hull method. The
green circles are the outer disks, the black ones the mid disks, and the blue ones
the inner disks.

As for the rewards, we propose a simple strategy based on the ratios of the
radii (RR). Let k be the step and rxi the radius of the disk Kx

i , the reward
relative to the generic disk Kx

i is equal to pti =
rti
rxi
× k. For convenience, in our

experiments rxi = r0i is the radius of the original disk K0
i of the customers. For

example, considering the above instances, the ratios are r0i
r0i

= 1, r1i
r0i

= 3 and
r2i
r0i

= 1
2 . Therefore, with k = 2, we get p0i = 2, p1i = 6 and p2i = 1.

The rewards associated with customer neighborhoods weigh heavily on the
structure of the optimal solution for obvious reasons: the greater the gain ob-
tainable from internal disks, the greater the chance of going inward since this
deviation has little impact on the objective function. Recall that the problem’s
objective function is the difference between the prizes collected and the length
of the tour. On the contrary, external disks are preferred if the gain is low
since deviating inside is inconvenient. Based on this, we performed several tests
to identify the right pricing configuration for the instances described earlier to
maximize balance and heterogeneity in disk selection. We tried four different
combinations of rewards computed with the RR strategy: k = 1, 2, 3, 5. The
results are reported in the table 4.1 where, for each k, we record the percentage
of disks traversed by the GA solutions, divided into mid, inner and outer.

We can see that we prefer internal disks for high values of k. Instead, with low
values of k, we prefer external disks. Nevertheless, a suitable configuration for

79

k=1 k=2 k=3 k=5
mid inner outer mid inner outer mid inner outer mid inner outer
9.76% 81.07% 9.15% 4.96% 90.56% 4.48% 3.00% 94.86% 2.13% 0.69% 98.75% 0.56%

Table 4.1: Disks traversed by GA solutions on adapted CETSP instances con-
sidering different prizes using RR strategy.

GCETSP instances turns out to be when k = 1, which provides the best variance
of disk selection. So, we consider instances with this pricing configuration in
the remainder of this section.

4.4.2 CETSP comparison
An initial set of tests was performed to compare CETSP and GCETSP solutions.
The purpose is to analyze the differences between the two problems and exam-
ine how much their respective solutions differ from each other. We considered
adapted CETSP instances for these experiments. The comparison was made
between three CETSP solutions and the GCETSP solution computed through
the GA presented in 4.3. The three CETSP solutions were obtained by solving
a CETSP using the approach described in 2.3 considering only one type of disk
at a time, e.g., external only, intermediate only, or internal only. The results
are shown in the tables 4.2, 4.3, and 4.4. These tables have the same grouping
of instances proposed in the previous CETSP results. They are organized as
follows: the first column shows the name of the instances, while the next three
sets of columns display the values relative to CETSP solutions considering only
intermediate, internal, or external disks at a time, respectively. For each of
these, we report the value of the solutions, the computational time in seconds,
and the percentage gap from the GCETSP solution, calculated through the for-
mula: GAvalue−value

GAvalue
, where GAvalue is the value of the GCETSP solution. At

the same time, value is the value of the CETSP solution on the corresponding
disk. The best solution values are presented in bold. Finally, the last column
contains the GA solutions, where we also list the disks selected from the so-
lution. It is important to note that several values in the value columns are
negative due to the differences between premium and length. For this reason,
the percentage gaps are reported as absolute values, and for instances where the
GA performs worse than the CETSP solutions, we report it as negative. We
decided to use this notation to avoid ambiguity in reading.

80

In
st
an

ce
s

m
C
E
T
S
P

iC
E
T
S
P

oC
E
T
S
P

G
A

va
lu
e

ti
m
e

ga
p

va
lu
e

ti
m
e

ga
p

va
lu
e

ti
m
e

ga
p

va
lu
e

ti
m
e

m
id

in
ne
r

ou
te
r

bo
nu

s1
00
0

58
8.
15

87
86
.9
1

69
.5
7%

21
42

.0
2

23
03
4.
32

-1
0.
82
%

26
7.
15

75
80
.4
9

86
.1
8%

19
32
.9
3

13
88

6.
54

14
2

82
4

34
bu

bb
le
s1

-3
13
.1
3

2.
21

25
.8
1%

-2
95
.1
0

1.
20

18
.5
6%

-2
53
.6
7

2.
41

1.
92
%

-2
48

.9
0

1.
32

4
19

13
bu

bb
le
s2

-3
52
.2
8

2.
22

45
.7
5%

-3
21
.6
5

2.
57

33
.0
8%

-3
10
.9
5

1.
75

28
.6
5%

-2
41

.7
0

6.
76

24
31

21
bu

bb
le
s3

-4
03
.9
6

7.
29

50
.0
8%

-5
67
.3
7

21
.1
4

11
0.
79
%

-3
84
.2
8

3.
24

42
.7
7%

-2
69

.1
6

22
.8
0

56
40

30
bu

bb
le
s4

-6
21
.4
6

27
.8
4

10
1.
58
%

-6
67
.3
5

31
.4
4

11
6.
47
%

-4
54
.1
6

12
.9
5

47
.3
1%

-3
08

.2
9

56
.4
1

60
54

70
bu

bb
le
s5

-7
88
.1
6

45
.0
7

71
.8
1%

-9
81
.7
9

10
0.
41

11
4.
02
%

-5
26
.7
8

35
.9
7

14
.8
3%

-4
58

.7
3

88
.7
1

65
88

97
bu

bb
le
s6

-9
05
.6
6

17
6.
16

61
.6
3%

-1
20
4.
14

17
0.
77

11
4.
89
%

-7
11
.1
4

15
5.
01

26
.9
1%

-5
60

.3
4

25
7.
61

89
10

9
12

6
bu

bb
le
s7

-1
50
1.
31

80
9.
15

14
1.
66
%

-2
42
3.
71

92
0.
56

29
0.
14
%

-8
80
.9
7

25
4.
67

41
.8
1%

-6
21

.2
4

44
3.
75

12
3

13
0

15
3

bu
bb

le
s8

-1
75
0.
72

12
30
.2
7

11
4.
04
%

-2
73
8.
59

19
76
.3
5

23
4.
81
%

-1
03
8.
14

11
36
.8
3

26
.9
2%

-8
17

.9
6

77
6.
32

14
6

16
9

18
1

bu
bb

le
s9

-1
66
5.
22

26
55
.5
0

81
.3
2%

-2
21
6.
79

35
87
.6
1

14
1.
38
%

-1
15
8.
51

11
07
.4
8

26
.1
4%

-9
18

.4
0

11
45

.5
0

15
3

20
8

23
3

ch
ao
Si
ng

le
D
ep

-8
39
.6
1

10
.6
9

53
.3
6%

-5
51
.7
6

39
.3
3

0.
78
%

-8
14
.1
9

14
.1
1

48
.7
2%

-5
47

.4
7

24
.2
8

25
17
5

0
co
nc
en
tr
ic
C
ir
cl
es
1

-3
7.
16

0.
94

10
1.
06
%

-2
1.
54

0.
45

16
.5
7%

-2
1.
63

0.
50

17
.0
3%

-1
8.
48

0.
47

1
12

3
co
nc
en
tr
ic
C
ir
cl
es
2

-1
17
.1
3

2.
77

74
.0
2%

-8
3.
56

0.
85

24
.1
4%

-8
7.
57

0.
83

30
.1
0%

-6
7.
31

1.
33

1
23

12
co
nc
en
tr
ic
C
ir
cl
es
3

-2
10
.0
4

2.
79

60
.1
2%

-1
72
.1
6

1.
82

31
.2
5%

-1
68
.0
3

1.
39

28
.1
0%

-1
31

.1
7

4.
47

1
35

24
co
nc
en
tr
ic
C
ir
cl
es
4

-3
48
.6
4

12
.5
6

65
.5
3%

-2
64
.8
1

9.
46

25
.7
3%

-2
76
.0
1

6.
38

31
.0
5%

-2
10

.6
2

14
.6
1

9
61

34
co
nc
en
tr
ic
C
ir
cl
es
5

-4
84
.9
9

26
.0
4

62
.3
7%

-3
76
.7
7

20
.7
7

26
.1
4%

-4
00
.1
5

8.
04

33
.9
7%

-2
98

.6
9

18
.0
3

8
86

54
ro
ta
ti
ng

D
ia
m
on

ds
1

-1
2.
29

0.
80

17
1.
41
%

17
.2
1

0.
39

0.
00
%

-8
.5
9

0.
38

14
9.
92
%

17
.2
1

0.
67

0
20

0
ro
ta
ti
ng

D
ia
m
on

ds
2

-8
0.
48

1.
94

52
7.
12
%

18
.8
4

0.
96

0.
00
%

-8
0.
14

2.
02

52
5.
31
%

18
.8
4

1.
00

0
60

0
ro
ta
ti
ng

D
ia
m
on

ds
3

-2
00
.8
8

10
.6
0

25
7.
73
%

12
7.
36

8.
38

0.
00
%

-2
45
.7
0

41
.6
6

29
2.
92
%

12
7.
36

6.
57

0
18

0
0

ro
ta
ti
ng

D
ia
m
on

ds
4

-4
50
.6
6

41
.8
5

40
8.
16
%

14
6.
24

32
.7
4

0.
00
%

-5
43
.1
7

93
.5
1

47
1.
41
%

14
6.
24

24
.4
1

0
32

0
0

ro
ta
ti
ng

D
ia
m
on

ds
5

-8
30
.7
5

37
6.
41

27
4.
97
%

47
4.
79

48
4.
20

0.
00
%

-1
08
9.
69

78
2.
30

32
9.
51
%

47
4.
79

15
9.
44

0
68

0
0

te
am

1_
10
0

-2
07
.3
4

3.
86

20
0.
38
%

-1
38
.5
3

4.
16

10
0.
70
%

-1
73
.6
7

2.
05

15
1.
61
%

-6
9.
02

9.
63

19
72

9
te
am

2_
20
0

-4
6.
68

23
.7
5

13
2.
50
%

99
.0
1

25
.6
0

31
.0
6%

-3
8.
83

2.
82

12
7.
04
%

14
3.
62

44
.8
7

71
11
6

10
te
am

3_
30
0

-1
64
.2
0

99
.3
0

15
3.
37
%

19
8.
60

11
7.
86

35
.4
5%

-1
74
.2
2

44
.4
0

15
6.
63
%

30
7.
65

13
6.
02

22
24

3
34

te
am

4_
40
0

-2
85
.5
2

42
8.
43

20
6.
31
%

17
7.
78

81
2.
95

33
.8
1%

-2
56
.3
8

28
5.
82

19
5.
46
%

26
8.
57

44
1.
42

31
32

5
44

te
am

5_
49
9

-2
01
.5
0

99
5.
23

13
2.
80
%

58
2.
72

13
19
.7
9

5.
14
%

-3
04
.4
1

84
7.
66

14
9.
55
%

61
4.
30

38
4.
72

2
46

8
29

te
am

6_
50
0

27
4.
78

51
8.
12

71
.9
5%

10
46

.8
3

69
3.
98

-6
.8
7%

11
7.
67

43
.4
1

87
.9
9%

97
9.
56

21
06

.4
7

58
44

2
0

T
ab

le
4.
2:

C
om

pa
ri
so
n
be

tw
ee
n
C
E
T
SP

an
d
G
C
E
T
SP

so
lu
ti
on

s
on

C
E
T
SP

ad
ap

te
d
in
st
an

ce
s
w
it
h
va
ri
ed

ov
er
la
p
ra
ti
os
.
T
he

C
E
T
SP

so
lu
ti
on

s
ar
e
co
m
pu

te
d
co
ns
id
er
in
g
on

e
di
sk

at
a
ti
m
e:

m
C
E
T
SP

on
m
id

di
sk
s,
iC
E
T
SP

on
in
ne
r
di
sk
s,
an

d
oC

E
T
SP

on
ou

te
r
di
sk
s.

81

In
st
an

ce
s

m
C
E
T
S
P

iC
E
T
S
P

oC
E
T
S
P

G
A

va
lu
e

ti
m
e

ga
p

va
lu
e

ti
m
e

ga
p

va
lu
e

ti
m
e

ga
p

va
lu
e

ti
m
e

m
id

in
ne

r
ou

te
r

O
ve
rl
ap

ra
ti
o
0.
02

d4
93

28
9.
77

86
4.
47

75
.9
5%

12
04

.8
8

83
6.
70

0.
00
%

91
.2
7

74
1.
98

92
.4
2%

12
04

.8
8

32
0.
38

0
49
2

0
ds
j1
00
0

60
.2
9

20
32
5.
36

96
.1
4%

16
10

.4
3

13
97
5.
89

-3
.1
8%

-1
57
.0
8

98
92
.9
9

11
0.
06
%

15
60
.8
7

17
26
.9
0

21
90
0

78
kr
oD

10
0

-6
0.
04

9.
05

15
7.
05
%

10
5.
23

4.
13

0.
00
%

-7
8.
35

5.
18

17
4.
46
%

10
5.
23

3.
68

0
99

0
lin

31
8

-2
52
1.
54

17
4.
28

39
.3
6%

-2
67
7.
24

15
3.
79

47
.9
6%

-2
04
3.
76

22
9.
54

12
.9
5%

-1
80

9.
38

16
9.
88

40
14
6

13
1

pc
b4

42
11
8.
46

82
6.
50

86
.8
6%

90
1.
52

58
9.
50

0.
00
%

-1
6.
99

55
0.
04

10
1.
88
%

90
1.
52

17
8.
69

0
44
1

0
ra
t1
95

35
.6
8

55
.2
3

90
.5
2%

37
6.
20

55
.7
6

0.
00
%

-2
0.
19

51
.7
0

10
5.
37
%

37
6.
20

26
.2
0

0
19
4

0
rd
40
0

-6
33
.0
4

68
6.
27

17
07
.4
8%

-1
32
.1
6

69
4.
92

27
7.
33
%

-5
78
.3
9

84
4.
78

15
51
.4
4%

-3
5.
02

45
6.
07

1
32
0

78
O
ve
rl
ap

ra
ti
o
0.
1

d4
93

39
0.
69

34
5.
37

70
.1
0%

13
09

.8
3

10
63
.7
2

-0
.2
4%

16
4.
14

46
2.
08

87
.4
4%

13
06
.7
6

61
4.
51

3
48
9

0
ds
j1
00
0

62
2.
13

39
51
.0
5

66
.0
8%

22
69

.6
5

10
20
5.
80

-2
3.
76
%

24
7.
78

20
82
.3
6

86
.4
9%

18
33
.9
3

21
35
.7
2

19
8

73
3

68
kr
oD

10
0

9.
33

3.
92

94
.2
6%

16
0.
50

5.
32

1.
32
%

-2
3.
04

2.
08

11
4.
17
%

16
2.
64

10
.9
9

2
96

1
lin

31
8

-1
08
7.
89

74
.7
7

94
.4
2%

-1
43
2.
04

12
9.
46

15
5.
93
%

-7
79
.7
8

57
.2
3

39
.3
6%

-5
59

.5
5

20
9.
08

98
14
8

71
pc

b4
42

29
5.
18

46
6.
16

72
.2
0%

10
57
.0
2

43
3.
24

0.
45
%

12
1.
16

35
2.
09

88
.5
9%

10
61

.8
4

56
6.
24

4
43
6

1
ra
t1
95

12
5.
86

21
.3
1

72
.4
0%

45
3.
01

36
.3
0

0.
67
%

41
.0
9

7.
06

90
.9
9%

45
6.
06

65
.6
4

0
19
4

0
rd
40
0

-5
9.
41

61
2.
93

11
5.
67
%

35
0.
96

50
0.
70

7.
42
%

-8
7.
06

14
8.
60

12
2.
96
%

37
9.
11

71
7.
80

84
29
8

17
O
ve
rl
ap

ra
ti
o
0.
3

d4
93

42
2.
24

23
3.
54

69
.0
7%

13
74

.5
7

24
4.
35

-0
.7
0%

20
4.
91

26
6.
43

84
.9
9%

13
65
.0
3

93
4.
31

2
49
0

0
ds
j1
00
0

79
9.
05

11
81
.4
4

64
.0
5%

26
19

.6
8

56
46
.4
1

-1
7.
86
%

41
9.
50

24
.5
2

81
.1
3%

22
22
.6
8

23
53
.6
9

15
9

80
1

39
kr
oD

10
0

40
.4
6

2.
20

80
.4
8%

20
7.
29

1.
56

0.
00
%

18
.3
5

0.
58

91
.1
5%

20
7.
29

6.
51

0
99

0
lin

31
8

-4
48
.9
6

29
.6
9

12
9.
82
%

-4
50
.9
1

24
.9
6

13
0.
81
%

-2
45
.9
2

4.
81

25
.8
8%

-1
95

.3
6

12
7.
35

10
8

19
4

15
pc

b4
42

35
7.
46

12
1.
23

69
.5
4%

11
78

.6
8

11
5.
64

-0
.4
3%

16
9.
27

32
.3
6

85
.5
8%

11
73
.6
8

51
0.
40

1
44
0

0
ra
t1
95

14
8.
30

6.
49

71
.1
4%

51
3.
81

5.
58

0.
00
%

70
.8
0

1.
66

86
.2
2%

51
3.
81

47
.0
5

0
19
4

0
rd
40
0

17
4.
16

67
.1
2

75
.1
0%

72
3.
06

62
.0
1

-3
.3
8%

82
.1
9

11
.5
3

88
.2
5%

69
9.
41

75
7.
13

60
33
6

3

T
ab

le
4.
3:

C
om

pa
ri
so
n
be

tw
ee
n
C
E
T
SP

an
d
G
C
E
T
SP

so
lu
ti
on

s
on

C
E
T
SP

ad
ap

te
d
in
st
an

ce
s
w
it
h
fix

ed
ov
er
la
p
ra
ti
o.

T
he

C
E
T
SP

so
lu
ti
on

s
ar
e
co
m
pu

te
d
co
ns
id
er
in
g
on

e
di
sk

at
a
ti
m
e:

m
C
E
T
SP

on
m
id

di
sk
s,
iC
E
T
SP

on
in
ne
r
di
sk
s,
an

d
oC

E
T
SP

on
ou

te
r
di
sk
s.

82

In
st
an

ce
s

m
C
E
T
S
P

iC
E
T
S
P

oC
E
T
S
P

G
A

va
lu
e

ti
m
e

ga
p

va
lu
e

ti
m
e

ga
p

va
lu
e

ti
m
e

ga
p

va
lu
e

ti
m
e

m
id

in
ne

r
ou

te
r

bo
nu

s1
00
0r
dm

R
ad

67
.9
3

48
0.
23

95
.8
8%

16
96
.8
9

54
63
.8
0

-2
.9
7%

-2
39
.4
6

38
.7
5

11
4.
53
%

16
47
.9
5

40
11
.6
7

50
90
2

48
d4

93
rd
m
R
ad

35
7.
72

5.
58

72
.3
9%

12
96
.3
6

19
.7
3

-0
.0
5%

12
9.
80

1.
39

89
.9
8%

12
95
.7
3

27
.5
6

0
49
0

2
ds
j1
00
0r
dm

R
ad

37
4.
25

25
.8
6

82
.8
0%

21
43
.3
2

21
3.
25

1.
52
%

-4
7.
76

5.
23

10
2.
19
%

21
76
.4
9

18
6.
28

36
94

3
20

kr
oD

10
0r
dm

R
ad

-4
2.
83

6.
97

13
5.
82
%

11
9.
20

6.
51

0.
32
%

-7
0.
57

1.
58

15
9.
01
%

11
9.
58

8.
73

0
98

1
lin

31
8r
dm

R
ad

-1
73
0.
42

8.
71

59
.1
9%

-1
74
4.
60

50
.3
0

60
.5
0%

-1
56
1.
23

2.
38

43
.6
3%

-1
08
7.
01

55
.9
8

34
22
4

59
pc

b4
42
rd
m
R
ad

22
1.
00

16
.1
6

78
.4
4%

10
27
.0
3

15
5.
93

-0
.2
0%

34
.0
3

4.
04

96
.6
8%

10
24
.9
4

10
8.
44

1
44
0

0
ra
t1
95
rd
m
R
ad

12
5.
78

1.
35

74
.7
8%

49
7.
90

1.
11

0.
15
%

35
.8
0

0.
42

92
.8
2%

49
8.
64

31
.2
7

1
19
3

0
rd
40
0r
dm

R
ad

-8
47
.6
9

70
1.
06

30
7.
44
%

-2
31
.9
3

69
7.
39

11
.4
8%

-8
66
.9
8

25
4.
56

31
6.
71
%

-2
08
.0
5

23
5.
30

0
36
7

32
te
am

1_
10
0r
dm

R
ad

-2
88
.5
4

1.
84

12
9.
54
%

-1
73
.5
6

4.
90

38
.0
8%

-2
93
.2
1

0.
78

13
3.
26
%

-1
25
.7
0

11
.2
1

12
79

9
te
am

2_
20
0r
dm

R
ad

-4
13
.6
6

16
.0
4

21
4.
45
%

-2
31
.7
3

36
.2
1

76
.1
5%

-4
01
.6
5

6.
80

20
5.
32
%

-1
31
.5
5

82
.3
3

19
14
6

35
te
am

3_
30
0r
dm

R
ad

-7
8.
09

3.
75

11
8.
28
%

35
7.
44

12
.8
3

16
.3
3%

-1
74
.4
2

0.
84

14
0.
83
%

42
7.
20

21
1.
46

30
25

9
11

te
am

4_
40
0r
dm

R
ad

-6
00
.3
1

31
7.
04

33
84
.6
8%

-2
2.
46

62
1.
90

22
2.
88
%

-6
12
.8
3

68
.7
9

34
53
.1
9%

18
.2
8

22
8.
07

5
35
5

40
te
am

5_
49
9r
dm

R
ad

52
.8
1

2.
52

94
.6
1%

94
2.
77

21
.7
6

3.
72
%

-1
39
.5
6

1.
43

11
4.
25
%

97
9.
18

22
.8
5

14
47
0

15
te
am

6_
50
0r
dm

R
ad

-1
20
.9
8

26
.1
5

11
8.
57
%

64
3.
79

33
0.
64

1.
19
%

-2
75
.8
7

3.
97

14
2.
34
%

65
1.
57

14
4.
84

39
42

7
34

T
ab

le
4.
4:

C
om

pa
ri
so
n
be

tw
ee
n
C
E
T
SP

an
d
G
C
E
T
SP

so
lu
ti
on

s
on

C
E
T
SP

ad
ap

te
d
in
st
an

ce
s
w
it
h
ra
nd

om
ra
di
i.
T
he

C
E
T
SP

so
lu
ti
on

s
ar
e
co
m
pu

te
d
co
ns
id
er
in
g
on

e
di
sk

at
a
ti
m
e:

m
C
E
T
SP

on
m
id

di
sk
s,
iC
E
T
SP

on
in
ne
r
di
sk
s,
an

d
oC

E
T
SP

on
ou

te
r

di
sk
s.

83

The genetic algorithm identifies solutions for GCETSP that differ particu-
larly from CETSP solutions: as for the mCETSP the solution gaps ranging from
a minimum of 25.81% (bubbles1) to a maximum of 3384.68% (team4_400rdmRad),
while for iCETSP, the solution gaps spaces from a minimum of 0.15% (rat195rdmRad)
to a maximum of 290.14% (bubbles7). Finally, with respect to oCETSP, the
solution gaps varies from a minimum of 1.92% (bubbles1) to a maximum of
3453.19% (team4_400). Note also how several instances are easily solved by
considering only internal disks, such as rotatingDiamonds instances. This sce-
nario generally happens on instances with a large density of customers that
overlap each other, as reported in the analysis presented in 2.5.2. In these cases,
inner disks are much more frequent, as they do not impact the final solution too
much. Nevertheless, we noticed the same behavior for instances with OR fixed
at 0.02. It is reasonable since, with low ORs, the CETSP can be traced to a
TSP. Again, we have that inner disks are preferred over outer disks since going
towards the center has little impact on the solution. Also, it is essential to note
that some instances prefer external disks, i.e., bubbles ones. oCETSP solutions
are generally better than their CETSP counterparts for these instances. Finally,
we can see how considering one disk at a time is a poor strategy for GCETSP
resolution. A heterogeneous choice of disks is required to obtain reasonable
GCETSP solutions.

Regarding the computational times, we can say that they are relatively con-
tained, except for large instances whose resolution is heavy, such as bonus1000
and dsj1000. In general, considering only external disks results in a faster reso-
lution than their counterparts, as we can see from oCETSP times, while consid-
ering only internal disks results in slower resolution, as we can see from iCETSP.
It is reasonable since considering only one type of disk corresponds to resolv-
ing a CETSP with a given OR, low or high depending on whether internal or
external disks are considered, respectively. As we have shown in section 2.5.2,
instances with a high OR value are computationally easier to solve. For the
genetic algorithm, the resolution times are relatively short. It is important to
note that when the solution of an instance contains a prevalence of external
disks, such as for bubbles, the computational times are reduced.

4.4.3 GA performance
In the previous tests, we show how GA identifies better solutions than those
based on the resolution of the classical CETSP. However, this is not sufficient
to affirm the capabilities of our algorithm. To do so, we performed additional
tests to compare the solutions produced by the GA with optimal or pseudo-
optimal solutions. In these tests, we used the convex hull instances described in
4.4.1, for which the optimal solution is easily identifiable. For how we structured
the instances in terms of customer locations, identifying the visit sequence is
straightforward. So, it only remains to identify which disk to traverse for each
customer. To do this, we assume that nearOpt can do this at the optimum for
these instances. The algorithm works by taking a visit sequence as input and
extensively exploring the search space to find the best location of the turning

84

points. For instances where we can quickly identify the optimal sequence, we
assume that we will produce solutions that tend towards optimality. For convex
hull instances, the optimal visit sequence corresponds to the convex hull with the
addition of the depot at the beginning and end. Based on this, we use nearOpt
to produce solutions to estimate optimal solutions from a given sequence. In
the figure 4.6 we show a solution obtained from the latter.

Figure 4.6: Example of a solution for the instance produced by nearOpt.

We cannot say with certainty that the solutions produced by nearOpt are
great, but we can say that if they are not, they are close to being so.

We compared the nearOpt approach with GA, and the results are reported
in the table 4.5 organized as follows: In the first column, we report the instance
name, while in the following two columns, we provide the solution values and
computational times of nearOpt and GA, respectively. For the latter, we also list
the disks covered and the percentage gap with respect to the nearOpt solution.

GA correctly identifies all solutions of the convex hull instances. Never-
theless, we cannot properly evaluate the performance of our genetic algorithm
from these instances, as they are easy to solve since the number of customers
to cover varies from only 8 to 13. Therefore, we have performed further tests
on more complex instances, intending to evaluate our approach properly. For
this purpose, we used the adapted instances of CETSP. For the definition of
high-quality solutions, we used nearOpt. Given the higher complexity of the
problem, we gave the procedure several sequences for each instance to explore

85

Instances nearOpt GA
value time value time mid inner outer GAP

hull1 1275.40 0.03 1275.40 0.60 0 1 10 0.00%
hull2 1485.44 0.03 1485.44 0.66 0 2 8 0.00%
hull3 2955.62 0.03 2955.62 1.13 0 4 5 0.00%
hull4 1536.79 0.03 1536.79 0.86 0 2 9 0.00%
hull5 1369.55 0.03 1369.55 0.55 0 2 9 0.00%
hull6 2893.97 0.03 2893.97 1.44 0 6 7 0.00%
hull7 1400.98 0.03 1400.98 0.58 0 2 11 0.00%
hull8 1484.06 0.03 1484.06 0.46 0 1 7 0.00%
hull9 1500.26 0.03 1500.26 0.55 0 6 7 0.00%

Table 4.5: Comparison between nearOpt and GA on convex hull instances

the solution space in depth. A sequence can be obtained by solving a TSP on
the instance. To obtain different ones, we perturbed the instances. Specifi-
cally, let E be the set of arcs defined by the instance, and w(e) the weight of
the arc e ∈ E, w(e) = w(e) × f , where f is a random number in the interval
[1 − eps, 1 + eps]. The parameter eps is the degree of perturbation applied to
the instance. Trivially, the greater its value, the greater the difference between
the produced sequences. Nevertheless, if we excessively increase the value eps,
the solutions produced would be of poor quality since the instance is spoiled
compared to the original.

In our experiments, we computed 100 different sequences with eps = 0.1 and
solved the TSPs using the LKH algorithm proposed by [Lin and Kernighan,
1973]. Then, we obtained a set of GCETSP solutions from the computed se-
quences by applying nearOpt on them. From this set, we preserve the best one.
Finally, we compared the GA solutions with the nearOpt solutions. The results
are shown in the tables 4.6, 4.7 and 4.8. The tables are organized as follows:
the first column reports the instance name, while in the next two, we report
information about the solutions computed by GA and nearOpt, respectively.
For both approaches, we show the solution’s value; the computational times in
seconds; the disks selected from a solution, divided as mid, inner, outer; and the
percentage gap from the best solution found. The gap is obtained by applying
the formula: UB−Best

Best , where UB is the solution value of the approach, and
Best is the best solution found for that instance.

86

In
st
an

ce
s

G
A

n
ea
rO

p
t

va
lu
e

ti
m
e

m
id

in
ne
r

ou
te
r

ga
p

va
lu
e

ti
m
e

m
id

in
ne

r
ou

te
r

ga
p

bo
nu

s1
00
0

19
32
.9
3

13
88
6.
54

14
2

82
4

34
7.
07
%

20
80
.0
5

59
.8
8

1
98
4

15
0.
00
%

bu
bb

le
s1

-2
48
.9
0

1.
32

4
19

13
0.
00
%

-2
69
.7
6

2.
42

3
20

13
8.
38
%

bu
bb

le
s2

-2
41
.7
0

6.
76

24
31

21
0.
00
%

-2
80
.0
9

5.
05

10
57

9
15
.8
9%

bu
bb

le
s3

-2
69
.1
6

22
.8
0

56
40

30
0.
00
%

-3
19
.0
6

7.
33

17
21

88
18
.5
4%

bu
bb

le
s4

-3
08
.2
9

56
.4
1

60
54

70
0.
00
%

-5
02
.0
6

10
.4
9

23
44

11
7

62
.8
6%

bu
bb

le
s5

-4
58
.7
3

88
.7
1

65
88

97
0.
00
%

-5
51
.7
2

13
.8
0

15
33

20
2

20
.2
7%

bu
bb

le
s6

-5
60
.3
4

25
7.
61

89
10
9

12
6

0.
00
%

-7
28
.6
7

17
.7
4

21
52

25
1

30
.0
4%

bu
bb

le
s7

-6
21
.2
4

44
3.
75

12
3

13
0

15
3

0.
00
%

-8
84
.7
6

20
.2
4

23
66

31
7

42
.4
2%

bu
bb

le
s8

-8
17
.9
6

77
6.
32

14
6

16
9

18
1

0.
00
%

-1
14
3.
11

24
.5
5

33
65

39
8

39
.7
5%

bu
bb

le
s9

-9
18
.4
0

11
45
.5
0

15
3

20
8

23
3

0.
00
%

-1
34
7.
74

30
.4
1

62
13
2

40
0

46
.7
5%

ch
ao
Si
ng

le
D
ep

-5
47
.4
7

24
.2
8

25
17
5

0
0.
00
%

-5
81
.3
6

10
.6
4

1
13
8

61
6.
19
%

co
nc
en
tr
ic
C
ir
cl
es
1

-1
8.
48

0.
47

1
12

3
0.
00
%

-2
0.
42

1.
99

1
13

2
10
.5
1%

co
nc
en
tr
ic
C
ir
cl
es
2

-6
7.
31

1.
33

1
23

12
0.
00
%

-7
8.
30

2.
72

1
30

5
16
.3
2%

co
nc
en
tr
ic
C
ir
cl
es
3

-1
31
.1
7

4.
47

1
35

24
0.
00
%

-1
53
.2
9

3.
50

1
42

17
16
.8
6%

co
nc
en
tr
ic
C
ir
cl
es
4

-2
10
.6
2

14
.6
1

9
61

34
0.
00
%

-2
54
.8
9

6.
31

1
84

19
21
.0
2%

co
nc
en
tr
ic
C
ir
cl
es
5

-2
98
.6
9

18
.0
3

8
86

54
0.
00
%

-3
47
.5
6

8.
21

1
10
0

47
16
.3
6%

ro
ta
ti
ng

D
ia
m
on

ds
1

17
.2
1

0.
67

0
20

0
0.
00
%

17
.2
1

1.
72

1
19

0
0.
00
%

ro
ta
ti
ng

D
ia
m
on

ds
2

18
.8
4

1.
00

0
60

0
0.
00
%

18
.8
4

3.
27

1
59

0
0.
00
%

ro
ta
ti
ng

D
ia
m
on

ds
3

12
7.
36

6.
57

0
18
0

0
0.
00
%

12
7.
33

9.
91

1
17
9

0
0.
02
%

ro
ta
ti
ng

D
ia
m
on

ds
4

14
6.
24

24
.4
1

0
32
0

0
0.
00
%

14
6.
23

17
.1
7

1
31
9

0
0.
01
%

ro
ta
ti
ng

D
ia
m
on

ds
5

47
4.
79

15
9.
44

0
68
0

0
0.
00
%

47
4.
59

36
.1
4

1
67
9

0
0.
04
%

te
am

1_
10
0

-6
9.
02

9.
63

19
72

9
0.
00
%

-1
30
.5
2

7.
80

10
20

70
89
.0
9%

te
am

2_
20
0

14
3.
62

44
.8
7

71
11
6

10
0.
00
%

60
.3
7

13
.0
8

57
14
3

0
57
.9
6%

te
am

3_
30
0

30
7.
65

13
6.
02

22
24
3

34
0.
00
%

10
0.
16

18
.5
6

11
16
6

12
3

67
.4
4%

te
am

4_
40
0

26
8.
57

44
1.
42

31
32
5

44
0.
00
%

15
5.
05

22
.5
2

14
31
3

73
42
.2
7%

te
am

5_
49
9

61
4.
30

38
4.
72

2
46
8

29
0.
00
%

58
6.
33

24
.6
1

1
49
0

8
4.
55
%

te
am

6_
50
0

97
9.
56

21
06
.4
7

58
44
2

0
0.
00
%

95
6.
76

26
.2
4

4
49
6

0
2.
33
%

T
ab

le
4.
6:

C
om

pa
ri
so
n
be

tw
ee
n
G
A

an
d
ne
ar
O
pt

on
in
st
an

ce
s
w
it
h
va
ri
ed

ov
er
la
p
ra
ti
os

87

In
st
an

ce
s

G
A

n
ea
rO

p
t

va
lu
e

ti
m
e

m
id

in
ne

r
ou

te
r

ga
p

va
lu
e

ti
m
e

m
id

in
ne

r
ou

te
r

ga
p

O
ve
rl
ap

ra
ti
o
0.
02

d4
93

12
04

.8
8

32
0.
38

0
49
2

0
0.
00
%

11
75
.2
4

27
.5
3

1
49
1

0
2.
54
%

ds
j1
00
0

15
60
.8
7

17
26
.9
0

21
90
0

78
3.
81
%

16
22

.7
1

60
.2
3

1
98
0

18
0.
00
%

kr
oD

10
0

10
5.
23

3.
68

0
99

0
0.
00
%

10
3.
54

6.
62

1
98

0
1.
60
%

lin
31
8

-1
80

9.
38

16
9.
88

40
14
6

13
1

0.
00
%

-2
01
0.
03

16
.2
7

28
87

20
2

11
.0
9%

pc
b4

42
90

1.
54

17
8.
69

0
44
1

0
0.
00
%

87
8.
10

22
.4
8

1
44
0

0
2.
60
%

ra
t1
95

37
6.
20

26
.2
0

0
19
4

0
0.
00
%

37
1.
01

10
.6
2

1
19
3

0
1.
38
%

rd
40
0

-3
5.
02

45
6.
07

1
32
0

78
0.
00
%

-1
02
.1
8

19
.5
5

1
37
7

21
19
1.
76
%

O
ve
rl
ap

ra
ti
o
0.
1

d4
93

13
06

.7
6

61
4.
51

1
49
1

0
0.
00
%

12
91
.8
9

26
.9
6

1
49
1

0
1.
14
%

ds
j1
00
0

18
33
.9
3

21
35
.7
2

19
8

73
3

68
9.
45
%

20
25

.3
8

61
.8
2

99
85
8

42
0.
00
%

kr
oD

10
0

16
2.
64

10
.9
9

2
96

1
0.
00
%

15
9.
61

6.
47

1
98

0
1.
87
%

lin
31
8

-5
59

.5
5

20
9.
08

98
14
8

71
0.
00
%

-7
51
.5
8

16
.7
7

67
40

21
0

34
.3
2%

pc
b4

42
10

61
.8
4

56
6.
24

4
43
6

1
0.
00
%

10
25
.2
1

22
.6
0

1
44
0

0
3.
45
%

ra
t1
95

45
6.
06

65
.6
4

0
19
4

0
0.
00
%

43
6.
20

11
.3
6

1
19
3

0
4.
36
%

rd
40
0

37
9.
11

71
7.
80

84
29
8

17
0.
00
%

28
7.
95

21
.4
7

22
31
1

66
24
.0
4%

O
ve
rl
ap

ra
ti
o
0.
3

d4
93

13
65
.0
3

93
4.
31

2
49
0

0
0.
11
%

13
66

.5
6

28
.8
6

1
49
1

0
0.
00
%

ds
j1
00
0

22
22
.6
8

23
53
.6
9

15
9

80
1

39
12
.8
6%

25
50

.7
0

62
.6
0

1
99
8

0
0.
00
%

kr
oD

10
0

20
7.
29

6.
51

0
99

0
0.
00
%

20
5.
17

6.
19

1
98

0
1.
02
%

lin
31
8

-1
95

.3
6

12
7.
35

10
8

19
4

15
0.
00
%

-3
64
.3
0

17
.4
2

11
4

14
8

55
86
.4
8%

pc
b4

42
11

73
.6
8

51
0.
40

1
44
0

0
0.
00
%

11
15
.1
9

22
.2
1

1
44
0

0
4.
98
%

ra
t1
95

51
3.
81

47
.0
5

0
19
4

0
0.
00
%

50
2.
97

10
.7
8

1
19
3

0
2.
11
%

rd
40
0

69
9.
41

75
7.
13

60
33
6

3
0.
00
%

67
8.
30

21
.9
2

1
39
8

0
3.
02
%

T
ab

le
4.
7:

C
om

pa
ri
so
n
be

tw
ee
n
G
A

an
d
ne
ar
O
pt

on
in
st
an

ce
s
w
it
h
fix

ed
ov
er
la
p
ra
ti
os

88

In
st
an

ce
s

G
A

n
ea
rO

p
t

va
lu
e

ti
m
e

m
id

in
ne
r

ou
te
r

ga
p

va
lu
e

ti
m
e

m
id

in
ne
r

ou
te
r

ga
p

bo
nu

s1
00

0r
dm

R
ad

16
47
.9
5

40
11

.6
7

50
90

2
48

0.
00

%
16

07
.9
4

58
.0
1

11
98

1
8

2.
43

%
d4

93
rd
m
R
ad

12
95
.7
3

27
.5
6

0
49

0
2

0.
00

%
12

67
.2
9

26
.3
3

1
49

1
0

2.
20

%
ds
j1
00

0r
dm

R
ad

21
76
.4
9

18
6.
28

36
94

3
20

0.
00

%
20

00
.1
5

60
.6
0

2
98

4
13

8.
10

%
kr
oD

10
0r
dm

R
ad

11
9.
58

8.
73

0
98

1
0.
00

%
11

8.
60

6.
88

1
97

1
0.
82

%
lin

31
8r
dm

R
ad

-1
08
7.
01

55
.9
8

34
22
4

59
0.
00
%

-1
48

5.
95

16
.1
7

19
87

21
1

36
.7
0%

pc
b4

42
rd
m
R
ad

10
24
.9
4

10
8.
44

1
44

0
0

0.
00

%
98

3.
34

21
.2
7

1
44

0
0

4.
06

%
ra
t1
95

rd
m
R
ad

49
8.
64

31
.2
7

1
19
3

0
0.
00

%
48

0.
54

10
.5
0

1
19

3
0

3.
63

%
rd
40

0r
dm

R
ad

-2
08
.0
5

23
5.
30

0
36

7
32

0.
00

%
-2
28

.0
3

19
.2
8

1
39

6
2

9.
60

%
te
am

1_
10

0r
dm

R
ad

-1
25
.7
0

11
.2
1

12
79

9
0.
00

%
-1
64

.5
3

6.
78

2
61

37
30

.8
9%

te
am

2_
20

0r
dm

R
ad

-1
31
.5
5

82
.3
3

19
14
6

35
0.
00
%

-2
08

.7
0

11
.3
5

8
15

6
36

58
.6
5%

te
am

3_
30

0r
dm

R
ad

42
7.
20

21
1.
46

30
25

9
11

0.
00

%
31

8.
25

15
.9
6

12
20

3
85

25
.5
0%

te
am

4_
40

0r
dm

R
ad

18
.2
8

22
8.
07

5
35

5
40

0.
00

%
-1
8.
06

20
.2
8

1
38

9
10

19
8.
81

%
te
am

5_
49

9r
dm

R
ad

97
9.
18

22
.8
5

14
47

0
15

0.
00

%
89

4.
31

25
.4
4

6
48

6
7

8.
67

%
te
am

6_
50

0r
dm

R
ad

65
1.
57

14
4.
84

39
42

7
34

0.
00

%
54

1.
73

24
.2
9

17
47

9
4

16
.8
6%

T
ab

le
4.
8:

C
om

pa
ri
so
n
be

tw
ee
n
G
A

an
d
ne
ar
O
pt

on
in
st
an

ce
s
w
it
h
ra
nd

om
ra
di
i

89

The genetic algorithm identifies better solutions in most of the benchmarks
considered, with gaps ranging from a low of 0.82% (kroD100rdmRad) to a high
of 198.81% (team4_400rdmRad). On large instances, GA produces inferior
solutions, while nearOpt succeeds better, such as on bonus1000 and dsj1000
with different overlap ratios. Furthermore, the solutions produced by nearOpt
are comparable to those of GA, except for a few instances where the difference
is substantial. Let’s examine the morphology of the instances, such as bubbles
and teams that we show in Figure 4.7. We can see that they have a high degree
of overlap between targets, leading the nearOpt approach to producing poor
solutions. It is reasonable since the algorithm is constrained by how the points
on each disk are identified. As described above, we use SOCP by considering
one disk at a time for point identification. In the case of highly overlapped
instances, SOCP generally produces points that match each other, especially
on external disks. This scenario leads the nearOpt to prefer external disks
without considering the possibility of inward deviation since a small number of
turning points visit several customers. As we can observe from the table, for
the instances bubbles and teams nearOpt prefers external disks. At the same
time, GA is more open to deviating inward, resulting in a larger number of
intermediate disks traversed than nearOpt.

Figure 4.7: Instance team3_300 (left) and bubbles4 (right)

nearOpt into GA: From the above results, we can see that, in general,
nearOpt produces relatively high-quality solutions with significantly reduced
time compared to the genetic algorithm. Based on this, we conducted addi-
tional tests to see if it could incorporate nearOpt into the GA pipeline. The
goal is to improve the quality of solutions produced by the GA by further re-
ducing computational time. We performed two tests: the first one sees the
inclusion of the solutions produced by nearOpt during the generation of the ini-
tial population. In contrast, the second one uses the approach as an additional
improvement procedure. In the first case, it was necessary to determine a set
of solutions to be included that had sufficient variance between them to pre-
serve variety in the population. Thus, we need to identify which and how many

90

50 40 25 10 0
gap Time gap Time gap Time gap Time gap Time

Len sort 0.27% 655.62 0.79% 502.72 0.36% 620.17 0.33% 766.11 1.48% 602.71
FF sort 0.52% 516.49 0.13% 467.02 0.43% 439.55 0.39% 561.63 0.51% 602.71
Prize sort 0.53% 525.7 1.57% 429.15 0.65% 474.27 0.94% 494.02 0.78% 602.71

Avg 0.44% 565.94 0.83% 466.30 0.48% 511.33 0.55% 607.25 0.92% 602.71

Table 4.9: Comparison of GA solutions with different combinations of random
and nearOpt solutions in the initial population generation. The rows specify dif-
ferent sorting criteria for the nearOpt solution selection: total length (Len sort),
fitness function value (FF sort), and prize collected (Prize sort). The columns
show the number of nearOpt solutions included in the GA initial population,
from 50 to 0.

solutions to include. As for how many solutions to add, we can determine the
number empirically by testing different combinations of random and nearOpt
solutions: given popsize = 50, the combinations of random-nearOpt solutions
considered are 0-50, 10-40, 25-25, 40-10, and 50-0. Regarding which solutions
to add, we can identify three different criteria for evaluating solutions: objective
function value, total length, and collected reward. Trivially, these criteria reflect
the different possibilities of distinction. Sorting by collected reward means fa-
voring a diversification in terms of disks crossed since the reward depends on the
choice of disks. On the contrary, sorting by total route length means favoring
a diversification in terms of sequences since they affect the route more. Finally,
sorting by objective function value combines the previous two.

We tested the different combinations described above for each criterion. To
maximize the variance among the included nearOpt solutions, we select solutions
sequentially by alternating heads and tails from a set of 100 solutions generated
by the approach. The results are reported in the table 4.9, organized as follows.
The first column reports the different sorting criteria considered for the nearOpt
solutions, which are Len sort, FF sort, and Prize sort. In the Len sort row, we
report the nearOpt solutions sorted by route length, while the FF sort row
relates to the solutions sorted by fitness value. Finally, in Prize sort we show
the solutions of nearOpt sorted by total prize collected. The remaining columns
illustrate the averages of GA gaps and times in seconds with different numbers
of nearOpt solutions included: 50, 40, 25, 10, and 0, respectively. We can
infer that no combination prevails over the others from the results. We do not
find significant improvements over the original GA regarding the computational
times.

We performed several tests to ascertain the feasibility of including nearOpt
in the genetic algorithm as an additional improvement procedure. Specifically,
we included nearOpt in the GA instead of improveSolution. The results show
that the original version performs significantly better than the modified version
of the solution produced. While, in terms of computational time, the modified
version performs better on several instances, probably because it converges to
a local optimum first and thus is prevented from further exploring the search

91

space.

4.5 Conclusions
In recent years, the close enough traveling salesman problem has been widely
discussed for its ability to model several real-world applications, especially con-
cerning drones, such as meter reading. The goal of CETSP is to identify the
shortest crossing of all neighborhoods associated with a given target set, start-
ing and ending at the depot. In this part of the dissertation, we presented a
new generalization called generalized close enough traveling salesman problem.
Each customer is associated with a set of concentric disks with different radii.
Each disk is associated with a premium that decreases as the distance from the
center increases. Introducing different disks around the customer allows us to
model real-world applications to get better results by getting closer to the tar-
get. For example, in RFID system applications, the rewards can represent the
probability of success in reading the meter of a generic target. The GCETSP
solution determines the admissible route that maximizes the difference between
the total collected reward and the route length. The admissible route means
exactly visiting a customer disk and the depot.

We propose benchmark instances for the problem, either defined based on
those present for CETSP by adding disks for each target or generated from
scratch. In addition, we propose an adapted version of the genetic algorithm
presented for CETSP, which provides high-quality solutions for GCETSP.

We performed tests to highlight the differences between the CETSP and
GCETSP solutions. We compared three different CETSP solutions, one for
each disk, with the one produced by the adapted GA. The results reveal that
a good solution for CETSP is far from suitable for its generalization. Although
it can be seen that CETSP solutions considering a single disk are relatively
good, it is necessary to consider a combination of disks to obtain a high-quality
solution.

Finally, we conducted a series of tests to verify the quality of the solutions
produced by the GA. We compared the genetic algorithm with a heuristic ap-
proach called nearOpt, which identifies the best turning points for each target
from a given visit sequence. We compared the two approaches on instances
where nearOpt should provide optimal (or near-optimal) solutions and observed
that the GA always defines the same solution. Next, we compared them on more
challenging instances and found that the GA can identify reasonable solutions
on these instances, outperforming nearOpt, despite the approaches being com-
parable in most cases.

92

Chapter 5

Conclusions and future works

In this dissertation, we have discussed in depth the close enough traveling sales-
man problem(CETSP), defining advanced solving methods and describing new
variants of the problem, such as the mixed constrained generalized routing
problem (MGCRP) and the generalized close enough traveling salesman prob-
lem(GCETSP). CETSP is a variant of the classical TSP, in which one must
find the Hamiltonian cycle that passes at a given distance for each target. We
presented a solving metaheuristic for this problem, specifically a genetic algo-
rithm. The GA uses the concept of a turning point to define the solution, i.e.,
a moving point associated with a target, with the characteristic of covering
that target. At its core, it combines two local searches, a 2-opt to improve the
crossing sequence and 3Alg to optimize the position of the points of a fixed
sequence, and a mathematical model, the SOCP, to provide optimal solutions.
Our approach provides the best solutions for 59 out of 62 cases on the reference
instances proposed by [Mennell, 2009]. In addition, we formulated two novel
metrics, the TSPD and the OC, which describe the difficulty of the problem
viewing the morphology of the instances and the conformation of the solution,
respectively. TSPD is based on the ratio between the targets’ circumference
radii and their distances to estimate the degree of overlap between them. OC
estimates the difficulty of the instance for the number of points of which the
solution is composed. We compared our metrics with the one already present
in the literature, the overlap ratio, obtaining that our proposed metrics pro-
vide more information about the complexity of the problem. Furthermore, we
found errors in the OR values for some instances found in the literature and
presented the corrected ones in comparing the metrics. Finally, we presented
a real application case of CETSP in the context of a research project at the
University of Molise, where it was necessary to define the route of a drone to
take thermal pictures of photovoltaic panels. We modeled the panels as targets,
for which there is a zone within which it is possible to photograph. The zone is
defined following the panel’s inclination and the flight altitude of the drone to
be shifted concerning the original panel’s position. Before using our approach,
the route was computed as the solution of a TSP. With GA, we found a route

93

savings of 15%, with no loss of quality in the images produced. Also, as part
of the research project, we produced a framework for producing image convolu-
tion filters. It was accomplished by formulating the problem as a filter retrieval
problem and modeling it mathematically. We proposed three models, one of lin-
ear programming (LP) and two of integer linear programming (ILP). We tested
them on different application scenarios, such as the recognition of convolution
filters with clear or noises-affected images and the recognition of filters defined
ad hoc for feature enhancement. The results indicate that our modeling, espe-
cially the ILP one, can correctly identify all the proposed convolution filters in
the absence of perturbations. In contrast, in the case of noise-affected images,
the identified filters produce images with a MAE ≤ 4 compared to the original
output image. In the case of feature highlighters filters, the models produce
reasonably good filters. Finally, having formulated the problem mathemati-
cally, our approaches certify the presence of a convolution filter k × h capable
of emphasizing the desired feature.

We have seen how CETSP models several real-world application scenarios,
especially related to drones. However, these scenarios are not always accurate,
as the drone is not always free to fly. We presented a generalization of CETSP
and CEARP, named as mixed constrained generalized routing problem. We
introduce the concept of a flight zone with different degrees of flight freedom.
We specifically distinguish two: the free-flight zone (FFZ), which the drone is
free to fly, and the constrained flight zone (CFZ), where there are limitations or
prohibitions. The above problem has only been examined in one of its limiting
cases, i.e., when only FFZs are present. Future developments include studying
the second limiting case as well in order to combine the solving techniques to
define a mixed one.

Furthermore, we presented a second new generalization of CETSP, called
the generalized close enough traveling salesman problem (GCETSP). In the
case of CETSP, every customer is associated with a single area that, if tra-
versed, is considered covered. In GCETSP, each customer is associated with
several concentric areas of different radii. A premium is associated with each
area that grows as the radius decreases, collected when the area is crossed. In-
troducing different neighborhoods for each customer allows modeling of different
real-world application contexts, in which we get greater rewards if we approach
close to the targets. For example, when considering RFID meter reading sys-
tems, the rewards can represent the probability of successful meter reading.
This probability decreases as we move away from the customer, which explains
the decreasing reward with respect to the length of the disk radius. For this
problem, we propose benchmark instances based on those present for CETSP
with the addition of disks for each customer and generated from scratch. In
addition, we propose an adapted version of the genetic algorithm presented for
CETSP and a constructive heuristic. We performed tests to examine the dif-
ferences between the classical problem, CETSP, and this new generalization,
GCETSP. We compared several CETSP solutions, one on each disk, with the
one produced by the adapted GA. The results reveal that a good solution for
CETSP is not the same for its generalization, but a mixed disk combination

94

is needed. We conducted a series of tests to verify the quality of the solutions
produced by our approach. We compared the GA with the constructive heuris-
tic called nearOpt, which identifies the best turning points for each customer
given a predefined visit sequence. We compared the two approaches on instances
where nearOpt provides optimal or near-optimal solutions, and the GA always
identifies the same solution. Finally, we compared the two approaches on more
complex instances and found that GA identifies better solutions in most cases,
outperforming nearOpt.

This dissertation is structured to promote further study of CETSP and its
variants, given the emerging use of drones in logistics and transportation. Future
developments are planned in this direction: as, for example, GCETSP, we are
studying variants of the previously proposed generalization, in which constraints
are imposed on the route definition. For example, referring purely to drones,
the route definition can vary depending on their battery. The drone can cover
more customers if the time at its disposal is more significant, i.e., if the battery
allows it to do so. Moreover, the definition of the route can vary according to
the amount of prize we desire to collect. We can condition the choice of disks
if we need to collect a specific prize. Based on this, we define two variants
of GCETSP: one aims to determine an eligible route that maximizes the total
prize collected while restraining the route length to a certain threshold. By an
eligible route for this variant, we refer to a route that begins and ends in the
depot and does not exceed a given threshold. Note that it is possible to prevent
some customers from being considered in this case. The second one aims to
determine a feasible route that minimizes the route length while collecting a
specific prize. By eligible route for this variant, we mean a route that visits
precisely one record per customer and depot. We have developed preliminary
approaches that produce reasonable admissible solutions to these problems.

95

Bibliography

[Alpaydin, 2009] Alpaydin, E. (2009). Introduction to machine learning. MIT
press.

[Arkin and Hassin, 1994] Arkin, E. M. and Hassin, R. (1994). Approximation
algorithms for the geometric covering salesman problem. Discrete Applied
Mathematics, 55(3):197–218.

[Behdani and Smith, 2014] Behdani, B. and Smith, J. C. (2014). An integer-
programming-based approach to the close-enough traveling salesman prob-
lem. INFORMS Journal on Computing, 26(3):415–432.

[Booker, 1987] Booker, L. (1987). Improving search in genetic algorithms. Ge-
netic algorithms and simulated annealing, pages 61–73.

[Bovik, 2010] Bovik, A. C. (2010). Handbook of image and video processing.
Academic press.

[Capobianco et al., 2021] Capobianco, G., Cerrone, C., Di Placido, A., Durand,
D., Pavone, L., Russo, D. D., and Sebastiano, F. (2021). Image convolution: a
linear programming approach for filters design. Soft Computing, pages 1–16.

[Carrabs et al., 2017a] Carrabs, F., Cerrone, C., Cerulli, R., and D’Ambrosio,
C. (2017a). Improved upper and lower bounds for the close enough travel-
ing salesman problem. In Proceedings of International Conference on Green,
Pervasive, and Cloud Computing, pages 165–177. Springer.

[Carrabs et al., 2017b] Carrabs, F., Cerrone, C., Cerulli, R., and Gaudioso, M.
(2017b). A novel discretization scheme for the close enough traveling salesman
problem. Computers & Operations Research, 78:163–171.

[Carrabs et al., 2020] Carrabs, F., Cerrone, C., Cerulli, R., and Golden, B.
(2020). An adaptive heuristic approach to compute upper and lower bounds
for the close-enough traveling salesman problem. INFORMS Journal on Com-
puting, 32(4):1030–1048.

[Cerrone et al., 2017a] Cerrone, C., Cerulli, R., and Golden, B. (2017a).
Carousel greedy: a generalized greedy algorithm with applications in opti-
mization. Computers & Operations Research, 85:97–112.

96

[Cerrone et al., 2017b] Cerrone, C., Cerulli, R., Golden, B., and Pentangelo, R.
(2017b). A flow formulation for the close-enough arc routing problem. In
International Conference on Optimization and Decision Science, pages 539–
546. Springer.

[Chen and Fomel, 2015] Chen, Y. and Fomel, S. (2015). Random noise attenu-
ation using local signal-and-noise orthogonalization. Geophysics, 80(6):WD1–
WD9.

[Coutinho et al., 2016] Coutinho, W. P., Nascimento, R. Q. d., Pessoa, A. A.,
and Subramanian, A. (2016). A branch-and-bound algorithm for the close-
enough traveling salesman problem. INFORMS Journal on Computing,
28(4):752–765.

[Current and Schilling, 1989] Current, J. R. and Schilling, D. A. (1989). The
covering salesman problem. Transportation science, 23(3):208–213.

[Dhawan et al., 1985] Dhawan, A. P., Rangayyan, R. M., and Gordon, R.
(1985). Image restoration by wiener deconvolution in limited-view computed
tomography. Applied optics, 24(23):4013–4020.

[Di Placido et al., 2021] Di Placido, A., Archetti, C., and Cerrone, C. (2021).
A genetic algorithm for the close-enough traveling salesman problem with
application to solar panels diagnostic reconnaissance. accepted to Computers
& Operations Research.

[Dong et al., 2007] Dong, J., Yang, N., and Chen, M. (2007). Heuristic ap-
proaches for a tsp variant: The automatic meter reading shortest tour prob-
lem. In Extending the Horizons: Advances in Computing, Optimization, and
Decision Technologies, pages 145–163. Springer.

[Drexl, 2014] Drexl, M. (2014). On the generalized directed rural postman prob-
lem. Journal of the Operational Research Society, 65(8):1143–1154.

[Dumitrescu and Mitchell, 2003] Dumitrescu, A. and Mitchell, J. S. (2003). Ap-
proximation algorithms for tsp with neighborhoods in the plane. Journal of
Algorithms, 48(1):135–159.

[Gendreau et al., 1997] Gendreau, M., Laporte, G., and Semet, F. (1997). The
covering tour problem. Operations Research, 45(4):568–576.

[Gulczynski et al., 2006] Gulczynski, D. J., Heath, J. W., and Price, C. C.
(2006). The close enough traveling salesman problem: A discussion of several
heuristics. In Alt, F. B., Fu, M. C., and Golden, B. L., editors, Perspectives
in Operations Research, pages 271–283. Springer.

[Ha et al., 2012] Ha, M. H., Bostel, N., Langevin, A., and Rousseau, L.-M.
(2012). An exact algorithm for the close enough traveling salesman problem
with arc covering constraints. In ICORES, pages 233–238.

97

[Ha et al., 2014] Ha, M. H., Bostel, N., Langevin, A., and Rousseau, L.-M.
(2014). Solving the close-enough arc routing problem. Networks, 63(1):107–
118.

[Holland et al., 1992] Holland, J. H. et al. (1992). Adaptation in natural and ar-
tificial systems: an introductory analysis with applications to biology, control,
and artificial intelligence. MIT press.

[Kennedy and Eberhart, 1995] Kennedy, J. and Eberhart, R. (1995). Particle
swarm optimization. In Proceedings of ICNN’95-international conference on
neural networks, volume 4, pages 1942–1948. IEEE.

[Lin and Kernighan, 1973] Lin, S. and Kernighan, B. W. (1973). An effective
heuristic algorithm for the traveling-salesman problem. Operations research,
21(2):498–516.

[Mata and Mitchell, 1995] Mata, C. S. and Mitchell, J. S. (1995). Approxima-
tion algorithms for geometric tour and network design problems. In Proceed-
ings of the eleventh annual symposium on Computational geometry, pages
360–369.

[Mennell et al., 2011] Mennell, W., Golden, B., and Wasil, E. (2011). A Steiner-
zone heuristic for solving the close-enough traveling salesman problem. In
Proceedings of 2th INFORMS computing society conference: operations re-
search, computing, and homeland defense.

[Mennell, 2009] Mennell, W. K. (2009). Heuristics for solving three routing prob-
lems: Close-enough traveling salesman problem, close-enough vehicle routing
problem, sequence-dependent team orienteering problem. PhD thesis, Univer-
sity of Maryland (College Park, Md.).

[Michailovich and Tannenbaum, 2007] Michailovich, O. and Tannenbaum, A.
(2007). Blind deconvolution of medical ultrasound images: A paramet-
ric inverse filtering approach. IEEE Transactions on Image Processing,
16(12):3005–3019.

[Mitchell, 1998] Mitchell, M. (1998). An introduction to genetic algorithms.
MIT press.

[Moscato et al., 1989] Moscato, P. et al. (1989). On evolution, search, opti-
mization, genetic algorithms and martial arts: Towards memetic algorithms.
Caltech concurrent computation program, C3P Report, 826:1989.

[Nussbaumer, 2012] Nussbaumer, H. J. (2012). Fast Fourier transform and con-
volution algorithms, volume 2. Springer Science & Business Media.

[Poikonen et al., 2017] Poikonen, S., Wang, X., and Golden, B. (2017). The
vehicle routing problem with drones: Extended models and connections. Net-
works, 70(1):34–43.

98

[Sadek, 2012] Sadek, R. A. (2012). Svd based image processing applications:
state of the art, contributions and research challenges. arXiv preprint
arXiv:1211.7102.

[Shuttleworth et al., 2008] Shuttleworth, R., Golden, B. L., Smith, S., and
Wasil, E. (2008). Advances in meter reading: Heuristic solution of the close
enough traveling salesman problem over a street network. In Golden, B.,
Raghavan, S., and Wasil, E., editors, The Vehicle Routing Problem: Latest
Advances and New Challenges, pages 487–501. Springer.

[Simonyan and Zisserman, 2014] Simonyan, K. and Zisserman, A. (2014). Very
deep convolutional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556.

[Wang et al., 2019] Wang, X., Golden, B., and Wasil, E. (2019). A Steiner zone
variable neighborhood search heuristic for the close-enough traveling salesman
problem. Computers & Operations Research, 101:200–219.

[Wu et al., 2017] Wu, Y., Zhang, Y., Zhang, Y., Huang, Y., and Yang, J.
(2017). Tsvd with least squares optimization for scanning radar angular super-
resolution. In 2017 IEEE Radar Conference (RadarConf), pages 1450–1454.
IEEE.

[Xu et al., 1994] Xu, C., Aissaoui, I., and Jacquey, S. (1994). Algebraic analysis
of the van cittert iterative method of deconvolution with a general relaxation
factor. JOSA A, 11(11):2804–2808.

[Yang et al., 2018] Yang, Z., Xiao, M.-Q., Ge, Y.-W., Feng, D.-L., Zhang, L.,
Song, H.-F., and Tang, X.-L. (2018). A double-loop hybrid algorithm for the
traveling salesman problem with arbitrary neighbourhoods. European Journal
of Operational Research, 265(1):65–80.

[Yuan et al., 2007] Yuan, B., Orlowska, M., and Sadiq, S. (2007). On the op-
timal robot routing problem in wireless sensor networks. IEEE transactions
on knowledge and data engineering, 19(9):1252–1261.

[Zhao and Desilva, 1998] Zhao, F. and Desilva, C. J. (1998). Use of the lapla-
cian of gaussian operator in prostate ultrasound image processing. In Proceed-
ings of the 20th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society. Vol. 20 Biomedical Engineering Towards
the Year 2000 and Beyond (Cat. No. 98CH36286), volume 2, pages 812–815.
IEEE.

99

