The cuticular hydrocarbons (CHCs) of codling moth larvae collected in the field from their host plant species, apple and walnut, were analyzed and compared with the CHCs of fruits from these two phylogenetically distant hosts. The CHC profiles of the larvae consisted solely of n-alkanes (C23–C31) and differed quantitatively between host populations. Amounts of the CHCs from the walnut-collected larvae were shifted towards longer-chain alkanes compared to those from apple-collected larvae. A similar shift was observed for the CHC profiles of walnut and apple fruits. Analysis of the CHCs of larvae reared on artificial diet, in comparison with hydrocarbons from the diet, confirmed that larval CHCs scarcely reflect hydrocarbons from the food source. This finding indicates that the larval hydrocarbons must be biosynthesized to a large degree by the insect, rather than being gained directly from its diet. Hence, codling moth populations from apple and walnut each synthesize their own CHC profiles, which largely resemble those of their respective host plant, yielding a potential tool of chemical camouflage from certain natural antagonists of the larvae. The findings of the present study, together with recent molecular population analyses, provides evidence for a process that might ultimately lead to sympatric speciation of this herbivore species. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101, 376–384.

Cuticular hydrocarbon profiles of codling moth larvae, Cydia pomonella (Lepidoptera: Tortricidae, reflect those of their host plant species

TREMATERRA, Pasquale;
2010-01-01

Abstract

The cuticular hydrocarbons (CHCs) of codling moth larvae collected in the field from their host plant species, apple and walnut, were analyzed and compared with the CHCs of fruits from these two phylogenetically distant hosts. The CHC profiles of the larvae consisted solely of n-alkanes (C23–C31) and differed quantitatively between host populations. Amounts of the CHCs from the walnut-collected larvae were shifted towards longer-chain alkanes compared to those from apple-collected larvae. A similar shift was observed for the CHC profiles of walnut and apple fruits. Analysis of the CHCs of larvae reared on artificial diet, in comparison with hydrocarbons from the diet, confirmed that larval CHCs scarcely reflect hydrocarbons from the food source. This finding indicates that the larval hydrocarbons must be biosynthesized to a large degree by the insect, rather than being gained directly from its diet. Hence, codling moth populations from apple and walnut each synthesize their own CHC profiles, which largely resemble those of their respective host plant, yielding a potential tool of chemical camouflage from certain natural antagonists of the larvae. The findings of the present study, together with recent molecular population analyses, provides evidence for a process that might ultimately lead to sympatric speciation of this herbivore species. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101, 376–384.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11695/3623
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 17
social impact