The impact of ultrafine particles (diameters <100 nm) on human health has been addressed in many toxicological studies. It is therefore important to assess relevant respiratory exposure of the population. In this paper, aerosol number-size distribution was measured with 1 s time resolution, in a street canyon, in proximity to traffic, with the purpose of studying the fast evolution of UFP doses deposited in the respiratory system. Close to the traffic, nucleation particle concentrations increase within few seconds and decrease in tens of seconds. As a consequence, the exposure pattern, near to traffic, may be represented as a sequence of short-term peak exposures. The number of UFPs deposited for each tidal volume of air inhaled (instant UFP doses) rapidly reaches level of 10 7 particles, with maximum values for the alveolar interstitial region. For the correct estimate of short-term exposures, in scenarios involving proximity to traffic, it is therefore crucial to rely on aerosol measurements with a time resolution able to trace the fast evolution of aerosol from vehicle exhausts. When traffic levels drop, spike values of instant UFP doses are comparatively less frequent and the maxima of their size distributions shift from 10 to 20 nm (nucleation particles) to greater diameter (up to about 60 nm).

Fast evolution of urban ultrafine particles: Implications for deposition doses in the human respiratory system

AVINO P
2012-01-01

Abstract

The impact of ultrafine particles (diameters <100 nm) on human health has been addressed in many toxicological studies. It is therefore important to assess relevant respiratory exposure of the population. In this paper, aerosol number-size distribution was measured with 1 s time resolution, in a street canyon, in proximity to traffic, with the purpose of studying the fast evolution of UFP doses deposited in the respiratory system. Close to the traffic, nucleation particle concentrations increase within few seconds and decrease in tens of seconds. As a consequence, the exposure pattern, near to traffic, may be represented as a sequence of short-term peak exposures. The number of UFPs deposited for each tidal volume of air inhaled (instant UFP doses) rapidly reaches level of 10 7 particles, with maximum values for the alveolar interstitial region. For the correct estimate of short-term exposures, in scenarios involving proximity to traffic, it is therefore crucial to rely on aerosol measurements with a time resolution able to trace the fast evolution of aerosol from vehicle exhausts. When traffic levels drop, spike values of instant UFP doses are comparatively less frequent and the maxima of their size distributions shift from 10 to 20 nm (nucleation particles) to greater diameter (up to about 60 nm).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11695/73245
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 43
social impact