The Ethiopian fruit fly (EFF), Dacus ciliatus, is a key, invasive pest of melons in the Middle East. We developed and implemented a novel decision support system (DSS) to manage this pest in a greenhouse environment in Southern Israel. Dacus ciliatus is commonly controlled in Israel with repeated calendar-sprayings (every 15 days) of pyrethroid pesticides. The current study compares the performance of a DSS against calendar-spraying management (CSM). DSS was based on EFF population monitoring and infestation. DSS took into consideration concerns and observations of expert managers and farmers. During 2014, EFF damage was concentrated in the spring melon production season. Fall and winter production did not show important damage. Damage during the spring of 2014 started to increase when average EFF/trap/day reached 0.3. This value was suggested as the threshold to implement pesticide spraying in DSS greenhouses. EFF/trap/day trends were derived from monitoring with conventional traps and a novel electronic remote sensing trap, developed by our group. CSM during the spring of 2015 included 3 EFF control sprays, while DSS-managed greenhouses were only sprayed once. At the end of the spring season, damage was slightly higher in DSS greenhouses (1.5%), but not significantly dierent to that found in CSM greenhouses (0.5%). Results support continuing DSS research and optimization to reduce/remove pesticide use against EFF in melon greenhouses. Interactions with farmers and managers is suggested as essential to increase adoption of DSS in agriculture.

An integrated decision support system for environmentally-friendly management of the Ethiopian fruit fly in greenhouse crops.

Sciarretta A.;
2019-01-01

Abstract

The Ethiopian fruit fly (EFF), Dacus ciliatus, is a key, invasive pest of melons in the Middle East. We developed and implemented a novel decision support system (DSS) to manage this pest in a greenhouse environment in Southern Israel. Dacus ciliatus is commonly controlled in Israel with repeated calendar-sprayings (every 15 days) of pyrethroid pesticides. The current study compares the performance of a DSS against calendar-spraying management (CSM). DSS was based on EFF population monitoring and infestation. DSS took into consideration concerns and observations of expert managers and farmers. During 2014, EFF damage was concentrated in the spring melon production season. Fall and winter production did not show important damage. Damage during the spring of 2014 started to increase when average EFF/trap/day reached 0.3. This value was suggested as the threshold to implement pesticide spraying in DSS greenhouses. EFF/trap/day trends were derived from monitoring with conventional traps and a novel electronic remote sensing trap, developed by our group. CSM during the spring of 2015 included 3 EFF control sprays, while DSS-managed greenhouses were only sprayed once. At the end of the spring season, damage was slightly higher in DSS greenhouses (1.5%), but not significantly dierent to that found in CSM greenhouses (0.5%). Results support continuing DSS research and optimization to reduce/remove pesticide use against EFF in melon greenhouses. Interactions with farmers and managers is suggested as essential to increase adoption of DSS in agriculture.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11695/90560
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact