UNIVERSITY OF MOLISE

DEPARTMENT OF BIOSCIENCES AND TERRITORY

Ph.D. Course in Biology and Applied Science
Scientific Disciplinary Sector BIO/02
XXXV Cycle

Chloroplast and nuclear genetic diversity and differentiation across European taxa of white oaks (Quercus L. section Quercus)

Tutor
Prof.
Paola Fortini
Tose fort.

Coordinator
Prof.
Filippo Santucci De Magistris

Candidate:
Elisa Proietti
167222
flisa Pnorett'

Candidate: Elisa Proietti (Department of Bioscience and Territory, University of Molise, I-86090 Pesche, IS, Italy)

Tutor: Prof. Paola Fortini (Department of Bioscience and Territory, University of Molise, I-86090 Pesche, IS, Italy)

Co-Tutor: Prof. Piera Di Marzio (Department of Bioscience and Territory, University of Molise, I-86090 Pesche, IS, Italy)

Coordinator: Prof. Filippo Santucci De Magistris (Department of Bioscience and Territory, University of Molise, I-86090 Pesche, IS, Italy)

External referee: Prof. Jelena M. Aleksić (Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, 11010 Belgrade, Serbia)

External referee: Prof. Marcus Müller (Faculty for Forest Sciences and Forest Ecology, Forest Genetics and Forest Tree Breeding, University of Goettingen, 37077 Göttingen, Germany)

Ph.D. Committee:

Prof. Dalila Trupiano (Department of Bioscience and Territory, University of Molise, I-86090 Pesche, IS, Italy)

Prof. Nevena Kuzmanovic (Department of Ecology and Geography of Plants, University of Belgrade, 11010 Belgrade, Serbia)

Prof. Nidaa Harun (Department of Botany, University of Okara, 56300 Okara, Pakistan)

La quercia caduta

Dov'era l'ombra, or sé la quercia spande morta, né più coi turbini tenzona.
La gente dice: Or vedo: era pur grande!
Pendono qua e là dalla corona
i nidietti della primavera.
Dice la gente: Or vedo: era pur buona! Ognuno loda, ognuno taglia.
A sera ognuno col suo grave fascio va. Nell'aria, un pianto... d'una capinera che cerca il nido che non troverà.

Giovanni Pascoli (Primi poemetti, 1907)

Gestutzte Eiche

Wie haben sie dich, Baum, verschnitten Wie stehst du fremd und sonderbar! Wie hast du hundertmal gelitten, Bis nichts in dir als Trotz und Wille war! Ich bin wie du, mit dem verschnittnen, Gequälten Leben brach ich nicht Und tauche täglich aus durchlittnen Roheiten neu die Stirn ins Licht. Was in mir weich und zart gewesen, Hat mir die Welt zu Tod gehöhnt, Doch unzerstörbar ist mein Wesen, Ich bin zufrieden, bin versöhnt, Geduldig neue Blätter treib ich Aus Ästen hundertmal zerspellt, Und allem Weh zu Trotze bleib ich Verliebt in die verrückte Welt.

Hermann Hesse (Die Gedichte, 1919)

The fallen oak

Where the shade once was, the oak itself now spreads, A corpse, no longer struggling with the wind.
The people say: I see now, it was tall!
So here and there the little nests of spring depend
Upon the branches, from their fallen heights The people say: I see now, it was a friend!
They all praise, they all cut. At twilight.
They all come and haul their loads away.
Then, in the air, a blackcap's cry.
Seeking its nest, lost for today.
Giovanni Pascoli (Primi poemetti, 1907)

Pruned Oak

Oh oak tree, how they have pruned you. Now you stand odd and strangely shaped! You were hacked a hundred times until you had nothing left but spite and will! I am like you, so many insults and humiliations could not shatter my link with life.
And every day I raise my head beyond countless insults towards new light. What in me was once gentle, sweet and tender this world has ridiculed to death.
But my true self cannot be murdered.
I am at peace and reconciled.
I grow new leaves with patience
from branches hacked a hundred times.
In spite of all the pain and sorrow
I'm still in love with this mad, mad world.
Hermann Hesse (Die Gedichte, 1919)

Index

Abstract 1
1 Introduction 2
1.1 The cultural and symbolic importance of the Quercus genus in human societies 2
1.2 Origin and diversification of the Quercus genus 2
1.3 The taxonomic classifications of the Quercus genus 5
1.3.1 The eight sections of the Quercus genus 9
1.4 The current state of knowledge on the sections of the Quercus genus 11
1.4.1 Knowledge gap in the genealogical relations between plastid DNA variants in the taxa of the European white oaks (section Quercus) 12
1.4.2 Knowledge gap in the taxonomy of the European white oaks (section Quercus) 12
1.4.2.1 Analysis of the genetic diversity by means of simple sequence repeat markers. 13
1.5 Aims of research 14
1.6 Taxa involved in the research 14
1.6.1 Quercus banatus P. Kucera 14
1.6.2 Quercus congesta C. Presl 15
1.6.3 Quercus dalechampii Ten. 16
1.6.4 Quercus faginea Lam 17
1.6.5 Quercus frainetto Ten. 18
1.6.6 Quercus ichnusae Mossa, Bacch. \& Brullo 20
1.6.7 Quercus leptobalanos Guss. 21
1.6.8 Quercus petraea (Matt.) Liebl. 22
1.6.9 Quercus petraea subsp. austrotyrrhenica Brullo, Guarino \& Siracusa 23
1.6.10 Quercus pubescens Willd. 24
1.6.11 Quercus pyrenaica Willd 26
1.6.12 Quercus robur L 27
1.6.13 Quercus virgiliana (Ten.) Ten. 28
2 Materials and methods 30
2.1 Study area 30
2.2 Plant material 31
2.3 Chloroplast genome analyses 31
2.3.1 Plant material for the chloroplast genome analyses 31
2.3.2 DNA extraction, amplification, and sequencing 32
2.3.3 Data analysis 34
2.3.4 Molecular markers 35
2.3.4.1 $\operatorname{trn} \mathrm{H}-p s b \mathrm{~A}$ 35
2.3.4.2 trnK-matK 36
2.4 Nuclear microsatellite markers analyses 37
2.4.1 Plant material for the nuclear microsatellite markers analyses 37
2.4.2 DNA extraction, amplification, and sequencing 37
2.4.3 Data analysis 39
2.4.3.1 Genetic Structure Analysis by Bayesian clustering 39
2.4.3.2 Phylogenetic Analysis 40
2.4.3.3 Genetic diversity and differentiation 40
2.4.3.4 Analysis of Molecular Variance 42
2.4.3.5 Principal Coordinates Analysis 43
2.4.3.6 Comparison of geographical and genetic distance 43
3 Results 44
3.1 Results of the chloroplast genome analyses 44
3.1.1 Haplotype diversity 44
3.1.2 Haplotype classification 44
3.1.3 Geographic distribution of the haplotypes 46
3.1.4 Genealogical relations among haplotypes 47
3.2 Results of the nuclear microsatellite markers analyses 52
3.2.1 Results of the Genetic Structure Analysis 52
3.2.2 Results of the Phylogenetic Analysis 57
3.2.3 Results of the Genetic diversity and differentiation 59
3.2.3.1 Genetic diversity per locus 59
3.2.3.2 Genetic diversity per population 59
3.2.3.3 Genetic differentiation 63
3.2.4 Results of the Analysis of Molecular Variance 65
3.2.5 Results of the Principal Coordinates Analysis 65
3.2.6 Results of the comparison of geographical and genetic distance 67
4 Discussion 68
5 Conclusion 75
References 77
Supplementary File 92

Abstract

An extensive analysis on the chloroplast and nuclear genetic diversity and differentiation across European taxa of white oaks (Quercus L. section Quercus) was performed. Chloroplast DNA (cpDNA) variation was studied to clarify the biogeography and the history of the populations and to reconstruct genealogical relations between cpDNA haplotypes. Furthermore, a nuclear SSRs analysis was performed to provide data on the genetic structure and diversity and to verify if the groups of oaks analysed were genetically distinct and if their identification was in accordance with the current taxonomic classification. The study was carried out over a vast area of the central and southern Europe, the Balkan Peninsula, and the northern Africa. The sampling design included 11 countries and 1987 individuals (trees) belonging to 93 populations and representing 13 taxa of the Quercus genus. The genomic DNA of 270 samples was analysed by means of DNA sequence polymorphism at two plastid loci: the $\operatorname{trnH}-p s b \mathrm{~A}$ intergenic spacer and a portion of the trnK-matK region. Haplotype diversity, pairwise uncorrected p-genetic distances, number of polymorphic sites, nucleotide polymorphism, nucleotide diversity, and number of parsimony informative characters in the two marker regions were evaluated. Moreover, genealogical relations between cpDNA haplotypes were reconstructed. The nuclear microsatellite markers analysis was performed on a subset of 1072 individuals belonging to 58 populations. The patterns of the genetic structure and the hierarchical structure of the sampled populations were assessed. In addition, genetic diversity and differentiation within and among populations were estimated and analysis of molecular variance (AMOVA) and Principal Coordinates Analysis (PCoA) were performed. The phylogeographic analysis based on the study of the chloroplast DNA variation allowed to confirm the relatively recent colonization of the section Quercus in Eurasia and to document the little differentiated plastome of this oaks group, as shown by the low degree of diversity found in the fourteen haplotypes identified in the studied area. While the detected nucleome variability did not reflect the considerable morphological variability responsible for the many ecomorphotypes and the taxonomic confusion in the European white oaks group. Based on the obtained results, five genetically distinct groups, among the twelve taxa identified based on morphological features, were recognized, so the taxonomic classification for the European white oaks was not always confirmed by molecular analyses. This study demonstrated that both the young history of the European white oaks and the repeated events of hybridisation and introgression are responsible for a group that is not still genetically fixed and resolved.

Keywords: Quercus, White Oaks, Chloroplast DNA, Haplotype, Nuclear SSRs, Marker, Genealogical Relations, Genetic Structure

1 Introduction

1.1 The cultural and symbolic importance of the Quercus genus in human societies

Emblem of longevity, strength, stability, endurance, fertility, power, justice, and honesty, oaks have been a part of traditional rites and celebrations for many centuries, since the early Proto-IndoEuropean societies (Chassé 2016; Leroy et al. 2020). Regarded as symbolic representations by human cultures, political structures, and religions all over the northern hemisphere, they were also associated with gods as Zeus, Jupiter, and Thor in the mythology of ancient Greece, Rome, and Germany (Leroy et al. 2020).
Based on the very earliest connections between humans and trees, symbolism may have been associated with trees in early human cultures. Furthermore, in comparison with other tree species, oaks guided the colonization of the Middle East and Europe by Homo sapiens between 45000 and 50000 years ago (Bar-Yosef and Belfer-Cohen 2013). In fact, the remnants of Quercus ithaburensis and Q. calliprinos acorns in caves inhabited by humans indicate that oaks were a valuable food resource for humans during the early colonisation of Eurasia (Lev et al. 2005; Leroy et al. 2020). According to Kremer (2015), there is a strong link between the colonization dynamics of oaks with human populations invasion of Europe during the Upper Paleolithic and human migration in response to postglacial warming. The extensive use of oaks was in fact related to their application not only for food purposes, but also as source of fuel, medicine, shelter, or for artistic creation (Anderson 2007).

1.2 Origin and diversification of the Quercus genus

Based on fossilized pollen records, it is estimated that oaks arose about 56 million years ago, at the Paleocene / Eocene boundary (Hofmann 2010; Hofmann et al. 2011), when temperatures were $10^{\circ} \mathrm{C}$ warmer than today (Zachos et al. 2001). The earliest evidence of the Quercus genus dates to the Late Paleocene, as is shown by the finding of pollen grains of Quercoidites at the St. Pankraz site, in Austria (Hofman et al. 2011). Moreover, several palynological records which date back to the Eocene were found in North America (Bones 1979; Manchester 1994), China (Jiang 1993), and Europe (Kvaček and Walther 1989).
Numerous hypotheses and scenarios have been advanced on the geographic origin of the Quercus genus and the migration routes followed by the first lineages, however data currently available do not provide clear evidence and to date all the assumptions remain uncertain and unconfirmed. Nevertheless, it is thought that the Quercus genus underwent extremely rapid diversification as a result of significant climatic changes during the Oligocene and Miocene (Trelease 1924; Axelrod 1983), attaining an almost modern distribution in the Neogene (Barron et al. 2017).

According to Zhou (1992), the Quercus genus had origin from the probable ancestor Trigonobalanus, during the Paleogene in southeastern Asia, and subsequently migrated towards Europe and America by two routes: via the North Atlantic Land Bridge before the Eocene, and via the Bering Land Bridge after the Miocene. While, according to Manos and Stranford (2001) the Quercus genus originated from the boreal tropical deciduous forest that occupied the northern hemisphere at the beginning of the Tertiary and then differentiated with the separation of the continents. For these temperate taxa, an initial divergence between North American and Asian
clades and the dispersion of section Quercus of the North American clade to Europe was supposed. Moreover, floristic exchange via both North Atlantic Land Bridge and the Bering Land Bridge, was assumed. Hubert et al. (2014) instead, hypothesized a first divergence within the Quercus genus at the Paleocene / Eocene boundary and the first radiation within 'New World Clade' and 'Old World Clade' by the end of the middle Eocene. Furthermore, they supported a migration via the North Atlantic Land Bridge until at least 8 Ma (Denk et al. 2010) and via Bering Land Bridge until the latest Pliocene or Pleistocene interglacials. According to Denk et al. (2017), based on the pollen records of white oaks from the middle Eocene in western Greenland and the Baltic amber region of northern Europe, can be assumed that the early radiation of the white oaks involved the North Atlantic Land Bridge. In addition, presence of data from Eocene and Oligocene strata in East Asia suggested a migration from North America via the Bering Land Bridge. Therefore, the modern western Eurasian roburoids had origin as a result of the spread of this East Asian branch of white oaks (early roburoids).

The paleobotanical records show that the oaks underwent a basal vicariance between Eurasia and North America (Manos and Stanford 2001; Hipp et al. 2019) and that since the early diversification of Quercus, the genus was well differentiated, and geographically structured clades were recognizable (Fig. 1.1). The main lineages, currently attributable to the sections recognized by Denk et al. (2017) Cyclobalanopsis, Lobatae, Quercus, and possibly Ilex, originated within 10 million years, after the early Eocene climatic optimum, and over the past 40 million years, as consequence of the decrease of the temperatures, they differentiated mainly in situ (Axelrod 1983; Manos and Stanford 2001), diversifying ecologically within each region (Kremer and Hipp 2020). Even, section Protobalanus had origin during the Eocene in North America, where it remained limited until the present. Furthermore, in the mid-late Eocene, oaks were spread in the territory of the former USSR, and it is thought that Quercus (mainly Q. pseudoneriifolia) had a crucial role in these ecosystems. During the late Eocene, sections Quercus, Lobatae, and Protobalanus, as well as the ring-cupped oaks were spread in North America, while in Europe section Lobatae and the subgenus Cyclobalanopsis occurred (Barron et al. 2017).
Both in North America and Europe, increases in diversification rates were driven by ecological opportunities, but while differentiation happened in sympatry in North America, this was not recorded in Europe. More in detail, in Americas a northern ancestor originated white and red oaks, belonging to the sections Quercus and Lobatae, that then diversified southward (Zachos et al. 2001), radiating in western and eastern North America, and subsequently in Mexico and central America (Hipp et al. 2018; Cavender-Bares 2019; Kremer and Hipp 2020). While in Europe, at first the sections Cerris and Ilex diversified ecologically within clades (Hipp et al. 2019). Subsequently, between 10 and 20 million years ago, the Roburoid white oak clades, originated by an eastern North American ancestor, arrived in Eurasia, and in lack of related oaks diversified at a higher rate than the Cerris and Ilex sections (Kremer and Hipp 2020). Sclerophyllous evergreen oaks Cerris and Ilex were important components of the pre-Mediterranean vegetation of central and southern Europe during the Neogene. Moreover, from the Pliocene to the end of Neogene, even subgenus Cyclobalanopsis was spread in Europe, although it dominated mainly forests in southeastern Asia, where a lower presence of sections Ilex and Quercus also occurred. The group Cyclobalanopsis was documented even in North America probably by the late Paleogene (Barron et al. 2017). To date, it is present only in East Asia (Denk et al. 2017).

Figure 1.1 Lineages through time plot from Hipp et al. (2020) displaying the diversification of the sections Cerris, Cyclobalanopsis, Ilex, Lobatae, and Quercus. For comparison, tectonic events in the northern Hemisphere and global climate context are referred. Cenozoic epochs (following Walker et al. (2018) (Paleocene, Eocene, Oligocene, Miocene, Quaternary)) are shown in different colours in the background

During the quaternary era, large portions of Europe and North America were periodically covered by the continental ice shield (Zweck and Huybrechts 2005), and this considerably affected the oak's geographic range in the northern hemisphere. In response to these climate fluctuations, oaks have been subjected both to widespread extinction and important migrations (Yan et al. 2019). During the last glacial period, the temperate forest species were confined to the glacial refugia, restricted area with a milder climate (Brewer et al. 2002). In Europe the main southern refugia were Iberian Peninsula, southern Italian Peninsula, and the southern Balkan Peninsula (Petit et al. 2002b). While in North America, oaks retreated to the unglaciated southeastern portion of the continent (Delcourt and Delcourt 1981; Delcourt and Delcourt 1984).

The postglacial recolonization took place from the late glacial (15000-10000 years ago) to the beginning of the Holocene (10000 years ago), when the climate was more stable and favourable to deciduous trees species, and species started to leave the refugia and shift northward from them. In Europe, oaks first spread to the central European mountains in the late-glacial interstadial (13000-11000 years ago), then, during the Holocene, they expanded into northern

Europe, quickly into the North West, and more slowly into the centre and East, due to physical barriers (Brewer at al. 2002).
Both the climate fluctuations of the glacial period and bottleneck effects during interglacial and postglacial recolonization greatly influenced and reduced the genetic diversity of the oaks (Yan et al. 2019). Moreover, while the oak's distribution range was firstly conditioned by the shifts in climate, subsequently competition between species, landscape topography and other edaphic factors controlled mainly the distribution (Brewer et al. 2002).

To date, the genus Quercus L. (Fagaceae) is among the most widespread and species rich tree genera in the northern hemisphere (Kremer and Hipp 2020). It consists approximately of 500 species (Nixon 1993; Manos et al. 1999), and it covers wide areas from the equator (Colombia and Indonesia) up to the boreal regions in Europe, and from sea level to 4000 m a.s.l. in China (Yunnan province) (Camus 1936, 1938, 1952; Menitsky 2005; De Beaulieu and Lamant 2010; Kremer and Hipp 2020). The northern limit of dispersal of the oaks in Eurasia is between 62° and 63° northern latitude in Scandinavia, where only Quercus robur and Q. petraea can grow, while the southern limit is in the Sunda platform, a few degrees South of the Equator (Menitsky 2005). In America the northern limit of distribution is at 50° northern latitude, and the southern limit is in Colombia, where only Quercus humboldtii Bonpl. occurs. The majority of the species are distributed in the eastern part of the country, up to the Mississippi river, and few oak species reach Canada (Quercus garryana, Q. rubra, Q. alba, and Q. macrocrapa) (Manos 2016). In addition, the distribution of oaks space in a variety of habitats from bottomland forests to open grasslands and savannas, and from alkaline to acidic soils (Kremer and Hipp 2020). The highest number of species and the greatest diversity is documented in Mexico and East Asia (Valencia-Avalos 2004; Menitsky 2005; Nixon 2006).

1.3 The taxonomic classifications of the Quercus genus

Due to the large number of species, vast geographic distribution, presence of intermediate morphological traits mainly caused by extensive hybridization (Rushton 1993; Cavender-Bares et al. 2004; Curtu et al. 2007; Burgarella et al. 2009; Moran et al. 2012), introgression, incomplete lineage sorting, and convergent evolution (Kole 2011), the taxonomy of the Quercus genus is particularly complex. Moreover, as the variation within species is so high, several authors have questioned the concept of species (Burger 1975; Van Valen 1976) suggesting numerous classifications for the genus. To date, the main classifications of the Quercus genus have been based entirely on morphological characters (Denk et al. 2017).
Reviewing the treatment of the Quercus genus over time, the first classification was proposed by Carl von Linné in Species Plantarum (Linné 1753), in which fourteen species of oaks were documented in Europe and North America. The list of the species included white oaks (Quercus alba, Q. aesculus (= Q. petraea (Matt.) Liebl.), Q. robur, and Q. prinus (status unresolved)), red oaks (Q. rubra, Q. nigra, and Q. phellos), Cerris oaks $(Q$. cerris, Q. aegilops $(=Q$. macrolepis Kotschy), Q. suber), and Ilex oaks (Q. ilex, Q. coccifera, Q. gramuntia (= Q. ilex), and Q. smilax (= Q. ilex)) (Denk et al. 2017).
Between 1787 and 1816, Carl Ludwig Willdenow described twenty species, among which there was Quercus pubescens Willd. (1805), still undefined.

Subsequently, John Loudon (1838, 1839), based on the classification proposed by Carl von Linné, revised the Quercus genus describing 150 species and distinguishing ten sections. In addition to the eight sections identified considering the species described by Carl von Linné, Loudon recognized the sections Virentes (southeastern North American) and Lanatae (Nepal). Moreover, he proposed the subdivision of the European oaks in the sections Cerris, Ilex, and Robur corresponding to the three major clades resulting from the recent molecular-phylogenetic trees (Denk et al. 2017).
The recognition of the Asian group of oaks Cyclobalanopsis is attributed to Anders Ørsted, who in 1871 identified in the subtribe Quercinae, two different genera: Quercus and Cyclobalanopsis. According to his classification, five subgenera with a total of 16 sections and about 184 species were described in the Quercus genus.
The classification of the American oaks was deepened by William Trelease (1924), who listed about 371 species belonging to three subgenera, represented by: Leucobalanus (white oaks), Erythrobalanus (red oaks), and Protobalanus (intermediate oaks). This grouping defined the division of the Quercus genus in three sections in the Americas, sections Quercus, Lobatae, and Protobalanus (Jensen 1997; Nixon and Muller 1997).
Afterward two different systems of classification represented from the monographic work of Aimée Antoinette Camus (1936-1938, 1938-1939, 1952-1954) and the classification of Otto Karl Anton Schwarz (1936), respectively, were followed in western/southern Europe and in central/eastern Europe, correspondingly. More in detail, in Camus classification the Quercus genus was subdivided in two subgenera: subgenus Euquercus (Quercus s.s.), divided into six different sections, and subgenus Cyclobalanopsis, spread in South Asia (Camus 1936-1954).
While, Schwarz (1936) divided Quercus into four separate genera: Cyclobalanopsis and Erythrobalanus belonging to Cyclobalanopsideae, and Macrobalanus and Quercus, belonging to Querceae.
In 1984, Yuri Leonárdovich Menitsky distinguished three subgenera represented by Cyclobalanopsis, Quercus, and Heterobalanus and classified the Ilex oaks into the subgenus Heterobalanus, while Cerris oaks formed with Quercus one of the two sections in subgenus Quercus (Denk et al. 2017).
Numerous other classifications were proposed between 1878 and 1986 by several other authors (for instance, Nyman, Boissier, Borzì, Lojacono, De Candolle, Ascherson and Graebner, Reichinger, Krüssmann).
In 1993, Kevin Nixon proposed a classification in which distinguished two subgenera in the Quercus genus, represented by the subgenus Cyclobalanopsis, including the cycle-cup oaks and the subgenus Quercus, including all the remaining oaks. More in detail, in the latter subgenus, three sections were distinguished: two natural sections represented by the section Lobatae, comprising the red oaks and the section Protobalanus, comprising the intermediate oaks, and an artificial, heterogeneous, northern hemispheric section Quercus including all white oaks, Cerris, and Ilex oaks (Denk et al. 2017).
The classification schemes proposed from Loudon to Nixon, following the reconstruction proposed by Denk et al. (2017), are shown in Figure 1.2.

New classification

Subgenus Cerris
Subgenus Quercus

Nixon (1993)
Subgenus
Cyclobalanopsis
Subgenus Quercus

Schwarz (1936)
Cyclobalanopsis
Quercus
Macrobalanus Erythrobalanus

Subgenus
Cyclobalanopsis
Camus (1936-1954)
Subgenus Euquercus

Figure 1.2 Classification schemes for the Quercus genus from Loudon to Nixon. The systematic affiliation of species included in each taxon is represented by the colour coding. Section Cyclobalanopsis (cycle-cup oaks, yellow), section Cerris (Cerris oaks, orange), and section Ilex (Ilex oaks, green) for the 'Old World clade'; section Quercus (white oaks s.s., blue), section Virentes (cyan), section Ponticae (dark blue), section Protobalanus (intermediate oaks, purple), and section Lobatae (red oaks, red) for the 'New World clade' (From Denk et al. 2017)

In the early 2000's, the availability of DNA markers and sequences provided new tools to solve the taxonomical classification problem, and molecular analyses replaced or complemented the morphological approaches in the taxonomic studies.
Manos et al. (2001) proposed the first molecular phylogeny of Quercus based on sequences of the nuclear ITS region and plastid RFLP data. In their classification, the family of Fagaceae was divided into two subfamilies: Fagoideae (Trigonobalanus s.l.) and Castaneoideae (Castanea, Castanopsis, Chrysolepis, Lithocarpus, and Quercus). Three clades were identified into the Quercus genus: subgenus Cyclobalanopsis including subtropical to tropical South-East Asian species; New World species classified within subgenus Quercus representing sections Quercus s.s. (sensu Manos et al. 1999), Protobalanus, and Lobatae (sensu Nixon 1993, 1997); Old World species previously classified within subgenus Quercus section Cerris (Camus 1936-1954; Denk et al. 2017).
Subsequently, phylogenetic reconstructions were further improved with molecular data and several new classifications of the Quercus genus were proposed. Five or six major groups were recognised on the basis of molecular analyses (Manos et al. 2001; Oh and Manos 2008; Denk and Grimm 2010): the North American group Protobalanus, the groups Lobatae and Quercus, the Eurasian groups Cerris and Ilex (according to Denk and Grimm 2010) and the East Asian group Cyclobalanopsis. A larger collection of nuclear-encoded genes was subsequently used to confirm these six infrageneric groups (Hubert et al. 2014).
The most recent classification is attributable to Denk et al. (2017) that, based on pollen morphology, position of aborted ovules, DNA sequence data (nuclear encoded genes) and nuclear reduced representation of next-generation sequencing (RADseq) data set, recognized two reciprocally monophyletic groups of oaks, Quercus and Cerris, with eight phylogenetic sections. These groups strongly supported the old dichotomy between oak subgenera that dates to the early Eocene (Manos and Hipp 2021). Moreover, the two subgenera highlight the important biogeographic split among modern taxa (Fig. 1.3), as the subgenus Quercus comprises three American endemic sections, Lobatae, Protobalanus, and Virentes, and two Holarctic North American and Eurasian sections, Ponticae and Quercus, while the subgenus Cerris includes three sections, Cerris, Ilex, and Cyclobalanopsis, all exclusively occurring in Europe, Asia, and northern Africa (Manos and Hipp 2021).

Figure 1.3 Geographic distribution of the eight sections of the Quercus genus (From Denk et al. 2017)

1.3.1 The eight sections of the Quercus genus

The identified groups according to Denk et al. (2017), can be summarised as follows (Fig. $1.4 \mathrm{a} / \mathrm{b}$):
\checkmark Subgenus Quercus (the 'New World clade' (Manos et al. 2001) or 'high-latitude clade' (Grímsson et al. 2015; Simeone et al. 2016)):

- section Protobalanus (= Trelease's subgenus of the same name): the North American intermediate oaks
- section Ponticae: the western Eurasian and western North American oaks
- section Virentes: the American "southern live oaks"
- section Quercus: all white oaks from North America (= Trelease's subgenus Leucobalanus) and Eurasia (= Menitsky's section Quercus)
- section Lobatae (= Trelease's subgenus Erythrobalanus): the North American red oaks
\checkmark Subgenus Cerris (the exclusively Eurasian 'Old World clade' or 'mid-latitude clade'):
- section Cerris (= Menitsky's section Cerris plus Quercus suber): the Cerris oaks
- section Ilex (= Menitsky's subgenus Heterobalanus minus Quercus suber): the Ilex oaks
- section Cyclobalanopsis (former subgenus Cyclobalanopsis of Ørsted, Camus, Schwarz, Menitsky, and Nixon): the cycle-cup oaks of East Asia (including Malesia)

a

Quercus L.	Sections	No. of Species
subgenus Quercus		297
	Protobalanus (Trel.) Schwarz	5
	Ponticae Stef.	2
	Virentes Loud.	7
	Quercus	150
	Lobatae Loud.	120
subgenus Cerris Oerst.		138
	Cerris Dumort.	13
	Ilex Loud.	35
	Cyclobalanopsis (Oerst.) Benth. \& Hook. f.	90

b

Figure 1.4 a Phylogeny of the clades of the Quercus genus according to the classification of Denk et al. (2017). b Number of species within each infrageneric group

In the 'New World clade' (Quercus subgenus Quercus) approximately 297 species are enumerated.

Section Protobalanus includes 5 species (Quercus cedrosensis C.H. Muller, Q. chrysolepis Liebm., Q. palmeri (Engelm.) Engelm., Q. tomentella Engelm., Q. vacciniifolia Kellogg) and represents the only evergreen American group. According to Manos et al. (1999) and Ortego et al. (2018) a North-South discontinuity in California, perhaps related to an ancient disjunction that limited seed dispersal is documented. This divergence between the southern and northern lineages dates to 5 million years ago.

Section Ponticae is represented by two species, Quercus pontica (western Eurasia) and Q. sadleriana (northwestern America). Despite their disconnected geographic distribution both species have comparable morphologies and occupy similar latitudes and ecological areas that overlap in the mean values of 19 climatic variables (Fick and Hijmans 2017). For this section, it is supposed an American origin followed by dispersal to Europe, given the nested phylogenetic location of Ponticae within the American oak clade. According to Manos (2016), divergence could have happened between 16 and 20 million years ago. Despite the lack of clear macrofossil evidence, Ponticae are relicts of a once more widespread species group (Denk et al. 2017).

Because of its consistent and distinctive morphologic features, section Virentes has long been regarded as one of the most clearly defined species groups of the American oaks. Resulting in all the phylogenomic trees sister to the section Quercus, its relationship to the white oaks is still not resolved (Manos and Hipp 2021). The restricted distribution and historical migration patterns of this section are likely affected by the group's vulnerability to freezing temperatures and drought tolerance. To date it is possible suppose a temperate origin in North America, followed by EastWest dispersion and subsequent migration South, that dates from 11 to 23 million years ago (Denk and Grimm 2009).

Section Lobatae ranges in a variety of habitats in Americas, and it is the only section to reach South America, where Quercus humboldtii Bonpl. occurs in northern Colombia (Valencia-Avalos 2004; Nixon 2006). An early diversification of red oaks in North America, followed by a southward shift to Mexico, associated with an increased rate of diversification, is dated around 15 million years ago (Hipp et al. 2018).

Section Quercus represents the most species rich group (about 150 species) and shows the greatest diversity of geographic distribution across the clades. It is spread in North America, Mexico, central America, western Eurasia, East Asia, and North Africa (Nixon and Muller 1997). The highest diversity occurs in Mexico, where approximately 100 species are found (Nixon 2006). Analyses of the timing and biogeography of Quercus indicate an initial diversification of white oaks in North America, followed by a concomitant movement southward, and then across the full geographic range of Eurasia. Although it is still unclear whether the direction of movement into Eurasia was West through the Beringian Land Bridge or East through the North Atlantic Land Bridges, according to recent analyses based on whole plastome genome data a clear origin of the roburoids within the Americas can be supposed (Manos and Hipp 2021).

In the 'Old World clade' (Quercus subgenus Cerris) approximately 138 species are enumerated.
Section Cerris (Cerris oaks) comprises 13 species of deciduous or semi-evergreen trees, distributed in a variety of habitats from the Atlantic coasts of the Iberian Peninsula and Morocco to Japan, and under a variety of climates (Köppen-Geiger climate types), including cold steppe and warm temperate or snow climates with different precipitation regimes (Kottek et al. 2006; Rubel et al. 2016; Simeone et al. 2018). This section appears to be a relatively recent offshoot of the group Ilex based on fossil records from both groups and the results of dating by Hubert et al. (2014).

Section Ilex comprises about 35 evergreen species widely distributed in Mediterranean Europe, northern Africa, and the East Asian subtropics (Menitsky 1984; Denk and Grimm 2010; Deng et al. 2017; Denk et al. 2017). Fossils of section Ilex characterised the Cenozoic Tethyan forest flora of Europe, the Himalayas, and East Asia (Guo 1978; Li and Guo 1976; Xu et al. 1973).

Section Cyclobalanopsis includes approximately 90 species, mainly distributed in tropical and subtropical humid areas of Asia (Deng 2007; Denk and Grimm 2010). These species are adapted to warm, humid climates and are often dominant trees in evergreen broad-leaved forests (Deng et al. 2018). The higher diversity is observed in southwestern China and northern Indo-China, where approximately 60 species are known to occur (Luo and Zhou 2000). Fossil taxa of the section Cyclobalanopsis have been found in East Asia since the Oligocene, with numerous occurrences in the Neogene in East Asia and on the southern Himalayan slope (Jia et al. 2015; Xu et al. 2016).

1.4 The current state of knowledge on the sections of the Quercus genus

To date all sections of the Quercus genus have been studied from different perspectives and by means of various approaches (morphology, genetics, ecology). However, the availability of integrated and complete data still remains lacking, mainly for some sections and/or geographic areas. While American and Asian studies have produced complete genome sequencing for many taxa of the genus (e.g., Hubert et al. 2014; Liu et al. 2019; Zhang et al. 2020; Zhou et al. 2022) and have reconstructed in detail the genealogical relations between plastid variants at large geographic scales, in Europe the availability of similarly extensive studies is extremely limited. Moreover, the lack of comparative and large-scale analyses and the availability of numerous localized studies increase, leaving them unresolved, the critical issues that distinguish the genus.

1.4.1 Knowledge gap in the genealogical relations between plastid DNA variants in the taxa of the European white oaks (section Quercus)

Analyses on the chloroplast genome variability have been carried out on all sections of the Quercus genus in order to investigate the evolutionary history and to reconstruct genealogical relations between plastid DNA variants (e.g., Manos et al. 1999; Olalde et al. 2002; Petit et al. 2002a; Petit et al. 2002b; Zhang et al. 2015; Yang et al. 2017). Due to the highly conserved structure, general recombination-free, small effective population sizes (Birky et al. 1983), as well as the uniparental (maternal) inheritance, that permits to examine the dispersal routes (Dumolin et al. 1995), the cpDNA proves to be extremely efficient in phylogenetic studies. Understanding the geographic and environmental processes that influence spatial genetic diversity patterns is also important to predict species responses to future climatic conditions and preserve diversity (Bay et al. 2017, 2018). Climate change may represent a challenge for the tree species, indeed despite their propensity for local adaptation, trees are susceptible to rapid environmental change due to their long generation times and immobility (Petit and Hampe 2006; Yan et al. 2019).
Detailed knowledge on the chloroplast genome variability is currently available for the majority of sections of the Quercus genus, however in the Euro-Mediterranean region, recent and updated reconstructions are available only for the sections Ilex and Cerris (e.g., Simeone et al. 2013, 2016, 2018), while for the section Quercus, the last studies date back to the early 2000s (Petit et al. 2002a, 2002b; Fineschi et al. 2002).

1.4.2 Knowledge gap in the taxonomy of the European white oaks (section Quercus)

Although to date sufficiently robust taxonomic classifications of the Quercus genus have been proposed in a global context, the classification of European oaks remains unresolved, especially for many taxa belonging to the section Quercus. The manifestation of hybrid forms is often the major cause of the taxonomic confusion and represents a challenge for the proper classification of some taxa. Hybridization and introgression are indeed well-documented phenomena in the Quercus genus and are significant sources of genetic and morphological variability (Fortini et al. 2015). Even though hybridization and introgression between species from different sections are rare in nature, due to the reproductive isolation (Hubert et al. 2014), their occurrence within sections is extremely frequent (Hipp 2015), and manifestation of this phenomenon among taxa of white oaks such as Quercus robur L., Q. petraea (Matt.) Liebl., and Q. pubescens Willd. is well recorded (Dupouey and Badeau 1993; Bussotti and Grossoni 1997; Fortini et al. 2009, 2022; Viscosi et al. 2011, 2012; Di Pietro et al. 2016, 2021). Crosses commonly take place in mixed forest where different oak taxa cohabit, moreover the high degree of phenotypic plasticity that distinguishes this genus further increases the diversity that results (Fortini et al. 2015). As a consequence, taxa identification can frequently be inaccurate or misleading (Jensen et al. 1993; Ponton et al. 2004). The most critical issues characterize the pubescent oaks group, especially in Italy. In fact, although this group has been treated by several authors, for many taxa it is still not possible to recognize diagnostic characters that support the status of the species. An example are the pubescent oak taxa considered typical of the flora of southern Italy, such as Quercus amplifolia Guss., Q. congesta C.Presl, Q. dalechampii Ten., Q. ichnusae Mossa, Bacc. \& Brullo, Q. leptobalanos Guss., and Q. virgiliana (Ten.) Ten., that while being accepted in important Italian Floras (Pignatti 1982; Brullo et al. 1999; Pignatti 2017-2019), are not unanimously recognized in
international institutions (e.g., The Plant List; IPNI; Euro + Med PlantBase), as well as in phytosociological syntheses (Brullo et al. 2001; Bacchetta et al. 2009; Biondi et al. 2010). In fact, in the Portal to the Flora of Italy, according to the morphological and molecular studies carried out in Italy over the past 15 years, some taxa are not regarded valid, and they are considered synonymous with Quercus pubescens. Differently, for other European white oaks as Quercus robur L., Q. petraea (Matt.) Liebl., and Q. frainetto Ten., despite the presence of dubious cases due to gene flow phenomena, occurring particularly in presence of Q. pubescens individuals, an easier identification can be made using the traditional morphological characters and molecular approaches (Fineschi et al. 2002; Curtu et al. 2007; Fortini et al. 2009; Viscosi et al. 2011).
The difficulties in matching the taxonomic and nomenclatural classifications proposed by Floras and Checklists with a corresponding clustering based on morphological, and/or genetic characters represent a crucial issue (Fortini et al. 2022) as it is proved by several studies (Bordács et al. 2002; Bruschi and Grossoni 2004; Škvorc et al. 2005; Franjic et al. 2006; Fortini et al. 2009; Viscosi et al. 2011; Enescu et al. 2013; Curtu et al. 2015; Di Pietro et al. 2016, 2021; Proietti et al. 2021). In light of these considerations, the use of genetic analyses to support the identification based on morphological traits of the taxa, turns out to be fundamental to fill the gaps in knowledge currently available, mostly for the European white oaks.

1.4.2.1 Analysis of the genetic diversity by means of simple sequence repeat markers

Due to their high levels of polymorphism, widespread distribution across most plant genomes, and ease of use, the microsatellites or simple sequence repeats (SSRs) have become one of the most popular molecular markers for plant genotyping in the last 20 years (Mason 2015) and provide an ideal tool to examine and detect genetic variation patterns within populations (Ekué et al. 2009). SSRs are a type of repetitive DNA sequence ubiquitous in most plant genomes and contain repeats of a motif sequence $1-6 \mathrm{bp}$ in length. Due to these features, SSRs frequently undergo mutations, primarily as a result of errors in DNA polymerase, which involve the addition or subtraction of a repeat unit. SSRs can be identified in expressed sequence tags (ESTs) and more frequently in nongenic DNA sequences because they occur in both genic and nongenic regions and are occasionally transcribed (Mason 2015). Due to their location in coding or closely linked regions, EST-SSR markers have a high transferability rate among taxa (Ellis and Burke 2007) and can be used for the study of local adaptation (Müller and Gailing 2018).

1.5 Aims of research

To fill the gaps in the knowledge currently available on the taxa of white oaks of the central southern Europe, belonging to the section Quercus of the Quercus genus and to improve the knowledge about evolutionary history and the taxonomic classification, the following study was carried out. The main aims of the research were:
I. to reconstruct genealogical relations between plastid DNA variants
II. to capture rare genetic variants that are important because they could subtend divergent evolutionary lineages
III. to provide data on the genetic structure and diversity
IV. to verify if the groups of oaks analysed were genetically distinct and if their identification was in accordance with the current taxonomic classification.

1.6 Taxa involved in the research

The taxa of white oaks (Quercus L. section Quercus) analysed in the current study include: Q. banatus P. Kucera, Q. congesta C. Presl, Q. dalechampii Ten., Q. faginea Lam., Q. frainetto Ten., Q. ichnusae Mossa, Bacch. \& Brullo, Q. leptobalanos Guss., Q. petraea (Matt.) Liebl., Q. petraea subsp. austrotyrrhenica Brullo, Guarino \& Siracusa, Q. pubescens Willd., Q. pyrenaica Willd., Q. robur L., and Q. virgiliana (Ten.) Ten.

1.6.1 Quercus banatus P. Kucera

Quercus banatus P. Kučera (= Q. dalechampii sensu auct. medioeur non Ten.) is a tree widely distributed in the central Europe and Balkan Peninsula (Fig. 1.5).
It reaches Poland in its northern distribution (Požgaj and Horváthová 1986; Koblizzek 1993; Magic 2006) and Caucasus eastward (Magic 2006). In the previous literature sources, Quercus dalechampii Ten. was the name given to oak populations of Q. banatus. However, after the extensive review of the application of the name Quercus dalechampii Ten. proposed by Di Pietro et al. (2012), the name Q. dalechampii Ten. was used to designate oaks belonging to the pubescent oak type (group of Q. pubescens Willd.). Therefore, Kučera (2019) proposed a name for Quercus dalechampii sensu auct. medioeur. non Ten., namely Q. banatus P. Kučera (based on Q. aurea Wierzb. ex Kotschy; syn. Q. aurea Wierzb.), following Schwarz's (1936) synonymization of " Q. dalechampii Ten." with Q. aurea Wierzb. (Schwarz 1937; Beldie 1952; Pignatti 1982; Magic 2006; Kučera 2019).

Figure 1.5 Leaves of Quercus banatus P. Kučera (From Kučera 2019)

1.6.2 Quercus congesta C. Presl

Quercus congesta C. Presl is a deciduous tree up to 20 m tall, with greyish-brown bark, longitudinally and transversely furrowed, divided into elongated scales. The young twigs are pubescent and greyish. The petiole is $0.4-1.4 \mathrm{~cm}$ long. The leaves are leathery, elliptic to oblong, and subcordate at base, $5-8.5 \mathrm{~cm}$ in length and $3-5 \mathrm{~cm}$ in width, with maximum width in the middle part. The upper page of the leaves is sparsely hairy and green, the lower page is densely pubescent and greyish in colour. The leaves have $5-8$ shallow lobes per each side, variously rounded, sometimes mucronate. The male catkins are $4-8 \mathrm{~cm}$ in length and female catkins are $3-8$ floriferous. The acorns are ovoid to ellipsoid, rounded and mucronate at apex, 2-3 cm long and $1-1.5 \mathrm{~cm}$ in diameter. The acorn cup, usually covering up to $1 / 4$ of the acorn, is ciaziform, regular-edged, with oblong-lanceolate embriciate scales having rounded to suboptuse brown apex, flat on dorsum, finely pubescent at base and sparsely pubescent in the upper part (Fig. 1.6).

Figure 1.6 Leaves and acorns of Quercus congesta C. Presl (From Brullo et al. 1999)

Flowering period is in April and the fruits mature in October. Quercus congesta occurs in northern Sicily, southern Calabria, and Sardinia (Brullo et al. 1999) (Fig. 1.7).

Figure 1.7 Distribution map of Quercus congesta C. Presl (From Brullo et al. 1999)

1.6.3 Quercus dalechampii Ten.

The name Quercus dalechampii Ten. has been applied to different taxa in the past, as the European botanists followed two different positions on the taxonomic relationships of Q. dalechampii. The first, proposed by Schwarz (1936-1939, 1964), regarded Quercus dalechampii as a species belonging to the Q. petraea species complex, while the second, supported by Camus (1936-1954) and, more recently, by Brullo et al. (1999), considered Q. dalechampii as belonging to the Q. pubescens species complex (Di Pietro et al. 2012). The misunderstanding in the application of the name Quercus dalechampii Ten. is due to the incongruence between the original description of Q. dalechampii, indicating leaves (abaxial surfaces) and young twigs glabrous (typical of the Q. petraea complex), and most of the original material which has leaves (abaxial surfaces) and young twigs pubescent (typical of the Q. pubescens complex). In 2012, Di Pietro et al. solved the problem of an inconsistent application of the name Quercus dalechampii Ten. by designating a lectotype which explicitly belongs to the pubescent oak type (group of Q. pubescens Willd.). Following this revision, the name Quercus dalechampii Ten. cannot be applicable to the populations in central Europe that were previously categorized under it, as well as to the populations in southeastern Europe (Beldie 1952; Gančev and Bondev 1966; Kučera 2019). The lectotype designated is from southern Italy (Gioia Tauro (Reggio), Calabria). According to this lectotypification, the name Quercus dalechampii Ten. is to be applied to a species belonging to the Q. pubescens complex, having oblong and deeply lobed leaves, sparsely pubescent on the adaxial side and pubescent on the abaxial side, with an acute apex and a subcordate base. Twigs are pubescent, fruits are sessile with a cupule having slightly tomentose and rough scales (Di Pietro et al. 2012) (Fig. 1.8).

Figure 1.8 Lectotype of Quercus dalechampii
Ten. (From Di Pietro et al. 2012)

Therefore, when interpreted as a species taxonomically related to Quercus petraea and reported from different countries in southeastern Europe, all records of Q. dalechampii are most likely to represent Q. petraea s.l. or another taxon (Di Pietro et al. 2012).

1.6.4 Quercus faginea Lam.

Quercus faginea Lam., also known as the Portuguese oak, is a medium-sized deciduous or semievergreen tree (up to 20 meters tall). The bark is greyish-brown. The twigs are pubescent or glabrescent. The leaves are ovate-oblongate, toothed or lobed, with teeth or lobes up to the base and are 3-15 cm long and $1.5-9 \mathrm{~cm}$ wide (Castroviejo 1986-2012) (Fig. 1.9).

Figure 1.9 Leaves of Quercus faginea Lam.

The petiole, pubescent or glabrescent, is $5-20 \mathrm{~mm}$ in length. The flowering period of this species is between March and April. The oblong-ovoid acorns are 2-2.5 cm long and the acorn cup has
ovate triangular scales. The Portuguese oak is a species native to the western Mediterranean region, and it is spread in Algeria, Morocco, Portugal, Spain, and Tunisia (Castroviejo 1986-2012) (Fig. 1.10).

Figure 1.10 Distribution map of Quercus faginea Lam. (From PoWO)

It occurs from sea level to 1900 m a.s.l. and it is a basophile taxon that grows in different soils, from sub-humid to humid ombrotypes, or in temporihygrophile positions in drier stations (Castroviejo 1986-2012).

1.6.5 Quercus frainetto Ten.

Quercus frainetto Ten., commonly known as Hungarian oak, is a deciduous tree, that rarely lives longer than 200 years and grows to heights of more than 30 m . Although it occasionally exists as an introduced species in Hungary, this oak is not endemic to this country, despite its name (Bartha 1998). The twigs and the lower surface of the leaves are covered with dense hairs. The leaves are large and up to 25 cm long, widest close to the apex, with many deep-cut lobes (Mitchell et al. 1974), and an ear-like base (Mauri et al. 2016) (Fig. 1.11).

Figure 1.11 Leaves of Quercus frainetto Ten.

The flowers are monoecious and are wind pollinated. The egg-shaped acorns can grow up to 25 mm in length and the acorn cup is sessile and covered with long overlapping scales and hairs (Clinovschi 2005; Johnson and More 2006). High fructification rates occur roughly every 5-8 years (Jerković and Marijanović 2010).
The Hungarian oak is an element of the sub-Mediterranean flora (Corcuera et al. 2002) and is thought to be native to southeastern Europe (Bartha 1998), with the Balkan Peninsula having the widest spread. It is also present in northwestern Turkey and southern Italy (Meusel and Jager 1989) (Fig. 1.12).

Figure 1.12 Distribution map of Quercus frainetto Ten. (From PoWO)

Quercus frainetto is a meso-xerophilous species, light demanding and cannot tolerate shading (Chatziphilippidis and Spyroglou 2006). It can grow in heavy acidic soils and tolerates some water logging (Sanders et al. 2014). This species occurs in pure stands, but more commonly it coexists with other species like hop hornbeam (Ostrya carpinifolia), oriental hornbeam (Carpinus orientalis), South European flowering ash (Fraxinus ornus), and Turkey oak (Quercus cerris) (Bartha 1998).

1.6.6 Quercus ichnusae Mossa, Bacch. \& Brullo

Quercus ichnusae Mossa, Bacchetta \& Brullo is an endemic taxon to Sardinia and owes its name to the old name of the Island, "Ichnusa". It is mainly widespread in the central and northwestern part of Sardinia (Fig. 1.13).

Figure 1.13 Distribution map of Quercus ichnusae Mossa, Bacchetta \& Brullo (From Mossa et al. (1999) and PoWO)

Quercus ichnusae is a deciduous tree (up to 25 m tall), with a pale, brown-greyish, and irregularly furrowed bark. The twigs, as well as the leaves, are pubescent. The leaves are oblong to oblongobovate, $6-15 \mathrm{~cm}$ in length and $2.8-9 \mathrm{~cm}$ in width, with $4-7$ lobes per side generally mucronate at the apex. The staminate catkins are grouped and the pistillate catkins are solitary or grouped (23). The acorn cup covers $1 / 3-2 / 3$ of the acorn and is regular and hemispherical with a peduncle of $5-20(30) \mathrm{mm}$ in length. It is covered by imbricate scales. The proximal ones are ampulliform to pyriform, strongly gibbous dorsally, subglabrous, or sparsely pubescent, and the distal ones are linear-elliptical, densely pubescent, finely imbricate, forming a wide margin. The acorn is dark brown, ovoid-ellipsoid rounded at the apex with a short appendage (Fig. 1.14).

Figure 1.14 Leaves and acorns of Quercus ichnusae Mossa, Bacchetta \& Brullo (From Mossa et al. 1999)

Quercus ichnusae flowers in March and the production of acorns is in October. It grows on fresh and deep soil and on siliceous substrata and occurs in the meso-supramediterranean belt, at 4001200 m a.s.l. Quercus ichnusae grows both in pure woods and with other taxa, such as Q. dalechampii, Q. congesta, and Q. amplifolia (Mossa et al. 1999).

1.6.7 Quercus leptobalanos Guss.

Quercus leptobalanos Guss. is a deciduous tree up to 20 m tall, with greyish bark, longitudinally and transversely furrowed, divided into elongated scales. The young twigs are pubescent and greyish in colour. The petiole is $0.5-1.8 \mathrm{~cm}$ long. The leaves are leathery of variable size, $5-15 \mathrm{~cm}$ in length and $3.5-11 \mathrm{~cm}$ in width, rounded or subcordate at base, with upper page sparsely hairy and dull green, and lower page densely pubescent and greyish, showing 5-7 incisions per side of variable depth, with rounded lobes (Fig. 1.15).

Figure 1.15 Leaves and acorns of Quercus leptobalanos Guss. (From Brullo et al. 1999)

Male catkins are 3-5 cm long and female catkins are 3-7 floriferous. Fruit axis greatly elongated, brings 3-7 subsessile or briefly pedunculate fruits. The acorn is ovoid to ellipsoid, rounded and mucronate at apex, $1-3 \mathrm{~cm}$ long. Acorn cup, usually covering $1 / 4$ to $1 / 2$ of the acorn, is $0.8-1 \mathrm{~cm}$ in diameter, hemispherical to ciaziform, regular-edged, with embriciate scales. The scales are ampulliform, slightly convex on back and furrowed at apex. Quercus leptobalanos normally flowers in May and the fruits mature in September. This taxon occurs on sandy-textured soils derived from siliceous substrates, between 800 and 1200 m a.s.l. It is spread in the northwestern Sicily, limited to the Madonie mountain and the Ficuzza Wood, near Palermo (Brullo et al. 1999) (Fig. 1.16).

Figure 1.16 Distribution map of Quercus leptobalanos Guss. (From Brullo et al. 1999)

1.6.8 Quercus petraea (Matt.) Liebl.

Quercus petraea (Matt.) Liebl., also known as sessile oak, is a tree up to $35(50) \mathrm{m}$ tall, with columnar trunk and a smooth silvery bark at the beginning, which at maturity turns brownish, with deep, long longitudinal fissures. The young twigs are greyish-brown and glabrous. Petiole is 1-2.5 cm long. Leaves are oblong to oboval, $8-12(-14) \mathrm{cm}$ in length and $5-7(-11) \mathrm{cm}$ in width, with maximum width in middle part. They are pale green and slightly pubescent at the beginning, while at maturity glabrous and lucent on the upper page and glabrous or with slight pubescence along the main veins on the lower page, presenting (4-)6-7(-8) pairs of rounded lobes, obtuse at the apex (Fig. 1.17).

Figure 1.17 Leaf of Quercus petraea (Matt.) Liebl.

The male catkins are $3-5 \mathrm{~cm}$ long and the female catkins are 1-5 floriferous. The fruit axis brings 1-5 fruits. Acorn is subellipsoid to cylindrical oblong, rounded and mucronate at apex, $1.5-4 \mathrm{~cm}$ long, $1-2.5 \mathrm{~cm}$ in diameter. Quercus petraea flowers from late February to April and the fruits mature in September. This species grows in more Atlantic climates on light and well-drained, often rocky, soils (hence the specific Latin name petraea $=$ of rocky places), generally occurring on slopes and hill tops, and preferring a more acid soil pH . It forms acidophilous woodlands more or less pure or mixed with other deciduous oaks (Quercus robur, Q. humilis, Q. cerris) and beech. Quercus petraea is widely distributed in Europe, from the Iberian Peninsula to Russia, and northwestern Turkey (Hedge and Yaltrik 1982). In Italy it is frequent throughout the peninsula as far as Calabria, excluding Sicily (where Quercus petraea subsp. austrotyrrhenica Brullo, Guarino \& Siracusa occurs) and Sardinia (Pignatti 1982) (Fig. 1.18).

Figure 1.18 Distribution map of Quercus petraea (Matt.) Liebl. (From PoWO)

1.6.9 Quercus petraea subsp. austrotyrrhenica Brullo, Guarino \& Siracusa

Quercus petraea subsp. austrotyrrhenica Brullo, Guarino \& Siracusa is a deciduous tree up to 30 m tall, with columnar trunk, showing brown bark, longitudinally furrowed. The young twigs are glabrous, reddish in colour with prominent lenticels. Petiole is 1-2.5 cm long. Leaves are variable in shape, subrounded to oblong, $8-13 \mathrm{~cm}$ in length and $6-11 \mathrm{~cm}$ in width, with maximum width in the central part. They are rounded or subcordate at the base, dark green, with upper page lucid, and lower page glabrous or pubescent along the main veins and have $4-5$ rounded lobes. Male catkins are 3-6 cm in length, while female catkins are 3-7 floriferous. Fruit axis brings 3-7 acorns. The acorn, oblong to ellipsoid, rounded and mucronate at apex, is 2-3.5 cm long and $1-1.5 \mathrm{~cm}$ in diameter. The acorn cup covers $1 / 3$ of the fruit and is subhemispherical to ciaziform, regularedged, with embriciate, triangular-ampulliform scales, that are gibbous in the lower half, glabrous or subglabrous at the apex, and pubescent at the margin (Fig. 1.19).

Figure 1.19 Leaves and acorns of Quercus petraea subsp. austrotyrrhenica Brullo, Guarino \& Siracusa (From Brullo et al. 1999)

Quercus petraea subsp. austrotyrrhenica flowers in late May-early June and the fruits mature in September. It occurs in the montane plane at elevations between 1100 and 1700 m a.s.l., on schists and gneisses and on fresh and deep, but not excessively moist soils. This subspecies constitutes pure mesophilic woods and occurs exclusively in Sicily, on the Madonie and Nebrodi Mountains, and in Calabria on the massifs of Aspromonte and Serre Calabre (Fig. 1.20).

Figure 1.20 Distribution map of Quercus petraea subsp. austrotyrrhenica Brullo, Guarino \& Siracusa (From Brullo et al. 1999)

Subspecies austrotyrrhenica shows an allopatric distribution in comparison to the type, occupying the southernmost stations of the species range. It has clearly differentiated morphologically as a result of the geographic isolation of its populations (Brullo et al. 1999).

1.6.10 Quercus pubescens Willd.

Quercus pubescens Willd., commonly known as downy or pubescent oak, is a middle-sized (1520 m tall) deciduous or semideciduous tree, which owes its name to the leaves densely pubescent. The leaves are alternate, ovate-oblongate, (3)5-10 cm long, with 5-6 more or less deep lobes (Krüssmann 1978). They are green-greyish when develop and turn leathery and dark green when the hairs on their upper side fall out (Fig. 1.21). The petiole is short (5 to 20 mm) (Pasta et al. 2016).

Figure 1.21 Leaves of Quercus pubescens Willd.

Pubescent catkins of grouped male flowers (6-10 stamens) grow up at the base of new shoots. The female flowers have greenish stigmata and develop on the axil of distal leaves. The fruits, mostly elliptic ($2-3.5 \mathrm{~cm}$ long) and enclosed for $1 / 4$ to $1 / 2$ of their total length by cupules covered by imbricate triangular hairy scales, have a short hairy petiole, and are grouped in clusters of 3-4 acorns. The flowering period, which lasts from March to May, differs with altitude. From September to November, the ripen acorns mature and are able to germinate immediately and to develop vigorous roots in very short time (Tonioli et al. 2001). Deep furrows, rough, and thick plates that are distinctive to the bark of downy oaks serve as an effective barrier against grazing fires (Pasta et al. 2016).
As a result of the high morphological variability of the populations of Quercus pubescens, many ecomorphotypes spread in the major Mediterranean islands and/or South European peninsulas are considered endemics or exclusive to limited area (e.g., Quercus amplifolia Guss., Q. congesta C. Presl, Q. dalechampii Ten., Q. ichnusae Mossa, Bacc. \& Brullo, Q. leptobalanos Guss., and Q. virgiliana (Ten.) Ten.). To date, as the genetic analyses still fail to differentiate these taxa (Franjić et al. 2006; Enescu et al. 2013) they are clustered in the Quercus pubescens s.l. group. Quercus pubescens s.l. has a wide geographic range occupying almost all central and southern Europe from western Spain (Franco 1991; Rivas-Martìnez and Sáenz-Laìn 1991) to the Balkan area, Black Sea, and Caucasus (Pasta et al. 2016) (Fig. 1.22).

Figure 1.22 Distribution map of Quercus pubescens Willd. In green the countries where the species is native and in violet the countries where it is introduced (From PoWO)

Although Quercus pubescens is more common on hillsides between 200 and 800 m a.s.l., it grows from coastal plains up to $1200-1300 \mathrm{~m}$ a.s.l., mainly in lime-rich and well drained soils in the northern part of their range, while it is common on acidic soils in the warmer countries (e.g., Sicily and Crete). It exhibits both thermophilic and heliophilic behaviours and is suited to both moderate summer drought stress and low winter temperatures. Moreover, while in central Europe, Quercus pubescens is restricted to warm microclimatic conditions, Quercus pubescens-dominated forests are quite widespread in southern Europe (Pasta et al. 2016). Downy oaks coexist with other species of southeastern Europe and southwestern Asia, such as oriental hornbeam (Carpinus orientalis), nettle trees (Celtis spp.), manna ash (Fraxinus ornus) and hop hornbeam (Ostrya carpinifolia) (Pasta et al. 2016).

1.6.11 Quercus pyrenaica Willd

Quercus pyrenaica Willd., syn. Quercus toza Bosc, also known as Pyrenean oak, is a mediumsized deciduous oak (up to 20 m tall), with an average longevity of 300 years (López Lillo and López Santalla 2007). Although it is not distributed in the Pyrenees, both the scientific and common name of this oak refer to the Pyrenees, as Willdenow named this oak on the basis of dry samples received with a wrong sticker that described its origin in the Pyrenees (López González 2007). The trunk is straight and slender with a thick and cracked greyish-brown bark. The leaves are simple and alternate, with 4-8 pairs of irregular and deep lobes and they are covered by stellate hairs on sides (Franco 1991; López Lillo and López Santalla 2007; López González 2007; Lorite et al. 2008). They are 7-20 cm in length and 4 to 10 cm in width (Fig. 1.23).

Figure 1.23 Leaves of Quercus pyrenaica Willd.

The Pyrenean oak is a monoecious tree. The female flowers are grouped in small clusters, while the male catkins appear early summer and are wind pollinated (Johnson and More 2006). The oblong acorns, about 4 cm in length and 1-2.5 cm in width, mature in autumn and are dispersed principally by birds and micro-mammals (López Lillo and López Santalla 2007). Pyrenean oak is spread from western and southwestern France to the Iberian Peninsula (Spain and Portugal) and northern Morocco (Lorite et al. 2008). Since Spain and Portugal represent about 95% of its natural distribution area, the species can almost be considered as endemic to the Iberian Peninsula (Calabuig et al. 2000) (Fig. 1.24).

Figure 1.24 Distribution map of Quercus pyrenaica Willd. (From PoWO)

Quercus pyrenaica ranges from sea level to 2100 m a.s.l. in Sierra Nevada (Franco 1991). This oak inhabits transitional regions between sub-humid temperate and Mediterranean semi-arid conditions and is a typical sub-Mediterranean mountainous species. Its limited growth season affects its distribution (Hernández-Santana et al. 2008). It is a sciaphilous species, and it appears mainly on the mountainside and foot of siliceous mountains, rarely in limestone and dolomites, and prefers loose soils and a sandy texture (López González 2007). Quercus pyrenaica usually grows in closed forest, although depending on the level of management its overall appearance can show different degrees of openness, including dehesa (Velasco Aguirre 2014).

1.6.12 Quercus robur L.

Quercus robur L., also known as pedunculate or English oak, is a deciduous broadleaved tree, spread in Europe, that can live up to 1000 years and reaches hights of 40 m . The bark is grey, fissured with rectangular elongate blocks. The leaves are simple, obovate-oblong, and deeply and irregularly lobed, with a short petiole ($2-7 \mathrm{~mm}$). This species is monoecious and wind pollinated. The male catkins are yellow, 5 cm long, and the female catkins are globular (Mitchell et al. 1974). The acorns, which grow in pairs, are held on the ends of long stems, and are rounded with longitudinal olive-green stripes that are evident when fresh (Fig. 1.25).

Figure 1.25 Leaves and acorns of Quercus robur L.

Quercus robur occurs widely across most of Europe, reaching the Norwegian coast and the northern Scotland, in Mediterranean areas it is also present in Portugal, Greece, and South Turkey, and eastwards into continental central Russia, up to the Urals (Ducousso and Bordacs 2003) (Fig. 1.26).

Figure 1.26 Distribution map of Quercus robur L. In green the countries where the species is native and in violet the countries where it is introduced (From PoWO)

It grows up to 1300 m a.s.l. in the Alps, in fertile and moist soils. This oak is a light demanding species and occurs in damp to wet and nutrient-rich soils, where it cohabits principally with hornbeam (Carpinus betulus) and other deciduous tree species such as ash (Fraxinus excelsior, Fraxinus angustifolia), maple (Acer campestre, Acer platanoides) and small-leaved lime (Tilia cordata) (Eaton et al. 2016).

1.6.13 Quercus virgiliana (Ten.) Ten.

Quercus virgiliana (Ten.) Ten. is a deciduous tree up to 20 m tall, with greyish bark, longitudinally and transversely furrowed, divided into elongated scales. The young twigs are pubescent and greyish in colour. The leaves are leathery, $5-8.5 \mathrm{~cm}$ in length and 3-5 cm in width, with 3-7 rounded lobes, sometimes mucronate. The acorn is ovoid to ellipsoid, rounded and mucronate at apex, 23.5 cm in length. The acorns are grouped in clusters of $1-5$. Acorn cup usually covering $1 / 4$ or $1 / 2$ of the acorn, is irregular and has fringed edge due to the prolongation of the scales, that are imbricated and hairy (Fig. 1.27).

Figure 1.27 Leaves and acorns of Quercus virgiliana (Ten.) Ten.

This taxon normally flowers in February-March, however individuals found at elevations above 800 m may delay flowering until May. The fruits mature between October and November. Quercus virgiliana is found from sea level up to about 1300 m a.s.l. Although, it was thought from several authors that Quercus virgiliana was restricted to the coastal plain and the hilly belt, differently from Q. pubescens, regarded as a species typical of inland areas and higher altitudes, according to Fortini et al. (2022) no evidence for this assumption were found. Quercus virgiliana occurs in mixed evergreen and deciduous oak forests with a predominantly thermophilic character. The presence of the species has been documented in Sicily, Sardinia, and peninsular Italy (Brullo et al. 1999) (Fig. 1.28). According to Borhidi (1995), it is also present in the Balkan area and, it reaches as far as southern Hungary.

Figure 1.28 Distribution map of Quercus virgiliana (Ten.) Ten. in Italy (From Brullo et al. 1999)

2 Materials and methods

2.1 Study area

The study was carried out over a vast area of the central and southern Europe, the Balkan Peninsula, and the northern Africa. Eleven countries were involved in the sampling: Austria, Bulgaria, Croatia, Czech Republic, France, Greece, Italy, Morocco, Romania, Serbia, Spain. From each country a different number of populations was considered and different taxa of the Quercus genus, section Quercus were sampled (Fig. 2.1; Supplementary File 1).

Figure 2.1 Distribution map of the taxa of the Quercus genus sampled

The populations selection was performed following a biogeographic criterion, so the patterns of geographic distribution of plants and the factors that determine these patterns, such as, for example, altitude, light, soil, pH , were considered during samples collection. In addition, mostly for the Italian populations, the sampling was carried out considering the forest communities described in literature. Both natural areas and protected ones as Natural/Regional/National Parks or Biogenetic Nature Reserves were chosen for the sampling. Moreover, some species were collected, when possible, in the locus classicus, namely the locality from which a taxon was first described (e.g., Quercus banatus from Oravița, Romania; Q. congesta from Mount Etna, Sicily Island; Q. dalechampii from Aspromonte, Calabria (southern Italy); Q. frainetto from Aspromonte, Calabria (southern Italy); Q. ichnusae from Senis, Sardinia Island; Q. leptobalanos from Ficuzza Wood, Sicily Island; Q. petraea subsp. austrotyrrhenica from Pomieri Wood, Sicily Island).

2.2 Plant material

The sampling design included 1987 individuals (trees) belonging to 93 populations (63 of which are Italian) representing 13 taxa (Quercus banatus P. Kucera, Q. congesta C. Presl, Q. dalechampii Ten. (referred in the map of Fig. 2.1 as Q. dalechampii (Q. pubescens group) or Q. dalechampii (Q. petraea group) according to the geographical provenance, see the introduction for more details), Q. faginea Lam., Q. frainetto Ten., Q. ichnusae Mossa, Bacch. \& Brullo, Q. leptobalanos Guss., Q. petraea (Matt.) Liebl., Q. petraea subsp. austrotyrrhenica Brullo, Guarino \& Siracusa, Q. pubescens Willd., Q. pyrenaica Willd., Q. robur L., Q. virgiliana (Ten.) Ten. belonging to the section Quercus of the Quercus genus. The sampling was performed when trees were in leaf to maximise the assignment to the different species.
In order to avoid capturing family structures, individuals were chosen to be at least 30 m apart from each other. An average of 25 individuals was sampled from each population, with the exception of the populations from the Biogenetic Nature Reserves, where few samples were collected. Plant material (including twigs, leaves, buds, flowers, fruits) collected from each sample was preserved as herbarium voucher in the herbarium of the University of Molise (IS) (Thiers 2015). In addition, three to ten leaves from each tree were dried in silica gel for genetic analyses.

2.3 Chloroplast genome analyses

2.3.1 Plant material for the chloroplast genome analyses

For the chloroplast (cp) genome analyses, a total of 270 individuals (3 trees for each population) belonging to 90 populations of the Quercus genus were selected and investigated attempting to cover the distributions of all the taxa in the sampled area (Fig. 2.2; Supplementary File 2). All the chloroplast genome analyses were carried out in the "Molecular Ecology of Forest Trees" laboratory of the University of Tuscia (Viterbo, Italy).

Figure 2.2 Distribution map of the taxa of the Quercus genus analysed by means of the chloroplast genome

2.3.2 DNA extraction, amplification, and sequencing

Genomic DNA was extracted from dried leaves (about 50 mg per tree) of 270 samples, with the NucleoSpin ${ }^{\text {TM }}$ Plant II Kits (Macherey-Nagel), following the manufacturer's instructions.
NucleoSpin® Plant II kits allow the isolation of genomic DNA from plant tissue through two optimized lysis buffer systems based on the established CTAB and SDS methods. The plant samples were first homogenized by mechanical treatment. Then the DNA was extracted with Lysis Buffers PL1 containing chaotropic salts, denaturing agents, and detergents. Crude lysates were cleared by centrifugation and filtration using the NucleoSpin Filters provided with the kits in order to remove contaminations and residual cellular debris. The clear flow-through was then mixed with Binding Buffer PC to create conditions for optimal binding of DNA to the silica membrane. After that this mixture was loaded onto the spin column, contaminants were washed away using Wash Buffers PW1 and PW2. The genomic DNA was so eluted with low salt Elution Buffer PE (5 mM Tris $/ \mathrm{HCl}, \mathrm{pH}$ 8.5) or nuclease-free water and used for subsequent reactions (https://www.mn-net.com/).
Genomic DNA was then analysed by means of DNA sequence polymorphism at two plastid loci: the $t r n \mathrm{H}-p s b \mathrm{~A}$ intergenic spacer and a portion of the $\operatorname{trnK}-m a t \mathrm{~K}$ region (3^{\prime} intron and partial gene). These markers were selected because of their high number of accessible sequences on GenBank, and the variability displayed in previous studies (e.g., Manos et al. 2001; Okaura et al. 2007; Simeone et al. 2013, 2016).

The intergenic spacer $\operatorname{trn} \mathrm{H}$-psbA is the most widely utilized noncoding barcode in molecular phylogenetics following the coding rbcL and matK sequences (CBOL PlantWorking Group 2009; Hollingsworth et al. 2011). Both two markers allow robust PCR amplifications from diverse plant taxa (Dong et al. 2012; Kress et al. 2005; Shaw et al. 2005; Shaw et al. 2007; Uncu and Uncu 2018). Primer sequences for $\operatorname{trnH}-p s b \mathrm{~A}$ and $\operatorname{trnK}-m a t \mathrm{~K}$ were obtained from Shaw et al. (2005) and Piredda et al. (2011), respectively (Table 2.1).

Table 2.1 Pairs of primers used for the amplification of the two marker fragments

Locus trnH-psbA	Primer Name	Sequence
	trnH-psbA_fw	5'-CGCGCATGGTGGATTCACAATCC-3'
	trnH-psbA_rev	3'-GTTATGCATGAACGTAATGCTC-5'
trnK-matK	matK_fw	5'-GTACTTGATGCGGGAAATGC-3'
	matk_rev	3'-CAATGATTGCAAATCCTTCTGA -5'

DNA sequences were then amplified in a total volume of $25 \mu \mathrm{l}$ using PuReTaq Ready-To-Go PCR Beads (Cytiva) following the manufacturer's instructions.

PuReTaq Ready-To-Go PCR Beads are pre-mixed, predispensed, single-dose reactions designed to performe standard PCR amplifications. The use of recombinant PuReTaq DNA polymerase and other high-purity reagents ensures reliable and robust performance in PCR amplifications and guarantees the lowest possible levels of contaminating prokaryotic and eukaryotic nucleic acids. The PuReTaq Ready-To-Go PCR Beads assure greater reproducibility between reactions, minimize pipetting steps, and reduce the potential for pipetting errors and contamination (https://www.cytivalifesciences.com/en/us).
Uniform PCR procedures were followed for all taxa and for the two plastid loci ($\operatorname{trn} \mathrm{H}-p s b \mathrm{~A}$ and trnK-matK). The amplification reaction was carried out in an MJ Mini Bio Rad thermal cycler with the following profile: initial denaturation at $94^{\circ} \mathrm{C}$ for 3 minutes, followed by 35 cycles of denaturation at $94{ }^{\circ} \mathrm{C}$ for 30 seconds, annealing at $53^{\circ} \mathrm{C}$ for 40 seconds, and elongation at $72{ }^{\circ} \mathrm{C}$ for 40 seconds, with a final extension step at $72^{\circ} \mathrm{C}$ for 5 minutes.
PCR products were cleaned with Illustra ${ }^{\mathrm{TM}} \mathrm{GFX}^{\mathrm{TM}}$ PCR DNA and Gel Band Purification Kit (GE Healthcare), following the manufacturer's instructions.
The Kit allows rapid purification and concentration of DNA fragments with sizes ranging from 50 bp to 40 kb from PCR mixtures or agarose gel bands. The binding capacity is approximately 25 $\mu \mathrm{g} / \mathrm{column}$. The kit combines a chaotropic buffer with a glass-fiber matrix supported in a spin column for the purification of DNA from both solution and agarose gel. DNA purity is very high, and the 99.5% of contaminants are removed (https://www.cytivalifesciences.com/en/us).
Standardized aliquots of PCR products purified were then sent to Macrogen Europe (https://www.macrogen-europe.com/) for sequencing. For all samples, forward DNA strands sequencing was performed; additionally, bi-directional sequencing was performed if the results were unclear.

2.3.3 Data analysis

Electropherograms so obtained were edited with CHROMAS 2.6.6 (http://www.technelysium.com.au) and checked visually.
Multiple alignments were realized using MEGA 10.2.6 (Tamura et al. 2011). In addition, with the same software, pairwise uncorrected p-genetic distances (p), namely the proportion of observed differences between the two aligned genomes (Criscuolo 2020), were calculated.
DNAsp 6.12.03 (Librado and Rozas 2009) was used to generate haplotype lists and to analyse and calculate the number of haplotypes (H), the haplotype diversity (Hd), also known as gene diversity, that is the probability that two randomly sampled alleles are different (Nei 1978), and to evaluate the number of Parsimony Informative Characters (PICs), namely sites containing at least two types of nucleotides, in which at least two of them occur with a minimum frequency of two (Tamura et al. 2011).
These parameters were calculated for the sequences of the samples of Quercus investigated in this study. In addition, sequences from sections Cerris (Simeone et al. 2018) and Ilex (Simeone et al. 2016), as well as from West Eurasian Quercus (Simeone et al. 2013) and East Eurasian Quercus (Yang et al. 2020) were also studied in order to make comparisons. All these sequences are deposited in GenBank (https://www.ncbi.nlm.nih.gov/genbank/) (accession numbers are reported in Supplementary File 3).
NETWORK 10.2.0.0 (https://www.fluxus-engineering.com/) was used to make inferences about biogeography and history of the populations and to reconstruct genealogical relations between cpDNA haplotypes. The median-joining (MJ) algorithm was selected, and it was invoked with default parameters (equal weight of transversion/transition), in order to handle large datasets and multistate characters. It is an exceptionally fast method that can analyse thousands of haplotypes in a reasonable amount of time.
MJ method begins by combining the minimum spanning trees within a single network. The minimum spanning tree connects all given sequence types without creating any cycles or inferring additional (ancestral) nodes, resulting in a total length (i.e., the sum of distances between linked sequence types) that is as short as possible. With a parsimony criterion, median vectors, that can be biologically interpreted as possibly extant unsampled sequences or extinct ancestral sequences, are added to the network (Posada and Crandall 2001).
Median-Joining network was generated for the samples of Quercus analysed in this study. Furthermore, in order to reconstruct genealogical relations among cpDNA haplotypes of the samples belonging to the different sections of the subgenus Quercus (Quercus, Lobatae, Protobalanus, Virentes, Ponticae), with the addition of an outgroup represented by a sequence of a sample of the monotypic genus Notholithocarpus (closely related to Quercus, Castanea, and Castanopsis (Manos et al. 2008)), a Median-Joining network with star contraction, as a preprocessing option, was created. The star contraction option allows to simplify the network and to recognize population expansion events, and it can identify clusters among the haplotypes and create a contraction that looks like a star (Kong et al. 2016). Accession numbers of the sequences included in the final network are reported in Supplementary File 3.
Subsequently, a planar phylogenetic network was generated using Neighbour-Net (NNet) algorithm implemented in SPLITSTREE 4.18.3 (Huson and Bryant 2006). Given an alignment of sequences, a distance matrix or a set of trees, this program allows to generate a phylogenetic tree or network using methods such as split decomposition, neighbor-net, consensus network, super
networks methods or other methods for calculating hybridization or simple recombination networks. In this study, the parameters of split transformation, distance transformation, character transformation, variance, and bootstrap replicates were set to equal angle, neighbor net, uncorrected p distance, ordinary least squares, and 1000, respectively. Other parameters followed default settings. More in detail, the equal angle algorithm guarantees that no two edges intersect (Kloepper and Huson 2008), while the neighbor-net algorithm is a method for constructing a collection of weighted splits which is then converted to a graphical representation, called a splits graph, using the drawing algorithms implemented in SplitsTree (Huson and Bryant 2006).
Splitstree graph was generated combining the sequences of the samples of Quercus analysed in this study, with the sequences of the subgenus Quercus belonging to the different sections, and an outgroup set represented by samples of the subgenus Cerris (represented by members of sections Cyclobalanopsis, Cerris and Ilex; this latter including all the currently identified main lineages: East Asian, WAHEA and Euro-Med according to Simeone et al. 2016). All these sequences are deposited in GenBank (https://www.ncbi.nlm.nih.gov/genbank/) (accession numbers are reported in Supplementary File 3).
Moreover, on the same dataset (Supplementary File 3), phylogenetic tree inference and bootstrap analyses were performed under maximum likelihood with RAxML v. 8.2.11 (Stamatakis 2014). The GTR+CAT approximation model and the 'extended majority-rule consensus' criterion as bootstrapping option (Pattengale et al. 2010), with 1000 bootstrap (BS) pseudoreplicates were used to assess branch support (BS). The CAT model is a computational work-around for the widely used General Time Reversible model of nucleotide substitution under the Gamma model of rate heterogeneity (GTR- Γ). The RAxML tree was rooted between subgenus Cerris and subgenus Quercus, following Zhou et al. (2022) and imported in iTOL (https://itol.embl.de/; Letunic and Bork 2021) for visualization and labelling.

2.3.4 Molecular markers

2.3.4.1 trnH-psbA

$T r n \mathrm{H}-p s b \mathrm{~A}$ is a non-coding intergenic spacer and is among the most variable plant barcodes (Dong et al. 2012; Shaw et al. 2007). It ranges from 198 to 1077 bp , with an average length of 465 bp . The ends of this spacer, roughly 75 bp from either gene, are relatively conserved compared to its middle portion, which is highly indel prone (Aldrich et al. 1988) and contains several poly-A/T runs (Shaw et al. 2005). According to Kress et al. (2005), Shaw et al. (2007) and Whitlock et al. (2010), the $t r n \mathrm{H}-p s b \mathrm{~A}$ region shows many of the features deemed desirable in a barcode, in many plant lineages. In fact, $\operatorname{trnH}-p s b \mathrm{~A}$ is a useful marker for different reasons:
-it is among the most variable (in terms of percentage variability)
-since it is a relatively short region across angiosperms, effective PCR amplification and sequencing from both high molecular weight and degraded DNA is possible
-one primer pair is likely to amplify nearly all angiosperm taxa since published primers seem to be "universal" (Shaw et al. 2007).
On the other side, given its short length, this region might not produce enough PICs to distinguish between closely related species (apart from the fact that closely related plants will be difficult to "barcode", because it has been shown that recent histories of hybridization can homogenize or even uncouple plastid genome phylogenies from species phylogenies) (Shaw and Small 2005). So,
within some groups, $\operatorname{trn} \mathrm{H}-p s b \mathrm{~A}$ is not sufficiently variable to distinguish among closely related species (Sass et al 2007; Spooner 2009) and in others intraspecific variation is high (Edwards et al. 2008).

2.3.4.2 trnK-matK

Numerous evolutionary analyses have demonstrated the high degree of variability of the locus matK (Shaw et al. 2005), considered one of the barcoding regions with the greatest universality through a variety of published works (Piredda et al. 2011). The marker trnK-matK consists of the matK gene and two flanking introns. The matK coding region has a length of 1500-1600 bp in most angiosperms and is located within domain V of the trnK UUU group II intron (Neuhaus and Link 1987). The matK open reading frame (ORF) is encoded by the trnK intron (Neuhaus and Link 1987), and it can be used as a marker to construct plant phylogenies because the ORF evolves rapidly, about three times faster than $r b c \mathrm{~L}$ (Soltis et al. 1996) and is ubiquitous in plants (Hilu and Liang 1997; Kelchner 2002; Johnson and Soltis 1995). This ORF has been suggested to code for a maturase, based on structural similarities, and matK is the only maturase found in higher plant plastids (Neuhaus and Link 1987). Likewise, the trnK intron is of interest because it represents an unusual form of a group II intron (Hausner et al. 2006).

The position of the two plastid loci studied ($\operatorname{trn} \mathrm{H}-p \operatorname{sbA}$ and $\operatorname{trn} \mathrm{K}-m a t \mathrm{~K}$) is shown in an example of the plastid genome, obtained from chloroplast genomes belonging to a total of 24 species of the Quercus genus (Pang et al. 2019) (Fig. 2.3).

Figure 2.3 Chloroplast genome map of Quercus. Genes drawn inside the circle are transcribed clockwise, while those drawn outside are transcribed counterclockwise. Different colours are used to show genes in different functional groups. The extent of the inverted repeats (IRa and IRb), which separate the genomes into small single-copy (SSC) and large single-copy (LSC) regions, is indicated by dark bold lines (image from Pang et al. 2019)

2.4 Nuclear microsatellite markers analyses

2.4.1 Plant material for the nuclear microsatellite markers analyses

For the microsatellite (simple sequence repeat (SSR)) markers analyses, a total of 1072 individuals (20 trees for each population, except for 9 populations with less samples) belonging to 58 populations of the Quercus genus were selected and investigated (Fig. 2.4; Supplementary File 4). All the SSR analyses were carried out in the laboratories of the "Department of Forest Genetics and Forest Tree Breeding" of the University of Göttingen (Göttingen, Germany).

Figure 2.4 Distribution map of the taxa of the Quercus genus analysed by means of SSRs

2.4.2 DNA extraction, amplification, and sequencing

Genomic DNA was extracted from dried leaves (about 20 mg per tree) of 1072 samples, with two different DNA extraction Kits, the Qiagen DNeasy ${ }^{\text {TM }}$ Plant Kit (Qiagen, Hilden, Germany) (samples 1-192; 673-1072) and the EchoLUTION Plant DNA Kit BioEcho (Cologne, Germany) (samples 193-672), following the manufacturer's instructions.

With the Qiagen DNeasy ${ }^{\text {TM }}$ Plant Kit, the samples were first mechanically disrupted and then chemically lysed. RNA was removed by RNase digestion during lysis. Centrifugation allowed to remove cell debris, precipitated proteins, and polysaccharides. The lysates were loaded onto the DNAeasy Plant 96 -well plate. During a brief spin, DNA selectively binds to the silica membrane
while contaminants pass through. One wash step was used to remove remaining contaminants and enzyme inhibitors. Pure DNA was then eluted in water (https://www.qiagen.com/de-us).
With the EchoLUTION Plant DNA Kit BioEcho, first the Bead-beating Master Mix was added to the samples, and after centrifugation, Lysis Master Mix was added in the wells. The samples were then incubated with maximum agitation. After purification and elution, DNA was ready for use (https://www.bioecho.com/Products/DNA-Extraction/).

The samples were genotyped at twelve Expressed Sequence Tag-Simple Sequence Repeats (ESTSSRs), that were selected, based on the level of polymorphism and according to other studies on European white oaks (Lepais et al. 2009; Guichoux et al. 2011a, b; Neophytou et al. 2010; Curtu et al. 2015; Antonecchia et al. 2015; Di Pietro et al. 2021). The set of EST-SSR markers includes: PIE239, PIE227, PIE223, PIE215, PIE020, PIE152, PIE243, PIE242, PIE267, PIE102, PIE258, PIE271 (Durand et al. 2010) (Table 2.2).
EST-SSR markers derive from expressed, potentially functional regions of the genome, and because of their lower mutation rates, they are usually less polymorphic than genomic SSRs (Ellis and Burke 2007; Varshney et al. 2005). Nevertheless, EST-SSRs have relative advantage over genomic SSR because they are quickly obtained by electronic search, and they reflect the genetic diversity inside or adjacent to the genes (Varshney et al. 2005; Parthiban et al. 2018).
Three different multiplex reactions were used to combine the primers pairs for nuclear SSRs: Mu1 (PIE239, PIE227, PIE223, PIE215); Mu2 (PIE020, PIE152, PIE243, PIE242); Mu3 (PIE267, PIE102, PIE258, PIE271).
For each single primer pair, PCR reactions were conducted in a $13 \mu \mathrm{l}$ volume containing $1 \mu \mathrm{l}$ of genomic DNA (about $0.6 \mathrm{ng} / \mu \mathrm{l}$), $1.5 \mu \mathrm{l}$ of PCR buffer (containing 0.8 M Tris- HCl and 0.2 M $\left.\left(\mathrm{NH}_{4}\right) 2 \mathrm{SO}_{4}\right), 1.5 \mu \mathrm{l}$ of $\mathrm{MgCl}_{2}(25 \mathrm{mM}), 1 \mu \mathrm{l}$ of each dNTP $(2.5 \mathrm{mM}), 0.2 \mu \mathrm{l}$ of HOT FIREPol® Taq Polymerase from Solis BioDyne (Tartu, Estonia), 6.7-7.5 $\mu \mathrm{l}$ of $\mathrm{ddH}_{2} \mathrm{O}$ (quantity varied according to the quantity of primers), $0.15-0.55 \mu \mathrm{l}$ of primer (forward, $5 \mathrm{pM} / \mu \mathrm{l}$) and $0.15-0.55 \mu \mathrm{l}$ of primer (reverse, $5 \mathrm{pM} / \mu \mathrm{l}$). More in detail, for primer forward and reverse were used: $0.15 \mu \mathrm{l}$ for PIE020, PIE243, PIE267; 0.2μ l for PIE239, PIE227, PIE223; 0.4μ l for PIE215, PIE102, PIE258, PIE271; $0.5 \mu \mathrm{l}$ for PIE242; $0.55 \mu \mathrm{l}$ for PIE152.
Uniform PCR procedures were followed for all taxa and for the twelve markers. A touchdown PCR program was selected and performed in a Biometra Thermocycler TOptical Gradient 96 (Biometra, Goettingen, Germany). Touchdown profile, useful if the optimal annealing temperature is not known, incrementally decreases the annealing temperature in early cycles to maximize the yield of specific products. The PCR protocol started with denaturation at $95^{\circ} \mathrm{C}$ for 15 minutes, followed by 10 cycles of 1 minute denaturation at $94^{\circ} \mathrm{C}$, annealing at $60^{\circ} \mathrm{C}\left(-1^{\circ} \mathrm{C}\right.$ per cycle) for 1 minute, and extension at $72^{\circ} \mathrm{C}$ for 1 minute. The second step consisted of 25 cycles of 1 min denaturation at $94^{\circ} \mathrm{C}, 1 \mathrm{~min}$ annealing at $50^{\circ} \mathrm{C}$ and 1 min extension at $72^{\circ} \mathrm{C}$, followed by a final extension step of $72^{\circ} \mathrm{C}$ for 20 minutes.

To determine the SSR sizes, capillary electrophoresis was run on an ABI3130XL genetic analyser (Applied Biosystems, USA). The GS500 size standard was used. To analyse fragment sizes and for genotyping, Software GeneMapper v4.0 (Applied Biosystems) was used. Allele values set by the software were checked for consistency and, if necessary, corrected manually. In order to rule out systematic genotyping errors, analyses were repeated for dubious results.

Allele calling and binning, the process that converts raw allele lengths into allele classes with a size expressed by an integer (Idury and Cardon 1997), was performed by visual assignment.

Table 2.2 Observed size range, motif types, primer sequences, and dye type of the SSRs analysed

Mu1	Locus	Observed size range (bp)	Motif type	Forward primer ($5^{\prime}-3^{\prime}$)	Reverse primer ($\mathbf{3}^{\prime}-5^{\prime}$)	Dye type
	PIE239	79-110	(AT) ${ }_{12}$	CAA CAA ATG GCT CAA CAG TG	CCC ATT TGG TAG CAA AGA GTC	6-FAM
	PIE227	150-179	(TGG) ${ }_{8}$	ACC ATG ATC TGG GAA GCA AC	AAG GGC TTG GTT GGG TTA GT	6-FAM
	PIE223	190-237	$(\mathrm{GGT})_{8}$	AGA AGC CCA ACA CGG CTA C	AGC AAA ACA CAA ACG CAC AA	6-FAM
	PIE215	187-224	$(\mathrm{GAG})_{6}$	ACG AAA TGG AGC TGT TGA CC	TCT CCT TCT CTT CTG CCA TGA	HEX
Mu2	PIEO20	97-122	(TA) ${ }_{12}$	GCA GAG GCT CTT CTA AAT ACA GAA CT	GGG AGG TTT CTG GGA GAG AT	6-FAM
	PIE152	225-265	(AG) ${ }_{11}$	TGT ACC TCT TTC CTC TCT CTA AAA CT	GAA TTT CTA AAC CAC TAG CAT TGA C	HEX
	PIE243	200-235	$(\mathrm{AG})_{15}$	GGG GTC AGT AGG CAA GTC TTC	GAG CTG CAT ATT TTC CTT AGT CAG	6-FAM
	PIE242	100-130	$(\mathrm{TA})_{10}$	GGA GGG AAA AGA ACA ATG C	TTG CAA TCC TCC AAA TTT AATG	HEX
Mu3	PIE267	86-110	$(A G){ }_{11}$	CCA ACC ATC AAG GCC ATT AC	GTG CGA ACA GAT CCC TTG TC	6-FAM
	PIE102	132-177	(AG) 12	ACC TTC CAT GCT CAA AGA TG	GCT GGT GAT ACA AGT GTT TGG	HEX
	PIE258	128-164	(TC) ${ }_{13}$	TCT CGA TCT CAA AAC AAA ACCA	TTT GAT TTG TTT AAG GAA AAT TGG A	6-FAM
	PIE271	182-221	(TC) ${ }_{11}$	CAC ACT CAC CAA CCC TAC CC	GTG CGG TTG TAG ACG GAG AT	HEX

2.4.3 Data analysis

Genetic analyses of samples were performed on different set of data. As two markers, PIE239 and PIE258, did not amplify correctly, they were not considered in all the analyses. In addition, because unbalanced data in the populations affected the main genetic statistics, seven populations with a number of samples lower than ten (IT82, IT72, IT66, BG03, IT21, IT62, RS39) were excluded from the main analyses, while they were used for genetic structure analyses and phylogenetic analysis, where the number of samples did not affect the results.

2.4.3.1 Genetic Structure Analysis by Bayesian clustering

STRUCTURE 2.3.4 (Pritchard et al. 2000) was used, on the combined SSRs data of the samples, to assess patterns of the genetic structure in the 58 studied populations.
A Bayesian iterative method (Markov Chain Monte Carlo (MCMC) estimation) is used in this software to analyse differences in the distribution of genetic variants among populations by placing samples into groups whose members share similar patterns of variation. Furthermore, STRUCTURE both identifies populations from the data and assigns individuals to that population representing the best fit for the variation patterns found (Porras-Hurtado et al. 2013).
An admixture model (Alpha, α) without prior information on the geographical location of samples or the taxonomical classification and an allele frequency model (Lambda, λ) were run. Twenty replications were performed for each value of clusters K, considering values of K from one to twelve (the putative number of taxa in the input dataset), with a burn-in length of 50000 and a run length of 100000 iterations.
According to Markov Chain Monte Carlo (MCMC) estimation, after randomly allocating samples to a predetermined number of groups, variant frequencies are estimated in each group, and individuals are subsequently re-assigned based on those frequencies. The burn-in process leads to a progressive convergence toward reliable allele frequency estimates in each population and membership probabilities of individuals to a population (Porras-Hurtado et al. 2013).

The membership coefficient (expressed by the Q value) was used to evaluate the belonging of each sample to a cluster and it was set a threshold of $\mathrm{Q} \geq 0.90$ to identify samples as pure species.
According to Wang (2017) and Di Pietro et al. (2021), due to the unbalanced number of samples in the 58 populations, the Alpha value was set to $1 / N$ (where $N=12$, namely the putative number of taxa in the input dataset). In addition, the degree of admixture "Alpha", as well as "Lambda" value were set to be inferred for each population.
STRUCTURE results were then processed in STRUCTURE HARVESTER (Earl and von Holdt 2012). This program allows to assess and visualize likelihood values across multiple values of K and hundreds of iterations for easier detection of the number of genetic clusters that best fit the data (Earl and von Holdt 2012).
More in detail, an estimate of the posterior probability of the data for a given $K, \operatorname{Pr}(X \mid K)$ is used as the model choice criterion to detect the true K (Pritchard et al. 2000).
This value, called 'Ln $\mathrm{P}(\mathrm{D})$ ' in STRUCTURE output, is obtained by first computing the log likelihood of the data at each step of the MCMC. Then the average of these values is computed, and half their variance is subtracted to the mean. True number of groups (K) is often identified using the maximal value of $L(K)$ returned by STRUCTURE (Evanno et al. 2005).
Graphic representation and summary of STRUCTURE results were obtained with CLUMPAK software (Kopelman et al. 2015).

2.4.3.2 Phylogenetic Analysis

The hierarchical structure of the sampled populations was then analysed with Populations software v. 1.2.32 (Langella 1999). Samples with $\mathrm{Q} \geq 0.90$ for a different cluster than the pre-defined population were removed from the analysis. A phylogenetic tree of populations was built with the Neighbour-Joining (NJ) method and the chord genetic distance of Cavalli-Sforza and Edwards (1967). Bootstrapping was carried out with 999 replicates over loci, using the grouped population option. MEGA 10.2.6 (Tamura et al. 2011) was afterwards used to display the tree.

2.4.3.3 Genetic diversity and differentiation

Genetic diversity and differentiation within and among populations were estimated in order to evaluate genetic variation.
Cervus 3.0.7 (Marshall et al. 1998) was used to calculate the number of individuals analysed (N), the number of alleles (K), and polymorphic information content (PIC) per locus.
Polymorphic Information Content (PIC) is one of the indicators of marker quality in genetic studies. It describes the capacity to detect the polymorphism among individuals of a population, and the higher that capacity, the greater its value (Serrote et al. 2020). PIC values for codominant markers range from 0 (monomorphic) to 1 (very highly informative, with several alleles of equal frequency). Markers with PIC values greater than 0.5 are regarded to be very informative, values between 0.25 and 0.50 are slightly informative, and values lower than 0.25 are not very informative (Botstein et al. 1980).
The mean number of alleles $\left(\mathrm{N}_{\mathrm{a}}\right)$ per population and number of private alleles $\left(\mathrm{N}_{\mathrm{p}}\right)$, namely the alleles found only in a single population (Petit et al. 1998), were then calculated with GenAlEx software v. 6.5 (Peakall and Smouse 2012). While, missing genotypes, observed $\left(\mathrm{H}_{\mathrm{o}}\right)$ and expected $\left(\mathrm{H}_{e}\right)$ heterozygosity per population were assessed in SPAGeDI-1.3.d (Hardy and Vekemans 2002).

Heterozygosity (also called gene diversity) is the main parameter to describe genetic variation at single locus or at different loci, assuming that alleles are randomly chosen in different populations (Nei et al. 1983). Specifically, the observed heterozygosity is assessed from individual genotypes ($\mathrm{H}_{0}=$ Direct count of heterozygote / Total number of individuals surveyed) and depends on both the amount of genetic variation in the population and the level of inbreeding (Dorji and Daugjinda 2014; Ritland 1996), while expected heterozygosity $\left(\mathrm{H}_{\mathrm{e}}\right)$ for the population is based on the allele frequency of the sampled individuals given that the population is in Hardy Weinberg Equilibrium (HWE) (Schmidt et al. 2020). The Hardy Weinberg principle states that genotype frequencies can be predicted from gene/allele frequencies and remain constant over generations in random-mating populations under the simple assumptions of no mutation, selection, or migration (Garnier-Géré and Chikhi 2013). Inbreeding and/or genotyping problems can lead to a deviation of population from HWE. When the observed heterozygosity is higher than expected heterozygosity $\left(\mathrm{H}_{0}>\mathrm{H}_{e}\right)$ then it might be the result of two previously isolated populations mixing, when the population is likely to be in random mating then $\mathrm{H}_{\mathrm{e}}=\mathrm{H}_{\mathrm{o}}$ (Mburu and Hanotte 2005), while the presence of inbreeding can be observed when expected heterozygosity is significantly higher than observed heterozygosity $\left(\mathrm{H}_{0}<\mathrm{H}_{\mathrm{e}}\right)$ (Schmidt et al. 2020).

HP-Rare software v. June-6-2006 (Kalinowski 2005) was used to calculate allelic richness (A_{r}) after rarefaction for each population. Because large genetic samples are expected to have more alleles than small samples, the sample size heavily affects the number of distinct alleles and the number of private alleles, so they can be difficult to interpret when sample sizes differ across populations (Szpiech et al. 2008).

Rarefaction is a statistical technique that allows to produce estimates that are comparable in different populations (Hurlbert 1971; Kalinowski 2004, 2005; Petit et al. 1998).
Unequal samples are cut off to the same standardized sample size, which must be smaller than or equal to the smallest sample size across populations, consequently the estimated allelic richness of a population is the number of distinct alleles expected in a random subsample of size g drawn from the population (Hurlbert 1971; Petit et al. 1998).
Rarefaction size set for the samples of this study was 28 , corresponding to the minimum sample size, namely the minimum number of successful amplifications at one locus within a population.

SPAGeDI-1.5.d software (Hardy and Vekemans 2002) was also used to calculate Wright's fixation indices (Wright 1969), including inbreeding coefficient ($\mathrm{F}_{\text {IS }}$) per population and fixation index ($\mathrm{FST}_{\text {t }}$) among populations. Wright's fixation indices, or F-statistics (Table 2.3), are the parameters most widely used to describe population structure (Nagylaki 1997) and to analyse the degree of subpopulation division and breeding system when two gametes are drawn randomly from each subpopulation (Wright 1951). These indices include: Wright's fixation coefficient of an individual within a subpopulation ($\mathrm{F}_{\text {IS }}$), fixation coefficient of an individual within the total population ($\mathrm{F}_{\text {IT }}$), and fixation coefficient of a subpopulation within the total population ($\mathrm{FST}_{\text {T }}$) (Dorji and Daugjinda 2014). F-statistics are usually defined for a two-level hierarchy, with individuals in subpopulations. From such a hierarchy, $\mathrm{F}_{\text {IS }}$ (where "I" stands for individual and "S" for subpopulation), also called inbreeding coefficient, denotes the degree of HWE departure in subpopulations due to genetic inbreeding, and it ranges from -1 (maximum outbreeding) to 1 (inbreeding) (Nassiry et al. 2009). $\mathrm{F}_{S T}$ (where "S" stands for subpopulation and "T" for total) quantifies the differences in allele frequencies among subpopulations (Goudet 2005). Because
subpopulation division brings to heterozygotes deficiency, F_{ST} is always positive, and it ranges from 0 to 1 (Nassiry et al. 2009). So, when there is no subpopulation division, $\mathrm{F}_{\text {ST }}$ is 0 because there is no genetic variation among populations. $\mathrm{F}_{\text {IT }}$ (where " I " stands for individual and "T" for total) is rarely used to determine HWE deviation in the total population, and it ranges between -1 (maximum outbreeding) to 1 (inbreeding) (Nassiry et al. 2009).

Table 2.3 Fixation indices ($\mathrm{F}_{\mathrm{IS}}, \mathrm{F}_{\mathrm{ST}}, \mathrm{F}_{\mathrm{IT}}$). $\mathrm{H}_{\mathrm{S}}=$ mean expected heterozygosity within random mating subpopulations. $\mathrm{H}_{\mathrm{T}}=$ expected heterozygosity in random mating total population. $\mathrm{H}_{\mathrm{I}}=$ mean observed heterozygosity per individual within subpopulations (Nassiry et al. 2009)

Fixation index	Formula
$\mathrm{F}_{\text {IS }}$	$F_{I S}=\frac{\left(H_{S}-H_{I}\right)}{H_{S}}$
$\mathrm{~F}_{\text {ST }}$	$F_{S T}=\frac{\left(H_{T}-H_{S}\right)}{H_{T}}$
$\mathrm{~F}_{\text {IT }}$	$F_{I T}=\frac{\left(H_{T}-H_{I}\right)}{H_{T}}$

Occurrence of null alleles were subsequently checked using the software Microchecker 2.3.4 (Van Oosterhout et al. 2004).
A microsatellite null (non-amplifiable) allele is any allele at a microsatellite locus that consistently fails to amplify to detected levels via the polymerase chain reaction (PCR) (Brookfield 1996; Dakin and Avise 2004). Microsatellite null alleles are found to a varying degree across all taxa. They can be problematic as they may affect genetic differentiation measures and create false homozygotes, generating an overall significant homozygote excess (Carlsson 2008).
In fact, in the presence of substantial proportion of null alleles at a particular locus, the observed heterozygosity would be largely underestimated. Consequently, null alleles affect especially population parameter estimates, which are based on the proportion of heterozygotes (Chybicki and Burczyk 2009).
After having loaded each population separately and having entered the repeat motif for each of the loci in Microchecker, 1000 randomizations of alleles within each locus and population were applied for the tests. The frequency of null alleles per population and locus was then calculated by applying the expectation-maximization algorithm (Dempster et al. 1977) in FREENA (Chapuis and Estoup 2006).

2.4.3.4 Analysis of Molecular Variance

To further analyse the genetic structure of the studied populations, analysis of molecular variance (AMOVA) was performed with Arlequin v. 3.5.2.2 (Excoffier and Lischer 2010). The explained variance was estimated for three levels, represented by: populations (51 populations); individuals within populations (an average of 20 individuals per population) and individuals (1013 in total).

2.4.3.5 Principal Coordinates Analysis

Subsequently, a Principal Coordinates Analysis (PCoA) based on the covariance standardised method (using the tri distance matrix) was performed on the pairwise population matrix of $\mathrm{F}_{S T}$ values obtained with GenAlEx 6.5 (Peakall and Smouse 2012).

2.4.3.6 Comparison of geographical and genetic distance

To evaluate spatial processes driving population structure, Mantel tests with 9999 permutations were performed with GenAlEx software v. 6.5. Pairwise genetic and geographic distances were first calculated between all the populations. The relationship between the two distances was expressed by the correlation coefficient (R_{XY}), a numerical index that ranges from -1 to 1 , where positive correlation means that two groups are genetically more distant from one another the farther apart they are from one another, while a negative correlation would suggest the opposite (Pettenkofer 2020).

3 Results

3.1 Results of the chloroplast genome analyses

3.1.1 Haplotype diversity

In total, 270 samples, belonging to 90 populations (3 trees for each population) of the Quercus genus, were analysed (Supplementary File 5). Both two barcoding loci, $t r n \mathrm{H}-p s b \mathrm{~A}$ and $t r n \mathrm{~K}-m a t \mathrm{~K}$, were successfully amplified and sequenced across all samples. Consequently, the final dataset included 540 plastid DNA sequences (270 samples, two markers each). The aligned sequences were calculated to have total lengths of 521 and 626 bp in $t r n \mathrm{H}-p s b \mathrm{~A}$ and $\operatorname{trnK}-m a t \mathrm{~K}$, respectively. The multiple alignment of the two concatenated markers resulted in a matrix of 1147 bp in length. The main features and the diversity values of the two investigated markers are summarized in Table 3.1. As expected, the variation encountered was moderate to low, and $\operatorname{trn} \mathrm{H}-p s b \mathrm{~A}$ performed better than trnK-matK across all the three sections of the Quercus genus investigated. The length of sequences for each of the two markers was comparable in all the groups and, although the number of species and samples was different, section Ilex, which was one of the less numerous in terms of samples, showed the highest values of diversity. The uncorrected p-distance ranged between 0.00 and 0.0128 , with the highest values in the section Ilex considering $\operatorname{trn} \mathrm{H}-p s b \mathrm{~A}$ marker. The number of haplotypes ranged from 4 (section Quercus (East Asian members) and Cerris, $\operatorname{trnK}-m a t \mathrm{~K}$) to 29 (section Ilex, $\operatorname{trn} \mathrm{H}-p s b \mathrm{~A}$) and the haplotype diversity from 0.2007 (section Cerris, trnK-matK) to 0.9142 (section Ilex, trnK-matK), while the number of Parsimony Informative Characters (PICs) ranged from 1 (section Cerris, trnK-matK) to 10 (section Ilex, trnKmatK).

Table 3.1 Main diversity values of the $t r n \mathrm{H}-p s b \mathrm{~A}$ and $\operatorname{trn} \mathrm{K}-m a t \mathrm{~K}$ marker regions in section Quercus, subdivided into the here investigated European dataset (1), the expanded GenBank dataset comprising all available West Eurasian (2), and the East Asian (3) members of section Quercus, compared with GenBank data retrieved from West Eurasian members of subgenus Cerris (sections Cerris and Ilex). T: number of species (only species sensu latu were considered); N : number of individuals; p: uncorrected p-distance range (min. - max.); H: number of haplotypes (gaps included); Hd: haplotype diversity; PICs: Parsimony Informative Characters; T+K: combined markers; L: Major lineages identified ($*=$ with only $\operatorname{trn} \mathrm{H}-p s b \mathrm{~A}$ considered; ${ }^{* *}$ only single haplotypes were separated by >1 mutation)

		trnH-psbA						trnK-matK						T+K
Subgenus	Section	T	N	p	H	Hd	PICs	T	N	p	H	Hd	PICs	L
Quercus	Quercus ${ }^{1}$	7	270	0.0-0.0058	9	0.7713	4	7	270	0.0-0.0032	5	0.5557	2	1
	Quercus ${ }^{2}$	15	425	0.0-0.0089	19	0.8639	5	15	425	0.0-0.0051	8	0.543	2	1
	Quercus ${ }^{3}$	9	81	0.0-0.0119	13	0.7568	5	9	81	0.0-0.0047	4	0.208	3	n.d.**
Cerris	llex	4	124	0.0-0.0128	29	0.8881	7	4	124	0.0-0.0116	23	0.9142	10	3
	Cerris	12	207	0.0-0.0082	12	0.5148	5	10	47	0.0-0.0014	4	0.2007	1	2*

3.1.2 Haplotype classification

Site variation observed in the 270 analysed samples resulted in fourteen total haplotypes (H01H14). Nine haplotypes (T01-T09) were observed considering sequences of $\operatorname{trnH}-p s b A$, and five haplotypes (K01-K05) were identified considering sequences of trnK-matK. No species-specific haplotypes were detected, consequently different haplotypes were shared by several taxa of the Quercus genus (Table 3.2; Supplementary File 5).

Table 3.2 Haplotypes occurrence in the taxa of Quercus analysed

Taxon	H01	H02	H03	H04	H05	H06	H07	H08	H09	H10	H11	H12	H13	H14
Q. banatus	X													
Q. congesta			x			X	X	X	X					
Q. dalechampii (Q. pubescens group)		X	X				X	X						
Q. dalechampii (Q. petraea group)	X	X												
Q. faginea			X	X									X	X
Q. frainetto	X	X		X		X								
Q. ichnusae							X		X	X				
Q. leptobalanos						X								
Q. petraea	X	X	X	X										
Q. petraea subsp. austrotyrrhenica		X				X								
Q. pubescens	X	X	X	X	X	X						X		
Q. pyrenaica				X										
Q. robur	X	X	X	X		X								
Q. virgiliana		X	X			X	X		X		X			

Considering the total haplotypes, haplotypes $\mathrm{H} 01-\mathrm{H} 04$ were the most common across the area of study and the taxa analysed. Haplotype H01 was the most prevalent with a frequency of 26.67% in total. The second most frequent haplotype was the haplotype H 02 with a frequency of 22.59%. Haplotype H03 and H04 followed with a frequency of 16.3% and 11.48%, respectively. The remaining haplotypes had lower frequencies. Six haplotypes were rare (H05; H10-H14) with frequencies less than 1.12% (Table 3.3).

Table 3.3 Relative haplotype ($\operatorname{trn} \mathrm{H}-p s b \mathrm{~A}$ and $\operatorname{trnK}-m a t \mathrm{~K}$) frequencies in the 270 samples of Quercus analysed (pro taxon). $\mathrm{N}_{\text {ind }}=$ number of individuals, $\mathrm{N}_{\mathrm{pop}}=$ number of populations, $\mathrm{N}_{\mathrm{ind}}(\%)=$ frequency of the number of individuals (\%), $\mathrm{N}_{\mathrm{pop}}(\%)=$ frequency of the number of populations (\%)

3.1.3 Geographic distribution of the haplotypes

Most populations were fixed for one haplotype, although fourteen out of ninety populations showed two (BG03: Quercus pubescens from Kushin, Bulgaria; IT14: Q. robur from Insugherata, Italy; IT22: Q. pubescens from One, Italy; IT27: Q. dalechampii from Serre Sant'Angelo, Italy; ES41: Q. robur from Leioa, Spain; ES42: Q. faginea from Zaldiaran, Spain; IT50: Q. ichnusae from Monte Traessu, Sardinia, Italy; IT55: Q. virgiliana from Marineo, Italy; IT60: Q. congesta from Madonie, Italy; IT73: Q. petraea from Monte Vairano, Italy; IT77: Q. pubescens from Bosco del Compare, Italy; IT84: Q. robur from Groane Park, Italy; IT85: Q. robur from Bosco Fontana, Italy) or three (ES85: Q. faginea from Cordoba, Spain) different haplotypes. Furthermore, while it was not found a relation between species and haplotypes, a more significant and direct association was recognized with the geographic distribution (Fig. 3.1), mostly for some haplotypes. More specifically, haplotypes H 01 and H 02 were the most common and were found in central eastern Europe: the first one in Austria, Croatia, Czech Republic, France, Italy, Romania, and the second one in Bulgaria, Croatia, Greece, Italy, and Serbia.
Haplotype H03 was found in the Italian Peninsula, including Sicily and Sardinia Islands, and in Spain. Haplotype H04 showed a discontinuous distribution, and it was found across the Italian and Iberian Peninsulas, in Morocco and in Bulgaria. As this haplotype was found in a single Bulgarian sample, this sample was re-sequenced several times, with the same results each time.
Haplotype H05 was exclusive of Croatia. Haplotype H06 was distributed across all the Italian Peninsula, as well as in Sicily Island. Haplotypes H07, H08, and H09 were found only in Italy: in Sardinia and in Calabria, in Calabria and Sicily, and in Sardinia, respectively. Haplotypes H10, H11, H12, H13, H14 were exclusive of one single sample represented respectively by: IT5072 (Quercus ichnusae from Monte Traessu, Italy), IT5501 (Q. virgiliana from Marineo, Italy), IT7712 (Q. pubescens from Bosco del Compare, Italy), ES8502 and ES8503 (Q. faginea from Cordoba, Spain). Focusing on the Italian Peninsula, 11 plastid haplotypes (H01-H04; H06-H12) were detected in the 60 populations sampled (Supplementary File 6a). Furthermore, the geographic distribution of the plastid haplotypes considered for each taxon separately did not provide significant information about the species specificity of the haplotypes. As supporting information, the distribution of the haplotypes in the populations of Quercus pubescens s.l., Q. petraea s.l., Q. robur, and Q. frainetto, as well as the distribution of the rare plastid haplotypes found in the samples, is provided (Supplementary File 6b, 6c, 6d, 6e, 6f).

Figure 3.1 Geographic distribution of the plastid haplotypes in the populations of Quercus analysed

3.1.4 Genealogical relations among haplotypes

Genealogical relations among the fourteen haplotypes (H01-H14), based on variability of the two combined plastid loci ($\operatorname{trn} \mathrm{H}-p s b \mathrm{~A}$ and $\operatorname{trnK}-m a t \mathrm{~K}$) analysed in 270 individuals, are shown in the median joining network (Fig. 3.2). One or two mutations differentiated the fourteen haplotypes, providing evidence that the populations and the taxa of section Quercus diverged rather recently. The central haplotypes in the network were the most prevalent and spread haplotypes across the populations sampled, supporting the hypothesis that these belonged to the ancestral populations. Although clusters of haplotypes cannot be identified, because of the low rate of mutations, two major groups can be assumed. The first includes haplotypes $\mathrm{H} 02, \mathrm{H} 01, \mathrm{H} 05$ spread through Italian Peninsula, Austria, Czech Republic, France, and Balkan Peninsula, and the second (H03, H04, H06, H08) is represented by the haplotypes from Italian (Islands included) and Iberian Peninsulas, and by the Bulgarian sample with haplotype H 04 .
Furthermore, the presence of one hypothetical node that links the central haplotypes with the Spanish haplotypes H13 and H14 and with the Italian haplotypes H07 and H10 suggests that the inclusion of additional loci, which could improve the resolution, would help in resolving the genealogy. Haplotypes networks were also produced for the two plastid regions separately (Supplementary File 7a, 7b).

Figure 3.2 Median-joining network based on the two plastid loci ($\operatorname{trnH}-p s b \mathrm{~A}$ and $\operatorname{trnK}-m a t \mathrm{~K})$ of the sequences of the 270 samples of Quercus analysed. Each sequenced haplotype is represented by a circle, the size of which is proportional to its overall frequency in the dataset (Supplementary File 5). The number of mutational changes between two distinct haplotypes is shown by the lines on the branches. The red diamond represents the median vector. Haplotype colours correspond to the sampling localities

More evident and consistent is the separation in clusters observed in the median joining network built for the cpDNA sequences belonging to different sections of subgenus Quercus (Quercus, Ponticae, Virentes, Lobatae, Protobalanus) with the addition of one sample of Notholithocarpus densiflorus as outgroup (Fig. 3.3). Separated clusters, attributable to the main sections and to the outgroup, can be indeed easily identified and recognized. The main differentiation appears between North American and Eurasian sections in the complex. The highly differentiated plastomes inside North American sections are highlighted by the high number of mutational changes between different haplotypes in comparison with the plastomes of the European sections.

Figure 3.3 Median-joining network based on the two plastid loci ($\operatorname{trnH}-p s b \mathrm{~A}$ and trnK-matK) of the 110 sequences of the subgenus Quercus belonging to the different sections, and the sequence of the sample of Notholithocarpus densiflorus as outgroup. Each sequenced haplotype is represented by a circle, the size of which is proportional to its overall frequency in the dataset (Supplementary File 3). The number of mutational changes between two distinct haplotypes is shown by the lines on the branches. The red diamond represents the median vector. Colorations refers to the taxonomic and geographic affiliations of specimens to Quercus sections and macro-regions

In the Neighbor-Net analysis (Fig. 3.4) the low differentiation observed within the Eurasian oaks of section Quercus, even between members from western Eurasia and eastern Asia is remarked. All members of subgenus Cerris are placed close to the North American cluster. A huge trunk confirms the main split between North American and Eurasian sections Quercus and Ponticae. Except for a few divergent sequences, all the Eurasian samples of section Quercus are highly mixed and organized in reticulated and little diverging clusters.

Figure 3.4 Neighbor-Net graph estimated from p-distances with SplitsTree, using the complete alignment from the two plastid loci ($t r n \mathrm{H}-p s b \mathrm{~A}$ and $\operatorname{trn\mathrm {K}}-m a t \mathrm{~K}$) sequences of the samples of the different sections of subgenus Cerris and Quercus. Phylogenetic clade colours correspond to the sections of subgenus Quercus; the outgroups are in white colour

In the RAxML tree (Fig. 3.5) rooted between subgenus Cerris and subgenus Quercus is shown the well-acknowledged sectional differentiation within each subgenus. In subgenus Cerris, the two Euro-Med members of section Ilex (Quercus ilex and Q. coccifera from Spain and North Africa) slightly diverge from the other members of the same section (Q. alnifolia and Q. baroni, belonging to the WAHEA and the East Asian lineages, respectively) and from the two members of section Cerris (Q. cerris) and section Cyclobalanopsis (Q. acuta) forming a minor subclade (BS = 57-62). In subgenus Quercus, five clades are distinguished with medium-high support ($\mathrm{BS}=60-100$). Four clades include the North American oaks of subgenus Quercus (sections Quercus, Lobatae, Protobalanus, Virentes, and Ponticae) and the last one collects the Eurasian oaks (sections Quercus and Ponticae).
Besides the major geographic split between sections Quercus and Ponticae, sectional differentiation across North American and Eurasian white oaks is fairly solved, despite some cases of intersectional misplacement. These involve a few members of sections Virentes and Lobatae, and the two only American and Eurasian surviving members of section Ponticae (respectively inserted in section Protobalanus and Eurasian Quercus). The Eurasian white oak clade (BS =99) is highly unresolved, and no significant differentiation could be observed at the taxonomic or geographic level, even between western and eastern Eurasian samples. Some exceptions are represented by four minor subclades including two samples of Quercus pontica ($\mathrm{BS}=96$), a small group of East Asian oaks $(\mathrm{BS}=80)$, and two local species groups from Lebanon and South-central

Italy ($\mathrm{BS}=64-67$). It is plausible but weakly supported ($\mathrm{BS}<50$) to distinguish a clade-basal group of sequences containing both single and shared West and East Eurasian haplotypes.

Tree scale: $0.01 \longmapsto$

Figure 3.5 RAxML tree of the $\operatorname{trn} \mathrm{H}-p s b \mathrm{~A}+\operatorname{trnK}-m a t \mathrm{~K}$ concatenated regions of the investigated samples belonging to subgenera Cerris and Quercus. Branch support (>50) values are reported above branches. Colorations refers to the taxonomic and geographic affiliations of specimens to Quercus sections and macro-regions

3.2 Results of the nuclear microsatellite markers analyses

In total, 1072 samples, belonging to 58 populations of the Quercus genus, were analysed by means of 12 microsatellite markers (Supplementary File 4). The markers were successfully amplified and sequenced across all samples, although PCR results for markers PIE239 and PIE258 were not clear. In addition, the binning for these latter two markers showed a significant overlap in bins boundaries, generating indistinct allele size classes, and causing inappropriate allele binning for adjacent alleles. This may be due to mutation in primer binding sites, mutations in regions upstream or downstream of the repetitive motifs, or non-suitable PCR amplification protocols. Therefore, in order to avoid introducing uncorrected values in the study, markers PIE239 and PIE258 were removed from the subsequent analyses. Considering the remaining ten markers analysed, although not all the samples amplified for all the markers, in each locus a proportion higher than 80% of genotyped samples was detected (Fig. 3.6).

Figure 3.6 Proportion of genotyped samples per locus (PIE)

3.2.1 Results of the Genetic Structure Analysis

According to the structure analysis performed on the entire dataset of the 58 populations analysed by means of the ten microsatellite markers, the number of genetic clusters (K) that best fit the data was 5 (Fig. 3.7).

Figure 3.7 Delta K plot representing the most probable number $(K=5)$ of genetic clusters in the 58 populations of Quercus analysed using the Evanno method (2005) implemented in the STRUCTURE HARVESTER program

These five clusters are represented by different colours in the Figure 3.8 and correspond significantly to the main taxonomic groups identified in the populations studied. Moreover, structure analysis allowed to recognize the presence of putative hybrid samples and of individuals not correctly classified from a taxonomic point of view.

The five clusters detected can be defined as follows:
\checkmark Cluster 1 (depicted in dark pink colour in the bar plot of Figure 3.8): mainly populations of Quercus pubescens s.l. with a wide geographic distribution, spread from Iberian Peninsula to Balkan Peninsula, up to northern and central Europe. Hereafter cluster 1 will be referred as PWD (where PWD stands for Q. pubescens wide distribution)
\checkmark Cluster 2 (depicted in sky blue colour in the bar plot of Figure 3.8): mainly populations of Quercus pubescens s.l. distributed from central and southern Italy, and in Sardinia Island. Hereafter cluster 2 will be referred as PCSIS (where PCSIS stands for Q. pubescens from central and southern Italy, and Sardinia)
\checkmark Cluster 3 (depicted in orange colour in the bar plot of Figure 3.8): mainly populations of Quercus petraea s.l. including populations of Q. petraea s.s., Q. banatus, Q. dalechampii (from Serbia and North Italy), and Q. petraea subsp. austrotyrrhenica
\checkmark Cluster 4 (depicted in violet colour in the bar plot of Figure 3.8): populations of Quercus robur and Q. pyrenaica
\checkmark Cluster 5 (depicted in green colour in the bar plot of Figure 3.8): populations of Quercus frainetto

Figure 3.8 CLUMPAK plot $(\mathrm{K}=5)$ describes the genetic structure of the 58 populations of Quercus analysed based on the STRUCTURE and STRUCTURE Harvester outputs. Each cluster is represented by a different colour and each vertical bar plot represents an individual and shows individual membership coefficients to the five clusters. A black vertical line separates each population. The name of the populations is identified by a code of three letters that refers to the taxon name (ban = Quercus banatus, con $=Q$. congesta, dal $=Q$. dalechampii, fag $=Q$. faginea, fra $=Q$. frainetto, ich $=Q$. ichnusae, $\mathrm{pau}=Q$. petraea subsp. austrotyrrhenica, pet $=Q$. petraea, $\mathrm{pub}=Q$. pubescens, $\mathrm{pyr}=$ Q. pyrenaica, $\mathrm{rob}=Q$. robur, $\mathrm{vir}=Q$. virgiliana $)$ and four carachters for the identification code of the population

Proportion of membership (q_{i}) to the clusters of each of the 58 populations is summarized in Table 3.4 and depicted in the stacked bar plot (Fig. 3.9), while the distribution map of the clusters in the populations is shown in Figure 3.10. As hybridization is a well-documented phenomenon in the white oaks, assignation of some populations to a specific cluster was not possible, since genotypes of different clusters were detected in the same population.

Table 3.4 Proportion of membership (q_{i}) to the five clusters of the 58 populations of Quercus analysed. Q_{i} values \geq 0.60 are in bold

No. Population	ID Population	No. of samples	Cluster 1	Cluster 2	Cluster 3	Cluster 4	Cluster 5
1	pub_IT18	20	0.843	0.038	0.097	0.015	0.007
2	pub_IT22	20	0.861	0.036	0.055	0.025	0.024
3	pub_IT15	20	0.658	0.245	0.064	0.019	0.014
4	pub_IT23	20	0.862	0.080	0.022	0.022	0.015
5	pub_IT64	20	0.027	0.937	0.024	0.006	0.005
6	pub_IT82	7	0.018	0.897	0.012	0.031	0.042
7	pub_IT72	10	0.017	0.954	0.012	0.008	0.008
8	pub_IT87	20	0.058	0.821	0.064	0.009	0.048
9	pub_IT88	20	0.110	0.820	0.055	0.009	0.007
10	pub_IT89	20	0.092	0.886	0.009	0.006	0.008
11	vir_IT66	8	0.018	0.966	0.007	0.004	0.004
12	ich_IT48	20	0.022	0.949	0.013	0.009	0.007
13	vir_IT49	19	0.028	0.931	0.022	0.014	0.005
14	ich_IT50	20	0.028	0.941	0.014	0.008	0.009
15	vir_IT51	20	0.058	0.871	0.051	0.010	0.010
16	con_IT52	20	0.086	0.848	0.044	0.018	0.005
17	con_IT53	20	0.063	0.905	0.017	0.011	0.004
18	pub_ES44	20	0.551	0.250	0.138	0.039	0.022
19	pub_ES45	20	0.030	0.651	0.266	0.038	0.015
20	pub_FR08	20	0.636	0.030	0.238	0.074	0.023
21	pub_FR09	20	0.611	0.121	0.185	0.074	0.009
22	pub_FR10	20	0.585	0.258	0.113	0.036	0.008
23	pub_AT01	20	0.650	0.241	0.080	0.021	0.009
24	pub_BG03	10	0.777	0.033	0.162	0.010	0.018
25	pub_HRO4	20	0.578	0.202	0.184	0.011	0.024
26	pub_HR05	20	0.802	0.085	0.059	0.039	0.015
27	pub_HRO7	20	0.705	0.138	0.106	0.011	0.040
28	pub_GR11	20	0.588	0.174	0.060	0.092	0.086
29	pub_CZ30	20	0.831	0.033	0.089	0.037	0.009
30	pub_RS35	20	0.834	0.023	0.094	0.041	0.009
31	dal_IT19	20	0.232	0.041	0.653	0.053	0.021
32	pet_IT20	20	0.123	0.019	0.778	0.069	0.012
33	pet_1746	20	0.021	0.338	0.629	0.008	0.004
34	pet_IT47	20	0.020	0.456	0.510	0.009	0.006
35	pau_IT17	20	0.271	0.038	0.659	0.025	0.006
36	pau_IT16	20	0.642	0.018	0.264	0.044	0.032
37	pet_ES43	20	0.112	0.019	0.802	0.035	0.032
38	pet_AT02	20	0.053	0.020	0.912	0.010	0.005
39	pet_HRO6	20	0.096	0.088	0.736	0.067	0.013
40	pet_CZ31	20	0.062	0.057	0.858	0.017	0.006
41	ban_RO33	20	0.270	0.016	0.606	0.087	0.021
42	pet_RS36	20	0.191	0.015	0.751	0.033	0.009
43	dal_RS37	20	0.512	0.018	0.321	0.136	0.012
44	dal_RS38	20	0.188	0.019	0.725	0.057	0.012
45	dal_RS67	14	0.022	0.283	0.683	0.008	0.004
46	rob_ES41	20	0.085	0.119	0.026	0.755	0.016
47	rob_IT21	10	0.019	0.009	0.107	0.860	0.004
48	rob_IT14	20	0.039	0.010	0.030	0.914	0.005
49	rob_IT13	20	0.032	0.023	0.007	0.932	0.006
50	rob_IT62	4	0.018	0.280	0.049	0.650	0.004
51	rob_CZ32	20	0.033	0.015	0.037	0.906	0.009
52	rob_RS39	10	0.025	0.010	0.025	0.915	0.025
53	fra_IT24	20	0.018	0.036	0.016	0.006	0.924
54	fra_IT26	20	0.100	0.014	0.034	0.013	0.840
55	fra_IT12	20	0.132	0.013	0.013	0.006	0.836
56	fra_RS34	20	0.029	0.041	0.047	0.022	0.862
57	pyr_ES40	20	0.182	0.025	0.025	0.758	0.008
58	fag_ES42	20	0.593	0.072	0.210	0.120	0.005

Figure 3.9 Stacked bar plot representing the proportion of membership to the clusters of the 58 populations of Quercus analysed

Figure 3.10 Distribution map of the 58 populations of Quercus analysed by means of SSRs showing the proportion of each cluster identified according to the structure analysis in each population

A total of 645 out of 1072 samples analysed (60.17%) exhibited membership coefficients (Q values) ≥ 0.90. Among these samples, 87 belonged to cluster 1,216 to cluster 2,127 to cluster 3 , 154 to cluster 4,61 to cluster 5 . Percentage of the individuals with Q values ≥ 0.90 for each cluster in the 58 populations of Quercus sampled is referred in Table 3.5 and the distribution map is shown in Figure 3.11.

Table 3.5 Percentage of the individuals with membership coefficients $\mathrm{Q} \geq 0.90$ for each cluster in the 58 populations of Quercus analysed. Individuals with $\mathrm{Q}<0.90$ are shown in the mixed clusters group

No. Population	ID Population	No. of samples	$\begin{aligned} & \% \text { Cluster } 1 \\ & (Q \geq 0.90) \end{aligned}$	$\begin{aligned} & \% \text { Cluster } 2 \\ & (Q \geq 0.90) \end{aligned}$	$2 \begin{aligned} & \% \text { Cluster } 3 \\ & (Q \geq 0.90) \end{aligned}$	$\begin{aligned} & \% \text { Cluster } 4 \\ & (Q \geq 0.90) \end{aligned}$	$\begin{aligned} & \% \text { Cluster } 5 \\ & (Q \geq 0.90) \end{aligned}$	\% Mixed Clusters ($\mathrm{Q}<0.90$)
1	pub_IT18	20	50	0	5	0	0	45
2	pub_IT22	20	65	0	0	0	0	35
3	pub_IT15	20	45	20	0	0	0	35
4	pub_IT23	20	70	5	0	0	0	25
5	pub_IT64	20	0	85	0	0	0	15
6	pub_IT82	7	0	71.43	0	0	0	28.57
7	pub_IT72	10	0	100	0	0	0	0
8	pub_IT87	20	0	65	0	0	0	35
9	pub_IT88	20	0	70	0	0	0	30
10	pub_IT89	20	0	90	0	0	0	10
11	vir_IT66	8	0	100	0	0	0	0
12	ich_IT48	20	0	95	0	0	0	5
13	vir_IT49	19	0	84.21	0	0	0	15.79
14	ich_IT50	20	0	90	0	0	0	10
15	vir_IT51	20	0	65	0	0	0	35
16	con_IT52	20	0	60	0	0	0	40
17	con_IT53	20	0	90	0	0	0	10
18	pub_ES44	20	20	15	0	0	0	65
19	pub_ES45	20	0	30	10	0	0	60
20	pub_FR08	20	30	0	10	0	0	60
21	pub_FR09	20	30	10	10	0	0	50
22	pub_FR10	20	20	15	5	0	0	60
23	pub_AT01	20	50	15	0	0	0	35
24	pub_BG03	10	60	0	0	0	0	40
25	pub_HRO4	20	30	15	0	0	0	55
26	pub_HR05	20	60	5	0	0	0	35
27	pub_HR07	20	45	10	0	0	0	45
28	pub_GR11	20	30	10	0	5	5	50
29	pub_CZ30	20	55	0	0	0	0	45
30	pub_RS35	20	80	0	5	0	0	15
31	dal_IT19	20	0	0	30	0	0	70
32	pet_IT20	20	0	0	45	0	0	55
33	pet_IT46	20	0	0	30	0	0	70
34	pet_IT47	20	0	15	35	0	0	50
35	pau_IT17	20	0	0	45	0	0	55
36	pau_IT16	20	20	0	0	0	0	80
37	pet_ES43	20	0	0	65	0	0	35
38	pet_AT02	20	0	0	80	0	0	20
39	pet_HR06	20	0	0	55	0	0	45
40	pet_CZ31	20	0	5	70	0	0	25
41	ban_RO33	20	0	0	30	0	0	70
42	pet_RS36	20	0	0	30	0	0	70
43	dal_RS37	20	15	0	15	5	0	65
44	dal_RS38	20	0	0	30	0	0	70
45	dal_RS67	14	0	0	28.57	0	0	71.43
46	rob_ES41	20	0	0	0	55	0	45
47	rob_IT21	10	0	0	10	80	0	10
48	rob_IT14	20	0	0	0	75	0	25
49	rob_IT13	20	0	0	0	90	0	10
50	rob_IT62	4	0	0	0	0	0	100
51	rob_CZ32	20	0	0	0	75	0	25
52	rob_RS39	10	0	0	0	80	0	20
53	fra_IT24	20	0	0	0	0	85	15
54	fra_IT26	20	0	0	0	0	70	30
55	fra_IT12	20	5	0	0	0	80	15
56	fra_RS34	20	0	0	0	0	65	35
57	pyr_ES40	20	0	0	0	50	0	50
58	fag_ES42	20	20	5	5	0	0	70

Figure 3.11 Distribution map of the individuals with $\mathrm{Q} \geq 0.90$ for each cluster in the 58 populations of Quercus analysed. Individuals with $\mathrm{Q}<0.90$ are shown in the mixed clusters group

3.2.2 Results of the Phylogenetic Analysis

The phylogenetic tree based on neighbour-joining method allowed to distinguish the principal taxonomic groups identified in the 58 populations of Quercus studied (Fig. 3.12). The main groups recognised reflected considerably the clusters detected by the genetic structure analysis, albeit with some differences. Once again, the populations of Quercus frainetto and Q. robur formed well separated groups. Even the cluster with the populations of Quercus petraea s.l., including the populations of Q. banatus, Q. dalechampii, Q. petraea subsp. austrotyrrhenica, in addition to the populations of Q. petraea s.s., was notably clear. More complex was the grouping of the populations of Quercus pubescens s.l., in fact, different taxa from central and southern Italy, and Sardinia Island could be distinguished from the populations occurring in Balkan Peninsula or the populations distributed in other countries from Iberian Peninsula up to northern and central Europe. Not so clear was the collocation of the populations of Quercus pyrenaica and Q.faginea. Indeed, the first one was associated to Quercus robur populations, while the second one was close to populations of Q. pubescens from Spain, related from a geographic point of view.

Figure 3.12 Phylogenetic tree of the 58 populations of Quercus studied based on the ten markers analysed. The dendrogram was built with MEGA 10.2 .6 software using the neighbour-joining method based on the chord genetic distance of Cavalli-Sforza and Edwards (1967). The horizontal branches represent evolutionary changes measured in genetic divergence (number below). The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (999 replicates) is shown next to the branches

3.2.3 Results of the Genetic diversity and differentiation

The genetic statistics were computed for the dataset of 51 populations and separately for the five groups identified from the genetic structure analysis. However, in the latter case, because assignation of some populations to a specific cluster was not possible, since genotypes of different clusters were detected in the same population, only populations with proportion of membership values ≥ 0.60 for a specific cluster were considered.

3.2.3.1 Genetic diversity per locus

The number of alleles per locus (K) over the populations ranged from 13 (PIE227 and PIE267) to 25 (PIE215), for a total of 168 alleles over all the 51 populations analysed. The mean number of alleles $\left(\mathrm{N}_{\mathrm{a}}\right)$ over the ten loci ranged from 4.157 in PIE227 to 10.000 in PIE152, with an overall mean of 7.200. All the microsatellite markers showed polymorphic information content (PIC) values greater than 0.5 , so they can be considered very informative and efficient for evaluating genetic variability and differences between the Quercus populations analysed. The lowest PIC value (0.514) was recorded in PIE227 marker, while the highest one (0.900) was observed in PIE152. The informativeness of used loci is summarized in Table 3.6.

Table 3.6 Genetic statistics over the ten loci analysed

Locus	N	K	Observed Alleles	$\mathrm{Na}_{\text {a }}$	PIC
PIE227	1009	13	150, 153, 156, 159, 161, 163, 165, 166, 169, 172, 176, 177, 179	4.157	0.514
PIE223	969	14	190, 200, 203, 206, 209, 212, 215, 218, 221, 225, 228, 231, 234, 237	7.627	0.829
PIE215	982	25	187, 188, 190, 191, 193, 194, 196, 197, 199, 200, 202, 203, 205, 206, 208, 209, 211, 212, 214, 215, 217, 218, 220, 221, 224	8.353	0.882
PIE20	996	14	$97,99,101,103,105,107,109,111,113,115,117,119,121,122$	4.961	0.650
PIE152	971	20	225, 227, 231, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255, 257, 259, 261, 263, 265	10.000	0.900
PIE243	1002	18	200, 202, 203, 204, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 225, 226, 227, 235	6.196	0.737
PIE242	967	16	100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130	8.961	0.863
PIE267	1003	13	86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110	6.314	0.777
PIE102	982	19	$132,140,142,144,147,149,151,153,155,157,159,161,163,165,167,169,171,175,177$	8.196	0.792
PIE271	1000	16	182, 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 212, 221	7.275	0.821

3.2.3.2 Genetic diversity per population

A total of 17 private alleles $\left(\mathrm{N}_{\mathrm{p}}\right)$ was recorded over the ten microsatellite markers, in 14 populations out of 51 . The populations that exhibited private alleles are represented by: IT48 (Quercus ichnusae from Senis, Sardinia Island, Italy), IT53 (Q. congesta from Fonni, Sardinia Island, Italy), FR09 (Q. pubescens from Montjoyer Drôme, France), AT01 (Q. pubescens from Leopoldsberg, Austria), GR11 (Q. pubescens from Pinios Lake, Greece), RS35 (Q. pubescens from Grgurevci, Serbia), IT19 (Q. dalechampii from Euganei Hills, Italy), IT47 (Q. petraea from Tolfa, Italy), ES43 (Q. petraea from Las Machorras, Spain), RS38 (Q. dalechampii from Mt. Suvobor, Serbia), RS67 (Q. dalechampii from Kopaonik National Park, Serbia), IT13 (Q. robur from Oasis Pantano Policoro, Italy), IT26 (Q. frainetto from Aurunci Mountains, Italy), ES42 (Q. faginea from Zaldiaran, Spain). The frequency of private alleles in the populations ranged from 0.025 to 0.150 (Table 3.7). The private alleles were confirmed by checking genotyping errors.

Table 3.7 Private alleles and frequencies over the ten loci analysed

No. Population ID Population	Locus	Allele	Frequency	
12	IT48	PIE242	130	0.026
17	IT53	PIEO20	122	0.025
21	FR09	PIE227	161	0.050
23	AT01	PIE243	203	0.025
23	AT01	PIE102	132	0.025
28	GR11	PIE102	175	0.026
30	RS35	PIE223	234	0.025
31	IT19	PIE223	190	0.025
34	IT47	PIE215	220	0.050
37	ES43	PIE152	227	0.050
44	RS38	PIE243	200	0.025
45	RS67	PIE271	221	0.036
49	IT13	PIE227	150	0.150
49	IT13	PIE152	225	0.150
54	IT26	PIE102	177	0.025
58	ES42	PIE227	177	0.025
58	ES42	PIE267	88	0.028

The mean number of alleles $\left(\mathrm{N}_{\mathrm{a}}\right)$ per locus ranged from 5.5 in IT13 (Quercus robur from Oasis Pantano Policoro, Italy) to 8.7 in GR11 (Q. pubescens from Pinios Lake, Greece), with an overall mean of 7.2. Allelic richness $\left(\mathrm{A}_{\mathrm{r}}\right)$ showed values ranging from 5.243 in IT13 (Quercus robur from Oasis Pantano Policoro, Italy) to 7.882 in GR11 (Q. pubescens from Pinios Lake, Greece), with an overall mean of 6.627 . The observed heterozygosity $\left(\mathrm{H}_{\mathrm{o}}\right)$ ranged from 0.523 in ES41 (Quercus robur from Leioa, Spain) to 0.800 in RO33 (Q. banatus from Oravița, Romania), with an overall mean of 0.693 , while the expected heterozygosity $\left(\mathrm{H}_{\mathrm{e}}\right)$ ranged from 0.629 in IT24 (Q. frainetto from Selvapiana Wood, Amaseno, Italy) to 0.805 in ES45 (Q. pubescens from Zilbeti, Spain), with an overall mean of 0.733 . Values of the frequency of observed heterozygosity $\left(\mathrm{H}_{\mathrm{o}}\right)$ and expected heterozygosity $\left(\mathrm{H}_{\mathrm{e}}\right)$ per each population are shown in the bar plot of Figure 3.13.

Figure 3.13 Bar plot of the frequency of observed $\left(\mathrm{H}_{\mathrm{o}}\right)$ and expected heterozygosity $\left(\mathrm{H}_{\mathrm{e}}\right)$ over the 51 populations of Quercus analysed. Bars in cyan indicate frequency of observed heterozygosity $\left(\mathrm{H}_{\mathrm{o}}\right)$, while bars in light green refer to the frequency of expected heterozygosity $\left(\mathrm{H}_{\mathrm{e}}\right)$

Estimation of fixation coefficients ($\mathrm{F}_{\text {IS }}$) in the 51 populations of white oaks (Table 3.8) highlighted the presence of a significantly negative $\mathrm{F}_{\text {IS }}$ value in the population HR05 (Quercus pubescens from Muć, Croatia). Nineteen populations out of fifty-one showed instead significantly positive $\mathrm{F}_{\text {IS }}$ values, that might be related to inbreeding, presence of null alleles or population substructure, i.e., Wahlund effect (Wahlund 1928).
These populations are represented by: IT22 (Quercus pubescens from One, Italy), IT15 (Q. pubescens from Insugherata, Italy), IT64 (Q. pubescens from Aurunci Mountains, Italy), IT87 (Q. pubescens from Sasso di Castalda/Satriano, Italy), IT88 (Q. pubescens from Moliterno/Sarconi, Italy), IT89 (Q. pubescens from Fosso Cardone/Catarozzolo, Italy), IT49 (Q. virgiliana from Pau, Sardinia Island, Italy), IT52 (Q. congesta from Fonni, Sardinia Island, Italy), ES44 (Q. pubescens from Madotz, Spain), FR09 (Q. pubescens from Montjoyer Drôme, France), GR11 (Q. pubescens from Pinios Lake, Greece), IT19 (Q. dalechampii from Euganei Hills, Italy), IT16 (Q. petraea subsp. austrotyrrhenica from Pomieri Wood, Sicily Island, Italy), ES43 (Q. petraea from Las Machorras, Spain), RS37 (Q. dalechampii from Tara Mountain, Serbia), ES41 (Q. robur from Leioa, Spain), IT13 (Q. robur from Oasis Pantano Policoro, Italy), IT24 (Q. frainetto from Selvapiana Wood, Italy), ES42 (Q. faginea from Zaldiaran, Spain).
As occurrence of null alleles was detected in several markers in populations with significantly positive $\mathrm{F}_{\text {IS }}$ (Supplementary File 8), these values most likely rather reflect null alleles than inbreeding in the populations. In addition, these populations showed quite high levels of missing data, that are common in individuals homozygotes for null alleles.
The genetic statistics over the 51 populations analysed are summarized in Table 3.8, while genetic statistics for the five clusters identified from the structure analysis (considering only populations with proportion of membership values ≥ 0.60 for a specific cluster) are provided separately in Supplementary File 9 . Seven populations did not fit into the five clusters, as they did not have q_{i} values ≥ 0.60 for any cluster. These populations are represented by: ES44 (Quercus pubescens from Madotz, Spain), FR10 (Q. pubescens from Donzère Nord est village, France), HR04 (Q. pubescens from Mt. Kalnik, Croatia), GR11 (Q. pubescens from Pinios Lake, Greece), IT47 (Q. petraea from Tolfa, Italy), RS37 (Q. dalechampii from Tara Mountain, Serbia), ES42 (Q. faginea from Zaldiaran, Spain).

Table 3.8 Genetic diversity indices in the 51 populations of Quercus analysed. N_{p} : private alleles; N_{a} : mean number of alleles; A_{r} : allelic richness (rarefacted for 28 gene copies); H_{0} : observed heterozygosity; H_{e} : expected heterozygosity; $\mathrm{F}_{\text {IS }}$: fixation coefficient

ID Population	Taxon	No. Samples	Missing genotypes (\%)	N_{p}	$\mathrm{Na}_{\mathrm{a}} \mathrm{A}_{\mathrm{r}} \mathbf{2 8}$	H_{0}	H_{e}	$\mathrm{F}_{\text {IS }}$	p -valu	
IT18	Q. pubescens	20	0.3 (1.5\%)	0	7.36 .669	0.686	0.715	0.041	0.272	
IT22	Q. pubescens	20	0.1 (0.5\%)	0	7.76 .993	0.673	0.739	0.091	0.007	**
IT15	Q. pubescens	20	0.6 (3.0\%)	0	7.87 .061	0.651	0.704	0.077	0.041	
IT23	Q. pubescens	20	0.2 (1.0\%)	0	8.07 .078	0.659	0.707	0.069	0.077	
1764	Q. pubescens	20	0.8 (4.0\%)	0	7.56 .784	0.620	0.698	0.114	0.003	**
1787	Q. pubescens	20	1.6 (8.0\%)	0	7.57 .045	0.668	0.734	0.093	0.013	
1788	Q. pubescens	20	1.4 (7.0\%)	0	6.76 .251	0.576	0.689	0.168	0.000	**
1789	Q. pubescens	20	0.6 (3.0\%)	0	6.56 .069	0.664	0.719	0.078	0.021	*
1748	Q. ichnusae	20	0.1 (0.5\%)	1	7.87 .098	0.724	0.731	0.010	0.669	
1749	Q. virgiliana	19	0.4 (2.1\%)	0	6.56 .099	0.588	0.658	0.108	0.007	**
IT50	Q. ichnusae	20	0.1 (0.5\%)	0	8.07 .329	0.709	0.745	0.049	0.141	
IT51	Q. virgiliana	20	0.7 (3.5\%)	0	6.96 .395	0.694	0.738	0.062	0.097	
IT52	Q. congesta	20	0.9 (4.5\%)	0	7.97 .208	0.668	0.740	0.099	0.005	**
1753	Q. congesta	20	0.5 (2.5\%)	1	7.56 .889	0.752	0.742	-0.013	0.675	
ES44	Q. pubescens	20	2.8 (14.0\%)	0	8.07 .606	0.663	0.800	0.176	0.000	***
ES45	Q. pubescens	20	0.6 (3.0\%)	0	7.67 .118	0.781	0.805	0.030	0.359	
FR08	Q. pubescens	20	0.6 (3.0\%)	0	7.26 .761	0.784	0.795	0.013	0.713	
FR09	Q. pubescens	20	1.0 (5.0\%)	1	8.37 .654	0.747	0.801	0.069	0.027	*
FR10	Q. pubescens	20	0.2 (1.0\%)	0	7.26 .691	0.727	0.758	0.042	0.224	
AT01	Q. pubescens	20	0.4 (2.0\%)	2	7.97 .041	0.696	0.738	0.058	0.154	
HRO4	Q. pubescens	20	0.0 (0.0\%)	0	7.87 .180	0.710	0.747	0.051	0.132	
HR05	Q. pubescens	20	0.1 (0.5\%)	0	7.36 .635	0.799	0.742	-0.080	0.027	*
HR07	Q. pubescens	20	1.3 (6.5\%)	0	7.56 .949	0.695	0.735	0.056	0.095	
GR11	Q. pubescens	20	0.5 (2.5\%)	1	8.77 .882	0.649	0.766	0.156	0.000	**
CZ30	Q. pubescens	20	0.0 (0.0\%)	0	8.37 .605	0.745	0.760	0.020	0.483	
RS35	Q. pubescens	20	0.1 (0.5\%)	1	7.97 .229	0.779	0.763	-0.023	0.550	
IT19	Q. dalechampii	20	0.1 (0.5\%)	1	7.36 .536	0.658	0.716	0.083	0.031	*
1T20	Q. petraea	20	0.0 (0.0\%)	0	6.55 .882	0.675	0.704	0.041	0.294	
IT46	Q. petraea	20	0.3 (1.5\%)	0	6.56 .034	0.690	0.721	0.044	0.261	
1747	Q. petraea	20	0.2 (1.0\%)	1	7.26 .788	0.734	0.755	0.029	0.378	
1717	Q. petraea subsp. austrotyrrhenica	20	0.5 (2.5\%)	0	6.25 .782	0.681	0.714	0.048	0.200	
IT16	Q. petraea subsp. austrotyrrhenica	20	0.3 (1.5\%)	0	6.46 .041	0.669	0.765	0.128	0.000	***
ES43	Q. petraea	20	0.3 (1.5\%)	1	6.35 .832	0.625	0.704	0.115	0.007	**
AT02	Q. petraea	20	0.0 (0.0\%)	0	7.66 .719	0.745	0.719	-0.037	0.326	
HRO6	Q. petraea	20	0.5 (2.5\%)	0	7.77 .031	0.760	0.767	0.009	0.780	
CZ31	Q. petraea	20	0.2 (1.0\%)	0	7.46 .783	0.786	0.756	-0.041	0.291	
RO33	Q. banatus	20	0.0 (0.0\%)	0	7.56 .830	0.800	0.781	-0.024	0.518	
RS36	Q. petraea	20	0.0 (0.0\%)	0	7.87 .002	0.765	0.767	0.002	0.979	
RS37	Q. dalechampii	20	0.0 (0.0\%)	0	8.47 .540	0.725	0.788	0.082	0.009	**
RS38	Q. dalechampii	20	0.0 (0.0\%)	1	6.76 .201	0.745	0.739	-0.009	0.885	
RS67	Q. dalechampii	14	0.0 (0.0\%)	1	5.95 .900	0.750	0.731	-0.027	0.564	
ES41	Q. robur	20	3.1 (15.5\%)	0	6.46 .185	0.523	0.718	0.279	0.000	***
IT14	Q. robur	20	0.0 (0.0\%)	0	7.16 .516	0.705	0.723	0.025	0.448	
IT13	Q. robur	20	0.2 (1.0\%)	2	5.55 .243	0.623	0.689	0.098	0.025	*
CZ32	Q. robur	20	0.1 (0.5\%)	0	6.86 .351	0.734	0.733	-0.002	0.988	
IT24	Q. frainetto	20	0.1 (0.5\%)	0	6.05 .411	0.553	0.629	0.124	0.000	**
1T26	Q. frainetto	20	0.2 (1.0\%)	1	6.05 .452	0.623	0.659	0.056	0.187	
IT12	Q. frainetto	20	0.0 (0.0\%)	0	6.35 .633	0.640	0.638	-0.003	0.951	
RS34	Q. frainetto	20	0.4 (2.0\%)	0	6.75 .968	0.629	0.671	0.064	0.141	
ES40	Q. pyrenaica	20	0.0 (0.0\%)	0	7.06 .415	0.755	0.751	-0.006	0.886	
ES42	Q. faginea	20	2.5 (12.5\%)	2	6.96 .591	0.620	0.756	0.185	0.000	***
	mean values	19.86		0.3	7.26 .627	0.693	0.733	0.056		

3.2.3.3 Genetic differentiation

Pairwise populations differentiation (F_{ST}) showed, as expected, a high genetic differentiation between populations belonging to diverse taxonomic groups (Supplementary File 10). The graphical representation of the genetic differentiation between pairs of populations is shown in the heatmap in Figure 3.14. The highest significant $\mathrm{F}_{\text {ST }}$ value was recorded between populations IT13 (Quercus robur from Oasis Pantano Policoro, Italy) and IT24 (Q. frainetto from Selvapiana Wood Amaseno, Italy) ($\mathrm{F}_{S T}=0.2193$, p -value $=0$), while the lower significant genetic differentiation $\left(\mathrm{F}_{S T}\right.$ $=0.0099$, p-value $=0$. 048) was documented between populations CZ30 (Q. pubescens from Milovice, Czech Republic) and RS35 (Q. pubescens from Grgurevci, Serbia).

Figure 3.14 Heatmap illustrating pairwise $\mathrm{F}_{\text {ST }}$ between the 51 populations of Quercus analysed. $\mathrm{F}_{\text {ST }}$ values range from 0 (low genetic differentiation) to 1 (high genetic differentiation). The heatmap colour code shows the genetic differentiation from low (blue) to high (red) values

3.2.4 Results of the Analysis of Molecular Variance

The analysis of molecular variance (AMOVA) showed that most of the genetic variation was found within individuals (86.70%). The genetic variation observed among populations was 8.33%, while the lowest variation was recorded among individuals within populations (4.97\%) (Table 3.9).

Table 3.9 Analysis of molecular variance (AMOVA) based on the ten loci of 1013 samples belonging to the 51 populations of Quercus analysed

Source of variation	Sum of squares	Variance components Percentage variation	
among populations	838.981	0.33297	8.32503
among individuals	3615.417	0.19887	4.97232
within populations within individuals 3422 3.46779 86.70266 Total 7876.398 3.99964 ,\quad.			

3.2.5 Results of the Principal Coordinates Analysis

The PCoA scatter plot based on the pairwise population matrix of $\mathrm{FST}_{\text {S }}$ values (Fig. 3.15) showed a clear separation among taxa groups. The grouping pattern of the PCoA analysis corresponded indeed to the taxonomical classification of the species in the populations studied. Except for few populations of the groups of Quercus pubescens s.l. and Q. petraea s.l., no overlap was documented among clusters. The geometric distances between all the genotypes analysed revealed a neat discrimination among the four populations of Quercus frainetto and the populations belonging to the other taxa groups along the second axis of the PCoA scatter plot (12.84% of the variability explained). While the first axis, that explained the 23.96% of the overall genetic variation, highlighted mainly the differentiation among Quercus robur, Q. petraea group, and Q. pubescens group. Not so evident was the collocation of Quercus pyrenaica and Q. faginea populations, as just one single population per each of the two species was sampled and this has not allowed to distinguish a clear pattern of distribution.

Figure 3.15 Principal coordinate analysis (PCoA) scatter plot of the 51 populations of Quercus analysed by means of ten SSR markers. Axes 1 and 2 explain 23.96% and 12.84% of the total variance, respectively. Colours of the squares correspond to the taxonomic groups of belonging of each population

3.2.6 Results of the comparison of geographical and genetic distance

Mantel tests were performed separately on the five clusters highlighted from the genetic structure analysis (considering only populations with q_{i} values ≥ 0.60 for a specific cluster), and they showed a slightly positive significant correlation between genetic and geographic distances in each of the groups of populations analysed (Fig. 3.16). More in detail, the highest correlation was recorded into the cluster 2 composed primarily by populations of Quercus pubescens (PCSIS) $\left(\mathrm{R}_{X Y}=0.0322, \mathrm{p}=0.001\right)$. Analyses revealed for the other groups the following values of correlation: cluster $1\left(\mathrm{R}_{\mathrm{XY}}=0.0172, \mathrm{p}=0.001\right)$; cluster $3\left(\mathrm{R}_{\mathrm{XY}}=0.0245, \mathrm{p}=0.001\right)$; cluster 4 (R_{XY} $=0.0271, \mathrm{p}=0.001)$; cluster $5\left(\mathrm{R}_{\mathrm{XY}}=0.0107, \mathrm{p}=0.010\right)$.

Figure 3.16 Mantel tests showing the correlation between pairwise geographic distance (GGD) and pairwise codominant genotypic genetic distance (GD). Each diamond point represents a pairwise comparison. Mantel tests are shown separately for each of the five clusters highlighted from structure analysis. Only populations with q_{i} values \geq 0.60 for a specific cluster were considered. The groups are represented by: a: Cluster 1; b: Cluster 2; c: Cluster 3; \mathbf{d} : Cluster 4; e: Cluster 5

4 Discussion

Both common ancestry and current patterns of interpopulation genetic exchange have a significant impact on the genetic structuring of plant populations. The diversity of reproductive ecologies, affecting genetic exchange, and the presence of weak reproductive barriers between otherwise morphologically well-defined species lead to the resulting complexity of the genetic structures (Schaal et al. 1998). In the Quercus genus, weak reproductive barriers enable gene flow between populations of the same species, as well as between well-diverged species, and as a result, intraspecific population structure is influenced by interspecific genetic exchange following the phenotypic divergence of species (Schaal et al. 1998). Contrary to the nucleome, usually more quickly homogenised at the species/sectional level (Hipp et al. 2020), the maternally inherited plastome allows to understand the population-area relationships and taxon histories (e.g., isolation, reticulation, introgression) (Pham et al. 2017).

Based on chloroplast DNA variation, a detailed phylogeographic analysis of the European taxa of white oaks (section Quercus) was performed. The results achieved through this study have added new and updated knowledge to the only available diversity studies conducted more than 20 years ago, with dated molecular tools (Petit et al. 2002a) and have complemented the current knowledge on plastome phylogeography of the other sections occurring in the Euro-Mediterranean region, sections Ilex and Cerris (Simeone et al. 2016, 2018; Vitelli et al. 2017). Both two barcoding loci analysed, $\operatorname{trn} \mathrm{H}-p s b \mathrm{~A}$ and $\operatorname{trnK}-m a t \mathrm{~K}$, adequately differentiated the chlorotypes occurring in the studied area. As expected, the variation encountered was moderate to low, and $\operatorname{trn} \mathrm{H}-p s b \mathrm{~A}$ showed a higher variability compared to trnK-matK (Table 3.1) across all the three sections of the Quercus genus investigated in the Euro-Mediterranean region (sections Quercus, Cerris, and Ilex). Among the three sections analysed, the highest values of molecular diversity were observed in the section Ilex, as it was revealed from the highest values of uncorrected p-distance, haplotype diversity, and the largest number of haplotypes and Parsimony Informative Characters observed. While, in section Quercus comparable estimates with section Cerris (characterized by lower number of individuals included) were detected.
The obtained diversity values are consistent with the evolutionary histories of the three sections investigated. In fact, for sections Cerris and Ilex was assumed an ancient origin in North-East Asia that dates back to the Eocene (40-50 million years ago), in contrast to a more recent colonization of a stock of North American oaks of section Quercus into West Eurasia that dates back at 7.5-18 million years ago (Hipp et al. 2020). The range's expansion of sections Cerris and Ilex in western Eurasia took place in Early Middle Miocene following two different routes: the Tibet-Himalayan Corridor (Ilex) and across northern and central Asia (Cerris) (Jiang et al. 2019; Simeone et al. 2018). As a consequence of the spread of these two sections in Eurasia, an East-West Eurasian splits resulted, and the differentiation of the main intra-sectional lineages and species groups took place. Therefore, the sections Cerris and Ilex have had much time to diversify, adapt to different habitats, and differentiate their plastomes, in comparison to the early colonizers of section Quercus arrived in Eurasia from northeastern America in more recent times. Focusing on the taxa of European white oaks (section Quercus) analysed in this study, fourteen total haplotypes in all the studied area were detected. Although the chloroplast genome has a lower evolutionary rate than the nuclear genome, the differentiation observed resulted satisfactory. However, as the haplotypes were each one separated by single mutations (with the only exception of two singlets likely
corresponding to geographically isolated samples) a poorly resolved phylogeographic structure resulted (Fig. 3.2). Moreover, due to the maternal inheritance of the chloroplast DNA in angiosperms (Arroyo-García et al. 2002), no species specificity of the haplotypes for the taxa was documented. In fact, the most common haplotypes ($\mathrm{H} 01-\mathrm{H} 04$) have been found in almost all the taxa investigated, while the rare haplotypes occurred mainly in the isolated populations, as it was observed for the haplotypes H10, H11, and H12, found in Sardinia and Sicily islands, and Apulia region (southern Italy), respectively. Most populations were fixed for one haplotype to prove a significant homogeneity across the populations from the same area. The most frequent haplotypes (H01 and H02) had a more central eastern distribution in the studied area, in contrast to the second two most common haplotypes (H 03 and H 04) that were mainly spread in the central western part of the sampled area. Haplotype H04, however, showed a discontinuous distribution, and it was found across the Italian and Iberian Peninsulas, in Morocco and in Bulgaria. Despite its presence in Balkan Peninsula restricted to one single Bulgarian sample, it can be assumed a wider distribution of this haplotype, which has not been detected because of a sparsely extended sampling in the Balkan Peninsula and over. Haplotype H05 was exclusively found in the population of Quercus pubescens from Muć (Croatia) and it was not recorded in other populations from the same area. This could be due to the isolation of the population, although no sufficient data are available to infer conclusions. Interestingly, haplotypes H06, H07, H08, H09, H10, H11, and H12 were exclusive to the central southern Italy, major islands (Sicily and Sardinia) included, and while having different geographic distributions, they all prove the role of glacial refugia of the southern Italy during Pleistocene (Brewer et al. 2002; Petit et al. 2002a). In fact, although the number of Italian samples was higher in comparison with the other countries, the presence of high levels of chloroplast diversity (eleven haplotypes), mainly found in the southern part of the country, can be related to the Quaternary southward range contractions. The two remaining rare haplotypes (H13 and H14) were found in the population of Quercus faginea from Cordoba (Spain), that showed three different haplotypes in the three samples analysed, proving the heterogeneity of the population of belonging. As it is shown in Figure 3.2, the central haplotypes (H01, H03, H04, H06) in the network were among the most prevalent and spread across the populations sampled, supporting the hypothesis that these belonged to the ancestral populations (Golding 1987; Castelloe and Templeton 1994). Despite the use of a different technique, the most common chlorotypes identified in this study could be assigned to the lineages recognised in previous largescale studies, based on the PCR RFLP method (Petit et al. 2002a). The maternal lineages recognised by Petit et al. (2002a) A, B, C, and E could be represented by several chlorotypes found in the current study. In fact, the lineage A includes haplotypes found in North and central Europe (North Spain and Italian Peninsula included) to the Balkans; the lineage B includes haplotypes spread in Morocco, Iberian Peninsula and up to France, Great Britain, central and North Europe; the lineage C includes haplotypes found in North Spain, Italian Peninsula and major islands, to central, North and eastern Europe; while the lineage E is restricted to southeastern Europe and the Italian Peninsula (major islands included). According to other studies (Grivet et al. 2006; Neophytou and Michiels 2013), this work confirms the negligible phylogeographic structure in the European white oaks due to the recent recolonization of central Europe by a limited number of chlorotypes, and a more evident structuring for the regions with Mediterranean climate and for the refugial sites. In fact, as the oaks in the Mediterranean area survived in several refugia, an in situ differentiation of cpDNA during the ice age and likely for the remainder of the Quaternary took
place. Consequently, a patchy distribution and significant phylogeographic structure with well differentiated lineages occurring relatively close to each other and a high total chlorotypic variation resulted (Grivet et al. 2006; López de Heredia et al. 2007; Neophytou et al. 2011). In this scenario, the Italian Peninsula has been a crossroads of post-ice-age recolonization pathways, as proven by the high number of haplotypes found, as well as a hotspot of chloroplast DNA diversity for the European white oaks.
In a global context of the Quercus genus a clearer phylogeographic structure appeared analysing the different sections of the genus, as emerged from the network (Fig. 3.3), the neighbour-Net graph (3.4), and the RAxML tree (Fig. 3.5), that show a high level of intersectional differentiation. The topology of the RAxML tree rooted between the two Quercus subgenera matches the most recent reconstructions obtained with more numerous or powerful plastid markers (five DNA regions: Yang et al. 2020; over 200 coding and non-coding loci from RNA-seq data: Yang et al. 2021; whole genome sequencing: Zhou et al. 2022) and complements the recently perceived evidence derived from nuclear data (RAD-sequencing; Hipp et al. 2020) of a complex evolution of the entire genus. The RAxML tree highlights the relationships found between the Eurasian white oaks and the Ilex Euro-Med lineage. In fact, this latter lineage may be among the oldest diverging Quercus plastomes, as first proposed in Simeone et al. (2016), and the result of an ancient crosssectional oak lineage (Yang et al. 2021). The phylogenetic reconstructions of this study also distinguished between New World and Old World members of the same evolutionary lineage, i.e., sections Quercus and Ponticae, demonstrating that there must have been a geographic differentiation in their primordial members predating divergence and manifestation of modern taxa. Furthermore, the non-monophyly observed in some sections could be due to the chloroplast capture via hybridization in the early diversification of the genus (Manos and Hipp 2021). In section Ponticae, for instance, it has been supposed that the relict species Quercus sadleriana survived by introgressing plastomes from sympatric Protobalanus members (hence, its sister position to one of the two sublclades in the RAxML tree); likewise, its Caucasian sister (Q. pontica) introgressed plastomes from different sources of sympatric (West Eurasian) members of section Quercus in more recent times (Hipp et al. 2020). The current work allowed to confirm that in the Eurasian white oaks signatures of a distant past coexisting with more recent, still unfixed genetic diversity, bring to a little differentiated plastome. This could be due to the origin of the group from a limited genetic source and the only recent distribution across the continent and in highly heterogeneous, moulding landscapes.

Such reduced plastome variability is matched by a greater nucleome variability, that however does not reflect the considerable morphological variability responsible for the many ecomorphotypes and the taxonomic confusion in the European white oak group. In this study the genetic knowledge of the European taxa of white oaks has been improved, providing a better understanding of phenotypic and taxonomic diversity, and addressing the major critical issues concerning mainly the taxa of the Quercus pubescens group. In fact, mainly for this latter group, it is still open the debate about the possibility of keeping all the pubescent oak taxa at the species or subspecies ranks or whether to consider the phenotypic diversity observed as included in the morphological variability pattern of a single widely distributed species (e.g., a pan-European Quercus pubescens Willd.) (Di Pietro et al. 2021). The nuclear microsatellite markers analyses turn out to be an efficient tool to deepen the genetic variability among similar taxa. Based on the genetic structure analysis performed in this study, the most probable number of clusters in the populations analysed
was $5(\mathrm{~K}=5)$ (Fig. 3.7). Although some samples showed genotypes of different clusters (putative hybrids), as well as some populations were not genetically homogeneous, the 60.17% of the samples analysed exhibited membership coefficients (Q values) ≥ 0.90, so they could be considered as genetically "pure". It is therefore plausible to recognize the existence of five genetically distinct groups, to which the twelve taxa, identified based on morphological features, may be lead. According to this analysis, a clear lack of correspondence between the relevant morphological variability and the observed genetic variability has emerged. In fact, not all taxa (especially those belonging to the Quercus pubescens group (e.g., Q. congesta, Q. ichnusae, Q. virgiliana), as well as to the Q. petraea group (e.g., Q. banatus, Q. dalechampii, Q. petraea subsp. austrotyrrhenica)) recognized by local floras or phytosociological syntheses (mainly in southern Italy) resulted genetically separated. Not surprisingly, a clear classification emerged for the populations of Quercus frainetto (cluster 5) and Q. robur (cluster 4), for which genetically welldistinguishable groups were identified and, in both cases, high values of proportion of membership $\left(\mathrm{q}_{\mathrm{i}}\right)$ to the respective clusters resulted (Table 3.4). This confirms that Quercus frainetto and Q. robur are two genetically well characterised species. Unexpectedly, the same genotype observed in the Quercus robur populations was also found in the only population of Q. pyrenaica (ES40), which although morphologically quite distinct from the first group, showed $q_{i}=0.758$ for the cluster 4 (Table 3.4). A deeper study will be needed to better understand this pattern, as up to this examination no clear explanation has been found. The analysis of microsatellite markers did not reveal a clear genetic pattern for the Quercus faginea population (ES42), as shown by the diversity of genotypes found in the individuals sampled ($q_{i}=0.593$ for cluster $1, q_{i}=0.210$ for cluster 3 , q_{i} $=0.120$ for cluster 4) (Table 3.4), thus it can be assumed a mixture genotype or a low resolution of the microsatellites markers for this species. While, interestingly, this analysis has solved, simplifying it, the taxonomic classification of taxa belonging to the collective group of Quercus petraea. According to this study, the populations of Quercus dalechampii from the Balkan Peninsula (RS37, RS38, RS67) and northern Italy (IT19) may be lead, with support of high proportion of membership values (Table 3.4), to the Q. petraea group (cluster 3). As a consequence, this result allows to confirm the identification of the Quercus dalechampii taxa from the Balkan Peninsula and northern Italy with the Q. petraea species. Thus, according to the taxonomic revision proposed by Di Pietro et al. (2012), the name Quercus dalechampii Ten. is to be applied to a species belonging to the Q. pubescens complex and cannot be used to refer to populations of Q. petraea. Similarly, the only population of Quercus banatus (RO33) in the sampling showed high proportion of membership value (0.606) for the cluster of the species of Q. petraea, so according to this analysis the species rank for this taxon is not supported and Q. banatus should be led to Q. petraea complex. For the two populations from the central Italy, classified based on the morphological traits as Quercus petraea (IT46 and IT47), lower values of proportion of membership to the cluster 3 were recorded, to prove the heterogeneity of the populations, as well as a probable co-existence of different taxa in the same woods (a high proportion of membership to the cluster 2 was indeed recorded, mainly for the population IT47). In addition, the genetic structure analysis did not support the recognition of the Quercus petraea subsp. austrothyrrenica taxon. In fact, although for the population IT16 from Sicily Island, the possibility of a sampling in a mixed wood can be supposed ($q_{i}=0.642$ for cluster $1, q_{i}=0.264$ for cluster 3), the population IT17 from Calabria region (southern Italy) exhibited a clear appartenence to the cluster of Quercus petraea ($\mathrm{q}_{\mathrm{i}}=0.659$), showing no significant differences with the type. While,
for the population of Quercus dalechampii from Tara Mountains (RS37) could be assumed a sampling of two different taxa in the same wood, one belonging to Q. pubescens complex (cluster $1, q_{i}=0.512$) and the other to Q. petraea complex (cluster 3, $q_{i}=0.321$). However, the most significant aspect that emerges from the genetic structure analysis concerns the taxa belonging to the collective group of Quercus pubescens. According to this analysis, the multiplicity of taxa identified and recognized on the basis of morphological traits (i.e., Quercus congesta, Q. ichnusae, and Q. virgiliana) is not supported by the observed genetic variability, which instead is expressed in only two clusters. The two groups differentiate the populations of the collective group of Quercus pubescens mostly according to a geographic distribution criterion. In particular, albeit with exceptions, there appears to be a cluster (cluster 2) inclusive of taxa (Quercus congesta, Q. ichnusae, Q. pubescens, and Q. virgiliana) from central southern Italy, including Sardinia Island, to which belongs, even if with lower proportion of membership value ($q_{i}=0.651$), also the Spanish population of Q. pubescens (ES45) and a cluster (cluster 1) inclusive of the other populations of Q. pubescens, that shows a wider geographic distribution in the studied area, from Iberian Peninsula to Balkan Peninsula, up to northern and central Europe. According to our results all these pubescent oak taxa recognized at the rank of species in local floras (Brullo et al. 2001; Bacchetta et al. 2009; Biondi et al. 2010) are not supported from the genetic analysis. For instance, focusing on Sardinia Island, no genetic differences among the endemic taxon Quercus ichnusae (populations IT48 and IT50), with the co-occurrent taxa Q. virgiliana (populations IT49 and IT51) and Q. congesta (populations IT52 and IT53), reported in the taxonomic and phytosociological literature for Sardinia, can be distinguished, and as all these records belong to the same cluster (cluster 2) (Fig. 3.8; Table 3.4), they should be summarized to one single taxon. Furthermore, since pure individuals belonging to cluster 2 were also found in other populations, mainly from central southern Italy (except for population ES45 from Spain), the presence of an endemic Sardinian taxon could not be confirmed. Interestingly, the proportion of membership values to the cluster of belonging (cluster 2) of the six populations from Sardinia (IT48-IT53) were considerably high to prove the high dregree of "genetic purity" of these populations, principally due to the geographic isolation. At the same cluster belong also the populations of Quercus pubescens from central Italy, IT64 and IT82, as it is shown from the high values of $q_{i}, 0.937$ and 0.897 , respectively. The remaining populations of Quercus pubescens with a wider geographic distribution belonged instead to the cluster 1 and differently from the other groups of taxa, proportion of membership values were notably lower, to reveal a significant gene flow among populations (Table 3.4). Based on the membership coefficients (Q values), that identify the belonging of each sample to a cluster, emerged that the higher percentage ($\geq 90 \%$) of the individuals with membership coefficients $\mathrm{Q} \geq$ 0.90 for each cluster (corresponding to the more genetically pure samples), has been observed in the populations of Quercus pubescens (IT72, IT66) from Basilicata and Apulia regions in southern Italy, in the populations of Q. ichnusae (IT48, IT50) from Sardinia Island, in the population of Q. congesta (IT53) from Sardinia Island, and in the population of Q. robur (IT13) from Basilicata region in southern Italy (Fig. 3.11; Table 3.5). These results not only confirm the important role of the geographic isolation in reducing gene flow and in preserving the original genetic diversity of the populations, but also show that the differences found between groups of pubescent oaks probably express the gene flow to which the populations are subjected. The main clusters recognised by the genetic structure analysis reflect considerably the groups identified in the phylogenetic analysis. However, the reduced amount of genetic changes, represented by the short
length of branches of the tree, has not provided good support for many terminal clades as well as several internal nodes, highlighting once again the low genetic variability in the European white oaks, as well as the resultant complexity in the classification. Nevertheless, distinct clusters have been identified and specific phylogeographic and taxonomic patterns have been recognised. The groups of the populations of Quercus frainetto and of Q. robur appeared well separated, and a weak phylogeographic signal was observed, suggesting ancient divergence for the taxa of both groups. As emerged also in the genetic structure analysis, the population of Quercus pyrenaica clustered with the Q. robur group, although at a different level of clustering in comparison with the other populations. In addition, the group of Quercus petraea taxa did not cluster populations according to the different putative taxa, but mainly following a geographic pattern. In fact, a subcluster of this group, including the populations from Balkan Peninsula in addition to the two populations of Quercus petraea subsp. austrotyrrhenica from Calabria region (southern Italy) and Sicily Island, was distinguished by a subcluster including populations with a central western distribution in the studied area. As expected, the clustering for the Quercus pubescens group resulted more complex. In fact, although subclusters have emerged from the analysis, the short length of the branches has provided a weak support to the recognition of well separated groups. The first group identified comprised the populations of Quercus pubescens from Balkan Peninsula. The second level of clustering brought together different taxa of the Quercus pubescent s.l., which could be separated in two further subclusters, one including the populations with a wider geographic distribution, and the other including the populations from central southern Italy and Sardinia Island. Interestingly into this latter group, populations of Quercus congesta, Q. ichnusae, Q. virgiliana, and Q. pubescens grouped together, and although sometimes the same taxa created subclusters (e.g., Q. virgiliana IT66-IT49; Q. congesta IT52-IT53), the elevation at the specific rank cannot be supported. Even according to the phylogenetic classification, the population of Quercus faginea (ES42) clustered with the populations of Q. pubescens, showing affinity mainly for the population di Q. pubescens (ES44) from the same geographic area. Based on the results of both genetic structure analysis, as well as phylogenetic analysis, it can be confirmed the complex genetic diversity in the taxa of the European white oaks. In fact, despite the reduced, well-fixed, and identifying genetic diversity of some groups (e.g., Quercus frainetto, Quercus robur), the variability into the collective groups of Q. pubescens, but also of Q. petraea, results much higher. Focusing on the single populations, the analysis of the parameters of genetic diversity estimated in this study has highlighted the lower value of allelic richness (5.243) in the population of Quercus robur from Basilicata region, in southern Italy (IT13). This result is not surprising as this population represents one of the southernmost populations of Quercus robur in Italy, moreover due to its geographic isolation can easily be expected a reduced gene flow. Differently, the highest value (7.882) of allelic richness was recorded in the population of Quercus pubescens from Pinios Lake in Greece, where a greater possibility of gene flow among populations can be assumed.
The analysis showed only a significantly negative $\mathrm{F}_{\text {IS }}$ (inbreeding coefficient) value (Table 3.8) across the populations studied that could indicate hybridization in the population of Quercus pubescens from Muć in Croatia (HR05). Differently, positive $\mathrm{F}_{\text {IS }}$ values were recorded in nineteen populations belonging to different taxa and from different provenances. However, the presence of inbreeding in these populations cannot be confirmed as these values might be related to presence of null alleles or population substructure (Wahlund effect). In addition, the pairwise populations differentiation (FST) values confirm a significant diversity among the populations of taxa
genetically well distinguished (e.g., Quercus frainetto, Q. petraea, Q. pubescens, Q. robur), and a weaker differentiation among similar taxa, although among the taxa of the collective groups of Quercus pubescens and Q. petraea a higher internal differentiation was observed in comparison to that of the other groups (Fig. 3.14). This genetic diversity cannot be ignored, nevertheless the values recorded into these two groups do not support the elevation at the specific rank of the taxa included. The Principal Coordinate Analysis has corroborated what emerged from the other analyses, in fact four main groups represented by Quercus frainetto, Q. robur, Q. pubescens, and Q. petraea resulted, although into the two latter groups, taxa could be separated in subclusters.
The correlation between genetic and geographical distance among populations of the different groups, identified according to the genetic structure analysis, revealed by the Mantel test was found to be positive and statistically significant, however very low (Figure 3.16). In fact, most of the genetic diversity found was observed within single individuals (86.70%) followed by genetic diversity among different populations (8.32%) and among individuals within the same populations (4.97\%) (Table 3.9).

5 Conclusion

In this study an extensive analysis on the chloroplast and nuclear genetic diversity and differentiation across European taxa of white oaks (Quercus L. section Quercus) was performed. Besides the well-documented unresolved taxonomic classification of this group, a pronounced discrepancy between plastid and nuclear data was recorded. Both the young history of the European white oaks and the repeated events of hybridisation and introgression are responsible for a group that is not still genetically fixed and resolved.

The phylogeographic analyses based on the study of the chloroplast DNA variation allowed to confirm the relatively recent colonization of the section Quercus in Eurasia, that dates to 7.5-18 million years ago, and the subsequent quick diversification rates, due to the large niche availability of a moulding climate and territories (Hipp et al. 2020). The little differentiated plastome of this oaks group, documented by the low degree of diversity found in the fourteen haplotypes identified in the studied area, is in agreement with the founder effect. In fact, Pleistocene climate changes probably affected the white oaks more than sections Ilex and Cerris distributed in the same geographic area, further depleting the plastid molecular diversity. Natural barriers as major mountain systems and sea acted to preserve and/or promote further diversification. Furthermore, the local persistence of ancient variants and overlap of derived variants, as well as the genetic drifts, led to the lack of a distinct phylogeographic structure in the plastome of the Eurasian section Quercus.

Compared to this reduced plastome variability is a greater nucleome variability, that however, according to the results of this study, does not reflect the notable morphological variability responsible for the many ecomorphotypes and the taxonomic issues in the European white oaks group. In this study, a clear identification of the groups of Quercus frainetto and Q. robur resulted, while no genetic evidence on the recognition of some taxa included in the collective groups of Quercus pubescens as well as of Q. petraea has been found. More in detail, the already notoriously difficult classification of the Quercus pubescens group has been simplified, but not completely resolved. In fact, the recognition at the specific rank of taxa as Quercus congesta, Q. ichnusae, and Q. virgiliana, currently accepted, mainly in local floras in southern Italy, was not supported by genetic results, but a distinction on a geographic basis of the group into two clusters was identified. However, since these two clusters identified revel a clear, but not adequately strong, genetic signal, it can be supposed that the populations sampled belong to a single highly variable pubescent oak taxon which is characterized by a large ecological and morphological amplitude. This finding is consistent with morphological and molecular analyses carried out on pubescent oak populations in southeastern Italy (Di Pietro et al. 2016, 2020, 2021), which showed that neither the morphological nor the molecular results supported the existence of more than one pubescent oak species, despite what reported in previous phytosociological studies (Biondi et al. 2004, 2010). Also in the collective group of Quercus petraea, differences followed mainly a geographic criterion and, although different subclusters could be distinguished, the elevation at the specific rank for taxa as Q. banatus and Q. petraea subsp. austrotyrrhenica has not been supported by the genetic analysis of this study.
In light of these considerations, the need to provide a taxonomic revision that can unify genetically indistinct taxa under the same name would be needed. Furthermore, a too divisive classification
within the collective group of Quercus pubescens, as well as of Q. petraea, should be replaced by a more "minimalist" view (Di Pietro et al. 2021).
It is important also considering the role of glacial refugia of the Pleistocene in the southern peninsulas of Iberia, Italy, and Balkans, in order to preserve the genetic pool of the European white oaks as they might provide a unique genetic resource. The analyses of genetic variability and structure are also essential for designing conservation management strategies. In fact, oaks species have implications in forest economy (timber certification), forest management, as well as in nature conservation (Di Pietro et al. 2021). For instance, the Quercus pubescens 91AA* priority habitat (eastern white oak woods - Annex I of the Habitats Directive) is one of the forest habitats types under threat of invasion by invasive alien tree species according to the Italian Manual of Interpretation of Habitats of Directive 92/43/EEC (Biondi et al. 2009).
In addition, in a future perspective, a better understanding of genetic mechanisms of variation and adaptation could prove to be useful to adjust conservation measures in response to rapid climatic change. Thus, identifying the potential genetic adaptability of individuals to be used for assisted migration or reintroduction could prove extremely efficient (Aitken and Whitlock 2013; Gonzalez e al. 2013).
The landscape genomics investigates the interaction and connection between adaptive genetic loci on genomes (Storfer et al. 2018) and the aspects of the environment that affect genetic variation and how that variation in turn affects adaptation (Rellstab et al. 2015; Li et al. 2017). These studies can be used to analyse alleles that emerge under particular climatic and habitat circumstances and to understand oaks' reactions to environmental stresses. Identification of populations or individuals that are responding positively to conditions that are expected in the climatic future will help with conservation planning for plant migration or restoration (Rellstab et al. 2016; Martins et al. 2018; Backs and Ashley 2021).
As data about the Quercus genus are still lacking in this respect, the need to deepen the current knowledge, using emerging genomic tools and more conventional population genetic analyses, proves necessary in order to better target conservation strategies, which are in any case crucial in view of climate change, even in a genus where unquestionable evolutionary success is well documented and known. Several are the reasons for this great success of oaks' group. According to the interesting treatment of Kremer and Hipp (2020) four main explanations can be identified: the high diversity within populations and species; the rapid migration combined with the ability to adapt to new conditions; the high rates of ecological divergence within clades, combined with convergent solutions to ecological problems across clades; the hybridization and introgression phenomena. Whereas these features are individually shared with other tree genera, the evolutionary success of Quercus is indeed due to their combined impacts.

References

Aitken SN, Whitlock MC (2013) Assisted gene flow to facilitate local adaptation to climate change. Annual Review of Ecology, Evolution, and Systematics 44:367-388. https://doi.org/10.1146/annurev-ecolsys-110512-135747

Aldrich J, Cherney BW, Merlin E (1988) The role of insertions/deletions in the evolution of the intergenic region between psbA and trnH in the chloroplast genome. Current Genetics 14:137-146. https://doi.org/10.1007/BF00569337

Anderson MK (2007) Indigenous uses, management, and restoration of oaks of the far western United States. Technical Note no. 2. Washington, DC, USA: USDA-Natural Resources Conservation Service

Antonecchia G, Fortini P, Lepais O, Gerber S, Legér P, Scippa GS, Viscosi V (2015) Genetic structure of a natural oak community in central Italy: evidence of gene flow between three sympatric white oak species (Quercus, Fagaceae). Annals of Forest Research 58(2):205-216. https://doi.org/10.15287/afr.2015.415

Arroyo-García R, Lefort F, De Andrés MT, Ibáñez J, Borrego J, Jouve N, Cabello N, Martínez-Zapater JM (2002) Chloroplast microsatellites polymorphisms in Vitis species. Genome 45:1142-1149. https://doi.org/10.1139/g02-087

Axelrod DI (1983) Biogeography of oaks in the Arcto-tertiary province. Annals of the Missouri Botanical Garden 70:629-657. https://doi.org/10.2307/2398982

Bacchetta G, Bagella S, Biondi S, Farris E, Filigheddu R, Mossa L (2009) Vegetazione forestale e serie di vegetazione della Sardegna. Forest vegetation and vegetation series in Sardinia. Fitosociologia 46:3-82

Backs JR, Ashley MV (2021) Quercus Conservation Genetics and Genomics: Past, Present, and Future. Forests 12(7):882. https://doi.org/10.3390/f12070882

Barron E, Averyanova A, Kvaček Z, Momohara A, Pigg KB, Popova S, Postigo-Mijarra JM, Tiffney BH, Utescher T, Zhou ZK (2017) The Fossil History of Quercus. Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L. Chapter 3. Springer International Publishing. 547 pp. https://doi.org/10.1007/978-3-319-690995_3

Bartha D (1998) Enzyklopadie der Holzgewachse: Handbuch und Atlas der Dendrologie, A. Roloff, H. Weisgerber, U. M. Lang, B. Stimm, P. Schutt, eds. Wiley-Vch Verlag, Weinheim

Bar-Yosef O, Belfer-Cohen A (2013) Following Pleistocene road signs of human dispersals across Eurasia. Quaternary International 285:30-43. https://doi.org/10.1016/j.quaint.2011.07.043

Bay RA, Harrigan RJ, Underwood VL, Gibbs HL, Smith TB, Ruegg K (2018) Genomic signals of selection predict climate-driven population declines in a migratory bird. Science 359(6371):83-6. https://doi.org/10.1126/science.aan4380

Bay RA, Rose N, Barrett R, Bernatchez L, Ghalambor CK, Lasky JR, Brem RB, Palumbi SR, Ralph P (2017) Predicting responses to contemporary environmental change using evolutionary response architectures. American Naturalist 189(5):463-73. https://doi.org/10.1086/691233

Beldie A (1952) Fagáceae A. Br. In: Sǎvulescu T (red. princip.), Nyárady EI (respons.), Alexandrescu L et al.: Flora Republicii Populare Române. I. pp. 217-260. Editura Academiei Republicii Populare Române, Bucureşti

BioEcho https://www.bioecho.com/Products/DNA-Extraction/
Biondi E, Blasi C, Burrascano S, Casavecchia S, Copiz R, Del Vico E et al. (2009) Manuale Italiano di interpretazione degli habitat della Direttiva 92/43/CEE. Ministero dell'Ambiente e della Tutela del Territorio e del Mare. Direzione per la Protezione della Natura e del Mare. Società Botanica Italiana

Biondi E, Casavecchia S, Beccarisi L, Marchiori S, Medagli P, Zuccarello V (2010) Le serie di vegetazione della regione Puglia

Biondi E, Casavecchia S, GuerraV, Medagli P, Beccarisi L, Zuccarello V (2004) A contribution towards the knowledge of semideciduous and evergreen woods of Apulia (South-Eastern Italy). Fitosociologia 41(1):3-28

Birky Jr CW, Maruyama T, Fuerst P (1983) An approach to population and evolutionary genetic theory for genes in mitochondria and chloroplasts, and some results. Genetics 103(3):513-527. https://doi.org/10.1093/genetics/103.3.513

Bones TJ (1979) Atlas of fossil fruits and seeds from north central Oregon Mus. Sci. Industr. Occas. Pap. Natural Sciences 1:1-23

Bordács S, Popescu F, Slade D, Csaikl UM, Lesur I, Borovics A, Kézdy P, Brewer S, Cheddadi R, De Beaulieu JL, Reille M (2002) The spread of deciduous Quercus throughout Europe since the last glacial period. Forest Ecology and Management 156:27-48. https://doi.org/10.1016/S0378-1127(01)00646-6

Borhidi A (1995) Social behaviour types, the naturalness and relative ecological indicator values of the higher plants in the hungarian flora. Acta Botanica Hungarica 39:97-181

Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. The American Journal of Human Genetics 32(3):314-31

Brewer S, Cheddadi R, De Beaulieu JL, Reille M (2002) The spread of deciduous Quercus throughout Europe since the last glacial period. Forest Ecology and Management 156:27-48. https://doi.org/10.1016/S0378-1127(01)00646-6

Brookfield JFY (1996) A simple new method for estimating null allele frequency from heterozygote deficiency. Molecular ecology 5(3):453-455. https://doi.org/10.1111/j.1365-294x.1996.tb00336.x

Brullo S, Guarino R, Siracusa G (1999) Revisione tassonomica delle querce caducifoglie della Sicilia. Webbia 54(1):1-72. https://doi.org/10.1080/00837792.1999.10670670

Brullo S, Scelsi F, Spampinato G (2001) La vegetazione dell'Aspromonte. Studio fitosociologico. Reggio Calabria (IT): Laruffa Editore

Bruschi P, Grossoni P (2004) Variabilità morfologica e molecolare in Quercus pubescens (Willd.) dell'Italia centromeridionale. Morphological and molecular variability of Quercus pubescens in central-southern Italy. Informatore Botanico Italiano 36:529-531

Burgarella C, Lorenzo Z, Jabbour-Zahab R, Lumaret R, Guichoux E, Petit R, Soto A, Gil L (2009) Detection of hybrids in nature: application to oaks (Quercus suber and Q. ilex). Heredity 102:442-452. https://doi.org/10.1038/hdy.2009.8

Burger WC (1975) The species concept in Quercus. Taxon 24:45-50. https://doi.org/10.2307/1218998
Bussotti F, Grossoni P (1997) European and Mediterranean oaks (Quercus L.; Fagaceae): SEM characterization of the micromorphology of the abaxial leaf surface. Botanical Journal of the Linnean Society 124(2):183-199. https://doi.org/10.1111/j.1095-8339.1997.tb01789.x

Calabuig EL, Tarrega R, Calvo L, Marcos E, Valbuena L (2000) Life and Environment in the Mediterranean, L. Trabaud, ed. WIT Press, Southampton, vol. 3 of Advances in Ecological Sciences pp. 43-86

Camus A (1936-1954) Les chênes, Monographie du genre Quercus et Monographie du genre Lithocarpus. Encyclopédie Economique de Sylviculture. Vol. VI, VII, VIII. Editions Lechevalier (Paris)

Carlsson J (2008) Effects of microsatellite null alleles on assignment testing. Journal of Heredity 99(6):616-623. https://doi.org/10.1093/jhered/esn048
Castelloe J, Templeton AR (1994) Root probabilities for intraspecific gene trees under neutral coalescent theory. Molecular Phylogenetics and Evolution 3:102-113. https://doi.org/10.1006/mpev.1994.1013
Castroviejo S (1986-2012) Flora iberica 1-8, 10-15, 17-18, 21. Real Jardín Botánico. CSIC Madrid
Cavalli-Sforza LL, Edwards AW (1967) Phylogenetic analysis: models and estimation procedures. Evolution 21(3):550-570. https://doi.org/10.1111/j.1558-5646.1967.tb03411.x

Cavender-Bares J (2019) Diversification, Adaptation, and Community Assembly of the American Oaks (Quercus), a Model Clade for Integrating Ecology and Evolution. New Phytologist 221:669-692. https://doi.org/10.1111/nph. 15450

Cavender-Bares J, Ackerly D, Baum D, Bazzaz F (2004) Phylogenetic overdispersion in Floridian oak communities. American Naturalist 163:823-843. https://doi.org/10.1086/386375

CBOL Plant Working Group (2009) A DNA barcode for land plants. Proceedings of the National Academy of Sciences USA 106(31):12794-7. https://doi.org/10.1073/pnas. 0905845106

Chapuis MP, Estoup A (2006) Microsatellite null alleles and estimation of population differentiation. Molecular Biology and Evolution 24:621-631. https://doi.org/10.1093/molbev/msl191

Chassé B (2016) Eating acorns: what story do the distant, far, and near past tell us, and why? International Oaks 27:107-136

Chatziphilippidis G, Spyroglou G (2006) Sustainable Forest Management. Hasenauer H, ed. Springer Berlin Heidelberg pp. 373-395

CHROMAS 2.6.6. http://www.technelysium.com.au
Chybicki IJ, Burczyk J (2009) Simultaneous estimation of null alleles and inbreeding coefficients. Journal of Heredity 100:106-113. https://doi.org/10.1093/jhered/esn088

Clinovschi F (2005) Dendrologie. Editura Universitatii Suceava
Corcuera L, Camarero J, Gil-Pelegrín E (2002) Functional groups in Quercus species derived from the analysis of pressure-volume curves. Trees 16:465-472. https://doi.org/10.1007/s00468-002-0187-1

Criscuolo A (2020) On the transformation of MinHash-based uncorrected distances into proper evolutionary distances for phylogenetic inference. F1000Res 9:1309. https://doi.org/10.12688/f1000research.26930.1

Curtu AL, Craciunesc I, Enescu CM, Vidalis A, Sofletea N (2015) Fine-scale spatial genetic structure in a multi-oakspecies (Quercus spp.) forest. iForest 8(3):324-332. https://doi.org/10.3832/ifor1150-007

Curtu AL, Gailing O, Finkeldey R (2007) Evidence for hybridization and introgression within a species-rich oak (Quercus spp.) community. BMC Evolutionary Biology 7:1. https://doi.org/10.1186/1471-2148-7-218

Cytiva. https://www.cytivalifesciences.com/en/us
Dakin E, Avise J (2004) Microsatellite null alleles in parentage analysis. Heredity 93:504-509. https://doi.org/10.1038/sj.hdy. 6800545

De Beaulieu A, Lamant T (2010) Guide illustre des chenes. Geers, Belgium: Edilens
Delcourt HR, Delcourt PA (1984) Ice age haven for hardwoods. Natural History 93:22-8. https://doi.org/10.7312/eldr92092-030

Delcourt PA, Delcourt HR (1981) Vegetation maps for eastern North America, 40000 years B.P. to the present. In: Ohio RCR, editor. Plenum Geobotany: Proceedings of Geobotany Conference. New York: Bowling Green State University pp. 123-65
Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society Series B 39(1):1-38. https://doi.org/10.1111/j.2517-6161.1977.tb01600.x

Deng M (2007) Anatomy, Taxonomy, Distribution \& Phylogeny of Quercus subg. Cyclobalanopsis (Oersted) Schneid. (Fagaceae). Ph.D Thesis. Kunming Institute of Botany, Chinese Academy of Sciences. Graduate School of Chinese Academy of Sciences, Beijin

Deng M, Jiang XL, Hipp AL, Manos PS, Hahn M (2018) Phylogeny and biogeography of East Asian evergreen oaks (Quercus section Cyclobalanopsis; Fagaceae): Insights into the Cenozoic history of evergreen broad-leaved forests in subtropical Asia. Molecular Phylogenetics and Evolution 119:170-181. https://doi.org/10.1016/j.ympev.2017.11.003

Deng M, Jiang XL, Song Y-G, Coombes A, Yang X-R, Xiong Y-S, Li Q-S (2017) Leaf epidermal features of Quercus Group Ilex (Fagaceae) and their application to species identification. Review of Palaeobotany and Palynology 237:1036. https://doi.org/10.1016/j.revpalbo.2016.11.006

Denk T, Grimm GW (2009) Significance of Pollen Characteristics for Infrageneric Classification and Phylogeny in Quercus (Fagaceae). International Journal of Plant Sciences 170:926-940. https://doi.org/10.1086/600134

Denk T, Grimm GW (2010) The oaks of western Eurasia: traditional classifications and evidence from two nuclear markers. Taxon 59:351-366. https://doi.org/10.2307/25677595

Denk T, Grimm GW, Manos PS, Deng M, Hipp AL (2017) An updated infrageneric classification of the oaks: Review of previous taxonomic schemes and synthesis of evolutionary patterns. In Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L.; Gil-Pelegrín E, Peguero-Pina JJ, Sancho-Knapik D, Eds.; Tree Physiology; Springer: Cham, Switzerland, pp. 13-38. https://doi.org/10.1007/978-3-319-69099-5_2

Denk T, Grimsson F, Zetter R (2010) Episodic migration of oaks to Iceland: evidence for a North Atlantic 'land bridge' in the latest Miocene. American Journal of Botany 97:276-287. https://doi.org/10.3732/ajb.0900195

Di Pietro R, Conte AL, Di Marzio P, Fortini P, Farris E, Gianguzzi L, Müller M, Rosati L, Spampinato G, Gailing O (2021) Does the genetic diversity among pubescent white oaks in southern Italy, Sicily and Sardinia islands support the current taxonomic classification? European Journal of Forest Research 140(2):355-371. https://doi.org/10.1007/s10342-020-01334-z

Di Pietro R, Di Marzio P, Antonecchia G, Conte AL, Fortini P (2020) Preliminary characterization of the Quercus pubescens complex in southern Italy using molecular markers. Acta Botanica Croatica 78(2):107-115. https://doi.org/10.2478/botcr o-2019-0026

Di Pietro R, Di Marzio P, Medagli P, Misano G, Silletti GN, Wagensommer RP, Fortini P (2016) Evidence from multivariate morphometric study of the Quercus pubescens complex in southeast Italy. Botanica Serbica 40:83-10. https://doi.org/10.5281/zenodo. 48865

Di Pietro R, Viscosi V, Peruzzi L, Fortini P (2012) A review of the application of the name Quercus dalechampii Taxon 61(6):311-316. https://doi.org/10.1002/tax. 616012

Dong W, Liu J, Yu J, Wang L, Zhou S (2012) Highly variable chloroplast markers for evaluating plant phylogeny at low taxonomic levels and for DNA barcoding. PLoS One 7(4):e35071. https://doi.org/10.1371/journal.pone.0035071

Dorji N, Daugjinda M (2014) A fundamental statistical tools application for livestock diversity studies from microsatellite data - mini review: Open access library journal 1-8. https://doi.org/10.4236/oalib. 1100572

Ducousso A, Bordacs S (2003) EUFORGEN Technical Guidelines for genetic conservation and use for pedunculate and sessile oaks (Quercus robur/Quercus petraea). Bioversity International

Dumolin S, Demesure B, Petit RJ (1995) Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theoretical and Applied Genetics 91(8):1253-6. https://doi.org/10.1007/BF00220937

Dupouey JL, Badeau V (1993) Morphological variability of oaks (Quercus robur L, Quercus petraea (Matt) Liebl, Quercus pubescens Willd) in northeastern France: preliminary results. Annales des sciences forestières 50(Suppl.):35s-40s. https://doi.org/10.1051/forest:19930702

Durand J, Bodénès C, Chancerel E, Frigerio JM, Vendramin G, Sebastiani F, Mattioni C (2010) A fast and costeffective approach to develop and map EST-SSR markers: oak as a case study. BMC Genomics 11(1):570. https://doi.org/10.1186/1471-2164-11-570

Earl DA, Von Holdt BM (2012) Structure Harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4:359-361. https://doi.org/10.1007/s1268 6-011-9548-7

Eaton E, Caudullo G, Oliveira S, De Rigo D (2016) Quercus robur and Quercus petraea in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz J, de Rigo D, Caudullo G, Houston Durrant T, Mauri A (Eds.), European Atlas of Forest Tree Species. Publ. Off. EU, Luxembourg, pp. e01c6df+

Edwards D, Horn A, Taylor D, Savolainen V, Hawkins JA (2008) DNA barcoding of a large genus, Aspalathus L. (Fabaceae). Taxon 57:1317-1327. https://doi.org/10.1002/tax. 574021

Ekué MRM, Gailing O, Finkeldey R (2009) Transferability of Simple Sequence Repeat (SSR) Markers Developed in Litchi chinensis to Blighia sapida (Sapindaceae). Plant Molecular Biology Reporter 27:570-574 https://doi.org/10.1007/s11105-009-0115-2

Ellis JR, Burke JM (2007) EST-SSRs as a resource for population genetic analyses. Heredity 99(2):125-132. https://doi.org/10.1038/sj.hdy. 6801001

Enescu CM, Curtu AL, Șofletea N (2013) Is Quercus virgiliana a distinct morphological and genetic entity among European white oaks? Turkish Journal of Agriculture and Forestry 37(5):632-641. https://doi.org/10.3906/tar-121028

Euro+Med (2006) Euro + Med PlantBase, the information resource for Euro-Mediterranean plant diversity. Published on the Internet (accessed 02/10/2022). https://ww2.bgbm.org/EuroPlusMed/

Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14(8):2611-2620. https://doi.org/10.1111/j.1365294X.2005.02553.x

Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10:564-567

Fick SE, Hijmans RJ (2017) WorldClim 2: New 1-Km Spatial Resolution Climate Surfaces for Global Land Areas. International Journal of Climatology 37:4302-4315. https://doi.org/10.1002/joc. 5086

Fineschi S, Taurchini D, Grossoni P, Petit RJ, Vendramin GG (2002) Chloroplast DNA variation of white oaks in Italy. Forest Ecology and Management 156(1-3):103-114. https://doi.org/10.1016/S0378-1127(01)00637-5

Fortini P, Di Marzio P, Conte AL, Antonecchia G, Proietti E, Di Pietro R (2022) Morphological and molecular results from a geographical transect focusing on Quercus pubescens/Q. virgiliana ecological-altitudinal vicariance in peninsular Italy. Plant Biosystems, An International Journal Dealing with all Aspects of Plant Biology 156:6:14981511. https://doi.org/10.1080/11263504.2022.2131923

Fortini P, Di Marzio P, Di Pietro R (2015) Differentiation and hybridization of Quercus frainetto, Q. petraea, and Q. pubescens (Fagaceae): insights from macro-morphological leaf traits and molecular data. Plant systematics and evolution 301(1):375-385. https://doi.org/10.1007/s00606-014-1080-2

Fortini P, Viscosi V, Maiuro L, Fineschi S, Vendramin GG (2009) Comparative leaf surface morphology and molecular data of five oaks of the subgenus Quercus Oerst (Fagaceae). Plant Biosystems 143(3):543-554. https://doi.org/10.1080/11263500902722980

Franco JMAP do A (1991) Flora Iberica: plantas vasculares de la Peninsula Ibérica e Islas Baleares, Volume 2: Platanaceae - Plumbaginaceae (partim), Castroviejo S et al., eds. Real Jardìn Botánico, CSIC, Madrid, pp. 15-36
Franjic J, Liber Z, Skvorc Z, Idzojtic M, Sostaric R, Stancic Z (2006) Morphological and molecular differentiation of the Croatian populations of Quercus pubescens Willd. [Fagaceae]. Acta Societatis Botanicorum Poloniae 75(2):123130. https://doi.org/10.5586/asbp.2006.015

Gančev I, Bondev I (1966) Dăb Quercus L. In: Jordanov D (ed.-in-chief), Kuzmanov B. (ed.), Asenov I et al. Flora na Narodna republika Bălgarija, pp. 105-146. Izdatelstvo na Bălgarskata akademia na naukite, Sofija

Garnier-Géré P, Chikhi L (2013) Population subdivision, Hardy-Weinberg equilibrium and the Wahlund effect. eLS. https://doi.org/10.1002/9780470015902.a0005446.pub3

Golding GB (1987) The detection of deleterious selection using ancestors inferred from a phylogenetic history. Genetics Research 49:71-82. https://doi.org/10.1017/S0016672300026768

Gonzalez A, Ronce O, Ferriere R, Hochberg ME (2013) Evolutionary rescue: An emerging focus at the intersection between ecology and evolution. Philosophical Transactions of the Royal Society B3682012040420120404. https://doi.org/10.1098/rstb.2012.0404

Goudet J (2005) HIERFSTAT, a package for R to compute and test hierarchical F-statistics Molecular Ecology https://doi.org/10.1111/j.1471-8286.2004.00828.x.

Grímsson F, Zetter R, Grimm GW, Krarup Pedersen G, Pedersen AK, Denk T (2015) Fagaceae pollen from the early Cenozoic of West Greenland: revisiting Engler's and Chaney's Arcto-Tertiary hypotheses. Plant Systematics and Evolution 301:809-832. https://doi.org/10.1007/s00606-014-1118-5

Grivet D, Deguilloux M, Petit RJ, Sork VL (2006) Contrasting patterns of historical colonization in white oaks (Quercus spp.) in California and Europe. Molecular Ecology 15:4085-4093. https://doi.org/10.1111/j.1365294X.2006.03083.x

Guichoux E, Lagache L, Wagner S, Chaumeil P, Lèger P, Lepais O, Lepoittevein C et al. (2011a) Current trends in microsatellite genotyping. Molecular Ecology Resources 11:591-611. https://doi.org/10.1111/j.17550998.2011.03014.x

Guichoux E, Lagache L, Wagner S, Lèger P, Petit RJ (2011b) Two highly validated multiplexes (12-plex and 8-plex) for species delimitation and parentage analysis in oaks (Quercus spp.). Molecular Ecology Resources 11:578-585. https://doi.org/10.1111/j.1755-0998.2011.02983.x

Guo SX (1978) Pliocene floras of western Sichuan. Acta Palaeontologica Sinica 17:343-349
Hardy OJ, Vekemans X (2002) SPAGeDi: A versatile computer program to analyse spatial genetic structure at the individual or population levels. Molecular Ecology Notes 2:618-620. https://doi.org/10.1046/j.14718286.2002.00305.x

Hausner G, Olson R, Simon D, Johnson I, Sanders ER, Karol KG, McCourt RM, Zimmerly S (2006) Origin and Evolution of the Chloroplast trnK (matK) Intron: A Model for Evolution of Group II Intron RNA Structures. Molecular Biology and Evolution 23(2):380-391. https://doi.org/10.1093/molbev/msj047

Hedge IC, Yaltrik F (1982) Quercus L. In: Davis PH (Ed.). Flora of Turkey and de East Aegean Islands 7:659-683. Edinburgh University Press

Hernández-Santana V, Martìnez-Fernández J, Morán C, Cano A (2008) Response of Quercus pyrenaica (melojo oak) to soil water deficit: A case study in Spain. European Journal of Forest Research 127:369-378. https://doi.org/10.1007/s10342-008-0214-x

Hilu KW, Liang H (1997) The matK gene: sequence variation and application in plant systematics. American Journal of Botany 84:830-839. http://dx.doi.org/10.2307/2445819

Hipp AL (2015) Should hybridization make us skeptical of the oak phylogeny? International Oaks 26:9-17
Hipp AL, Manos PS, González-Rodríguez A, Hahn M, Kaproth M, McVay JD, Avalos SV, Cavender-Bares J (2018) Sympatric Parallel Diversification of Major Oak Clades in the Americas and the Origins of Mexican Species Diversity. New Phytologist 217:439-452. https://doi.org/10.1111/nph. 14773

Hipp AL, Manos PS, Hahn M, Avishai M, Bodénès C, Cavender-Bares J, Crowl AA, Deng M, Denk T, Fitz-Gibbon S, Gailing O, González-Elizondo MS, González-Rodríguez A, Grimm GW, Jiang XL, Kremer A, Lesur I, McVay JD, Plomion C, Rodríguez-Correa H, Schulze ED, Simeone MC, Sork VL, Valencia-Avalos S (2020) Genomic landscape of the global oak phylogeny. New Phytologist 226(4):1198-1212. https://doi.org/10.1111/nph. 16162

Hipp AL, Whittemore AT, Garner M, Hahn M, Fitzek E, Guichoux E, Cavender-Bares J, Gugger PF, Manos PS, Pearse IS, Cannon CH (2019) Genomic identity of white oak species in an eastern North American syngameon. Annals of the Missouri Botanical Garden 104:455-477. https://doi.org/10.3417/2019434

Hofmann CC (2010) Microstructure of Fagaceae pollen from Austria (Paleocene/Eocene boundary) and Hainan Island (middle Eocene). 8th European Palaeobotany-Palynology Conference. Budapest, Hungary: Hungarian National Museum

Hofmann CC, Mohamed O, Egger H (2011) A new terrestrial palynoflora from the Palaeocene/Eocene boundary in the northwestern Tethyan realm (St. Pankraz, Austria). Review of Palaeobotany and Palynology 166:295-310. https://doi.org/10.1016/j.revpalbo.2011.06.003

Hollingsworth PM, Graham SW, Little DP (2011) Choosing and using a plant DNA barcode. PLoS One 6(5):e19254. https://doi.org/10.1371/journal.pone. 0019254

Hubert F, Grimm GW, Jousselin E, Berry V, Franc A, Kremer A (2014) Multiple nuclear genes stabilize the phylogenetic backbone of the genus Quercus. Systematics and Biodiversity 12:405-423. https://doi.org/10.1080/14772000.2014.941037

Hurlbert SH (1971) Nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577-586. https://doi.org/10.2307/1934145

Huson DH, Bryant D (2006) Application of Phylogenetic Networks in Evolutionary Studies. Molecular Biology and Evolution 23(2):254-267. https://doi.org/10.1093/molbev/msj030

Idury RM, Cardon LR (1997) A simple method for automated allele binning in microsatellite markers. Genome Research 7:1104-1109. https://doi.org/10.1101/gr.7.11.1104

IPNI (2022) International Plant Names Index. Published on the Internet. The Royal Botanic Gardens, Kew, Harvard University Herbaria \& Libraries and Australian National Botanic Gardens. Published on the Internet (accessed 15/10/2022). http://www.ipni.org

Jensen RJ (1997) Quercus Linnaeus sect. Lobatae Loudon. In Flora of North America, North of Mexico; Flora of North America Editorial Committee, Ed.; Oxford University Press: New York, NY, USA, Volume 3, pp. 447-468

Jensen RJ, Hokanson SC, Isebrands JG, Hancock JF (1993) Morphometric variation in oaks of the Apostle Islands in Wisconsin: evidence of hybridization between Quercus rubra and Q. ellipsoidalis (Fagaceae). American Journal of Botany 80(11):1358-1366. https://doi.org/10.2307/2445721

Jerković I, Marijanović Z (2010) Oak (Quercus frainetto Ten.) Honeydew Honey-Approach to Screening of Volatile Organic Composition and Antioxidant Capacity (DPPH and FRAP Assay). Molecules 15:3744-3756. https://doi.org/10.3390/molecules15053744

Jia H, Jin PH, Wu JY, Wang ZX, Sun BNA (2015) Quercus (subg. Cyclobalanopsis) leaf and cupule species in the late Miocene of eastern China and their paleoclimatic significance. Review of Palaeobotany and Palynology 219:132146. https://doi.org/10.1016/j.revpalbo.2015.01.011

Jiang XL, Hipp AL, Deng M, Su T, Zhou ZK, Yan MX (2019) East Asian origins of European holly oaks (Quercus section Ilex Loudon) via the Tibet-Himalaya. Journal of Biogeography 46(10):2203-2214. https://doi.org/10.1111/jbi. 13654

Jiang ZP (1993) Chinese oaks in the Tertiary. Acta Botanica Sinica 35(5):397-408
Johnson LA, Soltis DE (1995) Phylogenetic inference in Saxifragaceae sensu stricto and Gilia (Polemoniaceae) using matK sequences. Annals of the Missouri Botanic Garden 82:149-175. https://doi.org/10.2307/2399875

Johnson O, More D (2006) Tree guide. Collins
Kalinowski ST (2004) Counting alleles with rarefaction: private alleles and hierarchical sampling designs. Conservation Genetics 5:539-543. https://doi.org/10.1023/B:COGE.0000041021.91777.1a

Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Molecular Ecology Notes 5:187-189. https://doi.org/10.111 1/j.1471-8286.2004.00845 .x

Kelchner SA (2002) Group II introns as phylogenetic tools: Structure, function, and evolutionary constraints. American Journal of Botany 89(10):1651-1669. https://doi.org/10.3732/ajb.89.10.1651

Kloepper TH, Huson DH (2008) Drawing explicit phylogenetic networks and their integration into SplitsTree. BMC Ecology and Evolution 8:22. https://doi.org/10.1186/1471-2148-8-22

Koblížek J (1993) Distribution of oak species in the Czech Republic. Annals of Forest Science 50(Suppl.):209s-293s. https://doi.org/10.1051/forest:19930729

Kole C (2011) Wild Crop Relatives: Genomic and Breeding Resources: Industrial Crops. Berlin: Springer Press
Kong S, Sanchez-Pacheco SJ, Murphy RW (2016) On the use of median-joining networks in evolutionary biology. Cladistics 32:691-699. https://doi.org/10.1111/cla. 12147

Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I (2015) Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Molecular Ecology Resources 15(5):11791191. https://doi.org/10.1111/1755-0998.12387

Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen-Geiger 877 climate classification updated. Meteorologische Zeitschrift 15:259-263. https://doi.org/10.1127/0941-2948/2006/0130

Kremer A (2015) Did early human populations in Europe facilitate the dispersion of oaks? International Oaks 26:1928

Kremer A, Hipp AL (2020) Oaks: an evolutionary success story. New Phytologist 226(4):987-1011. https://doi.org/10.1111/nph. 16274

Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH (2005) Use of DNA barcodes to identify flowering plants. Proceedings of the National Academy of Sciences 102:8369-8374. https://doi.org/10.1073/pnas.0503123102

Krüssmann G (1978) Handbuch der Laubgehölze (Handbook of broadleaved trees). Vol. 1-3. 2nd ed. Verlag Paul Parey, Berlin/Hamburg

Kučera P (2019) Quercus banatus grows in Slovenia. Thaiszia Journal of Botany 29:61-69. https://doi.org/10.33542/TJB2019-1-04

Kvaček Z, Walther H (1989) Paleobotanical studies in Fagaceae of the European Tertiary. Plant Systematics and Evolution 162:213-229

Langella O (1999) Populations 1.2.32: a population genetic software. Published on the Internet (accessed 02/12/2022). CNRS UPR9034

Lepais O, Petit RJ, Guichoux E, Lavabre JE, Alberto F, Kremer A, Gerber S (2009) Species relative abundance and direction of introgression in oaks. Molecular Ecology 18:2228-2242. https://doi.org/10.1111/j.1365294X.2009.04137 .x

Leroy T, Plomion C, Kremer A (2020) Oak symbolism in the light of genomics. New Phytologist 226(4):1012-1017. https://doi.org/10.1111/nph. 15987

Letunic I, Bork P (2021) Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research 49(1):W293-W296. https://doi.org/10.1093/nar/gkab301

Lev E, Kislev ME, Bar-Yosef O (2005) Mousterian vegetal food in Kebara Cave, Mt. Carmel. Journal of Archaeological Science 32:475-484. https://doi.org/10.1016/j.jas.2004.11.006

Li HM, Guo SX (1976) The Miocene flora from Namling of Xizang. Acta Palaeontologica Sinica 15:7-18
Li Y, Zhang XX, Mao RL, Yang J, Miao CY, Li Z, Qiu YX (2017) Ten years of landscape genomics: Challenges and opportunities. Frontiers in Plant Science 8:21-36. https://doi.org/10.3389/fpls.2017.02136

Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451-1452. https://doi.org/10.1093/bioinformatics/btp187

Linnaeus C (1753) Species Plantarum. Exhibentes plantas rite cognitas, ad genera relatas, cum differentiis specificis, nominibus trivialibus, synonymis selectis, locis natalibus, secundum systema sexuale digestas. Imprensis Laurentius Salvius, Stockholm

Liu X, Chang EM, Liu JF, Huang YN, Wang Y, Yao N, Jiang ZP (2019) Complete chloroplast genome sequence and phylogenetic analysis of Quercus bawanglingensis Huang, Li et Xing, a vulnerable oak tree in China. Forests 10(7):587. https://doi.org/10.3390/f10070587

López de Heredia U, Carrión JS, Jiménez P, Collada C, Gil L (2007) Molecular and palaeoecological evidence for multiple glacial refugia for evergreen oaks on the Iberian Peninsula. Journal of Biogeography 34:1505-1517. https://doi.org/10.1111/j.1365-2699.2007.01715.x

López González GA (2007) Guìa de los árboles y arbustos de la Penìnsula Ibérica y Baleares. Mundi-Prensa, third edn.

López Lillo A, López Santalla A (2007) Árboles madrileños: guìa para reconocimiento de árboles y arbustos arboriformes de la ciudad de Madrid. Obra Social Caja Madrid

Lorite J, Salazar C, Peñast J, Valle F (2008) Phytosociological review on the forests of Quercus pyrenaica Willd. Acta Botanica Gallica 155:219-33. https://doi.org/10.1080/12538078.2008.10516105

Loudon JC (1838) Arboretum et Fruticetum Brittanicum, vol III. Printed for the author by A. Spottiswoode, London
Loudon JC (1839) Part II. The Jussieuean arrangement. In: Loudon, J. C. (Ed.) Loudon's Hortus Brittanicus A new edition. A. Spottiswode, London, pp. 491-704

Luo Y, Zhou ZK (2000) Phytogeography of Quercus subg. Cyclobalanopsis. Acta Botanica Yunnanica 23:1-16
Macherey Nagel. https://www.mn-net.com/
Macrogen Europe. https://www.macrogen-europe.com/
Magic D (2006) Quercus L. exp. consult. Májovský J, Michalko J. In: Goliašová K, Michalková E (eds), Benčat' F et al. Flóra Slovenska, V/3, pp. 108-143. VEDA, vydavatel'stvo Slovenskej akadémie, Bratislava

Manchester SR (1994) Fruits and seeds of the Middle Eocene Nut Beds flora, Clarno Formation, North Central Oregon. Palaeontographica Americana 58:1-205

Manos PS (2016) Systematics and biogeography of the American oaks. International Oaks Journal 27:23-36
Manos PS, Cannon CH, Sang-Hun Oh (2008) Phylogenetic Relationships and Taxonomic Status of the Paleoendemic Fagaceae Of Western North America: Recognition Of A New Genus, Notholithocarpus. Madroño 55(3):181-190. https://doi.org/10.3120/0024-9637-55.3.181

Manos PS, Doyle JJ, Nixon KC (1999) Phylogeny, biogeography, and processes of molecular differentiation in Quercus subgenus Quercus (Fagaceae). Molecular Phylogenetics and Evolution 12:333-349. https://doi.org/10.1006/mpev.1999.0614

Manos PS, Hipp (2021) An Updated Infrageneric Classification of the North American Oaks (Quercus Subgenus Quercus): Review of the Contribution of Phylogenomic Data to Biogeography and Species Diversity. Forests 12:786. https://doi.org/10.3390/f12060786

Manos PS, Stanford AM (2001) The historical biogeography of Fagaceae: tracking the tertiary history of temperate and subtropical forests of the Northern Hemisphere. International Journal of Plant Sciences 162:S77-S93. https://doi.org/10.1086/323280

Manos PS, Zhou ZK, Cannon CH (2001) Systematics of Fagaceae: Phylogenetic tests of reproductive trait evolution. International Journal of Plant Sciences 162:1361-1379. https://doi.org/10.1086/322949

Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Molecular Ecology 7:639-655. https ://doi.org/10.1046/j.1365-294x.1998.00374 .x

Martins K, Gugger PF, Llanderal-Mendoza J, González-Rodríguez A, Fitz-Gibbon ST, Zhao JL, Rodríguez-Correa H, Oyama K, Sork VL (2018) Landscape genomics provides evidence of climate-associated genetic variation in Mexican populations of Quercus rugosa. Evolutionary Applications 11:1842-1858. https://doi.org/10.1111/eva.12684

Mason AS (2015) SSR Genotyping. In: Batley J (eds) Plant Genotyping. Methods in Molecular Biology, vol 1245. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1966-6_6

Mauri A, Enescu CM, Houston Durrant T, de Rigo D, Caudullo G (2016) Quercus frainetto in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz J, de Rigo D, Caudullo G, Houston Durrant T, Mauri A (Eds.), European Atlas of Forest Tree Species. Publ. Off. EU, Luxembourg, pp. e01de78+

Mburu D, Hanotte O (2005) A practical approach to microsatellite genotyping with special reference to livestock population genetics. ILRI Biodiversity project. A manual prepared for the IAEA/ILRI training course on molecular characterisation of small ruminant genetic resources of Asia. Montaldo HH, Meza-Herrera.ILRI, Nairobi, Kenya. https://doi.org/10.1071/AN20030

Menitsky YL (1984) Duby Azii. Nauka, Leningrad (St. Petersburg)
Menitsky YL (2005) Oaks of Asia. New York, NY, USA: CRC Press
Meusel H, Jager EJ (1989) Ecogeographical differentiation of the Submediterranean deciduous forest flora. Woody plants evolution and distribution since the Tertiary: Proceedings of a symposium organized by Deutsche Akademie der Naturforscher Leopoldina in Halle/Saale, German Democratic Republic Springer Vienna

Mitchell AF, Dahlstrom P, Sunesen E, Darter C (1974) A field guide to the trees of Britain and northern Europe. Collins

Moran EV, Willis J, Clark JS (2012) Genetic evidence for hybridization in red oaks (Quercus sect. Lobatae, Fagaceae). American Journal of Botany 99:92-100. https://doi.org/10.3732/ajb. 1100023

Mossa L, Bacchetta G, Brullo S (1999) Quercus ichnusae (Fagaceae), a new species from Sardinia. Israel Journal of Plant Sciences. 47:199-207. https://doi.org/10.1080/07929978.1999.10676774

Müller M, Gailing O (2018) Characterization of 20 new EST-SSR markers for northern red oak (Quercus rubra L.) and their transferability to Fagus sylvatica L. and six oak species of section Lobatae and Quercus. Annals of Forest Research 61:211-222. https://doi.org/.15287/afr.2018.1191.

Nagylaki T (1997) Multinomial-sampling models for random genetic drift. Genetics 145(2):485-91. https://doi.org/10.1093/genetics/145.2.485

Nassiry MR, Javanmard A, Tohidi R (2009) Application of Statistical Procedures for Analysis of Genetic Diversity in Domestic Animal Populations. American Journal of Animal \& Veterinary Sciences 4:136-141. http://dx.doi.org/10.3844/ajavsp.2009.136.141

National Center for Biotechnology Information (NCBI) Bethesda (MD) (1988) National Library of Medicine (US), National Center for Biotechnology Information. Published on the Internet (accessed 07/11/2022). https://www.ncbi.nlm.nih.gov/

Nei M (1978) Estimation of average heterozygosity and genetic distance from a small sample number of individuals. Genetics 89:583-590

Nei M, Tajima F, Tateno Y (1983) Accuracy of Estimated Phylogenetic Trees from Molecular Data. Journal of Molecular Evolution 19:153-170. http://dx.doi.org/10.1007/BF02300753

Neophytou C, Aravanopoulos FA, Fink S, Dounavi A (2010) Detecting interspecific and geographic differentiation patterns in two interfertile oak species (Quercus petraea (Matt.) Liebl. and Q. robur L.) using small sets of microsatellite markers. Forest Ecology and Management 259:2026-2035. https://doi.org/10.1016/j.forec o.2010.02.013

Neophytou C, Dounavi A, Fink S, Aravanopoulos F (2011) Interfertile oaks in an island environment: I. High nuclear genetic differentiation and high degree of chloroplast DNA sharing between Q. alnifolia and Q. coccifera in Cyprus. A multipopulation study. European Journal of Forest Research 130:543-555. https://doi.org/10.1007/s10342-010-0442-8

Neophytou C, Michiels HG (2013) Upper Rhine Valley: A migration crossroads of middle European oaks. Forest Ecology and Management 304:89-98. https://doi.org/10.1016/j.foreco.2013.04.020

Network fluxus. https://www.fluxus-engineering.com/
Neuhaus H, Link G (1987) The Chloroplast tRNALys (UUU) Gene from Mustard (Sinapsis alba) Contains a Class II Intron Potentially Coding for a Maturase-Related Polypeptide. Current Genetics 11:251-257. http://dx.doi.org/10.1007/BF00355398

Nixon KC (1993) Infrageneric classification of Quercus (Fagaceae) and typification of sectional names. Annals of Forest Science 50(Suppl.):25-34. https://doi.org/10.1051/FOREST:19930701

Nixon KC (1997) Fagaceae. In: Flora of North America Editorial Committee (ed) Flora of North America North of Mexico. Oxford University Press, New York, pp. 436-537

Nixon KC (2006) Global and neotropical distribution and diversity of oak (genus Quercus) and oak forests. In Ecology and Conservation of Neotropical Montane Oak Forests; Springer: Berlin/Heidelberg, Germany, pp. 3-13

Nixon KC, Muller CH (1997) Quercus Sect. Quercus Linneus. In: Flora of North America Editorial Committee (Ed.) Flora of North America North of Mexico (Vol 3). Missouri Botanical Garden Press, St. Louis

Oh SH, Manos PS (2008) Molecular phylogenetics and cupule evolution in Fagaceae as inferred from nuclear CRABS CLAW sequences. Taxon 57:434-451. https://doi.org/10.2307/25066014

Okaura T, Quang ND, Ubukata M, Harada K (2007) Phylogeographic structure and late Quaternary population history of the Japanese oak Quercus mongolica var. crispula and related species revealed by chloroplast DNA variation. Genes and Genetics Systems 82:465-477. https://doi.org/10.1266/ggs.82.465
Olalde M, Herrán A, Espinel S, Goicoechea PG (2002) White oaks phylogeography in the Iberian Peninsula. Forest Ecology and Management 156:89-102. https://doi.org/10.1016/S0378-1127(01)00636-3

Ørsted AS (1871) Bidrag til Kundskab om Egefamilien. Kongl Danske Vidensk Selsk Biol Skr 5 naturvidensk math Afd, 6:331-538

Ortego J, Gugger PF, Sork VL (2018) Genomic Data Reveal Cryptic Lineage Diversification and Introgression in Californian Golden Cup Oaks (section Protobalanus). New Phytologist 218:804-818. https://doi.org/10.1111/nph. 14951

Pang X, Liu H, Wu S, Yuan Y, Li H, Dong J, Liu Z, An C, Su Z, Li B (2019) Species identification of oaks (Quercus L., Fagaceae) from gene to genome. International Journal of Molecular Sciences 20(23):5940. https://doi.org/10.3390/ijms20235940

Parthiban S, Govindaraj P, Senthilkumar S (2018) Comparison of relative efficiency of genomic SSR and EST-SSR markers in estimating genetic diversity in sugarcane. 3 Biotech 8:144. https://doi.org/10.1007/s13205-018-1172-8

Pasta S, De Rigo D, Caudullo G (2016) Quercus pubescens in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz J, De Rigo D, Caudullo G, Houston Durrant T, Mauri A (Eds.) European Atlas of Forest Tree Species. Publ. Off. EU, Luxembourg, pp. e019e5c+

Pattengale ND, Masoud A, Bininda-Emonds ORP, Moret BME, Stamatakis A (2010) How many bootstrap replicates are necessary? Journal of computational biology: a journal of computational molecular cell biology 17:337-54. https://doi.org/10.1089/cmb.2009.0179

Peakall R, Smouse PE (2012) GenAIEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research--an update. Bioinformatics 28:2537-2539. https://doi.org/10.1093/bioinformatics/bts460

Petit R, Mousadik AE, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conservation Biology 12:844-855. https://doi.org/10.1111/j.1523-1739.1998.96489.x

Petit RJ, Brewer S, Bordács S, Burg K, Cheddadi R, Coart E, Cottrell J, Csaikl UM, van Dam B, Deans JD, Espinel S, Fineschi S, Finkeldey R, Glaz I, Goicoechea PG, Jensen JS, König AO, Lowe AJ, Madsen SF, Mátyás G, Munro RC, Popescu F, Slade D, Tabbener H, de Vries SGM, Ziegenhagen B, de Beaulieu JL, Kremer A (2002b) Identification of refugia and post-glacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence. Forest Ecology and Management 156(1-3):49-74. https://doi.org/10.1016/S0378-1127(01)00634-X

Petit RJ, Csaikl UM, Bordács S, Burg K, Coart E, Cottrell J, van Dam BC, Deans JD, Dumolin-Lapegue S, Fineschi S, Finkelday R, Gillies A, Glaz I, Goicoechea PG, Jensen JS, König A, Lowe AJ, Madsen SF, Mátyás G, Munro RC, Pemonge MH, Popescu F, Slade D, Olalde M, Tabbener H, Taurchini D, de Vries SMG, Ziegenhagen B, Kremer A (2002a) Chloroplast DNA variation in European white oaks: phylogeography and patterns of diversity based on data from over 2600 populations. Forest Ecology and Management 156:5-26. https://doi.org/10.1016/S0378-1127(01)00645-4

Petit RJ, Hampe A (2006) Some evolutionary consequences of being a tree. Annual Review of Ecology, Evolution, and Systematics 37:187-214. https://doi.org/10.1146/annurev.ecolsys.37.091305.110215

Pettenkofer T (2020) Genetic analyses to determine the genetic variation and region of origin of introduced northern red oak (Quercus rubra L.) populations (Doctoral dissertation, Niedersächsische Staats-und Universitätsbibliothek Göttingen). http://dx.doi.org/10.53846/goediss-7926

Pham KK, Hipp AL, Manos PS, Cronn RC (2017) A time and a place for everything: phylogenetic history and geography as joint predictors of oak plastome phylogeny. Genome 60:720-732. https://doi.org/10.1139/gen-20160191

Pignatti S (1982) Flora d'Italia (Vol 1, pp. 113-120). Edagricole, Bologna.
Pignatti S, Guarino R, La Rosa M (2017) Flora d'Italia (Vol. 1). Edagricole-New Business Media, Milano
Pignatti S, Guarino R, La Rosa M (2018) Flora d'Italia (Vol. 2). Edagricole-New Business Media, Milano
Pignatti S, Guarino R, La Rosa M (2019) Flora d'Italia (Vol. 3). Edagricole-New Business Media, Milano
Piredda R, Simeone MC, Attimonelli M, Bellarosa R, Schirone B (2011) Prospects of barcoding the Italian wild dendroflora: oaks reveal severe limitations to tracking species identity: DNA BARCODING Molecular ecology resources 11:72-83. https://doi.org/10.1111/j.1755-0998.2010.02900.x

Ponton S, Dupouey JL, Dreyer E (2004) Leaf morphology as species indicator in seedlings of Quercus robur L. and Q. petraea (Matt.) Liebl.: modulation by irradiance and growth flush. Annals of Forest Science 61(1):73-80. https://doi.org/10.1051/forest:2003086

Porras-Hurtado L, Ruiz Y, Santos C, Phillips C, Carracedo A, Lareu MV (2013) An overview of STRUCTURE: applications, parameter settings, and supporting software. Frontiers in Genetics 29(4)98. https://doi.org/10.3389/fgene.2013.0009

Portal to the Flora of Italy. Published on the Internet (accessed 18/02/2023). http:/dryades.units.it/floritaly
Posada D, Crandall KA (2001) Intraspecific gene genealogies: trees grafting into networks. Trends in Ecology \& Evolution 16(1):37-45. https://doi.org/10.1016/s0169-5347(00)02026-7

POWO (2023) Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet (accessed 09/03/2023). http://www.plantsoftheworldonline.org/

Požgaj J, Horváthová J (1986) Variabilita a ekológia druhov rodu Quercus L. na Slovensku. Acta dendrobiol. 152 pp.

Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945-959. https://doi.org/10.1093/genetics/155.2.945

Proietti E, Filesi L, Di Marzio P, Di Pietro R, Masin R, Conte AL, Fortini P (2021) Morphology, geometric morphometrics, and taxonomy in relict deciduous oaks woods in northern Italy. Rendiconti Lincei. Scienze Fisiche e Naturali 32(3):549-564. https://doi.org/10.1007/s12210-021-01001-4

Qiagen https://www.qiagen.com/de-us
Rellstab C, Gugerli F, Eckert AJ, Hancock AM, Holderegger R (2015) A practical guide to environmental association analysis in landscape genomics. Molecular Ecology 24:4348-4370. https://doi.org/10.1111/mec. 13322

Rellstab C, Zoller S, Walthert L, Lesur I, Pluess AR, Graf R, Bodénès C, Sperisen C, Kremer A, Gugerli F (2016) Signatures of local adaptation in candidate genes of oaks (Quercus spp.) with respect to present and future climatic conditions. Molecular Ecology 25:5907-5924. https://doi.org/10.1111/mec. 13889

Ritland K (1996) Estimators for pairwise relatedness and individual inbreeding coefficients. Genetical Research 67(2): 175-185. https://doi.org/10.1017/s0016672300033620

Rivas-Martìnez S, Sáenz-Laìn C (1991) Enumeracion de los Quercos de la Peninsula Iberica. Rivasgodaya 6:101-110
Rubel F, Brugger K, Haslinger K, Auer I (2016) The climate of the European Alps: Shift of very high resolution Köppen-Geiger climate zones 1800-2100. Meteorologische Zeitschrift 26:115-125. https://doi.org/10.1127/metz/2016/0816

Rushton B (1993) Natural hybridization within the genus Quercus L. Annals of Forest Science $50: 73 \mathrm{~s}-90$ s. https://doi.org/10.1051/forest:19930707

Sanders TGM, Pitman R, Broadmeadow MSJ (2014) Species-specific climate response of oaks (Quercus spp.) under identical environmental conditions. iForest-Biogeosciences and Forestry 7(2):61. https://doi.org/10.3832/ifor0911007

Sass C, Little DP, Stevenson DW, Specht CD (2007) DNA Barcoding in the Cycadales: Testing the Potential of Proposed Barcoding Markers for Species Identification of Cycads. PLoS ONE 2(11):e1154. https://doi.org/10.1371/journal.pone. 0001154

Schaal BA, Hayworth DA, Olsen Kenneth M, Rauscher JT, Smith WA (1998) Phylogeographic studies in plants: Problems and prospects. Molecular Ecology 7:465-474. https://doi.org/10.1046/j.1365-294x.1998.00318.x

Schmidt TL, Jasper M, Weeks AR, Hoffmann AA (2020) Unbiased population heterozygosity estimates from genomewide sequence data. https://doi.org/10.1101/2020.12.20.423694

Schwarz O (1936) Entwurf zu einem natürlichen System der Cupuliferen und der Gattung Quercus L. Notizblatt des Botanischen Gartens und Museums zu Berlin-Dahlem XIII/116:1-22. https://doi.org/10.2307/3994908

Schwarz O (1936-1939) Monographie der Eichen Europas und des Mittelmeergebietes. Repert. Spec. Nov. Regni Veg. Sonderbeih. D 1:1-200

Schwarz O (1964) Quercus L. pp. 61-64. In: Tutin TG, Burges NA, Chater AO, Edmondson JR, Heywood VH, Moore DM, Valentine DH, Walters SM, Webb DA (eds.). Flora Europaea, vol. 1. Cambridge: Cambridge University Press

Serrote CML, Reiniger LRS, Silva KB, Rabaiolli Smdos S, Stefanel CM (2020) Determining the polymorphism information content of a molecular marker. Gene 726:144-175. https://doi.org/10.1016/j.gene.2019.144175

Shaw J, Lickey EB, Beck JT, Farmer JB, Liu W et al. (2005) The tortoise and the hare II: Comparison of the relative utility of 21 non-coding chloroplast DNA sequences for phylogenetic analysis. American Journal of Botany 92:142166

Shaw J, Small RL (2005) Chloroplast DNA Phylogeny and Phylogeography of the North American Plums (Prunus Subgenus Prunus Section Prunocerasus, Rosaceae). American Journal of Botany 92:2011-2030. http://dx.doi.org/10.3732/ajb.92.12.2011

ShawJ, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: The tortoise and the hare III. American Journal of Botany 94:275-288. https://doi.org/10.3732/ajb.94.3.275

Simeone MC, Cardoni S, Piredda R, Imperatori F, Avishai M, Grimm GW, Denk T (2018) Comparative systematics and phylogeography of Quercus Section Cerris in western Eurasia: inferences from plastid and nuclear DNA variation. https://doi.org/10.7717/peerj. 5793

Simeone MC, Grimm GW, Papini A, Vessella F, Cardoni S, Tordoni E, Piredda R, Franc A, Denk T (2016) Plastome data reveal multiple geographic origins of Quercus Group Ilex. PeerJ 4:e1897. https://doi.org/10.7717/peerj. 1897

Simeone MC, Piredda R, Papini A, Vessella F, Schirone B (2013) Application of plastid and nuclear markers to DNA barcoding of Euro-Mediterranean oaks (Quercus, Fagaceae): problems, prospects and phylogenetic implications. Botanical Journal of the Linnean Society 172:478-499. https://doi.org/10.1111/boj. 12059

Škvorc Z, Franjić J, Idojtić M (2005) Population structure of Quercus pubescens Willd. (Fagaceae) in Croatia according to morphology of leaves. Acta Botanica Hungarica 47:193-206. https://doi.org/10.1556/ABot.47.2005.12.16

Soltis DE, Kuzoff RK, Conti E, Gornall R, Ferguson K (1996) mat K and rbcL gene sequence data indicate that Saxifraga (Saxifragaceae) is polyphyletic. American Journal of Botany 83:371-382. https://doi.org/10.1002/j.15372197.1996.tb12717.x

Spooner DM (2009) DNA barcoding will frequently fail in complicated groups: an example in wild potatoes. American Journal of Botany 96:1177-1189. https://doi.org/10.3732/ajb. 0800246

Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312-1313. https://doi.org/10.1093/bioinformatics/btu033

Storfer A, Patton A, Fraik AK (2018) Navigating the Interface Between Landscape Genetics and Landscape Genomics. Frontiers in Genetics 9:68. https://doi.org/10.3389/fgene.2018.00068

Szpiech ZA, Jakobsson M, Rosenberg NA (2008) ADZE: a rarefaction approach for counting alleles private to combinations of populations. Bioinformatics. 1:24(21):2498-504. https://doi.org/10.1093/bioinformatics/btn478

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28:2731-2739. https://doi.org/10.1093/molbev/msr121

The Plant List (2022) Version 1.1 Published on the Internet (accessed 1/11/2022). http://www.theplantlist.org/
Thiers B (2015) Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden's Virtual Herbarium. http:// sweet gum. nybg. org/ ih/

Tonioli M, Escarre J, Lepart J, Speranza M (2001) Facilitation and competition affecting the regeneration of Quercus pubescens Willd. Ecoscience 8:381-391. https://doi.org/10.1080/11956860.2001.11682666

Trelease W (1924) The American oaks. Memoirs of the National Academy of Sciences 20:1-255. https://doi.org/10.5962/bhl.title. 142965

Uncu AT, Uncu AO (2018) Plastid trnH-psbA intergenic spacer serves as a PCR-based marker to detect common grain adulterants of coffee (Coffea arabica L.). Food Control 91:32-39. https://doi.org/10.1016/j.foodcont.2018.03.029

Valencia-Avalos S (2004) Diversidad Del Género Quercus (Fagaceae) En México. Boletin Sociedad Botánica México 75:33-53. https://doi.org/10.17129/botsci. 1692

Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICROCHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4:535-538. https://doi.org/10.1111/j.1471-8286.2004.00684.x

Van Valen L (1976) Ecological species, multispecies, and oaks. Taxon 25:233-239. https://doi.org/10.2307/1219444
Varshney RK, Graner A, Sorrells MW (2005) Genic microsatellite markers in plants: features and applications. Trends in Biotechnology 23:48-55. https://doi.org/10.1016/j.tibtech.2004.11.005

Velasco Aguirre P (2014) Comprehensive study of Quercus pyrenaica Willd. forests at Iberian Peninsula: indicator species, bioclimatic, and syntaxonomical characteristics, Ph.D. thesis, Universidad Complutense de Madrid, Spain

Viscosi V, Antonecchia G, Lepais O, Fortini P, Gerber S, Loy A (2012) Leaf shape and size differentiation in white oaks: assessment of allometric relationships among three sympatric species and their hybrids. International Journal of Plant Sciences 173(8):875-884. https://doi.org/10.1086/667234

Viscosi V, Fortini P, D'Imperio M (2011) A statistical approach to species identification on morphological traits of European white oaks: evidence of morphological structure in Italian populations of Quercus pubescens sensu lato. Acta Botanica Gallica 158(2):175-188. https://doi.org/10.1080/12538078.2011.10516265

Vitelli M, Vessella F, Cardoni S, Pollegioni P, Denk T, Grimm GW, Simeone MC (2017) Phylogeographic structuring of plastome diversity in Mediterranean oaks (Quercus Group Ilex, Fagaceae). Tree Genetics and Genomes 13:3. https://doi.org/10.1007/s11295-016-1086-8

Wahlund S (1928) Zusammensetzung von Populationen und Korrelationserscheinungen von Standpunkt der Vererbungslehre aus betrachtet. Hereditas 11:65-106. [English translation In: Weiss KM, Ballanoff PA (eds) Demographic genetics. Dowden, Hutchinson and Ross Inc, Stroudsburg, Pennsylvania, USA, pp 224-263]. https://doi.org/10.1111/j.1601-5223.1928.tb02483.x

Walker JD, Geissman JW, Bowring SA, Babcock LE (2018) Geologic Time Scale v.5.0: Geological Society of America

Wang J (2017) The computer program structure for assigning individuals to populations: easy to use but easier to misuse. Molecular Ecology Resources 17(5):981-990. https ://doi.org/10.1111/1755-0998.12650

Whitlock BA, Hale AM, Groff PA (2010) Intraspecific Inversions Pose a Challenge for the trnH-psbA Plant DNA Barcode. PLoS ONE 5(7): e11533. https://doi.org/10.1371/journal.pone.0011533.g002
Willdenow CL (1805) Species plantarum. Inpensis GC Nauk, Berolini. Vol. 4, pp. 450-451
Wright S (1951) The Genetical Structure of Populations. Annals of Eugenics 15:323-354. http://dx.doi.org/10.1111/j.1469-1809.1949.tb02451.x

Wright S (1969) Evolution and the Genetics of Populations, Vol. II. The Theory of Gene Frequencies. University of Chicago Press, Chicago

Xu H, Su T, Zhang ST, Deng M, Zhou ZK (2016) The first fossil record of ring cupped oak (Quercus L. subgenus Cyclobalanopsis (Oersted) Schneider) in Tibet and its paleoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology 442:61-71. https://doi.org/10.1016/j.palaeo.2015.11.014
Xu R, Tao JR, Sun XJ (1973) On the discovery of a Quercus semi-carpifolia bed in Mount. Shisha Pangma and its significance in botany and geology. Acta Botanica Sinica 15:103-114

Yan M, Liu R, Li Y, Hipp HL, Deng M, Xiong Y (2019) Ancient events and climate adaptive capacity shaped distinct chloroplast genetic structure in the oak lineages. BMC Evolutionary Biology 19:202. https://doi.org/10.1186/s12862-019-1523-z

Yang J, Guo YF, Chen XD, Zhang X, Ju MM, Bai GQ, Liu ZL, Zhao GF (2020) Framework phylogeny, evolution and complex diversification of Chinese oaks. Plants 9(8):1024. https://doi.org/10.3390/plants9081024

Yang J, Vázquez L, Chen X, Li H, Zhang H, Liu Z, Zhao G (2017) Development of Chloroplast and Nuclear DNA Markers for Chinese Oaks (Quercus Subgenus Quercus) and Assessment of Their Utility as DNA Barcodes. Frontiers in Plant Science 8. https://doi.org/10.3389/fpls.2017.00816

Yang YY, Qu XQ, Zhang R, Stull GW, Yi TS (2021) Plastid phylogenomic analyses of Fagales reveal signatures of conflict and ancient chloroplast capture. Molecular Phylogenetics and Evolution 163:107-232. https://doi.org/10.1016/j.ympev.2021.107232

Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686-693. https://doi.org/10.1126/science. 1059412

Zhang R, Hipp AL, Gailing O (2015) Sharing of chloroplast haplotypes among red oak species suggests interspecific gene flow between neighboring populations. Botany 93(10):691-700. https://doi.org/10.1139/cjb-2014-0261

Zhang RS, Yang J, Hu HL, Xia RX, Li YP, Su JF, Li Q, Liu YQ, Qin L (2020) A high level of chloroplast genome sequence variability in the Sawtooth Oak Quercus acutissima, International Journal of Biological Macromolecules 152:340-348. https://doi.org/10.1016/j.ijbiomac.2020.02.201

Zhou BF, Yuan S, Crowl AA, Liang YY, Shi Y, Chen XY, An QQ, Kang M, Manos PS, Wang B (2022) Phylogenomic analyses highlight innovation and introgression in the continental radiations of Fagaceae across the Northern Hemisphere. Nature Communications 13:1320. https://doi.org/10.1038/s41467-022-28917-1

Zhou ZK (1992) Origin, phylogeny and dispersal of Quercus from China. Acta Botanica Yunnanica 14:227-236
Zweck C, Huybrechts P (2005) Modeling of the northern hemisphere ice sheets during the last glacial cycle and glaciological sensitivity. Journal of Geophysical Research Atmosphere 110:D07103. https://doi.org/10.1029/2004JD005489

Supplementary File

Supplementary File 1 Populations of the Quercus genus sampled

ID Population	Taxon	Country	Administrative Region (Italy)	Locality	Latitude Coordinates	Longitude Coordinates
AT01	Quercus pubescens	Austria		Leopoldsberg, Vienna	48.2750	16.3500
AT02	Quercus petraea	Austria		Pfaffenberg, Vienna	48.2611	16.3056
BG03	Quercus pubescens	Bulgaria		Kushin village, Pleven district	43.3753	24.5681
HRO4	Quercus pubescens	Croatia		Mt. Kalnik	46.1311	16.4558
HRO5	Quercus pubescens	Croatia		Muć	43.7025	16.4253
HRO6	Quercus petraea	Croatia		Mt. Psunj	45.3223	17.3459
HR07	Quercus pubescens	Croatia		Dubrovnik	42.6499	18.0748
FR08	Quercus pubescens	France		Donzère Ovest Ligue L.G.V.	44.4475	4.7067
FRO9	Quercus pubescens	France		Montjoyer Drôme	44.4715	4.8509
FR10	Quercus pubescens	France		Donzère Nord est village	44.4431	4.7149
GR11	Quercus pubescens	Greece		Pinios Lake	37.9500	21.3833
${ }^{\text {IT12 }}$	Quercus frainetto	Italy	Basilicata	Rustico, San Martino d'Agri (PZ)	40.2422	16.0552
1713	Quercus robur	Italy	Basilicata	Oasis Pantano Policoro (MT)	40.1741	16.6998
1714	Quercus robur	Italy	Lazio	Insugherata (La Storta)	42.0073	12.3901
1715	Quercus pubescens	Italy	Lazio	Insugherata (Selva Candida)	41.9547	12.4195
IT16	Quercus petraea subsp. austrotyrrhenica	Italy	Sicily	Pomieri Wood, Geraci Siculo (PA)	37.8583	14.0581
IT17	Quercus petraea subsp. austrotyrrhenica	Italy	Calabria	Pollia (Aspromonte), San Luca	38.1460	16.0599
IT18	Quercus pubescens	Italy	Veneto	Euganei Hills	45.2745	11.7417
${ }^{1719}$	Quercus dalechampii	Italy	Veneto	Euganei Hills	45.3431	11.7617
1720	Quercus petraea	Italy	Veneto	Euganei Hills	45.3173	11.6878
1721	Quercus robur	Italy	Veneto	Euganei Hills	45.3228	11.7409
1722	Quercus pubescens	Italy	Lombardy	One, San Martino (BS)	45.4314	10.6282
1723	Quercus pubescens	Italy	Lazio	Monte San Biagio Plain	41.3641	13.3391
1724	Quercus frainetto	Italy	Lazio	Selvapiana Wood, Amaseno	41.4862	13.3106
1725	Quercus virgiliana	Italy	Sicily	Fitalia Valley (Frazzanò, ME)	38.0689	14.7374
1726	Quercus frainetto	Italy	Lazio	Aurunci	41.3588	13.5272
1727	Quercus dalechampii	Italy	Calabria	Serre, Sant'Angelo SS182 (VV)	38.6265	16.1629
1728	Quercus dalechampii	Italy	Calabria	Aspromonte, SP Palmi Pontevecchio. Croce Mammone (Cirello), Rizziconi (RC)	38.3778	15.9396
1729	Quercus congesta	Italy	Calabria	Aspromonte, SP 3 towards Piani di Carmelia	38.2107	15.9163
CZ30	Quercus pubescens	Czech Republic		Milovice	50.3022	14.8739
CZ31	Quercus petraea	Czech Republic		Kohoutovice	49.2842	16.7974
CZ32	Quercus robur	Czech Republic		Lednice	48.7526	16.8152
RO33	Quercus banatus	Romania		Oravita	45.0434	21.7449
RS34	Quercus frainetto	Serbia		Tara Mountain	43.9032	19.4838
RS35	Quercus pubescens	Serbia		Grgurevci	45.1417	19.6640
RS36	Quercus petraea	Serbia		Vrdnik	45.1296	19.8062
RS37	Quercus dalechampii	Serbia		Tara Mountain	43.9032	19.4838
RS38	Quercus dalechampii	Serbia		Mt. Suvobor	44.1168	20.1588
RS39	Quercus robur	Serbia		Mt. Suvobor	44.1168	20.1588
ES40	Quercus pyrenaica	Spain		Ranera, Partido de la Sierra en Tobalina, Burgos	42.7186	-3.2837
ES41	Quercus robur	Spain		Leioa	43.3253	-2.9708
ES42	Quercus faginea	Spain		Zaldiaran	42.7911	-2.7283
ES43	Quercus petraea	Spain		Las Machorras	43.1189	-3.5808
ES44	Quercus pubescens	Spain		Madotz	42.9350	-1.8792
ES45	Quercus pubescens	Spain		Zilbeti	42.9519	-1.4778
${ }^{1746}$	Quercus petraea	Italy	Lazio	Mt. Cimini	42.3237	12.1303
1147	Quercus petraea	Italy	Lazio	Tolfa	42.1470	11.9407
1748	Quercus ichnusae	Italy	Sardinia	Senis	39.8159	8.9486
1749	Quercus virgiliana	Italy	Sardinia	Pau	39.7871	8.7892
1750	Quercus ichnusae	Italy	Sardinia	Monte Traessu	40.4686	8.6722
1 T 51	Quercus virgiliana	Italy	Sardinia	1 Itiri	40.6138	8.5034
1752	Quercus congesta	Italy	Sardinia	Fonni (Muggiana)	40.1096	9.2490
1753	Quercus congesta	Italy	Sardinia	Fonni (Govossai)	40.1292	9.3024
1 1754	Quercus leptobalanos	Italy	Sicily	Ficuzza Wood (PA)	37.8841	13.3832
1755	Quercus virgiliana	Italy	Sicily	Marineo (PA)	37.9563	13.4240
${ }^{1} 155$	Quercus congesta	Italy	Sicily	Etna	37.7095	14.9621
1 T 57	Quercus dalechampii	Italy	Sicily	Etna	37.7063	14.9672
1758	Quercus virgiliana	Italy	Sicily	Etna. Mt. Ceraulo, Mascalucia (CT)	37.5917	15.0448
${ }^{1759}$	Quercus virgiliana	Italy	Sicily	Etna. Tre castagni, Via P. Togliatti (CT)	37.6086	15.0724
1760	Quercus congesta	Italy	Sicily	Madonie, between Piano Torre and Piano Zucchi (Collesano, PA)	37.9054	13.9937
1761	Quercus congesta	Italy	Sicily	Valley of Flascio, Nebrodi	37.9416	14.8762
1762	Quercus robur	Italy	Apulia	Lake of Laterza, Tajuri (BA)	40.6259	16.8121
1763	Quercus dalechampii	Italy	Calabria	Serre, Sant'Angelo SS182 crossroads SP Nardodipace (VV)	38.4814	16.3411
1764	Quercus pubescens	Italy	Lazio	Aurunci	41.3588	13.5272
1765	Quercus robur	Italy	Apulia	Lake of Laterza, Tajuri (BA)	41.0926	16.8223
1 1766	Quercus virgiliana	Italy	Apulia	Lake of Laterza, Tajuri (BA)	41.0926	16.8223
RS67	Quercus dalechampii	Serbia		Kopaonik National Park	43.2756	20.8306
1768	Quercus pubescens	Italy	Sardinia	Mt. Zara, Monastir (CA)	39.3775	9.0595
1769	Quercus ichnusae	\|taly	Sardinia	S. Antonio Wood, Macomer (NU)	40.2382	8.6979
1770	Quercus congesta	\|taly	Sardinia	Sant'Orsola (SS)	40.7462	8.5361
1771	Quercus congesta	Italy	Sardinia	Mt. Rasu, Catena del Marghine, Bono (SS)	40.4278	9.0070
1772	Quercus pubescens	Italy	Basilicata	Laurenzana (PZ)	40.4600	15.9745
1773	Quercus petraea	\|taly	Molise	Monte Vairano	41.5500	14.5833
1775	Quercus pubescens	\|taly	Molise	Monte Vairano	41.5500	14.5833
1776	Quercus pubescens	Italy	Calabria	Nardodipace	38.4814	16.3411
1777	Quercus pubescens	Italy	Apulia	Bosco del Compare	40.6584	17.8878
1782	Quercus pubescens	Italy	Lazio	Torrita, Laga Mountains (Amatrice, RI)	42.6206	13.2173
1783	Quercus pubescens	Italy	Abruzzo	Barisciano, San Colombo (AQ)	42.3362	13.5901
1784	Quercus robur	Italy	Lombardy	Groane Park, Solaro (MI)	45.6213	9.0943
1785	Quercus robur	Italy	Lombardy	Bosco Fontana, Marmirolo (MN)	45.2046	10.7534
1786	Quercus robur	Italy	Piedmont	Natural Park La Mandria, Venaria Reale (TO)	45.1486	7.5963
1187	Quercus pubescens	Italy	Basilicata	Sasso di Castalda + Satriano	40.5150	15.6849
1788	Quercus pubescens	Italy	Basilicata	Moliterno + Sarconi	40.2535	15.8756
1789	Quercus pubescens	Italy	Basilicata	Fosso Cardone + Catarozzolo	40.1181	16.2214
1790	Quercus frainetto	Italy	Umbria	S.I.C. IT5210077, Collestrada (PG)	43.0947	12.4672
1991	Quercus frainetto	Italy	Calabria	National Park Aspromonte, Plati (RC)	38.2247	16.0454
1992	Quercus pubescens	Italy	Friuli V. Giulia	Basovizza (TS)	45.6283	13.8785
1193	Quercus pubescens	Italy	Marche	Selva of Castelfidardo (AN)	43.4676	13.5918
1 T 94	Quercus petraea	Italy	Umbria	Montecorona, Umbertide (PG)	43.2838	12.3421
1795	Quercus petraea	Italy	Tuscany	Montefalcone Natural Reserve, Castelfranco di Sotto (PI)	43.7354	10.7334
1996	Quercus petraea	Italy	Emilia-Romagna	Parma	44.8298	10.3196
ES85	Quercus faginea	Spain		Cordoba	37.9252	-4.8265
MA86	Quercus faginea	Morocco		Ahfir	34.9668	-2.0865

Supplementary File 2 Populations of the Quercus genus analysed by means of cpDNA

ID Population	Taxon	Country	Administrative Region (Italy)	Locality	Latitude Coordinates	Longitude Coordinates
AT01	Quercus pubescens	Austria		Leopoldsberg, Vienna	48.2750	16.3500
AT02	Quercus petraea	Austria		Pfaffenberg, Vienna	48.2611	16.3056
BG03	Quercus pubescens	Bulgaria		Kushin village, Pleven district	43.3753	24.5681
HRO4	Quercus pubescens	Croatia		Mt. Kalnik	46.1311	16.4558
HRO5	Quercus pubescens	Croatia		Muć	43.7025	16.4253
HRO6	Quercus petraea	Croatia		Mt. Psunj	45.3223	17.3459
HR07	Quercus pubescens	Croatia		Dubrovnik	42.6499	18.0748
FR08	Quercus pubescens	France		Donzère Ovest Ligue L.G.V.	44.4475	4.7067
FR09	Quercus pubescens	France		Montjoyer Drôme	44.4715	4.8509
FR10	Quercus pubescens	France		Donzère Nord est village	44.4431	4.7149
GR11	Quercus pubescens	Greece		Pinios Lake	37.9500	21.3833
1712	Quercus frainetto	Italy	Basilicata	Rustico, San Martino d'Agri (PZ)	40.2422	16.0552
1713	Quercus robur	Italy	Basilicata	Oasis Pantano Policoro (MT)	40.1741	16.6998
1714	Quercus robur	Italy	Lazio	Insugherata (La Storta)	42.0073	12.3901
IT15	Quercus pubescens	Italy	Lazio	Insugherata (Selva Candida)	41.9547	12.4195
1716	Quercus petraea subsp. austrotyrrhenica	Italy	Sicily	Pomieri Wood, Geraci Siculo (PA)	37.8583	14.0581
1717	Quercus petraea subsp. austrotyrrhenica	Italy	Calabria	Pollia (Aspromonte), San Luca	38.1460	16.0599
1718	Quercus pubescens	Italy	Veneto	Euganei Hills	45.2745	11.7417
1719	Quercus dalechampii	Italy	Veneto	Euganei Hills	45.3431	11.7617
1720	Quercus petraea	Italy	Veneto	Euganei Hills	45.3173	11.6878
1721	Quercus robur	Italy	Veneto	Euganei Hills	45.3228	11.7409
1722	Quercus pubescens	Italy	Lombardy	One, San Martino (BS)	45.4314	10.6282
1723	Quercus pubescens	Italy	Lazio	Monte San Biagio Plain	41.3641	13.3391
1724	Quercus frainetto	Italy	Lazio	Selvapiana Wood, Amaseno	41.4862	13.3106
1725	Quercus virgiliana	Italy	Sicily	Fitalia Valley (Frazzano, ME)	38.0689	14.7374
1726	Quercus frainetto	Italy	Lazio	Aurunci	41.3588	13.5272
1727	Quercus dalechampii	Italy	Calabria	Serre, Sant'Angelo SS182 (VV)	38.6265	16.1629
1728	Quercus dalechampii	Italy	Calabria	Aspromonte, SP Palmi Pontevecchio. Croce Mammone (Cirello), Rizziconi (RC)	38.3778	15.9396
1729	Quercus congesta	Italy	Calabria	Aspromonte, SP 3 towards Piani di Carmelia	38.2107	15.9163
Cz30	Quercus pubescens	Czech Republic		Milovice	50.3022	14.8739
CZ31	Quercus petraea	Czech Republic		Kohoutovice	49.2842	16.7974
CZ32	Quercus robur	Czech Republic		Lednice	48.7526	16.8152
RO33	Quercus banatus	Romania		Oravita	45.0434	21.7449
RS34	Quercus frainetto	Serbia		Tara Mountain	43.9032	19.4838
RS35	Quercus pubescens	Serbia		Grgurevci	45.1417	19.6640
RS36	Quercus petraea	Serbia		Vrdnik	45.1296	19.8062
RS37	Quercus dalechampii	Serbia		Tara Mountain	43.9032	19.4838
RS38	Quercus dalechampii	Serbia		Mt. Suvobor	44.1168	20.1588
RS39	Quercus robur	Serbia		Mt. Suvobor	44.1168	20.1588
ES40	Quercus pyrenaica	Spain		Ranera, Partido de la Sierra en Tobalina, Burgos	42.7186	-3.2837
ES41	Quercus robur	Spain		Leioa	43.3253	-2.9708
ES42	Quercus faginea	Spain		Zaldiaran	42.7911	-2.7283
ES43	Quercus petraea	Spain		Las Machorras	43.1189	-3.5808
ES44	Quercus pubescens	Spain		Madotz	42.9350	-1.8792
ES45	Quercus pubescens	Spain		Zilbeti	42.9519	-1.4778
1746	Quercus petraea	Italy	Lazio	Mt. Cimini	42.3237	12.1303
1747	Quercus petraea	Italy	Lazio	Tolfa	42.1470	11.9407
1748	Quercus ichnusae	Italy	Sardinia	Senis	39.8159	8.9486
1749	Quercus virgiliana	Italy	Sardinia	Pau	39.7871	8.7892
1750	Quercus ichnusae	Italy	Sardinia	Monte Traessu	40.4686	8.6722
1751	Quercus virgiliana	Italy	Sardinia	1 Itiri	40.6138	8.5034
1752	Quercus congesta	Italy	Sardinia	Fonni (Muggiana)	40.1096	9.2490
1753	Quercus congesta	Italy	Sardinia	Fonni (Govossai)	40.1292	9.3024
1754	Quercus leptobalanos	Italy	Sicily	Ficuzza Wood (PA)	37.8841	13.3832
1755	Quercus virgiliana	Italy	Sicily	Marineo (PA)	37.9563	13.4240
1756	Quercus congesta	Italy	Sicily	Etna	37.7095	14.9621
1757	Quercus dalechampii	Italy	Sicily	Etna	37.7063	14.9672
1758	Quercus virgiliana	Italy	Sicily	Etna. Mt. Ceraulo, Mascalucia (CT)	37.5917	15.0448
1759	Quercus virgiliana	Italy	Sicily	Etna. Tre castagni, Via P. Togliatti (CT)	37.6086	15.0724
1760	Quercus congesta	Italy	Sicily	Madonie, between Piano Torre and Piano Zucchi (Collesano, PA)	37.9054	13.9937
1761	Quercus congesta	Italy	Sicily	Valley of Flascio, Nebrodi	37.9416	14.8762
1762	Quercus robur	Italy	Apulia	Lake of Laterza, Tajuri (BA)	40.6259	16.8121
1763	Quercus dalechampii	Italy	Calabria	Serre, Sant'Angelo SS182 crossroads SP Nardodipace (VV)	38.4814	16.3411
1764	Quercus pubescens	Italy	Lazio	Aurunci	41.3588	13.5272
1765	Quercus robur	Italy	Apulia	Lake of Laterza, Tajuri (BA)	41.0926	16.8223
1766	Quercus virgiliana	Italy	Apulia	Lake of Laterza, Tajuri (BA)	41.0926	16.8223
RS67	Quercus dalechampii	Serbia		Kopaonik National Park	43.2756	20.8306
1768	Quercus pubescens	Italy	Sardinia	Mt. Zara, Monastir (CA)	39.3775	9.0595
1769	Quercus ichnusae	Italy	Sardinia	S. Antonio Wood, Macomer (NU)	40.2382	8.6979
1770	Quercus congesta	Italy	Sardinia	Sant'Orsola (SS)	40.7462	8.5361
1771	Quercus congesta	Italy	Sardinia	Mt. Rasu, Catena del Marghine, Bono (SS)	40.4278	9.0070
1772	Quercus pubescens	Italy	Basilicata	Laurenzana (PZ)	40.4600	15.9745
1773	Quercus petraea	Italy	Molise	Monte Vairano	41.5500	14.5833
1775	Quercus pubescens	Italy	Molise	Monte Vairano	41.5500	14.5833
1776	Quercus pubescens	Italy	Calabria	Nardodipace	38.4814	16.3411
1777	Quercus pubescens	Italy	Apulia	Bosco del Compare	40.6584	17.8878
1782	Quercus pubescens	Italy	Lazio	Torrita, Laga Mountains (Amatrice, RI)	42.6206	13.2173
1783	Quercus pubescens	Italy	Abruzzo	Barisciano, San Colombo (AQ)	42.3362	13.5901
1784	Quercus robur	Italy	Lombardy	Groane Park, Solaro (MI)	45.6213	9.0943
1785	Quercus robur	Italy	Lombardy	Bosco Fontana, Marmirolo (MN)	45.2046	10.7534
1786	Quercus robur	Italy	Piedmont	Natural Park La Mandria, Venaria Reale (TO)	45.1486	7.5963
1 т90	Quercus frainetto	Italy	Umbria	S.I.C. IT5210077, Collestrada (PG)	43.0947	12.4672
1791	Quercus frainetto	Italy	Calabria	National Park Aspromonte, Plati (RC)	38.2247	16.0454
1792	Quercus pubescens	Italy	Friuli V. Giulia	Basovizza (TS)	45.6283	13.8785
1993	Quercus pubescens	Italy	Marche	Selva of Castelfidardo (AN)	43.4676	13.5918
1994	Quercus petraea	Italy	Umbria	Montecorona, Umbertide (PG)	43.2838	12.3421
1795	Quercus petraea	Italy	Tuscany	Montefalcone Natural Reserve, Castelfranco di Sotto (PI)	43.7354	10.7334
1996	Quercus petraea	Italy	Emilia-Romagna	Parma	44.8298	10.3196
ES85	Quercus faginea	Spain		Cordoba	37.9252	-4.8265
MA86	Quercus faginea	Morocco		Ahfir	34.9668	-2.0865

Supplementary File 3 Samples of the Quercus genus from the current study and from GenBank analysed by means of cpDNA

No. Sequence	Taxon	Section/Lineage	Region	Origin	Locality	Code	trnH-psbA (accession \# Genbank)	trnK-matK (accession\# Genbank)	Plastid haplotype	References
1	Quercus infectoria, Q. kotschyana, Q. cedrorum	West Eurasian Quercus	Middle East	Lbanon	Various	H01Lib	MN955848	MT04175	н01	Douaihy B, Saliba C, Stephan J, Simeone MC, Cardoni S, Farhat P, Bou Dagher, Kharrat M (2020)
2	Hybrid unknown	West Eurasian Quercus	Midde East	Lebanon	Various	HozLib	MN955825	мT041734	H02	Tracking diversity and evolutionary pathways of
3	Hybrid unknown	West Eurasian Quercus	Middle East	Lebanon	Various	H03Lib	M 1955826	MT41735	н03	Lebanese oak taxa through plastome analyses.
4	Quercus infectoria, Q. . kotschyana	West Eurasian Quercus	Middle East	Lebanon	Various	ночLib	MN955828	мT041737	H04	Botany Letters 167:315-330. DOI:
5	Querus infectoria	West Eurasian Quercus	Midde East	Lebanon	Various	HosLib	MN955839	мто4174	H05	10.1080/23818107.2020.1755197
6	Quercus macranthera, Q. petraea subsp. iberica, Q. robur subsp. imeretina	West Eurasian Quercus	Caucasus	Georgia	Manglisi	H01Geo	L7718052	L7718145	H04	
7	Quercus petraea subsp. iberica, Q .	st Eurasian Quercus	Caucasus	Georgia	Tsageri	H02G	L7718016	L7718109	H06	0
8	Quercus perraea subsp. iberica	West Eurasian Quercus	Caucasus	Georgia	Tskneti	H03Geo	L7718075	LT718168	но7	(2018) Morphological diversity and
9	Quercus petraea subsp. iberica, Q . robur subsp. pedunculifflora	West Eurasian Quercus	Caucasus	Georgia	Gombori	H04Geo	L7718083	LT718176	H08	petraea subsp. iberica) and related Caucasian oak
10	Quercus hartwissiana, Q. petraea spp., Q. robur spp.	West Eurasian Quercus	Caucasus	Georgia	Eseri	но5Geo	LT718014	L7718107	H04	and Cenomes 14:17. Doi: $10.1007 / \mathrm{s}$ 11295-018-1232-6
11	Querus pontica	West Eurasian Ponticae	Caucasus	Georgia	Keda	нобGeo	LT718044	LT718137	но9	
12	Quercus pontica	West Eurasian Ponticae	Caucasus	Georgia	Keda	но7Geo	L7718046	L7718139	но	
13	Querus hartwis siana	West Eurasian Quercus	Caucasus	Georgia	Keda	H08Geo	L7718012	L7718105	H11	
14	Quercus petraea subsp. petraea	West Eurasian Quercus	C Europe	Italy	CItaly (Latium)	QPETLA	HE591284	HE583641	H12	
15	Quercus petraea subsp. huguetiana	West Eurasian Quercus	w Europe	Spain	n.d.	QPETES	HE591307	HE583664	H13	
16	Quercus petraea subsp. petraea	West Eurasian Quercus	EEurope	Greece		QPETGR	HE591314	HE583671	H12	
17	Quercus petraea subsp. petraea	West Eurasian Quercus	CEurope	Italy	N Italy (Piedmont)	QPETPI	HE591282	HE583639	H06	
18	Quercus petraea subsp. sessiliflora (syn. ssp. petraea)	West Eurasian Quer	EEurope	Bulgaria	Rila Mits.	QPEtbG	HE591283	HE583640	H14	
19	Quercus petraea subsp. dshorochensis (syn. subsp. iberica)	West Eurasian Quercus	Caucasus	Georgia	n.d.	QPETGE	HE591323	HE583723	H06	
20	Querrus petraea subsp. petraea	West Eurasian Quercus	CEurope	Italy	S Italy (Sicily)	QPETSI	HE591274	HE583631	H15	
21	Quercus polycarpa (syn. Quercus petraea subsp. iberica)	West Eurasian Quercus	EEurop	Romania	n.d.	QPOLRO	HE591324	E583724	H06	
22	Quercus robur subsp. .robur	West Eurasian Quercus	W Europe	Spain	n.d.	QROBES	HE591311	HE583668	13	
${ }^{23}$	Quercus robur subsp. pedunculiflora	West Eurasian Quercus	E Europe	Ukraine	n.d.	erobua	HE591312	HES83669	H16	
${ }^{24}$	Quercus robur subsp. pedunculiflora	us	Europe	Bulgaria	ts.	QROBBG	85	HE583642	н06	
25	Quercus robur subsp. . robur	West Eurasian Quercus	C Europe	England	Romsey	Qrobuk	HE591287	HE583644	H13	
${ }^{26}$	Quercus haas (syn. Quercus robur subsp. robur)	West Eurasian Quercus	Midde East	Turkey	n.d.	QHAATR	HE591325	HE58	H17	
27	Quercus frainetto	West Eurasian Quercus	CEurope	Italy	CItaly (Latium)	qfrala	HE591272	HE583629	H04	
28	Quercus frainetto	West Eurasian Quercus	EEurope	Greece		Qfragr	HE591313	HE583670	H18	
29	Querus frainetto	West Eurasian Quercus	C Europe	Italy	SEtaly (Apulia)	Qfrasp	HE591271	HE583628	H15	
30	Querus frainetto	West Eurasian Quercus	EEurope	Bulgaria	Rila Mts.	Qfrabg	HE591279	HE583636	H12	
31	Quercus pubescens subsp. pubescens	Eurasian Quercus	rope	Italy	CItaly (Latium)	La	HE591288	HE583645	H19	Simeone MC, Piredda R, Papini A, Vessella F, Schirone B (2013) Application of plastid and nuclear
32	Quercus pubescens subsp. pubescens	West Eurasian Quercus	C Europe	Croatia	n.d.	QPUBHR	HE591308	HE583665	H04	markers to DNA barcoding of Euro Mediterranean oaks (Quercus, Fagaceae): problems, prospects and
33	Quercus pubescens subsp. anatolica	West Eurasian Quercus	E Europe	Grece	n.d.	QPUBGR	HE591309	HE583666	H13	phylogenetic implications. Botanical Journal of the Linnean Society 172:478-499. DOI 10.1111/boj. 12059
${ }^{34}$	Quercus pubescens subsp. subpyrenaica	West Eurasian Quercus	w Europe	Spain	n.d.	QPubes	HE591277	HE583634	H20	
35	Querus congesta	West Eurasian Quercus	C Europe	Italy	Sardinia	econsa	HE591289	Hess3646	H21	
36	Quercus congesta	West Eurasian Quercus	CEurope	Italy	Sicily	econsi	HE591276	HE583633	H15	
37	Quercus iberica	West Eurasian Quercus	Caucasus	Ammia	Ohrid	Qibeam	HE591280	HES883637	H06	
38	Quercus iberica	West Eurasian Quercus	Middle East	Turkey	n.d.	QIBETR	HE591327	HE583727	H16	
39	Quercus macranthera	West Eurasian Quercus	Caucasus	Amenia	Ohrid	QMACAM	HE591281	HE583638	H06	
40	Quercus macranthera	West Eurasian Quercus	Middle East	Turkey	n.d.	QMACtr	HE591328	HE583728	H22	
41	Quercus pyrenaica	West Eurasian Quercus	W Europe	Spain	n.d.	QPYRES	HE591310	HE583667	H15	
42	Quercus canariensis	West Eurasian Quercus	NAfrica	Algeria	Tlencen	QCANDZ	HE591268	HES53625	H13	
43	Quercus canariensis	West Eurasian Quercus	W Europe	Spain	n.d.	QCANES	HE591329	HE583729	H13	
44	Querus faginea	West Eurasian Quercus	NAfrica	Algeria	Tlencen	QFAGIZ	HE591269	HE583626	H13	
45	Quercus faginea	West Eurasian Quercus	W Europe	Portugal	Faro	QFAGPT	HE591270	HE583627	H13	
46	Quercus lusitanica	West Eurasian Quercus	w Europe	Portugal	n.d.	Quspt	HE591303	HE583660	H13	
47	Querus harwissiana	West Eurasian Quercus	EEurope	Bulgaria	Rila Mts.	Qharbg	HE591273	HE583630	H04	
48	Quercus hartwissiana	West Eurasian Quercus	EEurope	Bulgaria	n.d.	Qharva	HE611278	HE611283	H13	
49	Quercus infectoria	West Eurasian Quercus	Middle East	Cyprus	n.d.	QINFCY	HE591304	HE583661	H13	
50	Quercus infectoria	West Eurasian Quercus	Middle East	Turkey	n.d.	Qinftr	HE591305	HE583662	H23	
51	Quercus infectoria	West Eurasian Quercus	Middle East	Lebanon	n.d.	QINFLE	HE591306	HE583663	H07	
52	Querus vulcanica	West Eurasian Quercus	Middle East	Turkey	Isparta	QVULTR	HE591278	HE583635	H24	
53	Quercus protoroburoides	West Eurasian Quercus	EEurope	Bulgaria	Rila Mts.	QPROBG	HE591275	HE583632	H13	
54	Quercus mongolica	East Eurasian Quercus	Asia	Korea	n.d.	QMONKR	HE585134	HE585139	H28	
55	Quercus serrata	East Eurasian Quercus	Asia	Korea	n.d.	QSERKR	HE585135	HE585140	H29	
${ }^{56}$	Quercus aliena	East Eurasian Quercus	Asia	Korea	n.d.	QALIKR	HE585133	HE585141	н07	
57	Quercus fabri	East Eurasian Quercus	Asia	China	n.d.	Qfabcn	HE591337	HE583737	H13	
${ }_{59}^{58}$	Quercus agritolia	Lobatae	America	WN America	Califomia	Qagria	LM652856	LM652873	${ }^{\text {H30 }}$	
59	Quercus alba	American Quercus	America	N America	Illinois	Qalbil	LM652853	LM652870	H31	
${ }^{60}$	Quercus berberidifolia	American Quercus	America	wn America	Califomia	QBERC1	LM652858	LM652883	H32	
61	Quercus berberidifolia	American Quercus	America	wn America	Califomia	QBERC2	LM652859	LM652892	H33	
${ }^{62}$	Quercus bicolor	American Quercus	America	NAmerica	Michigan	Qbicmi	LM652854	LM652871	H34	
${ }^{63}$	Querus cedrosensis	Protobalanus	America	CAmerica	Mexico	QCFEDMX	LM652795	LM652925	H39	
64	Querus chrysolepis	Protobalanus	America	wn America	Califomia	QCHRCI	HE611280	HE611285	H40	
${ }^{65}$	Quercus chrysolepis	Protobalanus	America	WN America	Califomia	eChRC2	LM652836	LM652884	H41	
${ }^{66}$	Quercus chyssolepis	Protobalanus	America	wn America	Califomia	QCHRC3	LM652837	LM652885	H42	
67	Quercus cras sipes	Lobatae	America	CAmerica	Mexico	QCRAMX	LM628855	LM652872	H44	
68	Quercus dentata	East Eurasian Quercus	Asia	Japan	n.d.	QDENJ	HE591335	He58733	H13	
${ }^{69}$	Quercus ellipsoidalis	Lobatae	America	ENAmerica	Michigan	Qelimi	LM652860	LM652874	H45	
70	Querus emoryi	Lobatae	America	wn America	Arizona	Qemoar	LM652799	LM652940	H46	
71	Quercus fusiformis	Virentes	America	wn America	n.d.	qFusus	LM652861	LM652881	H47	
72	Quercus geminata	Virentes	America	EN America	Georgia	QGEMGE	LM652804	LM652942	H35	
73	Quercus griffithii	East Eurasian Quercus	Asia	China	n.d.	Qgricn	HE591336	HE583736	H36	
74	Quercus iberica	West Eurasian Quercus	Midde East	Iran	n.d.	QIBER	HE591326	He583726	H25	
75	Quercus incana	Lobatae	America	EN America	Alabama	QINCAL	LM652808	LM652957	H48	Simeone MC, Grimm GW, Papini A, Vessella F,
76	Quercus macrocarpa	American Quercus	America	EN America	n.d.	Qmacus	HE611279	HE611284	H37	Cardoni S, Tordoni E. Piredda R, Franc A, Denk T
77	Quercus minima	Virentes	America	EN America	Georgia	QMINGE	LM652805	LM652958	H49	(2016) Plastome data reveal multiple geographic
${ }^{78}$	Querus mytrifolia	Lobatae	America	EN America	Florida	QMYRFL	LM652798	LM652959	H50	origins of Querrus group Ilex Peer. 4.ei 1897
79	Quercus oleoides	Virentes	America	C America	Mexico	Qolemx	LM652797	LM652960	H51	
80	Quercus palmeri	Protobalanus	America	wn America	Califomia	QPALCI	LM652800	LM65992	H52	
81	Quercus palmeri	Protobalanus	America	wn America	Califomia	QPALC2	LM652830	LM652906	H53	
82	Quercus pontica	West Eurasian Ponticae	Caucasus	Georgia	n.d.	QPONND	HE591330	He583730	H26	
83	Quercus pontica	West Eurasian Ponticae	Middle East	Turkey	NETurkey	QPONTR	LM652862	LM652878	H27	
${ }^{84}$	Quercus pyrenaica	West Eurasian Quercus	C Europe	France	SFrance	QPYRFR	HE591339	HE612111	H13	
85	Quercus robur	West Eurasian Quercus	C Europe	Italy	C Italy (Latium)	QROBLA	HE591286	HE583643	H12	
86	Quercus rubra	Lobatae	America	EN America	n.d.	erubui	HE611277	HE611282	H54	
${ }_{88}^{87}$	Quercus rubra	Lobatae	America	EN America	n.d.	QRUBU2	LM652793	LM652963	H55	
88	Quercus sadleriana	North American Ponticae	America	sw America	Califomia	QSADCA	LM652803	LM652964	H43	
89	Quercus tomentella	Protobalanus	America	wn America	Califomia	Qтомс1	LM652832	LM652893	H56	
90	Quercus tomentella	Protobalanus	America	wn America	Califomia	етомс2	LM652833	LM652867	H57	
91	Quercus vacciniifolia	Protobalanus	America	wn America	Califomia	Qvacca	LM652852	LM652904	H38	
92	Querus vacciniifolia	Protobalanus	America	wn America	Washington	QVACWA	LM652796	LM652966	H58	
93	Quercus virginiana	Virentes	America	EN America	Florida	QVIRFL	LM652801	LM652968	H49	
$\begin{aligned} & 94 \\ & 95 \\ & \hline \end{aligned}$	(Quercus virginiana	Virentes Virentes	America America	$\begin{aligned} & \text { EN America } \\ & \text { EN America } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { n.d. } \\ & \text { n. } \end{aligned}$	QVIRU1 QVIRU2	LM652882 LM65234	$\xrightarrow{\text { LM652967 }}$	${ }_{\text {H51 }}^{\text {H53 }}$	

				Austria; Croatia; Czech						
96	Quercus banatus, Q. dalechampii, Q. frainetto, Q . iberica, Q . petraea, Q. pubescens, Q . robur	West Eurasian Quercus	C and EEurope, Georgia	Republic; France (Rhône-Alpes); Georgia; Italy (N and S); Romania	Various	Qeu01			H06	
97	Quercus dalechampii, Q. frainetto, Q. petraea, Q. petraea subsp. austrotyrrhenica, Q. pubescens, Q . robur, Q. virgiliana	West Eurasian Quercus	Cand EEurope	Bulgaria; Croatia; Greece; Italy (C and S); Serbia	Various	Qeu02			H12	
98	Quercus congesta, Q. dalechampiii, Q. faginea, Q . petraea, Q . pubescens, Q . robur, Q . virgiliana	West Eurasian Quercus	Cand W Europe	Italy (N and C); Spain (N)	Various	Qeu03			H15	
99	Quercus faginea, Q . frainetto, Q . petraea, Q. pubescens, Q. pyrenaica, Q . robur	West Eurasian Quercus	C and W Europe, Morocco	Bulgaria; Italy (C and S); Morocco; Spain (N and Andalucia)	Various	Qeu04			H13	
100	Quercus pubescens Quercus congesta, Q . frainetto, Q .	West Eurasian Quercus	CEurope	Croatia	Croatia	Qeu05			H59	Current study
101	leptobalanos, Q. petraea subsp. austrotyrrhenica, Q. pubescens, Q. robur, Q. virgiliana	West Eurasian Quercus	Italy, Georgia	Italy (N and C, Sicily), Georgia	Various	Qeu06			H04	
102	Quercus congesta, Q. dalechampiii, Q. ichnusae, Q. virgiliana	West Eurasian Quercus	CEurope	Italy	Sardinia, Calabria	Qeu07			H21	
103	Quercus congesta, Q. dalechampii, Q. iberica	West Eurasian Quercus	Italy, Georgia	Italy (Calabria, Sicily), Georgia	Various	Qeu08			H07	
104	Quercus congesta, Q . ichnusae, Q . virgiliana	West Eurasian Quercus	CEurope	Italy	Sicily	Qeu09			H60	
105	Quercus ichnusae	West Eurasian Quercus	CEurope	Italy	Sardinia	Qeu10			H61	
106	Quercus virgiliana	West Eurasian Quercus	CEurope	Italy	Sardinia	Qeu11			H62	
107	Quercus pubescens	West Eurasian Quercus	CEurope	Italy	Apulia	Qeu12			H14	
108	Quercus faginea	West Eurasian Quercus	W Europe	Spain	Andalucia	Qeu13			H63	
109	Quercus faginea	West Eurasian Quercus	W Europe	Spain	Andalucia	Qeu14			H64	
110	Quercus alnifolia	Ilex/ WAHEA	Middle East	Cyprus	n.d.	WAHEA	LM652764	LM652922	H68	
111	Quercus baroni	Ilex/EAsian	Asia	China	n.d.	BARONI	LM652806	LM652924	H69	
112	Quercus ilex	Ilex/ West-Med	Asia	Spain	n.d.	ILEMED	LM652780	LM652953	H66	Cardoni S, Tordoni E Piredda R, Franc A, Denk
113	Quercus cerris	Ceris / Cerris-Ilex	C Europe	Italy	n.d.	CERRIS	HE591247	HE591292	H65	
114	Quercus coccifera	Ilex/ West-Med	NAfrica	Libya	n.d.	COCMED	LM652767	LM652933	H67	origins of Quercus group llex PeerJ. 4.e 1897
115	Quercus acuta	Cyclobalanopss	Asia	China	n.d.	ACUTA	LM652857	LM652886	H70	
116	Notholithocarpus densiflorus		America	America	n.d.	Notholicapus	LM652863	LM652879	H71	
117	Quercus stewardiana Quercus stewardiana, Q. mongolica,	East Eurasian Quercus	Asia	China	n.d.	Qch01	KX837076	KX837490		
118	Q. wutaishanica, Q. serrata, Q. fabri, Q. aliena	East Eurasian Quercus	Asia	China	n.d.	Qch02	KX837075	KX837489		
119	Quercus yunnanens is, Q. griffithiii, Q. mongolica, Q. serrata, Q. dentata. Q. aliena	East Euras ian Quercus	Asia	China	n.d.	Qch03	KX837073	KX837487		Yang J, Guo YF, Chen XD, Zhang X, Ju MM, Bai GQ, Liu ZL, Zhao GF (2020) Framework Phylogeny,
120	Quercus griffithii	East Eurasian Quercus	Asia	China	n.d.	Qch04	KX837067	KX837481		Oaks. Plants 9(8): 1024. DOI: $10.3390 /$ plants 9081024
121	Quercus mongolica, Q. dentata	East Eurasian Quercus	Asia	China	n.d.	Qch05	KX837064	кх837478		
122	Quercus wutaishanica	East Eurasian Quercus	Asia	China	n.d.	Qch06	KX837052	KX837468		
123	Quercus wutaishanica, Q. serrata	East Eurasian Quercus	Asia	China	n.d.	Qch07	KX837049	KX837465		
124	Quercus dentata	East Eurasian Quercus	Asia	China	n.d.	Qch08	KX837017	KX837435		
125	Quercus dentata	East Eurasian Quercus	Asia	China	n.d.	Qch09	KX837018	KX837436		

Supplementary File 4 Populations of the Quercus genus analysed by means of nuclear SSRs

No. Population	ID Population	No. of samples	Taxon	Country	Administrative Region (Italy)	Locality	Latitude Coordinates	Longitude Coordinates
1	${ }^{1718}$	20	Quercus pubescens	Italy	Veneto	Euganei Hills	45.2745	11.7417
2	1722	20	Quercus pubescens	Italy	Lombardy	One, San Martino (BS)	45.4314	10.6282
3	1715	20	Quercus pubescens	Italy	Lazio	Insugherata (Selva Candida)	41.9547	12.4195
4	1723	20	Quercus pubescens	Italy	Lazio	Monte San Biagio Plain	41.3641	13.3391
5	1764	20	Quercus pubescens	Italy	Lazio	Aurunci	41.3588	13.5272
6	1782	7	Quercus pubescens	Italy	Lazio	Torrita, Laga Mountains (Amatrice, R1)	42.6206	13.2173
7	1772	10	Quercus pubescens	Italy	Basilicata	Laurenzana (PZ)	40.4600	15.9745
8	1787	20	Quercus pubescens	Italy	Basilicata	Sasso di Castalda + Satriano	40.5150	15.6849
9	1788	20	Quercus pubescens	Italy	Basilicata	Moliterno + Sarconi	40.2535	15.8756
10	1789	20	Quercus pubescens	Italy	Basilicata	Fosso Cardone + Catarozzolo	40.1181	16.2214
11	1766	8	Quercus virgiliana	Italy	Apulia	Lake of Laterza, Tajuri (BA)	41.0926	16.8223
12	1748	20	Quercus ichnusae	Italy	Sardinia	Senis	39.8159	8.9486
13	1749	19	Quercus virgiliana	Italy	Sardinia	Pau	39.7871	8.7892
14	1750	20	Quercus ichnusae	\|taly	Sardinia	Monte Traessu	40.4686	8.6722
15	1751	20	Quercus virgiliana	Italy	Sardinia	1 Itiri	40.6138	8.5034
16	1752	20	Quercus congesta	Italy	Sardinia	Fonni (Muggiana)	40.1096	9.2490
17	1753	20	Quercus congesta	Italy	Sardinia	Fonni (Govossai)	40.1292	9.3024
18	ES44	20	Quercus pubescens	Spain		Madotz	42.9350	-1.8792
19	ES45	20	Quercus pubescens	Spain		Zilbeti	42.9519	-1.4778
20	FR08	20	Quercus pubescens	France		Donzère Ovest Ligue L.G.V.	44.4475	4.7067
21	FRO9	20	Quercus pubescens	France		Montjoyer Drôme	44.4715	4.8509
22	FR10	20	Quercus pubescens	France		Donzère Nord est village	44.4431	4.7149
23	AT01	20	Quercus pubescens	Austria		Leopoldsberg, Vienna	48.2750	16.3500
24	BG03	10	Quercus pubescens	Bulgaria		Kushin village, Pleven district	43.3753	24.5681
25	HRO4	20	Quercus pubescens	Croatia		Mt. Kalnik	46.1311	16.4558
26	HRO5	20	Quercus pubescens	Croatia		Muć	43.7025	16.4253
27	HRO7	20	Quercus pubescens	Croatia		Dubrovnik	42.6499	18.0748
28	GR11	20	Quercus pubescens	Greece		Pinios Lake	37.9500	21.3833
29	cz30	20	Quercus pubescens	Czech Republic		Milovice	50.3022	14.8739
30	RS35	20	Quercus pubescens	Serbia		Grgurevci	45.1417	19.6640
31	1719	20	Quercus dalechampii	Italy	Veneto	Euganei Hills	45.3431	11.7617
32	1720	20	Quercus petraea	Italy	Veneto	Euganei Hills	45.3173	11.6878
33	1746	20	Quercus petraea	Italy	Lazio	Mt. Cimini	42.3237	12.1303
34	1747	20	Quercus petraea	Italy	Lazio	Tolfa	42.1470	11.9407
35	1717	20	Quercus petraea subsp. austrotyrrhenica	Italy	Calabria	Pollia (Aspromonte), San Luca	38.1460	16.0599
36	T116	20	Quercus petraea subsp. austrotyrrhenica	Italy	Sicily	Pomieri Wood, Geraci Siculo (PA)	37.8583	14.0581
37	ES43	20	Quercus petraea	Spain		Las Machorras	43.1189	-3.5808
38	AT02	20	Quercus petraea	Austria		Pfaffenberg, Vienna	48.2611	16.3056
39	HRO6	20	Quercus petraea	Croatia		Mt. Psunj	45.3223	17.3459
40	CZ31	20	Quercus petraea	Czech Republic		Kohoutovice	49.2842	16.7974
41	RO33	20	Quercus banatus	Romania		Oravița	45.0434	21.7449
42	RS36	20	Quercus petraea	Serbia		Vrdnik	45.1296	19.8062
43	RS37	20	Quercus dalechampii	Serbia		Tara Mountain	43.9032	19.4838
44	RS38	20	Quercus dalechampii	Serbia		Mt. Suvobor	44.1168	20.1588
45	RS67	14	Quercus dalechampii	Serbia		Kopaonik National Park	43.2756	20.8306
46	ES41	20	Quercus robur	Spain		Leioa	43.3253	-2.9708
47	1721	10	Quercus robur	Italy	Veneto	Euganei Hills	45.3228	11.7409
48	1714	20	Quercus robur	Italy	Lazio	Insugherata (La Storta)	42.0073	12.3901
49	1713	20	Quercus robur	Italy	Basilicata	Oasis Pantano Policoro (MT)	40.1741	16.6998
50	1762	4	Quercus robur	Italy	Apulia	Lake of Laterza, Tajuri (BA)	40.6259	16.8121
51	CZ32	20	Quercus robur	Czech Republic		Lednice	48.7526	16.8152
52	RS39	10	Quercus robur	Serbia		Mt. Suvobor	44.1168	20.1588
53	1724	20	Quercus frainetto	Italy	Lazio	Selvapiana Wood, Amaseno	41.4862	13.3106
54	1726	20	Quercus frainetto	Italy	Lazio	Aurunci	41.3588	13.5272
55	1712	20	Quercus frainetto	Italy	Basilicata	Rustico, San Martino d'Agri (PZ)	40.2422	16.0552
56	RS34	20	Quercus frainetto	Serbia		Tara Mountain	43.9032	19.4838
57	ES40	20	Quercus pyrenaica	Spain		Ranera, Partido de la Sierra en Tobalina, Burgos	42.7186	-3.2837
58	ES42	20	Quercus faginea	Spain		Zaldiaran	42.7911	-2.7283

Supplementary File 5 Haplotypes of cpDNA (plastid loci: $\operatorname{trn} \mathrm{H}-p s b \mathrm{~A}$ and $\operatorname{trnK}-m a t \mathrm{~K}$) found in the 270 samples of Quercus analysed

Sample N	ID Polulation	Tree	Taxon	Country	Administrative Region (Italy)	Locality	trnK-matK haplotype	trnH-psbA haplotype	Plastid haplotype
1	Rозз	1	Quercus banatus	Romania		Oravița	к01	T01	H01
2	RO33	2	Quercus banatus	Romania		Oravița	K01	T01	H01
3	RO33	3	Quercus banatus	Romania		Oravita	K01	T01	H01
4	At02	28	Quercus petraea	Austria		Pfaffenberg, Vienna	K01	T01	H01
5	AT02	29	Quercus petraea	Austria		Pfaffenberg, Vienna	к01	T01	H01
6	At02	30	Quercus petraea	Austria		Pfaffenberg, Vienna	к01	T01	H01
7	CZ31	1	Quercus petraea	Czech Republic		Kohoutovice	к01	T01	H01
8	CZ31	2	Quercus petraea	Czech Republic		Kohoutovice	к01	T01	H01
9	CZ31	3	Quercus petraea	Czech Republic		Kohoutovice	к01	T01	H01
10	RS37	1	Quercus dalechampii	Serbia		Tara Mountain	K01	T02	H02
11	RS37	2	Quercus dalechampii	Serbia		Tara Mountain	K01	T02	H02
12	RS37	3	Quercus dalechampii	Serbia		Tara Mountain	K01	T02	H02
13	ES43	1	Quercus petraea	Spain		Las Machorras	K02	T03	н03
14	ES43	2	Quercus petraea	Spain		Las Machorras	K02	T03	H03
15	ES43	3	Quercus petraea	Spain		Las Machorras	к02	T03	ноз
16	1747	2	Quercus petraea	Italy	Lazio	Tolfa	K01	T02	H02
17	1747	3	Quercus petraea	Italy	Lazio	Tolfa	к01	T02	H02
18	1747	4	Quercus petraea	Italy	Lazio	Tolfa	K01	T02	H02
19	FR08	8	Quercus pubescens	France		Donzère Ovest Ligue L.G.V.	к01	T01	H01
20	FR08	9	Quercus pubescens	France		Donzère Ovest Ligue L.G.V.	K01	T01	H01
21	FR08	11	Quercus pubescens	France		Donzère Ovest Ligue L.G.V.	K01	T01	H01
22	BG03	1	Quercus pubescens	Bulgaria		Kushin village, Pleven district	K01	T02	H02
23	BG03	2	Quercus pubescens	Bulgaria		Kushin village, Pleven district	K02	T04	H04
24	B603	10	Quercus pubescens	Bulgaria		Kushin village, Pleven district	к01	T02	H02
25	HRO4	1	Quercus pubescens	Croatia		Mt. Kalnik	K01	T01	H01
26	HRO4	2	Quercus pubescens	Croatia		Mt. Kalnik	к01	T01	H01
27	HRO4	3	Quercus pubescens	Croatia		Mt. Kalnik	K01	T01	H01
28	HRO5	1	Quercus pubescens	Croatia		Muć	ко3	T01	H05
29	HRO5	2	Quercus pubescens	Croatia		Muć	K03	T01	H05
30	HRO5	3	Quercus pubescens	Croatia		Muć	K03	T01	H05
31	HRO6	1	Quercus petraea	Croatia		Mt. Psunj	K01	T01	H01
32	HR06	2	Quercus petraea	Croatia		Mt. Psunj	K01	T01	H01
33	HRO6	3	Quercus petraea	Croatia		Mt. Psunj	к01	T01	H01
34	HR07	1	Quercus pubescens	Croatia		Dubrovnik	K01	T02	H02
35	HR07	2	Quercus pubescens	Croatia		Dubrovnik	K01	T02	H02
36	HR07	3	Quercus pubescens	Croatia		Dubrovnik	K01	T02	H02
37	FR09	1	Quercus pubescens	France		Montjoyer Drôme	K01	T01	H01
38	FRO9	2	Quercus pubescens	France		Montjoyer Drôme	K01	T01	H01
39	FRO9	3	Quercus pubescens	France		Montjoyer Drôme	K01	T01	H01
40	FR10	1	Quercus pubescens	France		Donzère Nord est village	K01	T01	H01
41	FR10	3	Quercus pubescens	France		Donzère Nord est village	K01	T01	H01
42	FR10	4	Quercus pubescens	France		Donzère Nord est village	к01	T01	H01
43	GR11	1	Quercus pubescens	Greece		Pinios Lake	к01	T02	H02
44	GR11	2	Quercus pubescens	Greece		Pinios Lake	к01	T02	H02
45	GR11	3	Quercus pubescens	Greece		Pinios Lake	к01	T02	H02
46	$1 T 12$	1	Quercus frainetto	Italy	Basilicata	Rustico, San Martino d'Agri (PZ)	K01	T01	H01
47	1712	2	Quercus frainetto	Italy	Basilicata	Rustico, San Martino d'Agri (PZ)	к01	T01	H01
48	1712	3	Quercus frainetto	Italy	Basilicata	Rustico, San Martino d'Agri (PZ)	K01	T01	H01
49	1713	1	Quercus robur	Italy	Basilicata	Oasis Pantano Policoro (MT)	к01	T01	H01
50	IT13	2	Quercus robur	Italy	Basilicata	Oasis Pantano Policoro (MT)	K01	T01	H01
51	IT13	3	Quercus robur	Italy	Basilicata	Oasis Pantano Policoro (MT)	K01	T01	H01
52	1714	1	Quercus robur	Italy	Lazio	Insugherata (La Storta)	K02	T01	H06
53	1714	2	Quercus robur	Italy	Lazio	Insugherata (La Storta)	K02	T03	H03
54	1714	3	Quercus robur	Italy	Lazio	Insugherata (La Storta)	к02	T03	H03
55	IT15	2	Quercus pubescens	Italy	Lazio	Insugherata (Selva Candida)	K02	T01	H06
56	1715	3	Quercus pubescens	Italy	Lazio	Insugherata (Selva Candida)	к02	T01	H06
57	1715	4	Quercus pubescens	Italy	Lazio	Insugherata (Selva Candida)	K02	T01	H06
58	IT16	1	Quercus petraea subsp. austrotyrchenica	Italy	Sicily	Pomieri Wood, Geraci Siculo (PA)	K02	T01	H06
59	IT16	2	Quercus petraea subsp. austrotyrrhenica	Italy	Sicily	Pomieri Wood, Geraci Siculo (PA)	K02	T01	H06
60	IT16	3	Quercus petraea subsp. austrotyrrhenica	Italy	Sicily	Pomieri Wood, Geraci Siculo (PA)	K02	T01	H06
61	$1{ }^{1} 17$	1	Quercus petraea subsp. austrotyrrhenica	Italy	Calabria	Pollia (Aspromonte), San Luca	к01	T02	H02
62	$1 T 17$	2	Quercus petraea subsp. austrotyrrhenica	Italy	Calabria	Pollia (Aspromonte), San Luca	K01	T02	H02
63	1717	3	Quercus petraea subsp. austrotyrrhenica	Italy	Calabria	Pollia (Aspromonte), San Luca	K01	T02	H02
64	IT18	12	Quercus pubescens	Italy	Veneto	Euganei Hills	K01	T01	H01
65	1718	13	Quercus pubescens	Italy	Veneto	Euganei Hills	K01	T01	H01
66	IT18	14	Quercus pubescens	Italy	Veneto	Euganei Hills	к01	T01	H01
67	$1 T 19$	1	Quercus dalechampii	Italy	Veneto	Euganei Hills	K01	T01	H01
68	IT19	2	Quercus dalechampii	Italy	Veneto	Euganei Hills	K01	T01	H01
69	IT19	3	Quercus dalechampii	Italy	Veneto	Euganei Hills	K01	T01	H01
70	1720	1	Quercus petraea	Italy	Veneto	Euganei Hills	к01	T01	H01
71	1720	2	Quercus petraea	Italy	Veneto	Euganei Hills	K01	T01	H01
72	1720	3	Quercus petraea	Italy	Veneto	Euganei Hills	K01	T01	H01
73	1721	1	Quercus robur	Italy	Veneto	Euganei Hills	к01	T01	H01
74	1 T21	2	Quercus robur	Italy	Veneto	Euganei Hills	к01	T01	H01
75	1721	3	Quercus robur	Italy	Veneto	Euganei Hills	к01	T01	H01
76	1722	1	Quercus pubescens	Italy	Lombardy	One, San Martino (BS)	K02	T03	ноз
77	1722	2	Quercus pubescens	Italy	Lombardy	One, San Martino (BS)	K02	T03	н03
78	1722	3	Quercus pubescens	Italy	Lombardy	One, San Martino (BS)	K01	T01	H01
79	1723	1	Quercus pubescens	Italy	Lazio	Monte San Biagio Plain	K02	T04	H04
80	1723	2	Quercus pubescens	Italy	Lazio	Monte San Biagio Plain	K02	T04	H04
81	1723	3	Quercus pubescens	Italy	Lazio	Monte San Biagio Plain	K02	T04	H04
82	1724	1	Quercus frainetto	Italy	Lazio	Selvapiana Wood, Amaseno	K02	T01	H06
83	1724	2	Quercus frainetto	Italy	Lazio	Selvapiana Wood, Amaseno	K02	T01	H06
84	1724	3	Quercus frainetto	Italy	Lazio	Selvapiana Wood, Amaseno	K02	T01	H06
85	1725	1	Quercus virgiliana	Italy	Sicily	Fitalia Valley (Frazzano, ME)	K02	T03	H03
86	1725	2	Quercus virgiliana	Italy	Sicily	Fitalia Valley (Frazzanò, ME)	K02	T03	ноз
87	1725	3	Quercus virgiliana	Italy	Sicily	Fitalia Valley (Frazzanò, ME)	K02	T03	H03
88	1726	1	Quercus frainetto	Italy	Lazio	Aurunci	K02	T04	H04
89	1726	2	Quercus frainetto	Italy	Lazio	Aurunci	K02	T04	H04
90	IT26	3	Quercus frainetto	Italy	Lazio	Aurunci	к02	T04	H04

91	1727	1	Quercus dalechampii	Italy	Calabria	Serre, Sant'Angelo SS182 (VV)	K01	T02	H02
92	1727	2	Quercus dalechampii	Italy	Calabria	Serre, Sant'Angelo SS182 (VV)	K01	T02	H02
93	1727	3	Quercus dalechampii	Italy	Calabria	Serre, Sant'Angelo SS182 (VV)	K04	T05	H07
94	1728	1	Quercus dalechampii	Italy	Calabria	Aspromonte, SP Palmi Pontevecchio. Croce Mammone (Cirello), Rizziconi (RC)	K02	T06	H08
95	1728	2	Quercus dalechampii	Italy	Calabria	Aspromonte, SP Palmi Pontevecchio. Croce Mammone (Cirello), Rizziconi (RC)	к02	T06	H08
96	1728	3	Quercus dalechampii	Italy	Calabria	Aspromonte, SP Palmi Pontevecchio. Croce Mammone (Cirello), Rizziconi (RC)	к02	T06	H08
97	1729	1	Quercus dalechampii	Italy	Calabria	Aspromonte, SP 3 towards Piani di Carmelia	K02	T06	H08
98	1729	2	Quercus dalechampii	Italy	Calabria	Aspromonte, SP 3 towards Piani di Carmelia	K02	T06	H08
99	1 1729	3	Quercus dalechampii	Italy	Calabria	Aspromonte, SP 3 towards Piani di Carmelia	K02	T06	H08
100	CZ30	1	Quercus pubescens	Czech Republic		Milovice	K01	T01	H01
101	CZ30	2	Quercus pubescens	Czech Republic		Milovice	K01	T01	H01
102	CZ30	3	Quercus pubescens	Czech Republic		Milovice	к01	T01	H01
103	CZ32	1	Quercus robur	Czech Republic		Lednice	к01	T01	H01
104	Cz32	2	Quercus robur	Czech Republic		Lednice	к01	T01	H01
105	CZ32	3	Quercus robur	Czech Republic		Lednice	к01	T01	H01
106	RS34	1	Quercus frainetto	Serbia		Tara Mountain	K01	T02	H02
107	RS34	2	Quercus frainetto	Serbia		Tara Mountain	к01	T02	H02
108	RS34	3	Quercus frainetto	Serbia		Tara Mountain	K01	T02	H02
109	RS35	1	Quercus pubescens	Serbia		Grgurevci	к01	T02	H02
110	RS35	2	Quercus pubescens	Serbia		Grgurevci	к01	T02	H02
111	RS35	3	Quercus pubescens	Serbia		Grgurevci	к01	T02	H02
112	RS36	1	Quercus petraea	Serbia		Vrdnik	K01	T02	H02
113	RS36	2	Quercus petraea	Serbia		Vrdnik	к01	T02	H02
114	RS36	3	Quercus petraea	Serbia		Vrdnik	K01	T02	H02
115	RS38	1	Quercus dalechampii	Serbia		Mt. Suvobor	K01	T02	H02
116	RS38	2	Quercus dalechampii	Serbia		Mt. Suvobor	K01	T02	H02
117	RS38	3	Quercus dalechampii	Serbia		Mt. Suvobor	K01	T02	H02
118	RS39	1	Quercus robur	Serbia		Mt. Suvobor	к01	T02	H02
119	RS39	2	Quercus robur	Serbia		Mt. Suvobor	к01	T02	H02
120	RS39	3	Quercus robur	Serbia		Mt. Suvobor	K01	T02	H02
121	ES40	1	Quercus pyrenaica	Spain		Ranera, Partido de la Sierra en Tobalina, Burgos	K02	T04	H04
122	ES40	2	Quercus pyrenaica	Spain		Ranera, Partido de la Sierra en Tobalina, Burgos	K02	T04	H04
123	ES40	3	Quercus pyrenaica	Spain		Ranera, Partido de la Sierra en Tobalina, Burgos	K02	T04	н04
124	ES41	1	Quercus robur	Spain		Leioa	к02	тоз	ноз
125	ES41	2	Quercus robur	Spain		Leioa	K02	T04	H04
126	ES41	3	Quercus robur	Spain		Leioa	K02	T04	H04
127	ES42	1	Quercus faginea	Spain		Zaldiaran	K02	T03	H03
128	ES42	3	Quercus faginea	Spain		Zaldiaran	K02	T04	H04
129	ES42	5	Quercus faginea	Spain		Zaldiaran	K02	T04	H04
130	ES44	1	Quercus pubescens	Spain		Madotz	K02	то3	H03
131	ES44	2	Quercus pubescens	Spain		Madotz	K02	то3	н03
132	ES44	3	Quercus pubescens	Spain		Madotz	K02	то3	H03
133	ES45	1	Quercus pubescens	Spain		Zilbeti	K02	T04	H04
134	ES45	2	Quercus pubescens	Spain		zilbeti	K02	T04	H04
135	ES45	3	Quercus pubescens	Spain		Zilbeti	K02	T04	H04
136	${ }_{1746}$	1	Quercus petraea	Italy	Lazio	Mt. Cimini	к01	T02	H02
137	${ }_{1} 1746$	2	Quercus petraea	Italy	Lazio	Mt. Cimini	к01	T02	H02
138	1746	3	Quercus petraea	Italy	Lazio	Mt. Cimini	K01	T02	H02
139	$1 T 48$	1	Quercus ichnusae	Italy	Sardinia	Senis	K02	T07	но9
140	1748	2	Quercus ichnusae	Italy	Sardinia	Senis	K02	T07	но9
141	$1 T 48$	3	Quercus ichnusae	Italy	Sardinia	Senis	K02	T07	H09
142	1749	34	Quercus virgiliana	Italy	Sardinia	Pau	K02	T07	H09
143	1749	35	Quercus virgiliana	Italy	Sardinia	Pau	K02	T07	но9
144	1749	36	Quercus virgiliana	Italy	Sardinia	Pau	K02	T07	но9
145	1750	71	Quercus ichnusae	Italy	Sardinia	Monte Traessu	K04	T05	H07
146	1750	72	Quercus ichnusae	Italy	Sardinia	Monte Traessu	K02	T05	H10
147	1750	73	Quercus ichnusae	Italy	Sardinia	Monte Traessu	K04	T05	H07
148	1751	94	Quercus virgiliana	Italy	Sardinia	Ittiri	K04	T05	H07
149	1751	95	Quercus virgiliana	Italy	Sardinia	Ittiri	K04	T05	H07
150	1751	96	Quercus virgiliana	Italy	Sardinia	\|ttiri	K04	T05	H07
151	1752	118	Quercus congesta	Italy	Sardinia	Fonni (Muggiana)	к02	T07	но9
152	1752	119	Quercus congesta	Italy	Sardinia	Fonni (Muggiana)	K02	T07	но9
153	1752	120	Quercus congesta	Italy	Sardinia	Fonni (Muggiana)	K02	T07	но9
154	1753	140	Quercus congesta	Italy	Sardinia	Fonni (Govossai)	K02	T07	H09
155	$1 T 53$	141	Quercus congesta	Italy	Sardinia	Fonni (Govossai)	K02	T07	H09
156	1753	142	Quercus congesta	Italy	Sardinia	Fonni (Govossai)	K02	T07	H09
157	1754	1	Quercus leptobalanos	Italy	Sicily	Ficuzza Wood (PA)	K02	T01	H06
158	1754	2	Quercus leptobalanos	Italy	Sicily	Ficuzza Wood (PA)	K02	T01	H06
159	1754	3	Quercus leptobalanos	Italy	Sicily	Ficuzza Wood (PA)	K02	T01	H06
160	1755	1	Quercus virgiliana	Italy	Sicily	Marineo (PA)	к05	T01	H11
161	1755	2	Quercus virgiliana	Italy	Sicily	Marineo (PA)	K02	T01	H06
162	1755	3	Quercus virgiliana	Italy	Sicily	Marineo (PA)	K02	T03	H03
163	1756	1	Quercus congesta	Italy	Sicily	Etna	K02	т03	ноз
164	1756	2	Quercus congesta	Italy	Sicily	Etna	K02	то3	H03
165	1756	3	Quercus congesta	Italy	Sicily	Etna	K02	то3	H03
166	1157	1	Quercus dalechampii	Italy	Sicily	Etna	K02	T03	H03
167	1 1557	2	Quercus dalechampii	Italy	Sicily	Etna	K02	T03	H03
168	$1 T 57$	3	Quercus dalechampii	Italy	Sicily	Etna	K02	T03	H03
169	1758	1	Quercus virgiliana	Italy	Sicily	Etna. Mt. Ceraulo, Mascalucia (CT)	K02	то3	H03
170	1758	2	Quercus virgiliana	Italy	Sicily	Etna. Mt. Ceraulo, Mascalucia (CT)	K02	т03	H03
171	1758	3	Quercus virgiliana	Italy	Sicily	Etna. Mt. Ceraulo, Mascalucia (CT)	K02	т03	н03
172	1759	1	Quercus virgiliana	Italy	Sicily	Etna. Tre castagni, Via P. Togliatti (CT)	K02	т03	H03
173	1759	2	Quercus virgiliana	Italy	Sicily	Etna. Tre castagni, Via P. Togliatti (CT)	K02	то3	H03
174	1759	3	Quercus virgiliana	Italy	Sicily	Etna. Tre castagni, Via P. Togliatti (CT)	K02	т03	H03
175	1 160	1	Quercus congesta	Italy	Sicily	Madonie, between Piano Torre and Piano Zucchi (Collesano, PA)	K02	$\underline{06}$	H08
176	1 T60	2	Quercus congesta	Italy	Sicily	Madonie, between Piano Torre and Piano Zucchi (Collesano, PA)	K02	T01	H06
177	1760	3	Quercus congesta	Italy	Sicily	Madonie, between Piano Torre and Piano Zucchi (Collesano, PA)	K02	T01	H06
178	${ }_{1} 1761$	1	Quercus congesta	Italy	Sicily	Valley of Flascio, Nebrodi	K02	T03	H03
179	$1 T 61$	2	Quercus congesta	Italy	Sicily	Valley of Flascio, Nebrodi	K02	T03	H03
180	$1 T 61$	3	Quercus congesta	Italy	Sicily	Valley of Flascio, Nebrodi	K02	T03	H03

181	1762	1	Quercus robur	Italy	Apulia	Lake of Laterza, Tajuri (BA)	K01	T01	H01
182	1762	2	Quercus robur	Italy	Apulia	Lake of Laterza, Tajuri (BA)	к01	T01	H01
183	1762	3	Quercus robur	Italy	Apulia	Lake of Laterza, Tajuri (BA)	K01	T01	H01
184	1763	1	Quercus dalechampii	Italy	Calabria	Serre, Sant'Angelo SS182 crossroads SP Nardodipace (VV)	к01	T02	H02
185	1 163	2	Quercus dalechampii	Italy	Calabria	Serre, Sant'Angelo SS182 crossroads SP Nardodipace (VV)	к01	T02	H02
186	1 163	3	Quercus dalechampii	Italy	Calabria	Serre, Sant'Angelo SS182 crossroads SP Nardodipace (VV)	к01	T02	H02
187	1 1964	1	Quercus pubescens	Italy	Lazio	Aurunci	K02	T04	H04
188	1764	2	Quercus pubescens	Italy	Lazio	Aurunci	K02	T04	H04
189	1764	3	Quercus pubescens	Italy	Lazio	Aurunci	K02	T04	H04
190	AT01	30	Quercus pubescens	Austria		Leopoldsberg, Vienna	K01	T01	H01
191	AT01	31	Quercus pubescens	Austria		Leopoldsberg, Vienna	к01	T01	H01
192	AT01	33	Quercus pubescens	Austria		Leopoldsberg, Vienna	K01	T01	H01
193	1765	1	Quercus robur	Italy	Apulia	Lake of Laterza, Tajuri (BA)	к01	T01	H01
194	1765	2	Quercus robur	Italy	Apulia	Lake of Laterza, Tajuri (BA)	к01	T01	H01
195	1765	3	Quercus robur	Italy	Apulia	Lake of Laterza, Tajuri (BA)	к01	T01	H01
196	1766	4	Quercus virgiliana	Italy	Apulia	Lake of Laterza, Tajuri (BA)	K01	T02	H02
197	1766	5	Quercus virgiliana	Italy	Apulia	Lake of Laterza, Tajuri (BA)	к01	T02	H02
198	1766	6	Quercus virgiliana	Italy	Apulia	Lake of Laterza, Tajuri (BA)	к01	T02	H02
199	RS67	1	Quercus dalechampii	Serbia		Kopaonik National Park	к01	T02	H02
200	RS67	12	Quercus dalechampii	Serbia		Kopaonik National Park	к01	T02	H02
201	RS67	14	Quercus dalechampii	Serbia		Kopaonik National Park	K01	T02	H02
202	1768	1	Quercus pubescens	Italy	Sardinia	Mt. Zara, Monastir (CA)	K02	T03	н03
203	1768	2	Quercus pubescens	Italy	Sardinia	Mt. Zara, Monastir (CA)	K02	T03	H03
204	1768	3	Quercus pubescens	Italy	Sardinia	Mt. Zara, Monastir (CA)	K02	T03	H03
205	1769	11	Quercus ichnusae	Italy	Sardinia	S. Antonio Wood, Macomer (NU)	K04	T05	H07
206	1769	12	Quercus ichnusae	Italy	Sardinia	S. Antonio Wood, Macomer (NU)	K04	T05	H07
207	1769	13	Quercus ichnusae	Italy	Sardinia	S. Antonio Wood, Macomer (NU)	K04	T05	H07
208	1770	26	Quercus congesta	Italy	Sardinia	Sant'Orsola (SS)	K04	T05	H07
209	1770	27	Quercus congesta	Italy	Sardinia	Sant'Orsola (SS)	K04	T05	H07
210	1770	28	Quercus congesta	Italy	Sardinia	Sant'Orsola (SS)	K04	T05	H07
211	1771	31	Quercus congesta	Italy	Sardinia	Mt. Rasu, Catena del Marghine, Bono (SS)	K02	T03	H03
212	1 1771	32	Quercus congesta	Italy	Sardinia	Mt. Rasu, Catena del Marghine, Bono (SS)	K02	T03	H03
213	1771	33	Quercus congesta	Italy	Sardinia	Mt. Rasu, Catena del Marghine, Bono (SS)	K02	T03	H03
214	1772	1	Quercus pubescens	Italy	Basilicata	Laurenzana (PZ)	K01	T01	H01
215	1772	2	Quercus pubescens	Italy	Basilicata	Laurenzana (PZ)	к01	T01	H01
216	1772	3	Quercus pubescens	Italy	Basilicata	Laurenzana (PZ)	K01	T01	H01
217	1773	1	Quercus petraea	Italy	Molise	Monte Vairano	K02	T04	H04
218	1773	4	Quercus petraea	Italy	Molise	Monte Vairano	K01	T02	H02
219	1773	5	Quercus petraea	Italy	Molise	Monte Vairano	K01	T02	H02
220	1775	1	Quercus pubescens	Italy	Molise	Monte Vairano	K02	T04	H04
221	1775	2	Quercus pubescens	Italy	Molise	Monte Vairano	K02	T04	H04
222	1775	3	Quercus pubescens	Italy	Molise	Monte Vairano	K02	T04	H04
223	1776	1	Quercus pubescens	Italy	Calabria	Nardodipace	K01	T02	H02
224	1776	2	Quercus pubescens	Italy	Calabria	Nardodipace	к01	T02	H02
225	1776	3	Quercus pubescens	Italy	Calabria	Nardodipace	K01	T02	H02
226	1777	5	Quercus pubescens	Italy	Apulia	Bosco del Compare	K01	T02	H02
227	1777	7	Quercus pubescens	Italy	Apulia	Bosco del Compare	K01	T02	H02
228	1777	12	Quercus pubescens	Italy	Apulia	Bosco del Compare	K01	T04	H12
229	1782	5	Quercus pubescens	Italy	Lazio	Torrita, Laga Mountains (Amatrice, RI)	K02	T01	H06
230	1782	6	Quercus pubescens	Italy	Lazio	Torrita, Laga Mountains (Amatrice, RI)	K02	T01	H06
231	1782	7	Quercus pubescens	Italy	Lazio	Torrita, Laga Mountains (Amatrice, RI)	K02	T01	H06
232	1783	1	Quercus pubescens	Italy	Abruzzo	Barisciano, San Colombo (AQ)	K02	T01	H06
233	1783	3	Quercus pubescens	Italy	Abruzzo	Barisciano, San Colombo (AQ)	K02	T01	H06
234	1783	4	Quercus pubescens	Italy	Abruzzo	Barisciano, San Colombo (AQ)	K02	T01	H06
235	E585	1	Quercus faginea	Spain		Cordoba	K02	T04	H04
236	ES85	2	Quercus faginea	Spain		Cordoba	K02	T08	H13
237	E585	3	Quercus faginea	Spain		Cordoba	K02	T09	H14
238	MA86	1	Quercus faginea	Morocco		Ahfir	K02	T04	H04
239	MA86	2	Quercus faginea	Morocco		Ahfir	K02	T04	H04
240	MA86	3	Quercus faginea	Morocco		Ahfir	K02	T04	H04
241	1784	1	Quercus robur	Italy	Lombardy	Groane Park, Solaro (MI)	K02	T03	ноз
242	1784	2	Quercus robur	Italy	Lombardy	Groane Park, Solaro (MI)	K02	T03	H03
243	1784	3	Quercus robur	Italy	Lombardy	Groane Park, Solaro (MI)	K02	T01	H06
244	1785	1	Quercus robur	Italy	Lombardy	Bosco Fontana, Marmirolo (MN)	K01	T01	H01
245	1785	4	Quercus robur	Italy	Lombardy	Bosco Fontana, Marmirolo (MN)	K02	T03	H03
246	1785	5	Quercus robur	Italy	Lombardy	Bosco Fontana, Marmirolo (MN)	K01	T01	H01
247	1786	1	Quercus robur	Italy	Piedmont	Natural Park La Mandria, Venaria Reale (TO)	K01	T01	H01
248	1786	2	Quercus robur	Italy	Piedmont	Natural Park La Mandria, Venaria Reale (TO)	K01	T01	H01
249	1786	4	Quercus robur	Italy	Piedmont	Natural Park La Mandria, Venaria Reale (TO)	K01	T01	H01
250	1994	1	Quercus petraea	Italy	Umbria	Montecorona, Umbertide (PG)	K02	T04	H04
251	1994	2	Quercus petraea	Italy	Umbria	Montecorona, Umbertide (PG)	K02	T04	H04
252	1994	3	Quercus petraea	Italy	Umbria	Montecorona, Umbertide (PG)	K02	T04	H04
253	1995	1	Quercus petraea	Italy	Tuscany	Montefalcone Natural Reserve, Castelfranco di Sotto (PI)	K01	T01	H01
254	1995	2	Quercus petraea	Italy	Tuscany	Montefalcone Natural Reserve, Castelfranco di Sotto (PI)	K01	T01	H01
255	1995	3	Quercus petraea	Italy	Tuscany	Montefalcone Natural Reserve, Castelfranco di Sotto (PI)	K01	T01	H01
256	1996	2	Quercus petraea	Italy	Emilia-Romagna	Parma	K02	T03	H03
257	1996	3	Quercus petraea	Italy	Emilia-Romagna	Parma	K02	T03	H03
258	1996	4	Quercus petraea	Italy	Emilia-Romagna	Parma	K02	T03	H03
259	1990	1	Quercus frainetto	Italy	Umbria	S.I.C. IT5210077, Collestrada (PG)	K01	T02	H02
260	1990	2	Quercus frainetto	Italy	Umbria	S.I.C. IT5210077, Collestrada (PG)	к01	T02	H02
261	1990	3	Quercus frainetto	Italy	Umbria	S.I.C. IT5210077, Collestrada (PG)	K01	T02	H02
262	1991	1	Quercus frainetto	Italy	Calabria	National Park Aspromonte, Plati (RC)	K01	T02	H02
263	1991	2	Quercus frainetto	Italy	Calabria	National Park Aspromonte, Plati (RC)	к01	T02	H02
264	1991	3	Quercus frainetto	Italy	Calabria	National Park Aspromonte, Plati (RC)	K01	T02	H02
265	1992	1	Quercus pubescens	Italy	Friuli V. Giulia	Basovizza (TS)	K01	T01	H01
266	1 192	2	Quercus pubescens	Italy	Friuli V. Giulia	Basovizza (TS)	K01	T01	H01
267	1 192	3	Quercus pubescens	Italy	Friuli V. Giulia	Basovizza (TS)	к01	T01	H01
268	1993	1	Quercus pubescens	Italy	Marche	Selva of Castelfidardo (AN)	K01	T02	H02
269	1993	2	Quercus pubescens	Italy	Marche	Selva of Castelfidardo (AN)	к01	T02	H02
270	1993	3	Quercus pubescens	Italy	Marche	Selva of Castelfidardo (AN)	K01	T02	H02

Supplementary File 6a Geographic distribution of the plastid haplotypes in the populations of Quercus sampled across Italy

Supplementary File 6b Geographic distribution of the plastid haplotypes in the populations of Quercus pubescens s.l. (Q. congesta, Q. dalechampii (Q. pubescens group), Q. ichnusae, Q. leptobalanos, Q. pubescens s.s., Q. virgiliana) sampled

Supplementary File 6c Geographic distribution of the plastid haplotypes in the populations of Quercus petraea s.l. (Q. dalechampii (Q. petraea group), Q. petraea s.s., Q. petraea subsp. austrotyrrhenica) sampled

Supplementary File 6d Geographic distribution of the plastid haplotypes in the populations of Quercus robur sampled

Supplementary File 6e Geographic distribution of the plastid haplotypes in the populations of Quercus frainetto sampled

Supplementary File $\mathbf{6 f}$ Geographic distribution of the rare plastid haplotypes (H05, H10, H11, H12, H13, H14) in the populations of Quercus sampled

Supplementary File 7a Median-joining network based on the plastid locus $\operatorname{trnH}-p s b \mathrm{~A}$ of the 270 samples of the Quercus genus analysed. Each sequenced haplotype is represented by a circle, the size of which is proportional to its overall frequency in the dataset (Supplementary File 5). The number of mutational changes between two distinct haplotypes is shown by the lines on the branches. The red diamond represents the median vector. Haplotype colours correspond to the sampling localities

Supplementary File 7b Median-joining network based on the plastid locus trnK-matK of the 270 samples of the Quercus genus analysed. Each sequenced haplotype is represented by a circle, the size of which is proportional to its overall frequency in the dataset (Supplementary File 5). The number of mutational changes between two distinct haplotypes is shown by the lines on the branches. Haplotype colours correspond to the sampling localities

```
- Spain
- Morocco
- France
- Italy
- Sardinia
- Sicily
- Austria
- Croatia
- Czech Republic
- Romania
■ Bulgaria
-Greece
Serbia
```


Supplementary File 8 Frequency of null alleles per population and SSR locus calculated in FREENA

No. Population	ID Population	Taxon	PIE227	PIE223	PIE215	PIE20	PIE152	PIE243	PIE242	PIE267	PIE102	PIE271
1	IT18	Quercus pubescens	0	0.0869	0	0	0.0766	0	0.0017	0.0003	0.1041	0.0607
2	IT22	Quercus pubescens	0.0149	0	0	0	2E-05	3E-05	0.0582	0.0103	3E-05	0.1079
3	IT15	Quercus pubescens	4E-05	0	0.0014	0.0909	0	1E-05	0.1106	0.0619	0	0
4	IT23	Quercus pubescens	1E-05	0.0004	0	5E-05	0.0496	0.0637	0	0.0649	1E-05	1E-05
5	IT64	Quercus pubescens	0	0.052	0.0289	0	0	0.0524	0.1013	0.1128	0	0.0514
8	1787	Quercus pubescens	0.0413	0.1568	0	0.0283	0.0722	0	0.0132	0.0344	0	0.064
9	1788	Quercus pubescens	0.0649	0.0562	0.0418	0.0388	0.2094	0.1181	0	0.1	0.1147	0.0278
10	1789	Quercus pubescens	0	0.0661	0.074	0	0.145	0.0343	0	0	0.0842	0.0854
12	IT48	Quercus ichnusae	2E-05	0.0505	0.0561	0	0	0	0.0347	0	0.0461	0
13	IT49	Quercus virgiliana	0.001	0.134	0.0309	0	0.058	0.0495	0.028	0	0.0782	1E-05
14	IT50	Quercus ichnusae	1E-05	0	0.0085	0	0.0049	0.0209	1E-05	0	0.0512	0
15	IT51	Quercus virgiliana	0	0.0641	0.0124	0	1E-05	0.0482	0.0928	0.0307	0.0221	2E-05
16	IT52	Quercus congesta	2E-05	0.141	0.0084	0.0033	0.018	1E-05	1E-05	0.0509	0	0.018
17	IT53	Quercus congesta	1E-05	0	0	0	0	0.0194	0	0	1E-05	7E-05
18	ES44	Quercus pubescens	0.0102	0	0.0898	0.1061	0.0212	1E-05	0.2298	0.0645	0.0195	0.0836
19	ES45	Quercus pubescens	0.0838	0	0.0281	0	0	0.0258	0	0	0.014	0
20	FR08	Quercus pubescens	0	0.0257	1E-05	0	0	0	0.0097	0	0	0
21	FR09	Quercus pubescens	0.0636	1E-05	0.0752	0	0.1068	1E-05	0	0.007	0	0.0692
22	FR10	Quercus pubescens	0	0.038	0.0198	0	1E-05	1E-05	0.0543	1E-05	0.0003	0
23	AT01	Quercus pubescens	1E-05	0.0289	3E-05	0	0	0.0092	0	0.0456	0.1035	0
25	HRO4	Quercus pubescens	0	0.0529	0.0499	0	0	0.0964	0.0061	0.0473	2E-05	0
26	HR05	Quercus pubescens	0.0673	0	0.0223	0	0	0	0	0	0	9E-05
27	HR07	Quercus pubescens	0.0844	0	0.0343	0	0.0886	0	0	0	0.1073	0.0878
28	GR11	Quercus pubescens	0.0491	0.0511	0.0123	0.1221	1E-05	0.0167	0	0.1386	0.0931	0.096
29	CZ30	Quercus pubescens	0	0.0158	8E-05	0	0.0245	1E-05	0	0	0	0.0266
30	RS35	Quercus pubescens	0	0	0	0	0.1	0	0.0212	0	0	1E-05
31	IT19	Quercus dalechampii	0.0372	0.0593	0.1204	0	0.0386	4E-05	0	0.1068	0	0.0026
32	IT20	Quercus petraea	0	0.0593	0.0813	4E-05	0	0	1E-05	0.01	0	0.04
33	IT46	Quercus petraea	0	0	0.0101	0.0038	0.0858	0.0185	0	0.0503	0.0005	0
34	IT47	Quercus petraea	0	0	1E-05	0	0.0597	0.0323	0.0475	0	0	0.0271
35	IT17	Quercus petraea subsp. austrotyrrhenica	1E-05	0	0	0	0.0802	1E-05	0.0139	0	8E-05	0.0325
36	IT16	Quercus petraea subsp. austrotyrrhenica	0	0.032	0.073	0	0.1997	0	0.0282	0	0.0864	0.1058
37	ES43	Quercus petraea	2E-05	0.0831	1E-05	6E-05	0.1069	0.0159	0.0835	0.0253	0	0
38	ATO2	Quercus petraea	0.0937	0	0	0	0	0	0.0665	0	0	0
39	HR06	Quercus petraea	0	0	0	0	0.0281	0.0038	0.0251	0	0.0155	0.1105
40	CZ31	Quercus petraea	0	0	1E-05	0.0155	1E-05	0	0.041	0	0	0
41	RO33	Quercus banatus	0	0.0202	0	0.0029	0.0047	0	0	0.0217	0	0.0227
42	RS36	Quercus petraea	0	0	1E-05	0	3E-05	0	0.0586	0.0611	0	3E-05
43	RS37	Quercus dalechampii	0.0414	1E-05	0.0167	0.044	0.0066	0.0063	1E-05	0	1E-05	0.1305
44	RS38	Quercus dalechampii	0	0	0.0425	0.051	0	0	1E-05	0.0209	0	0
45	RS67	Quercus dalechampii	0	0.0005	0.0005	0.2019	2E-05	0	0	0	0	0
46	ES41	Quercus robur	0	0.0795	0.1049	0.1312	0.1745	0.1272	0.0392	0.1678	0.1006	0.1799
48	IT14	Quercus robur	0.0025	0.025	0.0242	0	0	0.0309	0.0388	0.0065	0.0113	0
49	IT13	Quercus robur	2E-05	1E-05	0.1368	0.0676	0.0174	0	1E-05	0.0831	0.0169	0.0964
51	CZ32	Quercus robur	0.0419	0	0	0.0207	2E-05	0	0.0132	3E-05	0	0.0307
53	1T24	Quercus frainetto	2E-05	0.0153	0.0057	0.0349	0	0.0648	0.0521	0.1113	0	0.0682
54	IT26	Quercus frainetto	0.0627	0	1E-05	0.0291	0	0.024	0	0.0752	0	1E-05
55	IT12	Quercus frainetto	1E-05	0.0138	0	0.0667	0	0	0	0.0584	0	0
56	RS34	Quercus frainetto	0.1672	0.0586	0.0273	0	0.0649	0.0213	0	0.06	1E-05	0
57	ES40	Quercus pyrenaica	0	0.1031	1E-05	0.0004	0.0607	0	0	0	0	0
58	ES42	Quercus faginea	1E-05	0.0733	0.0389	0.1768	0.0343	0.1141	0.0242	4E-05	0.1279	0.0919

Supplementary File 9 Genetic diversity indices in the five clusters identified from the genetic structure analysis, considering only populations with proportion of membership (q_{i}) values ≥ 0.60. a: Cluster 1; b: Cluster 2; c: Cluster 3; d: Cluster 4; e: Cluster 5. N_{p} : private alleles; N_{a} : mean number of alleles; A_{r} : allelic richness (rarefacted for 28 gene copies); H_{0} : observed heterozygosity; H_{e} : expected heterozygosity; $\mathrm{F}_{\text {IS }}$: fixation coefficient
a

| No. Population | ID Population | No. Samples | Missing genotypes (\%) | \mathbf{N}_{p} | \mathbf{N}_{a} | $\mathbf{A}_{\mathrm{r}} \mathbf{2 8}$ | $\mathbf{H}_{\mathbf{o}}$ | \mathbf{H}_{e} | $\mathbf{F}_{\text {IS }}$ | \mathbf{p}-value ($\mathbf{F}_{\text {IS }}$) | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | IT18 | 20 | $0.3(1.5 \%)$ | 0 | 7.3 | 6.669 | 0.686 | 0.715 | 0.041 | 0.272 | | |
| $\mathbf{2}$ | IT22 | 20 | $0.1(0.5 \%)$ | 0 | 7.7 | 6.993 | 0.673 | 0.739 | 0.091 | 0.007 | $* *$ | |
| $\mathbf{3}$ | IT15 | 20 | $0.6(3.0 \%)$ | 0 | 7.8 | 7.061 | 0.651 | 0.704 | 0.077 | 0.041 | $*$ | |
| $\mathbf{4}$ | IT23 | 20 | $0.2(1.0 \%)$ | 0 | 8.0 | 7.078 | 0.659 | 0.707 | 0.069 | 0.077 | | |
| $\mathbf{2 0}$ | FRO8 | 20 | $0.6(3.0 \%)$ | 0 | 7.2 | 6.761 | 0.784 | 0.795 | 0.013 | 0.713 | | |
| $\mathbf{2 1}$ | FRO9 | 20 | $1.0(5.0 \%)$ | 1 | 8.3 | 7.654 | 0.747 | 0.801 | 0.069 | 0.027 | $*$ | |
| $\mathbf{2 3}$ | ATO1 | 20 | $0.4(2.0 \%)$ | 2 | 7.9 | 7.041 | 0.696 | 0.738 | 0.058 | 0.154 | | |
| $\mathbf{2 6}$ | HRO5 | 20 | $0.1(0.5 \%)$ | 0 | 7.3 | 6.635 | 0.799 | 0.742 | -0.080 | 0.027 | $*$ | |
| $\mathbf{2 7}$ | HRO7 | 20 | $1.3(6.5 \%)$ | 0 | 7.5 | 6.949 | 0.695 | 0.735 | 0.056 | 0.095 | | |
| $\mathbf{2 9}$ | CZ30 | 20 | $0.0(0.0 \%)$ | 0 | 8.3 | 7.605 | 0.745 | 0.760 | 0.020 | 0.483 | | |
| $\mathbf{3 0}$ | RS35 | 20 | $0.1(0.5 \%)$ | 1 | 7.9 | 7.229 | 0.779 | 0.763 | -0.023 | 0.550 | | |
| $\mathbf{3 6}$ | IT16 | 20 | $0.3(1.5 \%)$ | 0 | 6.4 | 6.041 | 0.669 | 0.765 | 0.128 | 0.000 | $* * *$ | |
| mean values | | 20 | | 0.3 | 7.6 | 6.976 | 0.715 | 0.747 | 0.043 | | | |

b

| No. Population | ID Population | No. Samples Missing genotypes (\%) | \mathbf{N}_{p} | \mathbf{N}_{a} | $\mathbf{A}_{\mathrm{r}} \mathbf{2 8}$ | $\mathbf{H}_{\mathbf{o}}$ | \mathbf{H}_{e} | $\mathbf{F}_{\text {IS }}$ | \mathbf{p}-value $\left(\mathbf{F}_{\text {IS }}\right)$ | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{5}$ | IT64 | 20 | $0.8(4.0 \%)$ | 0 | 7.5 | 6.784 | 0.620 | 0.698 | 0.114 | 0.003 | $* *$ |
| $\mathbf{8}$ | IT87 | 20 | $1.6(8.0 \%)$ | 0 | 7.5 | 7.045 | 0.668 | 0.734 | 0.093 | 0.013 | $*$ |
| $\mathbf{9}$ | IT88 | 20 | $1.4(7.0 \%)$ | 0 | 6.7 | 6.251 | 0.576 | 0.689 | 0.168 | 0.000 | $* * *$ |
| $\mathbf{1 0}$ | IT89 | 20 | $0.6(3.0 \%)$ | 0 | 6.5 | 6.069 | 0.664 | 0.719 | 0.078 | 0.021 | $*$ |
| $\mathbf{1 2}$ | IT48 | 20 | $0.1(0.5 \%)$ | 1 | 7.8 | 7.098 | 0.724 | 0.731 | 0.010 | 0.669 | |
| $\mathbf{1 3}$ | IT49 | 19 | $0.4(2.1 \%)$ | 0 | 6.5 | 6.099 | 0.588 | 0.658 | 0.108 | 0.007 | $* *$ |
| $\mathbf{1 4}$ | IT50 | 20 | $0.1(0.5 \%)$ | 0 | 8.0 | 7.329 | 0.709 | 0.745 | 0.049 | 0.141 | |
| $\mathbf{1 5}$ | IT51 | 20 | $0.7(3.5 \%)$ | 0 | 6.9 | 6.395 | 0.694 | 0.738 | 0.062 | 0.097 | |
| $\mathbf{1 6}$ | IT52 | 20 | $0.9(4.5 \%)$ | 0 | 7.9 | 7.208 | 0.668 | 0.740 | 0.099 | 0.005 | $* *$ |
| $\mathbf{1 7}$ | IT53 | 20 | $0.5(2.5 \%)$ | 1 | 7.5 | 6.889 | 0.752 | 0.742 | -0.013 | 0.675 | |
| $\mathbf{1 9}$ | ES45 | 20 | $0.6(3.0 \%)$ | 0 | 7.6 | 7.118 | 0.781 | 0.805 | 0.030 | 0.359 | |
| mean values | | 19.9 | | 0.2 | 7.3 | 6.753 | 0.677 | 0.727 | 0.073 | | |

c

No. Population	ID Population	No. Samples	Missing genotypes (\%)	N_{p}	N_{a}	$\mathrm{A}_{\mathrm{r}} 28$	H_{0}	H_{e}	$\mathrm{F}_{\text {IS }}$	p-val	
31	IT19	20	0.1 (0.5\%)	1	7.3	6.536	0.658	0.716	0.083	0.031	*
32	IT20	20	0.0 (0.0\%)	0	6.5	5.882	0.675	0.704	0.041	0.294	
33	IT46	20	0.3 (1.5\%)	0	6.5	6.034	0.690	0.721	0.044	0.261	
35	IT17	20	0.5 (2.5\%)	0	6.2	5.782	0.681	0.714	0.048	0.200	
37	ES43	20	0.3 (1.5\%)	1	6.3	5.832	0.625	0.704	0.115	0.007	**
38	AT02	20	0.0 (0.0\%)	0	7.6	6.719	0.745	0.719	-0.037	0.326	
39	HRO6	20	0.5 (2.5\%)	0	7.7	7.031	0.760	0.767	0.009	0.780	
40	CZ31	20	0.2 (1.0\%)	0	7.4	6.783	0.786	0.756	-0.041	0.291	
41	RO33	20	0.0 (0.0\%)	0	7.5	6.830	0.800	0.781	-0.024	0.518	
42	RS36	20	0.0 (0.0\%)	0	7.8	7.002	0.765	0.767	0.002	0.979	
44	RS38	20	0.0 (0.0\%)	1	6.7	6.201	0.745	0.739	-0.009	0.885	
45	RS67	14	0.0 (0.0\%)	1	5.9	5.900	0.750	0.731	-0.027	0.564	
mean values		19.5		0.37 .0		6.3780 .723		0.7350 .017			

d

| No. Population | ID Population | No. Samples Missing genotypes (\%) | \mathbf{N}_{p} | \mathbf{N}_{a} | $\mathbf{A}_{\mathrm{r}} \mathbf{2 8}$ | $\mathbf{H}_{\mathbf{o}}$ | \mathbf{H}_{e} | $\mathbf{F}_{\text {IS }}$ | \mathbf{p}-value ($\left.\mathbf{F}_{\text {IS }}\right)$ | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{4 6}$ | ES41 | 20 | $3.1(15.5 \%)$ | 0 | 6.4 | 6.185 | 0.523 | 0.718 | 0.279 | 0.000 | $* * *$ |
| $\mathbf{4 8}$ | IT14 | 20 | $0.0(0.0 \%)$ | 0 | 7.1 | 6.516 | 0.705 | 0.723 | 0.025 | 0.448 | |
| $\mathbf{4 9}$ | IT13 | 20 | $0.2(1.0 \%)$ | 2 | 5.5 | 5.243 | 0.623 | 0.689 | 0.098 | 0.025 | $*$ |
| $\mathbf{5 1}$ | CZ32 | 20 | $0.1(0.5 \%)$ | 0 | 6.8 | 6.351 | 0.734 | 0.733 | -0.002 | 0.988 | |
| $\mathbf{5 7}$ | ES40 | 20 | $0.0(0.0 \%)$ | 0 | 7.0 | 6.415 | 0.755 | 0.751 | -0.006 | 0.886 | |
| mean values | | | 20 | | 0.4 | 6.6 | 6.142 | 0.668 | 0.723 | 0.079 | |

e

No. Population	ID Population	No. Samples	Missing genotypes (\%)	N_{p}	N_{a}	Ar 28	H_{0}	H_{e}	$\mathrm{F}_{\text {IS }}$	p -val	
53	IT24	20	0.1 (0.5\%)	0	6.0	5.411	0.553	0.629	0.124	0.000	***
54	IT26	20	0.2 (1.0\%)	1	6.0	5.452	0.623	0.659	0.056	0.187	
55	IT12	20	0.0 (0.0\%)	0	6.3	5.633	0.640	0.638	-0.003	0.951	
56	RS34	20	0.4 (2.0\%)	0	6.7	5.968	0.629	0.671	0.064	0.141	
mean values		20		0.2	6.3	5.616	0.611	0.649	0.060		

Supplementary File 10 Pairwise populations differentiation (FST) values between the populations analysed

Population 1		Population 2		Fst	p value
1	IT18	2	IT22	0.0049	0.2058
1	IT18	3	IT15	0.0171	0.0120
1	IT18	4	IT23	0.0136	0.0310
1	IT18	5	IT64	0.0411	0.0000
1	IT18	8	IT87	0.0376	0.0000
1	IT18	9	IT88	0.0441	0.0000
1	IT18	10	IT89	0.0411	0.0000
1	IT18	12	IT48	0.0534	0.0000
1	IT18	13	IT49	0.0494	0.0000
1	IT18	14	IT50	0.0413	0.0000
1	IT18	15	IT51	0.0414	0.0000
1	IT18	16	IT52	0.0412	0.0000
1	IT18	17	IT53	0.0448	0.0000
1	IT18	18	ES44	0.0123	0.0549
1	IT18	19	ES45	0.0710	0.0000
1	IT18	20	FR08	0.0301	0.0020
1	IT18	21	FR09	0.0148	0.0180
1	IT18	22	FR10	0.0255	0.0040
1	IT18	23	AT01	0.0178	0.0050
1	IT18	25	HR04	0.0170	0.0070
1	IT18	26	HR05	0.0514	0.0000
1	IT18	27	HR07	0.0184	0.0080
1	IT18	28	GR11	0.0206	0.0090
1	IT18	29	CZ30	0.0070	0.1079
1	IT18	30	RS35	0.0222	0.0020
1	IT18	31	IT19	0.0557	0.0000
1	IT18	32	IT20	0.0859	0.0000
1	IT18	33	IT46	0.0872	0.0000
1	IT18	34	IT47	0.0726	0.0000
1	IT18	35	IT17	0.0760	0.0000
1	IT18	36	IT16	0.0489	0.0000
1	IT18	37	ES43	0.0685	0.0000
1	IT18	38	AT02	0.1123	0.0000
1	IT18	39	HR06	0.0571	0.0000
1	IT18	40	CZ31	0.0837	0.0000
1	IT18	41	RO33	0.0744	0.0000
1	IT18	42	RS36	0.0577	0.0000
1	IT18	43	RS37	0.0366	0.0000
1	IT18	44	RS38	0.0829	0.0000
1	IT18	45	RS67	0.0894	0.0000
1	IT18	46	ES41	0.1558	0.0000
1	IT18	48	IT14	0.1399	0.0000
1	IT18	49	IT13	0.1789	0.0000
1	IT18	51	CZ32	0.1330	0.0000
1	IT18	53	IT24	0.1387	0.0000
1	IT18	54	IT26	0.1176	0.0000
1	IT18	55	IT12	0.1107	0.0000
1	IT18	56	RS34	0.1228	0.0000
1	IT18	57	ES40	0.1200	0.0000
1	IT18	58	ES42	0.0650	0.0000

Population 1		Population 2		Fst	p value
2	IT22	3	IT15	0.0095	0.0669
2	IT22	4	IT23	0.0046	0.1828
2	IT22	5	IT64	0.0451	0.0000
2	IT22	8	IT87	0.0448	0.0000
2	IT22	9	IT88	0.0540	0.0000
2	IT22	10	IT89	0.0348	0.0000
2	IT22	12	IT48	0.0520	0.0000
2	IT22	13	IT49	0.0613	0.0000
2	IT22	14	IT50	0.0376	0.0000
2	IT22	15	IT51	0.0529	0.0000
2	IT22	16	IT52	0.0345	0.0000
2	IT22	17	IT53	0.0408	0.0000
2	IT22	18	ES44	0.0151	0.0250
2	IT22	19	ES45	0.0682	0.0000
2	IT22	20	FR08	0.0230	0.0000
2	IT22	21	FR09	0.0161	0.0040
2	IT22	22	FR10	0.0176	0.0070
2	IT22	23	AT01	0.0210	0.0000
2	IT22	25	HR04	0.0179	0.0040
2	IT22	26	HR05	0.0319	0.0000
2	IT22	27	HR07	0.0143	0.0220
2	IT22	28	GR11	0.0109	0.0559
2	IT22	29	CZ30	0.0049	0.1858
2	IT22	30	RS35	0.0136	0.0250
2	IT22	31	IT19	0.0496	0.0000
2	IT22	32	IT20	0.0904	0.0000
2	IT22	33	IT46	0.0898	0.0000
2	IT22	34	IT47	0.0686	0.0000
2	IT22	35	IT17	0.0829	0.0000
2	IT22	36	IT16	0.0428	0.0000
2	IT22	37	ES43	0.0618	0.0000
2	IT22	38	AT02	0.1229	0.0000
2	IT22	39	HR06	0.0648	0.0000
2	IT22	40	CZ31	0.0904	0.0000
2	IT22	41	RO33	0.0753	0.0000
2	IT22	42	RS36	0.0722	0.0000
2	IT22	43	RS37	0.0377	0.0000
2	IT22	44	RS38	0.0917	0.0000
2	IT22	45	RS67	0.1082	0.0000
2	IT22	46	ES41	0.1071	0.0000
2	IT22	48	IT14	0.1119	0.0000
2	IT22	49	IT13	0.1564	0.0000
2	IT22	51	CZ32	0.1117	0.0000
2	IT22	53	IT24	0.1246	0.0000
2	IT22	54	IT26	0.0923	0.0000
2	IT22	55	IT12	0.0958	0.0000
2	IT22	56	RS34	0.1022	0.0000
2	IT22	57	ES40	0.1039	0.0000
2	IT22	58	ES42	0.0533	0.0000
3	IT15	4	IT23	0.0114	0.0430

Population 1		Population 2		Fst	p value
3	IT15	5	IT64	0.0225	0.0020
3	IT15	8	IT87	0.0381	0.0000
3	IT15	9	IT88	0.0502	0.0000
3	IT15	10	IT89	0.0323	0.0000
3	IT15	12	IT48	0.0362	0.0000
3	IT15	13	IT49	0.0274	0.0020
3	IT15	14	IT50	0.0235	0.0020
3	IT15	15	IT51	0.0368	0.0000
3	IT15	16	IT52	0.0375	0.0000
3	IT15	17	IT53	0.0312	0.0000
3	IT15	18	ES44	0.0221	0.0040
3	IT15	19	ES45	0.0768	0.0000
3	IT15	20	FR08	0.0380	0.0000
3	IT15	21	FR09	0.0257	0.0000
3	IT15	22	FR10	0.0200	0.0090
3	IT15	23	AT01	0.0245	0.0040
3	IT15	25	HR04	0.0229	0.0020
3	IT15	26	HR05	0.0378	0.0000
3	IT15	27	HR07	0.0113	0.0470
3	IT15	28	GR11	0.0158	0.0210
3	IT15	29	CZ30	0.0091	0.0679
3	IT15	30	RS35	0.0212	0.0040
3	IT15	31	IT19	0.0599	0.0000
3	IT15	32	IT20	0.1050	0.0000
3	IT15	33	IT46	0.0839	0.0000
3	IT15	34	IT47	0.0669	0.0000
3	IT15	35	IT17	0.0921	0.0000
3	IT15	36	IT16	0.0603	0.0000
3	IT15	37	ES43	0.0587	0.0000
3	IT15	38	AT02	0.1201	0.0000
3	IT15	39	HR06	0.0770	0.0000
3	IT15	40	CZ31	0.0897	0.0000
3	IT15	41	RO33	0.1011	0.0000
3	IT15	42	RS36	0.0856	0.0000
3	IT15	43	RS37	0.0611	0.0000
3	IT15	44	RS38	0.1279	0.0000
3	IT15	45	RS67	0.1189	0.0000
3	IT15	46	ES41	0.1441	0.0000
3	IT15	48	IT14	0.1406	0.0000
3	IT15	49	IT13	0.1883	0.0000
3	IT15	51	CZ32	0.1454	0.0000
3	IT15	53	IT24	0.1309	0.0000
3	IT15	54	IT26	0.1146	0.0000
3	IT15	55	IT12	0.1125	0.0000
3	IT15	56	RS34	0.1166	0.0000
3	IT15	57	ES40	0.1253	0.0000
3	IT15	58	ES42	0.0755	0.0000
4	IT23	5	IT64	0.0334	0.0000
4	IT23	8	IT87	0.0319	0.0000
4	IT23	9	IT88	0.0442	0.0000

Population 1		Population 2		Fst	p value
4	IT23	10	IT89	0.0319	0.0000
4	IT23	12	IT48	0.0385	0.0000
4	IT23	13	IT49	0.0438	0.0000
4	IT23	14	IT50	0.0409	0.0000
4	IT23	15	IT51	0.0495	0.0000
4	IT23	16	IT52	0.0330	0.0000
4	IT23	17	IT53	0.0401	0.0000
4	IT23	18	ES44	0.0266	0.0020
4	IT23	19	ES45	0.0840	0.0000
4	IT23	20	FR08	0.0390	0.0000
4	IT23	21	FR09	0.0412	0.0000
4	IT23	22	FR10	0.0317	0.0000
4	IT23	23	AT01	0.0188	0.0020
4	IT23	25	HR04	0.0300	0.0000
4	IT23	26	HR05	0.0483	0.0000
4	IT23	27	HR07	0.0044	0.2228
4	IT23	28	GR11	0.0195	0.0090
4	IT23	29	CZ30	0.0022	0.3526
4	IT23	30	RS35	0.0277	0.0000
4	IT23	31	IT19	0.0863	0.0000
4	IT23	32	IT20	0.1276	0.0000
4	IT23	33	IT46	0.1082	0.0000
4	IT23	34	IT47	0.0787	0.0000
4	IT23	35	IT17	0.0760	0.0000
4	IT23	36	IT16	0.0365	0.0000
4	IT23	37	ES43	0.0869	0.0000
4	IT23	38	AT02	0.1391	0.0000
4	IT23	39	HR06	0.0817	0.0000
4	IT23	40	CZ31	0.1124	0.0000
4	IT23	41	RO33	0.0909	0.0000
4	IT23	42	RS36	0.0857	0.0000
4	IT23	43	RS37	0.0498	0.0000
4	IT23	44	RS38	0.1017	0.0000
4	IT23	45	RS67	0.1261	0.0000
4	IT23	46	ES41	0.1402	0.0000
4	IT23	48	IT14	0.1457	0.0000
4	IT23	49	IT13	0.1768	0.0000
4	IT23	51	CZ32	0.1410	0.0000
4	IT23	53	IT24	0.1248	0.0000
4	IT23	54	IT26	0.1031	0.0000
4	IT23	55	IT12	0.0925	0.0000
4	IT23	56	RS34	0.1173	0.0000
4	IT23	57	ES40	0.1220	0.0000
4	IT23	58	ES42	0.0811	0.0000
5	IT64	8	IT87	0.0041	0.2697
5	IT64	9	IT88	0.0056	0.2088
5	IT64	10	IT89	0.0121	0.0480
5	IT64	12	IT48	0.0231	0.0020
5	IT64	13	IT49	0.0136	0.0240
5	IT64	14	IT50	0.0148	0.0080

Population 1		Population 2		Fst	p value
5	IT64	15	IT51	0.0419	0.0000
5	IT64	16	IT52	0.0333	0.0000
5	IT64	17	IT53	0.0278	0.0000
5	IT64	18	ES44	0.0373	0.0000
5	IT64	19	ES45	0.0602	0.0000
5	IT64	20	FR08	0.0657	0.0000
5	IT64	21	FR09	0.0576	0.0000
5	IT64	22	FR10	0.0515	0.0000
5	IT64	23	AT01	0.0358	0.0000
5	IT64	25	HR04	0.0603	0.0000
5	IT64	26	HR05	0.0708	0.0000
5	IT64	27	HR07	0.0321	0.0000
5	IT64	28	GR11	0.0340	0.0000
5	IT64	29	CZ30	0.0375	0.0000
5	IT64	30	RS35	0.0532	0.0000
5	IT64	31	IT19	0.1094	0.0000
5	IT64	32	IT20	0.1393	0.0000
5	IT64	33	IT46	0.0808	0.0000
5	IT64	34	IT47	0.0617	0.0000
5	IT64	35	IT17	0.1107	0.0000
5	IT64	36	IT16	0.0765	0.0000
5	IT64	37	ES43	0.1122	0.0000
5	IT64	38	AT02	0.1483	0.0000
5	IT64	39	HR06	0.1056	0.0000
5	IT64	40	CZ31	0.1265	0.0000
5	IT64	41	RO33	0.1104	0.0000
5	IT64	42	RS36	0.1166	0.0000
5	IT64	43	RS37	0.0768	0.0000
5	IT64	44	RS38	0.1302	0.0000
5	IT64	45	RS67	0.1112	0.0000
5	IT64	46	ES41	0.1758	0.0000
5	IT64	48	IT14	0.1801	0.0000
5	IT64	49	IT13	0.2134	0.0000
5	IT64	51	CZ32	0.1721	0.0000
5	IT64	53	IT24	0.1496	0.0000
5	IT64	54	IT26	0.1389	0.0000
5	IT64	55	IT12	0.1365	0.0000
5	IT64	56	RS34	0.1470	0.0000
5	IT64	57	ES40	0.1437	0.0000
5	IT64	58	ES42	0.1022	0.0000
8	IT87	9	IT88	0.0143	0.0290
8	IT87	10	IT89	0.0194	0.0100
8	IT87	12	IT48	0.0251	0.0000
8	IT87	13	IT49	0.0303	0.0000
8	IT87	14	IT50	0.0143	0.0100
8	IT87	15	IT51	0.0379	0.0000
8	IT87	16	IT52	0.0261	0.0030
8	IT87	17	IT53	0.0243	0.0020
8	IT87	18	ES44	0.0415	0.0000
8	IT87	19	ES45	0.0556	0.0000

Population 1		Population 2		Fst	p value
8	IT87	20	FR08	0.0560	0.0000
8	IT87	21	FR09	0.0467	0.0000
8	IT87	22	FR10	0.0546	0.0000
8	IT87	23	AT01	0.0379	0.0000
8	IT87	25	HR04	0.0632	0.0000
8	IT87	26	HR05	0.0734	0.0000
8	IT87	27	HR07	0.0273	0.0000
8	IT87	28	GR11	0.0355	0.0000
8	IT87	29	CZ30	0.0409	0.0000
8	IT87	30	RS35	0.0538	0.0000
8	IT87	31	IT19	0.1041	0.0000
8	IT87	32	IT20	0.1325	0.0000
8	IT87	33	IT46	0.0856	0.0000
8	IT87	34	IT47	0.0564	0.0000
8	IT87	35	IT17	0.0984	0.0000
8	IT87	36	IT16	0.0625	0.0000
8	IT87	37	ES43	0.0951	0.0000
8	IT87	38	AT02	0.1386	0.0000
8	IT87	39	HR06	0.0839	0.0000
8	IT87	40	CZ31	0.1166	0.0000
8	IT87	41	RO33	0.0905	0.0000
8	IT87	42	RS36	0.0972	0.0000
8	IT87	43	RS37	0.0604	0.0000
8	IT87	44	RS38	0.0990	0.0000
8	IT87	45	RS67	0.1097	0.0000
8	IT87	46	ES41	0.1532	0.0000
8	IT87	48	IT14	0.1503	0.0000
8	IT87	49	IT13	0.1686	0.0000
8	IT87	51	CZ32	0.1515	0.0000
8	IT87	53	IT24	0.1240	0.0000
8	IT87	54	IT26	0.1136	0.0000
8	IT87	55	IT12	0.1061	0.0000
8	IT87	56	RS34	0.1288	0.0000
8	IT87	57	ES40	0.1222	0.0000
8	IT87	58	ES42	0.0964	0.0000
9	IT88	10	IT89	0.0158	0.0300
9	IT88	12	IT48	0.0287	0.0000
9	IT88	13	IT49	0.0309	0.0000
9	IT88	14	IT50	0.0240	0.0000
9	IT88	15	IT51	0.0506	0.0000
9	IT88	16	IT52	0.0325	0.0000
9	IT88	17	IT53	0.0318	0.0000
9	IT88	18	ES44	0.0462	0.0000
9	IT88	19	ES45	0.0501	0.0000
9	IT88	20	FR08	0.0660	0.0000
9	IT88	21	FR09	0.0604	0.0000
9	IT88	22	FR10	0.0552	0.0000
9	IT88	23	AT01	0.0371	0.0000
9	IT88	25	HR04	0.0524	0.0000
9	IT88	26	HR05	0.0729	0.0000

Population 1		Population 2		Fst	p value
9	1788	27	HR07	0.0311	0.0000
9	1788	28	GR11	0.0406	0.0020
9	1788	29	CZ30	0.0431	0.0000
9	1788	30	RS35	0.0613	0.0000
9	1788	31	IT19	0.1091	0.0000
9	1788	32	1 I20	0.1347	0.0000
9	1788	33	IT46	0.0905	0.0000
9	1788	34	IT47	0.0695	0.0000
9	1788	35	1717	0.1126	0.0000
9	1788	36	IT16	0.0777	0.0000
9	1788	37	ES43	0.1183	0.0000
9	1788	38	AT02	0.1418	0.0000
9	1788	39	HRO6	0.0971	0.0000
9	1788	40	CZ31	0.1305	0.0000
9	1788	41	RO33	0.1073	0.0000
9	1788	42	RS36	0.1079	0.0000
9	1788	43	RS37	0.0736	0.0000
9	1788	44	RS38	0.1334	0.0000
9	1788	45	RS67	0.1101	0.0000
9	1788	46	ES41	0.1771	0.0000
9	1788	48	IT14	0.1819	0.0000
9	1788	49	IT13	0.1872	0.0000
9	1788	51	CZ32	0.1666	0.0000
9	1788	53	IT24	0.1482	0.0000
9	1788	54	IT26	0.1359	0.0000
9	1788	55	IT12	0.1329	0.0000
9	1788	56	RS34	0.1429	0.0000
9	1788	57	ES40	0.1264	0.0000
9	1788	58	ES42	0.1060	0.0000
10	1789	12	1748	0.0322	0.0000
10	1789	13	IT49	0.0409	0.0000
10	1789	14	1750	0.0176	0.0070
10	1789	15	IT51	0.0423	0.0000
10	1789	16	1 I52	0.0354	0.0000
10	1789	17	IT53	0.0245	0.0020
10	1789	18	ES44	0.0433	0.0000
10	1789	19	ES45	0.0660	0.0000
10	1789	20	FR08	0.0634	0.0000
10	1789	21	FR09	0.0584	0.0000
10	1789	22	FR10	0.0526	0.0000
10	1789	23	AT01	0.0350	0.0000
10	1789	25	HRO4	0.0560	0.0000
10	1789	26	HR05	0.0513	0.0000
10	1789	27	HRO7	0.0314	0.0000
10	1789	28	GR11	0.0296	0.0000
10	1789	29	CZ30	0.0415	0.0000
10	1789	30	RS35	0.0494	0.0000
10	1789	31	IT19	0.0935	0.0000
10	1789	32	IT20	0.1273	0.0000
10	1789	33	IT46	0.0946	0.0000

Population 1		Population 2		Fst	p value
10	IT89	34	IT47	0.0700	0.0000
10	1789	35	IT17	0.1051	0.0000
10	1789	36	IT16	0.0716	0.0000
10	1789	37	ES43	0.1071	0.0000
10	1789	38	AT02	0.1418	0.0000
10	1789	39	HR06	0.0877	0.0000
10	1789	40	CZ31	0.1247	0.0000
10	1789	41	RO33	0.0941	0.0000
10	1789	42	RS36	0.1004	0.0000
10	1789	43	RS37	0.0635	0.0000
10	1789	44	RS38	0.1215	0.0000
10	1789	45	RS67	0.1039	0.0000
10	1789	46	ES41	0.1638	0.0000
10	1789	48	IT14	0.1573	0.0000
10	1789	49	IT13	0.1756	0.0000
10	IT89	51	CZ32	0.1566	0.0000
10	1789	53	IT24	0.1286	0.0000
10	1789	54	IT26	0.1184	0.0000
10	1789	55	IT12	0.1164	0.0000
10	1789	56	RS34	0.1267	0.0000
10	1789	57	ES40	0.1332	0.0000
10	1789	58	ES42	0.1021	0.0000
12	1748	13	IT49	0.0222	0.0000
12	1748	14	IT50	0.0209	0.0020
12	1T48	15	IT51	0.0246	0.0000
12	1748	16	1 I52	0.0189	0.0040
12	1T48	17	IT53	0.0305	0.0000
12	1T48	18	ES44	0.0400	0.0000
12	1748	19	ES45	0.0523	0.0000
12	1748	20	FR08	0.0618	0.0000
12	1748	21	FR09	0.0470	0.0000
12	1748	22	FR10	0.0539	0.0000
12	1748	23	ATO1	0.0476	0.0000
12	1T48	25	HR04	0.0442	0.0000
12	1748	26	HR05	0.0541	0.0000
12	1T48	27	HR07	0.0359	0.0000
12	1T48	28	GR11	0.0275	0.0000
12	1748	29	CZ30	0.0339	0.0000
12	1748	30	RS35	0.0559	0.0000
12	1748	31	IT19	0.0960	0.0000
12	1748	32	IT20	0.1345	0.0000
12	1748	33	IT46	0.0758	0.0000
12	1748	34	IT47	0.0628	0.0000
12	1748	35	IT17	0.1029	0.0000
12	1T48	36	IT16	0.0736	0.0000
12	1T48	37	ES43	0.0954	0.0000
12	1748	38	AT02	0.1389	0.0000
12	1748	39	HRO6	0.0873	0.0000
12	1748	40	CZ31	0.1161	0.0000
12	1748	41	RO33	0.0970	0.0000

Population 1		Population 2		Fst	p value
12	IT48	42	RS36	0.0997	0.0000
12	1748	43	RS37	0.0768	0.0000
12	1748	44	RS38	0.1250	0.0000
12	1748	45	RS67	0.1142	0.0000
12	1748	46	ES41	0.1429	0.0000
12	1748	48	IT14	0.1578	0.0000
12	1748	49	IT13	0.1626	0.0000
12	1748	51	CZ32	0.1507	0.0000
12	1748	53	IT24	0.1322	0.0000
12	1748	54	IT26	0.1272	0.0000
12	1748	55	IT12	0.1237	0.0000
12	1748	56	RS34	0.1235	0.0000
12	1748	57	ES40	0.1092	0.0000
12	1748	58	ES42	0.0993	0.0000
13	1749	14	IT50	0.0261	0.0020
13	1749	15	IT51	0.0355	0.0020
13	1749	16	1752	0.0370	0.0000
13	1749	17	IT53	0.0305	0.0000
13	1749	18	ES44	0.0499	0.0000
13	1749	19	ES45	0.0770	0.0000
13	1749	20	FR08	0.0731	0.0000
13	1749	21	FR09	0.0621	0.0000
13	1749	22	FR10	0.0587	0.0000
13	1749	23	AT01	0.0502	0.0000
13	1749	25	HRO4	0.0597	0.0000
13	1749	26	HR05	0.0678	0.0000
13	1749	27	HRO7	0.0397	0.0000
13	1T49	28	GR11	0.0399	0.0000
13	IT49	29	CZ30	0.0313	0.0000
13	IT49	30	RS35	0.0586	0.0000
13	1749	31	IT19	0.1027	0.0000
13	1749	32	IT20	0.1465	0.0000
13	1749	33	IT46	0.0963	0.0000
13	1749	34	IT47	0.0798	0.0000
13	1749	35	IT17	0.1176	0.0000
13	1749	36	IT16	0.0813	0.0000
13	IT49	37	ES43	0.1007	0.0000
13	IT49	38	AT02	0.1565	0.0000
13	IT49	39	HRO6	0.0996	0.0000
13	1749	40	CZ31	0.1244	0.0000
13	1749	41	RO33	0.1224	0.0000
13	1749	42	RS36	0.1200	0.0000
13	1749	43	RS37	0.0972	0.0000
13	1749	44	RS38	0.1512	0.0000
13	1749	45	RS67	0.1340	0.0000
13	1749	46	ES41	0.1871	0.0000
13	IT49	48	IT14	0.1870	0.0000
13	IT49	49	IT13	0.2155	0.0000
13	1749	51	CZ32	0.1749	0.0000
13	1749	53	IT24	0.1641	0.0000

Population 1		Population 2		Fst	p value
13	IT49	54	IT26	0.1549	0.0000
13	IT49	55	IT12	0.1424	0.0000
13	IT49	56	RS34	0.1625	0.0000
13	IT49	57	ES40	0.1364	0.0000
13	IT49	58	ES42	0.1107	0.0000
14	1750	15	IT51	0.0209	0.0040
14	IT50	16	IT52	0.0198	0.0030
14	IT50	17	IT53	0.0156	0.0040
14	IT50	18	ES44	0.0258	0.0000
14	IT50	19	ES45	0.0432	0.0000
14	IT50	20	FR08	0.0475	0.0000
14	1750	21	FRO9	0.0369	0.0000
14	1 I50	22	FR10	0.0305	0.0000
14	IT50	23	AT01	0.0400	0.0000
14	IT50	25	HRO4	0.0396	0.0000
14	IT50	26	HRO5	0.0478	0.0000
14	IT50	27	HRO7	0.0239	0.0000
14	IT50	28	GR11	0.0251	0.0030
14	1750	29	CZ30	0.0351	0.0000
14	1750	30	RS35	0.0423	0.0000
14	1 I50	31	IT19	0.0849	0.0000
14	1 I50	32	IT20	0.1240	0.0000
14	IT50	33	IT46	0.0788	0.0000
14	IT50	34	IT47	0.0588	0.0000
14	IT50	35	IT17	0.1162	0.0000
14	IT50	36	IT16	0.0675	0.0000
14	IT50	37	ES43	0.0876	0.0000
14	1750	38	AT02	0.1277	0.0000
14	1750	39	HRO6	0.0866	0.0000
14	1750	40	CZ31	0.1021	0.0000
14	1 I50	41	RO33	0.1035	0.0000
14	1 I50	42	RS36	0.0967	0.0000
14	IT50	43	RS37	0.0725	0.0000
14	1750	44	RS38	0.1335	0.0000
14	IT50	45	RS67	0.1056	0.0000
14	IT50	46	ES41	0.1476	0.0000
14	1750	48	IT14	0.1551	0.0000
14	IT50	49	IT13	0.1850	0.0000
14	IT50	51	CZ32	0.1478	0.0000
14	IT50	53	IT24	0.1329	0.0000
14	IT50	54	IT26	0.1299	0.0000
14	1750	55	1712	0.1228	0.0000
14	1750	56	RS34	0.1255	0.0000
14	IT50	57	ES40	0.1232	0.0000
14	IT50	58	ES42	0.0852	0.0000
15	IT51	16	1752	0.0184	0.0080
15	IT51	17	IT53	0.0296	0.0000
15	IT51	18	ES44	0.0354	0.0000
15	IT51	19	ES45	0.0443	0.0000
15	IT51	20	FR08	0.0489	0.0000

Population 1		Population 2		Fst	p value
15	IT51	21	FR09	0.0368	0.0000
15	IT51	22	FR10	0.0466	0.0000
15	IT51	23	AT01	0.0531	0.0000
15	IT51	25	HRO4	0.0328	0.0000
15	IT51	26	HRO5	0.0488	0.0000
15	IT51	27	HR07	0.0428	0.0000
15	IT51	28	GR11	0.0326	0.0000
15	IT51	29	CZ30	0.0281	0.0000
15	IT51	30	RS35	0.0419	0.0000
15	IT51	31	IT19	0.0717	0.0000
15	IT51	32	IT20	0.1008	0.0000
15	IT51	33	1746	0.0688	0.0000
15	IT51	34	1747	0.0488	0.0000
15	IT51	35	$1 T 17$	0.0873	0.0000
15	IT51	36	IT16	0.0671	0.0000
15	IT51	37	ES43	0.0783	0.0000
15	IT51	38	AT02	0.1124	0.0000
15	IT51	39	HRO6	0.0605	0.0000
15	IT51	40	CZ31	0.0825	0.0000
15	IT51	41	RO33	0.0746	0.0000
15	IT51	42	RS36	0.0623	0.0000
15	IT51	43	RS37	0.0598	0.0000
15	IT51	44	RS38	0.1049	0.0000
15	IT51	45	RS67	0.0826	0.0000
15	IT51	46	ES41	0.1475	0.0000
15	IT51	48	IT14	0.1318	0.0000
15	IT51	49	IT13	0.1774	0.0000
15	IT51	51	CZ32	0.1282	0.0000
15	IT51	53	IT24	0.1277	0.0000
15	IT51	54	IT26	0.1296	0.0000
15	IT51	55	IT12	0.1280	0.0000
15	IT51	56	RS34	0.1187	0.0000
15	IT51	57	ES40	0.1169	0.0000
15	IT51	58	ES42	0.0909	0.0000
16	1752	17	IT53	0.0093	0.0669
16	1752	18	ES44	0.0281	0.0000
16	$1 T 52$	19	ES45	0.0433	0.0000
16	IT52	20	FR08	0.0422	0.0000
16	$1 T 52$	21	FR09	0.0318	0.0000
16	1752	22	FR10	0.0291	0.0000
16	1 I52	23	AT01	0.0447	0.0000
16	IT52	25	HRO4	0.0339	0.0000
16	IT52	26	HR05	0.0504	0.0000
16	IT52	27	HRO7	0.0388	0.0000
16	1752	28	GR11	0.0387	0.0000
16	IT52	29	CZ30	0.0287	0.0000
16	1752	30	RS35	0.0353	0.0000
16	$1 T 52$	31	IT19	0.0700	0.0000
16	IT52	32	IT20	0.1027	0.0000
16	1 I52	33	IT46	0.0675	0.0000

Population 1		Population 2		Fst	p value
16	IT52	34	IT47	0.0476	0.0000
16	1752	35	IT17	0.1078	0.0000
16	1752	36	IT16	0.0587	0.0000
16	IT52	37	ES43	0.0884	0.0000
16	1752	38	AT02	0.1301	0.0000
16	1752	39	HRO6	0.0785	0.0000
16	IT52	40	CZ31	0.0935	0.0000
16	$1 T 52$	41	RO33	0.0858	0.0000
16	IT52	42	RS36	0.0799	0.0000
16	IT52	43	RS37	0.0599	0.0000
16	1 I52	44	RS38	0.1167	0.0000
16	IT52	45	RS67	0.0819	0.0000
16	IT52	46	ES41	0.1350	0.0000
16	IT52	48	IT14	0.1363	0.0000
16	IT52	49	IT13	0.1539	0.0000
16	IT52	51	CZ32	0.1297	0.0000
16	$1 T 52$	53	IT24	0.1346	0.0000
16	IT52	54	IT26	0.1201	0.0000
16	IT52	55	IT12	0.1304	0.0000
16	1752	56	RS34	0.1292	0.0000
16	IT52	57	ES40	0.1059	0.0000
16	1752	58	ES42	0.0722	0.0000
17	IT53	18	ES44	0.0259	0.0000
17	IT53	19	ES45	0.0474	0.0000
17	IT53	20	FR08	0.0447	0.0000
17	IT53	21	FR09	0.0391	0.0000
17	1753	22	FR10	0.0333	0.0000
17	IT53	23	AT01	0.0352	0.0000
17	1753	25	HR04	0.0493	0.0000
17	IT53	26	HR05	0.0634	0.0000
17	IT53	27	HRO7	0.0338	0.0000
17	IT53	28	GR11	0.0308	0.0000
17	IT53	29	CZ30	0.0301	0.0000
17	IT53	30	RS35	0.0347	0.0000
17	IT53	31	IT19	0.0825	0.0000
17	1753	32	IT20	0.1142	0.0000
17	IT53	33	IT46	0.0747	0.0000
17	1753	34	IT47	0.0512	0.0000
17	IT53	35	IT17	0.1113	0.0000
17	1753	36	IT16	0.0592	0.0000
17	IT53	37	ES43	0.0890	0.0000
17	IT53	38	AT02	0.1395	0.0000
17	IT53	39	HRO6	0.0869	0.0000
17	IT53	40	CZ31	0.0976	0.0000
17	IT53	41	RO33	0.1024	0.0000
17	IT53	42	RS36	0.0943	0.0000
17	IT53	43	RS37	0.0702	0.0000
17	IT53	44	RS38	0.1306	0.0000
17	IT53	45	RS67	0.1055	0.0000
17	1753	46	ES41	0.1435	0.0000

Population 1		Population 2		Fst	p value
17	1753	48	IT14	0.1414	0.0000
17	IT53	49	IT13	0.1741	0.0000
17	1753	51	CZ32	0.1365	0.0000
17	IT53	53	IT24	0.1359	0.0000
17	1 I53	54	IT26	0.1239	0.0000
17	1 T53	55	IT12	0.1244	0.0000
17	IT53	56	RS34	0.1314	0.0000
17	IT53	57	ES40	0.1161	0.0000
17	IT53	58	ES42	0.0871	0.0000
18	ES44	19	ES45	0.0127	0.0210
18	ES44	20	FR08	0.0077	0.1139
18	ES44	21	FR09	0.0021	0.3297
18	ES44	22	FR10	0.0089	0.0909
18	ES44	23	AT01	0.0295	0.0000
18	ES44	25	HRO4	0.0206	0.0050
18	ES44	26	HR05	0.0468	0.0000
18	ES44	27	HRO7	0.0176	0.0150
18	ES44	28	GR11	0.0187	0.0160
18	ES44	29	CZ30	0.0099	0.0490
18	ES44	30	RS35	0.0211	0.0050
18	ES44	31	IT19	0.0468	0.0000
18	ES44	32	1720	0.0613	0.0000
18	ES44	33	1746	0.0574	0.0000
18	ES44	34	1747	0.0418	0.0000
18	ES44	35	IT17	0.0719	0.0000
18	ES44	36	IT16	0.0338	0.0000
18	ES44	37	ES43	0.0666	0.0000
18	ES44	38	AT02	0.0922	0.0000
18	ES44	39	HRO6	0.0502	0.0000
18	ES44	40	CZ31	0.0575	0.0000
18	ES44	41	RO33	0.0602	0.0000
18	ES44	42	RS36	0.0545	0.0000
18	ES44	43	RS37	0.0253	0.0000
18	ES44	44	RS38	0.0796	0.0000
18	ES44	45	RS67	0.0687	0.0000
18	ES44	46	ES41	0.1078	0.0000
18	ES44	48	IT14	0.1088	0.0000
18	ES44	49	IT13	0.1487	0.0000
18	ES44	51	CZ32	0.1025	0.0000
18	ES44	53	IT24	0.1236	0.0000
18	ES44	54	IT26	0.1069	0.0000
18	ES44	55	IT12	0.1099	0.0000
18	ES44	56	RS34	0.1023	0.0000
18	ES44	57	ES40	0.0808	0.0000
18	ES44	58	ES42	0.0293	0.0030
19	ES45	20	FR08	0.0332	0.0000
19	ES45	21	FR09	0.0290	0.0000
19	ES45	22	FR10	0.0496	0.0000
19	ES45	23	AT01	0.0621	0.0000
19	ES45	25	HR04	0.0495	0.0000

Population 1		Population 2		Fst	p value
19	ES45	26	HR05	0.0636	0.0000
19	ES45	27	HR07	0.0594	0.0000
19	ES45	28	GR11	0.0385	0.0000
19	ES45	29	CZ30	0.0570	0.0000
19	ES45	30	RS35	0.0622	0.0000
19	ES45	31	IT19	0.0684	0.0000
19	ES45	32	IT20	0.0683	0.0000
19	ES45	33	1746	0.0348	0.0000
19	ES45	34	1747	0.0274	0.0000
19	ES45	35	$1 T 17$	0.0787	0.0000
19	ES45	36	IT16	0.0537	0.0000
19	ES45	37	ES43	0.0848	0.0000
19	ES45	38	AT02	0.0795	0.0000
19	ES45	39	HRO6	0.0544	0.0000
19	ES45	40	CZ31	0.0640	0.0000
19	ES45	41	RO33	0.0512	0.0000
19	ES45	42	RS36	0.0525	0.0000
19	ES45	43	RS37	0.0485	0.0000
19	ES45	44	RS38	0.0818	0.0000
19	ES45	45	RS67	0.0455	0.0000
19	ES45	46	ES41	0.1117	0.0000
19	ES45	48	IT14	0.1122	0.0000
19	ES45	49	IT13	0.1369	0.0000
19	ES45	51	CZ32	0.1075	0.0000
19	ES45	53	IT24	0.1414	0.0000
19	ES45	54	IT26	0.1342	0.0000
19	ES45	55	IT12	0.1493	0.0000
19	ES45	56	RS34	0.1210	0.0000
19	ES45	57	ES40	0.0792	0.0000
19	ES45	58	ES42	0.0458	0.0000
20	FR08	21	FR09	0.0006	0.4196
20	FR08	22	FR10	-0.0044	0.7173
20	FR08	23	AT01	0.0388	0.0000
20	FR08	25	HRO4	0.0216	0.0000
20	FR08	26	HR05	0.0339	0.0000
20	FR08	27	HRO7	0.0251	0.0020
20	FR08	28	GR11	0.0229	0.0040
20	FR08	29	CZ30	0.0247	0.0000
20	FR08	30	RS35	0.0364	0.0000
20	FR08	31	IT19	0.0449	0.0000
20	FR08	32	IT20	0.0623	0.0000
20	FR08	33	IT46	0.0685	0.0000
20	FR08	34	1747	0.0521	0.0000
20	FR08	35	IT17	0.0546	0.0000
20	FR08	36	IT16	0.0283	0.0000
20	FR08	37	ES43	0.0422	0.0000
20	FR08	38	AT02	0.0740	0.0000
20	FR08	39	HR06	0.0387	0.0000
20	FR08	40	CZ31	0.0435	0.0000
20	FR08	41	RO33	0.0426	0.0000

Population 1		Population 2		Fst	p value
20	FR08	42	RS36	0.0355	0.0000
20	FR08	43	RS37	0.0309	0.0000
20	FR08	44	RS38	0.0705	0.0000
20	FR08	45	RS67	0.0642	0.0000
20	FR08	46	ES41	0.0857	0.0000
20	FR08	48	IT14	0.0800	0.0000
20	FR08	49	IT13	0.1231	0.0000
20	FR08	51	CZ32	0.0787	0.0000
20	FR08	53	IT24	0.1253	0.0000
20	FR08	54	IT26	0.0967	0.0000
20	FR08	55	IT12	0.1150	0.0000
20	FR08	56	RS34	0.0965	0.0000
20	FR08	57	ES40	0.0784	0.0000
20	FR08	58	ES42	0.0365	0.0000
21	FR09	22	FR10	0.0098	0.0609
21	FR09	23	AT01	0.0399	0.0000
21	FR09	25	HR04	0.0126	0.0200
21	FR09	26	HR05	0.0398	0.0000
21	FR09	27	HR07	0.0318	0.0000
21	FR09	28	GR11	0.0157	0.0240
21	FR09	29	CZ30	0.0132	0.0130
21	FR09	30	RS35	0.0195	0.0020
21	FR09	31	IT19	0.0287	0.0000
21	FR09	32	IT20	0.0474	0.0000
21	FR09	33	IT46	0.0533	0.0000
21	FR09	34	IT47	0.0411	0.0000
21	FR09	35	IT17	0.0682	0.0000
21	FR09	36	IT16	0.0393	0.0000
21	FR09	37	ES43	0.0349	0.0000
21	FR09	38	AT02	0.0766	0.0000
21	FR09	39	HR06	0.0335	0.0000
21	FR09	40	CZ31	0.0366	0.0000
21	FR09	41	RO33	0.0366	0.0000
21	FR09	42	RS36	0.0280	0.0000
21	FR09	43	RS37	0.0235	0.0030
21	FR09	44	RS38	0.0567	0.0000
21	FR09	45	RS67	0.0661	0.0000
21	FR09	46	ES41	0.0891	0.0000
21	FR09	48	IT14	0.0878	0.0000
21	FR09	49	IT13	0.1225	0.0000
21	FR09	51	CZ32	0.0767	0.0000
21	FR09	53	IT24	0.1149	0.0000
21	FR09	54	IT26	0.0933	0.0000
21	FR09	55	IT12	0.0976	0.0000
21	FR09	56	RS34	0.0918	0.0000
21	FR09	57	ES40	0.0802	0.0000
21	FR09	58	ES42	0.0461	0.0000
22	FR10	23	AT01	0.0388	0.0000
22	FR10	25	HR04	0.0156	0.0120
22	FR10	26	HR05	0.0381	0.0000

Population 1		Population 2		Fst	p value
22	FR10	27	HR07	0.0243	0.0030
22	FR10	28	GR11	0.0284	0.0000
22	FR10	29	CZ30	0.0190	0.0050
22	FR10	30	RS35	0.0331	0.0000
22	FR10	31	IT19	0.0499	0.0000
22	FR10	32	IT20	0.0740	0.0000
22	FR10	33	IT46	0.0706	0.0000
22	FR10	34	IT47	0.0548	0.0000
22	FR10	35	IT17	0.0864	0.0000
22	FR10	36	IT16	0.0519	0.0000
22	FR10	37	ES43	0.0598	0.0000
22	FR10	38	AT02	0.1031	0.0000
22	FR10	39	HR06	0.0602	0.0000
22	FR10	40	CZ31	0.0576	0.0000
22	FR10	41	RO33	0.0776	0.0000
22	FR10	42	RS36	0.0630	0.0000
22	FR10	43	RS37	0.0461	0.0000
22	FR10	44	RS38	0.1105	0.0000
22	FR10	45	RS67	0.0895	0.0000
22	FR10	46	ES41	0.1080	0.0000
22	FR10	48	IT14	0.1106	0.0000
22	FR10	49	IT13	0.1533	0.0000
22	FR10	51	CZ32	0.1052	0.0000
22	FR10	53	IT24	0.1339	0.0000
22	FR10	54	IT26	0.1097	0.0000
22	FR10	55	IT12	0.1184	0.0000
22	FR10	56	RS34	0.1097	0.0000
22	FR10	57	ES40	0.1016	0.0000
22	FR10	58	ES42	0.0547	0.0000
23	AT01	25	HR04	0.0324	0.0000
23	AT01	26	HR05	0.0451	0.0000
23	AT01	27	HR07	0.0119	0.0460
23	AT01	28	GR11	0.0167	0.0180
23	AT01	29	CZ30	0.0168	0.0030
23	AT01	30	RS35	0.0330	0.0000
23	AT01	31	IT19	0.0853	0.0000
23	AT01	32	IT20	0.1041	0.0000
23	AT01	33	IT46	0.0961	0.0000
23	AT01	34	IT47	0.0723	0.0000
23	AT01	35	IT17	0.0730	0.0000
23	AT01	36	IT16	0.0389	0.0000
23	AT01	37	ES43	0.0784	0.0000
23	AT01	38	AT02	0.1064	0.0000
23	AT01	39	HR06	0.0685	0.0000
23	AT01	40	CZ31	0.0907	0.0000
23	AT01	41	RO33	0.0803	0.0000
23	AT01	42	RS36	0.0691	0.0000
23	AT01	43	RS37	0.0510	0.0000
23	AT01	44	RS38	0.1003	0.0000
23	AT01	45	RS67	0.1090	0.0000

Population 1		Population 2		Fst	p value
23	AT01	46	ES41	0.1294	0.0000
23	AT01	48	IT14	0.1321	0.0000
23	AT01	49	IT13	0.1632	0.0000
23	AT01	51	CZ32	0.1262	0.0000
23	AT01	53	IT24	0.1383	0.0000
23	AT01	54	1726	0.1109	0.0000
23	AT01	55	IT12	0.1220	0.0000
23	AT01	56	RS34	0.1198	0.0000
23	AT01	57	ES40	0.0973	0.0000
23	AT01	58	ES42	0.0611	0.0000
25	HRO4	26	HR05	0.0232	0.0030
25	HRO4	27	HRO7	0.0191	0.0060
25	HRO4	28	GR11	0.0197	0.0050
25	HRO4	29	CZ30	0.0072	0.0889
25	HRO4	30	RS35	0.0325	0.0000
25	HRO4	31	IT19	0.0365	0.0000
25	HRO4	32	1720	0.0659	0.0000
25	HRO4	33	IT46	0.0557	0.0000
25	HRO4	34	1747	0.0452	0.0000
25	HRO4	35	IT17	0.0639	0.0000
25	HRO4	36	IT16	0.0417	0.0000
25	HRO4	37	ES43	0.0477	0.0000
25	HRO4	38	AT02	0.0831	0.0000
25	HRO4	39	HRO6	0.0420	0.0000
25	HRO4	40	CZ31	0.0523	0.0000
25	HRO4	41	RO33	0.0621	0.0000
25	HRO4	42	RS36	0.0427	0.0000
25	HRO4	43	RS37	0.0372	0.0000
25	HRO4	44	RS38	0.0953	0.0000
25	HRO4	45	RS67	0.0861	0.0000
25	HRO4	46	ES41	0.1285	0.0000
25	HRO4	48	IT14	0.1275	0.0000
25	HRO4	49	IT13	0.1661	0.0000
25	HRO4	51	CZ32	0.1143	0.0000
25	HR04	53	1724	0.1258	0.0000
25	HRO4	54	IT26	0.1040	0.0000
25	HRO4	55	IT12	0.1053	0.0000
25	HRO4	56	RS34	0.0964	0.0000
25	HRO4	57	ES40	0.1113	0.0000
25	HRO4	58	ES42	0.0492	0.0000
26	HRO5	27	HRO7	0.0215	0.0000
26	HRO5	28	GR11	0.0226	0.0080
26	HRO5	29	CZ30	0.0250	0.0020
26	HRO5	30	RS35	0.0396	0.0000
26	HRO5	31	IT19	0.0584	0.0000
26	HRO5	32	IT20	0.1009	0.0000
26	HRO5	33	1746	0.0719	0.0000
26	HRO5	34	1747	0.0614	0.0000
26	HRO5	35	IT17	0.0809	0.0000
26	HR05	36	IT16	0.0575	0.0000

Population 1		Population 2		Fst	p value
26	HR05	37	ES43	0.0714	0.0000
26	HR05	38	AT02	0.1028	0.0000
26	HRO5	39	HRO6	0.0582	0.0000
26	HRO5	40	CZ31	0.0737	0.0000
26	HR05	41	RO33	0.0648	0.0000
26	HR05	42	RS36	0.0627	0.0000
26	HR05	43	RS37	0.0518	0.0000
26	HRO5	44	RS38	0.1150	0.0000
26	HR05	45	RS67	0.0978	0.0000
26	HR05	46	ES41	0.1299	0.0000
26	HR05	48	IT14	0.1178	0.0000
26	HRO5	49	IT13	0.1557	0.0000
26	HRO5	51	CZ32	0.1155	0.0000
26	HRO5	53	IT24	0.1305	0.0000
26	HRO5	54	IT26	0.1197	0.0000
26	HR05	55	IT12	0.1268	0.0000
26	HRO5	56	RS34	0.1092	0.0000
26	HR05	57	ES40	0.1023	0.0000
26	HR05	58	ES42	0.0651	0.0000
27	HRO7	28	GR11	0.0053	0.2068
27	HRO7	29	CZ30	0.0089	0.0789
27	HRO7	30	RS35	0.0260	0.0000
27	HRO7	31	IT19	0.0714	0.0000
27	HRO7	32	IT20	0.1086	0.0000
27	HR07	33	IT46	0.0859	0.0000
27	HR07	34	IT47	0.0641	0.0000
27	HRO7	35	IT17	0.0776	0.0000
27	HR07	36	IT16	0.0380	0.0000
27	HRO7	37	ES43	0.0714	0.0000
27	HRO7	38	AT02	0.1107	0.0000
27	HRO7	39	HRO6	0.0676	0.0000
27	HRO7	40	CZ31	0.0899	0.0000
27	HRO7	41	RO33	0.0800	0.0000
27	HR07	42	RS36	0.0744	0.0000
27	HR07	43	RS37	0.0435	0.0000
27	HRO7	44	RS38	0.1064	0.0000
27	HR07	45	RS67	0.1137	0.0000
27	HRO7	46	ES41	0.1372	0.0000
27	HRO7	48	IT14	0.1419	0.0000
27	HRO7	49	IT13	0.1724	0.0000
27	HRO7	51	CZ32	0.1331	0.0000
27	HRO7	53	IT24	0.1095	0.0000
27	HR07	54	IT26	0.0984	0.0000
27	HRO7	55	1712	0.0957	0.0000
27	HRO7	56	RS34	0.0969	0.0000
27	HR07	57	ES40	0.1058	0.0000
27	HRO7	58	ES42	0.0643	0.0000
28	GR11	29	CZ30	0.0063	0.1229
28	GR11	30	RS35	0.0214	0.0060
28	GR11	31	IT19	0.0631	0.0000

Population 1		Population 2		Fst	p value
28	GR11	32	IT20	0.0947	0.0000
28	GR11	33	IT46	0.0740	0.0000
28	GR11	34	1747	0.0640	0.0000
28	GR11	35	IT17	0.0727	0.0000
28	GR11	36	IT16	0.0351	0.0020
28	GR11	37	ES43	0.0617	0.0000
28	GR11	38	AT02	0.1036	0.0000
28	GR11	39	HR06	0.0542	0.0000
28	GR11	40	CZ31	0.0808	0.0000
28	GR11	41	RO33	0.0596	0.0000
28	GR11	42	RS36	0.0648	0.0000
28	GR11	43	RS37	0.0462	0.0000
28	GR11	44	RS38	0.0819	0.0000
28	GR11	45	RS67	0.0912	0.0000
28	GR11	46	ES41	0.0982	0.0000
28	GR11	48	IT14	0.1127	0.0000
28	GR11	49	IT13	0.1506	0.0000
28	GR11	51	CZ32	0.1049	0.0000
28	GR11	53	IT24	0.0990	0.0000
28	GR11	54	IT26	0.0831	0.0000
28	GR11	55	1712	0.0870	0.0000
28	GR11	56	RS34	0.0753	0.0000
28	GR11	57	ES40	0.0861	0.0000
28	GR11	58	ES42	0.0574	0.0000
29	CZ30	30	RS35	0.0099	0.0480
29	Cz30	31	IT19	0.0527	0.0000
29	Cz30	32	IT20	0.0854	0.0000
29	CZ30	33	IT46	0.0784	0.0000
29	CZ30	34	1747	0.0615	0.0000
29	CZ30	35	IT17	0.0564	0.0000
29	CZ30	36	IT16	0.0276	0.0000
29	Cz30	37	ES43	0.0590	0.0000
29	CZ30	38	AT02	0.1060	0.0000
29	CZ30	39	HR06	0.0477	0.0000
29	Cz30	40	CZ31	0.0688	0.0000
29	Cz30	41	RO33	0.0567	0.0000
29	CZ30	42	RS36	0.0521	0.0000
29	Cz30	43	RS37	0.0348	0.0000
29	CZ30	44	RS38	0.0767	0.0000
29	CZ30	45	RS67	0.0978	0.0000
29	Cz30	46	ES41	0.1139	0.0000
29	CZ30	48	IT14	0.1131	0.0000
29	CZ30	49	IT13	0.1581	0.0000
29	Cz30	51	CZ32	0.1027	0.0000
29	Cz30	53	IT24	0.1149	0.0000
29	CZ30	54	IT26	0.0979	0.0000
29	CZ30	55	1712	0.0858	0.0000
29	CZ30	56	RS34	0.0964	0.0000
29	Cz30	57	ES40	0.0898	0.0000
29	CZ30	58	ES42	0.0601	0.0000

Population 1		Population 2		Fst	p value
30	RS35	31	IT19	0.0493	0.0000
30	RS35	32	IT20	0.0844	0.0000
30	RS35	33	IT46	0.0803	0.0000
30	RS35	34	IT47	0.0618	0.0000
30	RS35	35	IT17	0.0795	0.0000
30	RS35	36	IT16	0.0471	0.0000
30	RS35	37	ES43	0.0657	0.0000
30	RS35	38	AT02	0.1082	0.0000
30	RS35	39	HR06	0.0500	0.0000
30	RS35	40	CZ31	0.0701	0.0000
30	RS35	41	RO33	0.0590	0.0000
30	RS35	42	RS36	0.0543	0.0000
30	RS35	43	RS37	0.0313	0.0000
30	RS35	44	RS38	0.0858	0.0000
30	RS35	45	RS67	0.0826	0.0000
30	RS35	46	ES41	0.1309	0.0000
30	RS35	48	IT14	0.1093	0.0000
30	RS35	49	IT13	0.1598	0.0000
30	RS35	51	CZ32	0.1142	0.0000
30	RS35	53	IT24	0.1089	0.0000
30	RS35	54	IT26	0.1025	0.0000
30	RS35	55	IT12	0.1023	0.0000
30	RS35	56	RS34	0.1106	0.0000
30	RS35	57	ES40	0.1004	0.0000
30	RS35	58	ES42	0.0666	0.0000
31	IT19	32	IT20	0.0128	0.0460
31	IT19	33	IT46	0.0492	0.0000
31	IT19	34	IT47	0.0481	0.0000
31	IT19	35	IT17	0.0896	0.0000
31	IT19	36	IT16	0.0825	0.0000
31	IT19	37	ES43	0.0216	0.0070
31	IT19	38	AT02	0.0687	0.0000
31	IT19	39	HRO6	0.0253	0.0020
31	IT19	40	CZ31	0.0238	0.0030
31	IT19	41	RO33	0.0548	0.0000
31	IT19	42	RS36	0.0340	0.0000
31	IT19	43	RS37	0.0431	0.0000
31	IT19	44	RS38	0.0815	0.0000
31	IT19	45	RS67	0.0827	0.0000
31	IT19	46	ES41	0.1396	0.0000
31	IT19	48	IT14	0.1136	0.0000
31	IT19	49	IT13	0.1743	0.0000
31	IT19	51	CZ32	0.1076	0.0000
31	IT19	53	IT24	0.1290	0.0000
31	IT19	54	IT26	0.1166	0.0000
31	IT19	55	IT12	0.1242	0.0000
31	IT19	56	RS34	0.1138	0.0000
31	IT19	57	ES40	0.1165	0.0000
31	IT19	58	ES42	0.0805	0.0000
32	IT20	33	IT46	0.0616	0.0000

Population 1		Population 2		Fst	p value
32	IT20	34	IT47	0.0623	0.0000
32	IT20	35	IT17	0.0898	0.0000
32	IT20	36	IT16	0.0978	0.0000
32	IT20	37	ES43	0.0500	0.0000
32	IT20	38	AT02	0.0681	0.0000
32	IT20	39	HR06	0.0314	0.0000
32	IT20	40	CZ31	0.0277	0.0000
32	IT20	41	RO33	0.0558	0.0000
32	IT20	42	RS36	0.0326	0.0000
32	IT20	43	RS37	0.0400	0.0000
32	IT20	44	RS38	0.0793	0.0000
32	IT20	45	RS67	0.0905	0.0000
32	IT20	46	ES41	0.1386	0.0000
32	IT20	48	IT14	0.1122	0.0000
32	IT20	49	IT13	0.1735	0.0000
32	IT20	51	CZ32	0.1037	0.0000
32	IT20	53	IT24	0.1552	0.0000
32	IT20	54	IT26	0.1408	0.0000
32	IT20	55	IT12	0.1581	0.0000
32	IT20	56	RS34	0.1317	0.0000
32	IT20	57	ES40	0.1218	0.0000
32	IT20	58	ES42	0.0869	0.0000
33	IT46	34	IT47	0.0024	0.3277
33	IT46	35	IT17	0.0873	0.0000
33	IT46	36	IT16	0.0918	0.0000
33	IT46	37	ES43	0.0711	0.0000
33	IT46	38	AT02	0.0829	0.0000
33	IT46	39	HR06	0.0614	0.0000
33	IT46	40	CZ31	0.0524	0.0000
33	IT46	41	RO33	0.0697	0.0000
33	IT46	42	RS36	0.0574	0.0000
33	IT46	43	RS37	0.0593	0.0000
33	IT46	44	RS38	0.1102	0.0000
33	IT46	45	RS67	0.0659	0.0000
33	IT46	46	ES41	0.1684	0.0000
33	IT46	48	IT14	0.1508	0.0000
33	IT46	49	IT13	0.1848	0.0000
33	IT46	51	CZ32	0.1506	0.0000
33	IT46	53	IT24	0.1652	0.0000
33	IT46	54	IT26	0.1537	0.0000
33	IT46	55	IT12	0.1638	0.0000
33	IT46	56	RS34	0.1428	0.0000
33	IT46	57	ES40	0.1417	0.0000
33	IT46	58	ES42	0.0903	0.0000
34	IT47	35	IT17	0.0754	0.0000
34	IT47	36	IT16	0.0695	0.0000
34	IT47	37	ES43	0.0644	0.0000
34	IT47	38	AT02	0.0770	0.0000
34	IT47	39	HR06	0.0537	0.0000
34	IT47	40	CZ31	0.0466	0.0000

Population 1		Population 2		Fst	p value
34	IT47	41	RO33	0.0597	0.0000
34	IT47	42	RS36	0.0497	0.0000
34	IT47	43	RS37	0.0425	0.0000
34	IT47	44	RS38	0.0956	0.0000
34	IT47	45	RS67	0.0663	0.0000
34	IT47	46	ES41	0.1556	0.0000
34	IT47	48	IT14	0.1402	0.0000
34	IT47	49	IT13	0.1727	0.0000
34	IT47	51	CZ32	0.1371	0.0000
34	IT47	53	IT24	0.1397	0.0000
34	IT47	54	IT26	0.1232	0.0000
34	IT47	55	IT12	0.1326	0.0000
34	IT47	56	RS34	0.1234	0.0000
34	IT47	57	ES40	0.1279	0.0000
34	IT47	58	ES42	0.0855	0.0000
35	IT17	36	IT16	0.0237	0.0030
35	IT17	37	ES43	0.0763	0.0000
35	IT17	38	AT02	0.0880	0.0000
35	IT17	39	HR06	0.0346	0.0000
35	IT17	40	CZ31	0.0618	0.0000
35	IT17	41	RO33	0.0343	0.0000
35	IT17	42	RS36	0.0315	0.0000
35	IT17	43	RS37	0.0361	0.0020
35	IT17	44	RS38	0.0573	0.0000
35	IT17	45	RS67	0.0833	0.0000
35	IT17	46	ES41	0.1460	0.0000
35	IT17	48	IT14	0.1228	0.0000
35	IT17	49	IT13	0.1774	0.0000
35	IT17	51	CZ32	0.1368	0.0000
35	IT17	53	IT24	0.1603	0.0000
35	IT17	54	IT26	0.1436	0.0000
35	IT17	55	IT12	0.1499	0.0000
35	IT17	56	RS34	0.1401	0.0000
35	IT17	57	ES40	0.1206	0.0000
35	IT17	58	ES42	0.0887	0.0000
36	IT16	37	ES43	0.0748	0.0000
36	IT16	38	AT02	0.1038	0.0000
36	IT16	39	HR06	0.0516	0.0000
36	IT16	40	CZ31	0.0677	0.0000
36	IT16	41	RO33	0.0497	0.0000
36	IT16	42	RS36	0.0465	0.0000
36	IT16	43	RS37	0.0403	0.0000
36	IT16	44	RS38	0.0683	0.0000
36	IT16	45	RS67	0.0802	0.0000
36	IT16	46	ES41	0.1154	0.0000
36	IT16	48	IT14	0.1186	0.0000
36	IT16	49	IT13	0.1514	0.0000
36	IT16	51	CZ32	0.1147	0.0000
36	IT16	53	IT24	0.1383	0.0000
36	IT16	54	IT26	0.1150	0.0000

Population 1		Population 2		Fst	p value
36	IT16	55	IT12	0.1252	0.0000
36	IT16	56	RS34	0.1221	0.0000
36	IT16	57	ES40	0.0975	0.0000
36	IT16	58	ES42	0.0476	0.0000
37	ES43	38	AT02	0.0560	0.0000
37	ES43	39	HR06	0.0215	0.0070
37	ES43	40	CZ31	0.0350	0.0000
37	ES43	41	RO33	0.0566	0.0000
37	ES43	42	RS36	0.0393	0.0000
37	ES43	43	RS37	0.0595	0.0000
37	ES43	44	RS38	0.0788	0.0000
37	ES43	45	RS67	0.1041	0.0000
37	ES43	46	ES41	0.1062	0.0000
37	ES43	48	IT14	0.0916	0.0000
37	ES43	49	IT13	0.1552	0.0000
37	ES43	51	CZ32	0.0984	0.0000
37	ES43	53	IT24	0.1433	0.0000
37	ES43	54	IT26	0.1165	0.0000
37	ES43	55	IT12	0.1269	0.0000
37	ES43	56	RS34	0.1193	0.0000
37	ES43	57	ES40	0.1140	0.0000
37	ES43	58	ES42	0.0844	0.0000
38	AT02	39	HRO6	0.0369	0.0000
38	AT02	40	CZ31	0.0391	0.0000
38	AT02	41	RO33	0.0609	0.0000
38	AT02	42	RS36	0.0390	0.0000
38	AT02	43	RS37	0.0796	0.0000
38	AT02	44	RS38	0.0888	0.0000
38	AT02	45	RS67	0.0790	0.0000
38	AT02	46	ES41	0.1489	0.0000
38	AT02	48	IT14	0.1282	0.0000
38	AT02	49	IT13	0.1850	0.0000
38	AT02	51	CZ32	0.1229	0.0000
38	AT02	53	IT24	0.2013	0.0000
38	AT02	54	IT26	0.1814	0.0000
38	AT02	55	IT12	0.2000	0.0000
38	AT02	56	RS34	0.1663	0.0000
38	AT02	57	ES40	0.1255	0.0000
38	AT02	58	ES42	0.0898	0.0000
39	HR06	40	CZ31	0.0153	0.0060
39	HR06	41	RO33	0.0107	0.0350
39	HRO6	42	RS36	0.0030	0.2667
39	HRO6	43	RS37	0.0146	0.0190
39	HRO6	44	RS38	0.0337	0.0000
39	HRO6	45	RS67	0.0575	0.0000
39	HR06	46	ES41	0.1069	0.0000
39	HRO6	48	IT14	0.0711	0.0000
39	HRO6	49	IT13	0.1300	0.0000
39	HR06	51	CZ32	0.0732	0.0000
39	HR06	53	IT24	0.1289	0.0000

Population 1		Population 2		Fst	p value
39	HRO6	54	IT26	0.1165	0.0000
39	HRO6	55	IT12	0.1275	0.0000
39	HRO6	56	RS34	0.1147	0.0000
39	HRO6	57	ES40	0.0809	0.0000
39	HRO6	58	ES42	0.0610	0.0000
40	CZ31	41	RO33	0.0406	0.0000
40	CZ31	42	RS36	0.0126	0.0200
40	CZ31	43	RS37	0.0436	0.0000
40	CZ31	44	RS38	0.0731	0.0000
40	CZ31	45	RS67	0.0729	0.0000
40	CZ31	46	ES41	0.1333	0.0000
40	CZ31	48	IT14	0.1036	0.0000
40	CZ31	49	IT13	0.1749	0.0000
40	CZ31	51	CZ32	0.0962	0.0000
40	CZ31	53	IT24	0.1524	0.0000
40	CZ31	54	IT26	0.1354	0.0000
40	CZ31	55	1712	0.1543	0.0000
40	CZ31	56	RS34	0.1319	0.0000
40	CZ31	57	ES40	0.1138	0.0000
40	CZ31	58	ES42	0.0770	0.0000
41	RO33	42	RS36	0.0043	0.2138
41	Rоз3	43	RS37	0.0176	0.0050
41	RO33	44	RS38	0.0120	0.0350
41	Rо33	45	RS67	0.0428	0.0000
41	RO33	46	ES41	0.1059	0.0000
41	RO33	48	IT14	0.0808	0.0000
41	RO33	49	IT13	0.1255	0.0000
41	RO33	51	CZ32	0.0759	0.0000
41	RO33	53	IT24	0.1193	0.0000
41	RO33	54	IT26	0.1018	0.0000
41	Rоз3	55	IT12	0.1179	0.0000
41	Rоз3	56	RS34	0.1045	0.0000
41	Rо33	57	ES40	0.0892	0.0000
41	RO33	58	ES42	0.0817	0.0000
42	RS36	43	RS37	0.0179	0.0050
42	RS36	44	RS38	0.0311	0.0000
42	RS36	45	RS67	0.0473	0.0000
42	RS36	46	ES41	0.1246	0.0000
42	RS36	48	IT14	0.0860	0.0000
42	RS36	49	IT13	0.1393	0.0000
42	RS36	51	CZ32	0.0837	0.0000
42	RS36	53	IT24	0.1383	0.0000
42	RS36	54	IT26	0.1261	0.0000
42	RS36	55	IT12	0.1366	0.0000
42	RS36	56	RS34	0.1175	0.0000
42	RS36	57	ES40	0.1021	0.0000
42	RS36	58	ES42	0.0758	0.0000
43	RS37	44	RS38	0.0383	0.0000
43	RS37	45	RS67	0.0677	0.0000
43	RS37	46	ES41	0.1173	0.0000

Population 1		Population 2		Fst	p value
43	RS37	48	IT14	0.0920	0.0000
43	RS37	49	IT13	0.1361	0.0000
43	RS37	51	CZ32	0.0922	0.0000
43	RS37	53	IT24	0.1045	0.0000
43	RS37	54	IT26	0.0939	0.0000
43	RS37	55	IT12	0.1002	0.0000
43	RS37	56	RS34	0.0948	0.0000
43	RS37	57	ES40	0.0836	0.0000
43	RS37	58	ES42	0.0594	0.0000
44	RS38	45	RS67	0.0798	0.0000
44	RS38	46	ES41	0.1269	0.0000
44	RS38	48	IT14	0.0996	0.0000
44	RS38	49	IT13	0.1397	0.0000
44	RS38	51	CZ32	0.0927	0.0000
44	RS38	53	IT24	0.1470	0.0000
44	RS38	54	IT26	0.1244	0.0000
44	RS38	55	IT12	0.1355	0.0000
44	RS38	56	RS34	0.1285	0.0000
44	RS38	57	ES40	0.1255	0.0000
44	RS38	58	ES42	0.1053	0.0000
45	RS67	46	ES41	0.1820	0.0000
45	RS67	48	IT14	0.1418	0.0000
45	RS67	49	IT13	0.1811	0.0000
45	RS67	51	CZ32	0.1512	0.0000
45	RS67	53	IT24	0.1833	0.0000
45	RS67	54	IT26	0.1699	0.0000
45	RS67	55	IT12	0.1954	0.0000
45	RS67	56	RS34	0.1668	0.0000
45	RS67	57	ES40	0.1379	0.0000
45	RS67	58	ES42	0.0913	0.0000
46	ES41	48	IT14	0.0491	0.0000
46	ES41	49	IT13	0.1255	0.0000
46	ES41	51	CZ32	0.0447	0.0000
46	ES41	53	IT24	0.2132	0.0000
46	ES41	54	IT26	0.1703	0.0000
46	ES41	55	IT12	0.1933	0.0000
46	ES41	56	RS34	0.1696	0.0000
46	ES41	57	ES40	0.1075	0.0000
46	ES41	58	ES42	0.1240	0.0000
48	IT14	49	IT13	0.0808	0.0000
48	IT14	51	CZ32	0.0147	0.0110
48	IT14	53	IT24	0.2139	0.0000
48	IT14	54	IT26	0.1855	0.0000
48	IT14	55	IT12	0.2095	0.0000
48	IT14	56	RS34	0.1908	0.0000
48	IT14	57	ES40	0.0829	0.0000
48	IT14	58	ES42	0.1067	0.0000
49	IT13	51	CZ32	0.1063	0.0000
49	IT13	53	IT24	0.2193	0.0000
49	IT13	54	IT26	0.1912	0.0000

Population 1		Population 2	Fst	p value	
49	IT13	55	IT12	0.2176	0.0000
49	IT13	56	RS34	0.1966	0.0000
49	IT13	57	ES40	0.0969	0.0000
49	IT13	58	ES42	0.1564	0.0000
51	CZ32	53	IT24	0.2026	0.0000
51	CZ32	54	IT26	0.1722	0.0000
51	CZ32	55	IT12	0.1928	0.0000
51	CZ32	56	RS34	0.1762	0.0000
51	CZ32	57	ES40	0.0940	0.0000
51	CZ32	58	ES42	0.1100	0.0000
53	IT24	54	IT26	0.0124	0.0659
53	IT24	55	IT12	0.0172	0.0190
53	IT24	56	RS34	0.0253	0.0060
53	IT24	57	ES40	0.1741	0.0000
53	IT24	58	ES42	0.1855	0.0000
54	IT26	55	IT12	0.0141	0.0539
54	IT26	56	RS34	0.0253	0.0030
54	IT26	57	ES40	0.1637	0.0000
54	IT26	58	ES42	0.1600	0.0000
55	IT12	56	RS34	0.0227	0.0050
55	IT12	57	ES40	0.1783	0.0000
55	IT12	58	ES42	0.1866	0.0000
56	RS34	57	ES40	0.1598	0.0000
56	RS34	58	ES42	0.1620	0.0000
57	ES40	58	ES42	0.0789	0.0000

Ringraziamenti

Al termine di questo percorso, tanto formativo quanto costruttivo e arricchente, sia dal punto di vista scientifico che personale, terrei molto a ringraziare tutte le persone che hanno reso possibile il raggiungimento di questo traguardo e che mi sono state vicine, sostenendomi, in questa esperienza.

Un ringraziamento particolare va alla Professoressa Paola Fortini per avermi guidata e seguita in ogni fase del progetto e per avermi avvicinata all'affascinante e complesso mondo delle querce, che con grande passione studia da anni. Alla Professoressa Piera Di Marzio devo i tanti e preziosi insegnamenti, che con professionalità ha condiviso con me. Ringrazio il Professor Romeo Di Pietro per avermi dato la possibilità di essere inserita in un progetto tanto ambizioso quanto stimolante e per avermi guidata nelle diverse fasi di studio. Ringrazio il Professor Filippo Santucci De Magistris per la Sua disponibilità e per il proficuo coordinamento del Corso di Dottorato in Biologia e Scienze Applicate. Al Professor Marco Cosimo Simeone devo l'avvicinamento al mondo di laboratorio e la grande disponibilità in tutte le fasi della ricerca svolta presso i laboratori del Dipartimento di Scienze Agrarie e Forestali dell'Università degli Studi della Tuscia. A Simone Cardoni devo i fondamentali insegnamenti e la guida attenta in laboratorio. Ringrazio il Professor Oliver Gailing per avermi consentito di svolgere parte dei miei studi presso i laboratori del Dipartimento di Genetica Forestale e Coltivazione degli alberi dell'Università di Göttingen e per avermi seguita nelle analisi. A Katharina Birgit Budde devo la disponibilità estrema e i tanti e pazienti insegnamenti, fondamentali per la mia ricerca. Ringrazio il Professor Leonardo Rosati e il Professor Emanuele Farris per la grande disponibilità nell'accompagnarmi in fase di campionamento e tutti coloro che hanno partecipato alla raccolta dei campioni utilizzati in questo studio. Ai revisori esterni, la Professoressa Jelena M. Aleksić e il Professor Marcus Müller, devo le utili e costruttive revisioni, importanti per il miglioramento del mio lavoro.

Ringrazio mamma e papà per avermi sostenuta in ogni momento fino ad oggi e per avermi accompagnata con la loro costante e fondamentale presenza. Ringrazio Chiara e Gabriele, perché sono un punto di riferimento insostituibile nella mia vita. Ringrazio Matteo per esserci sempre stato, per avermi supportata e aspettata con grande rispetto e con la sua estrema pazienza. Ringrazio i miei nonni, nonna Antonia, nonna Luigia e nonno Emilio, per la loro saggezza e per avermi dato preziosi insegnamenti di vita che custodirò sempre attentamente. Devo infine un ringraziamento a tutta la mia famiglia, sempre presente e interessata a me e alla mia vita, nonché agli amici di sempre e a quelli incontrati lungo il percorso, perché sono stati un sostegno fondamentale.

Grazie di cuore

