A tool, based on a multidisciplinary field investigation approach for studying the characteristics of a hypersaline spring, was developed and its effectiveness tested on a spring in southern Italy; a preliminary model of the aquifer system at medium and local scale was derived. Hydrologic measurements, vertical electric soundings, and chemical and isotopic (delta(18)O, delta(2)H, (3)H) analyses were undertaken, along with microbiological analyses and species identification. These demonstrate the coexistence of hypersaline and fresh water, generating a significant diversification of the groundwater hydrochemical signature. The isotopic signature shows that both types of water have a meteoric origin. Microbial contamination of fecal origin indicates the mixing of hyper- and low- saline water related to local infiltration. The hypersaline groundwater flows in confined horizons within a sequence that is mainly of fractured clays. These horizons are probably concentrated where well-developed fracture network and dissolution openings within evaporitic rocks enhance fluid flow. In a wider context, this study determines that microbiological pollution of saline groundwater may not be detected if using nonhalophilic bacterial indicators such as fecal coliforms. Fecal enterococci are better indicators, due to their higher halotolerance.

Hypersaline groundwater genesis assessment through a multidisciplinary approach: the case of Pozzo del Sale Spring (southern Italy)

DE FELICE, Vincenzo;NACLERIO, Gino
2008-01-01

Abstract

A tool, based on a multidisciplinary field investigation approach for studying the characteristics of a hypersaline spring, was developed and its effectiveness tested on a spring in southern Italy; a preliminary model of the aquifer system at medium and local scale was derived. Hydrologic measurements, vertical electric soundings, and chemical and isotopic (delta(18)O, delta(2)H, (3)H) analyses were undertaken, along with microbiological analyses and species identification. These demonstrate the coexistence of hypersaline and fresh water, generating a significant diversification of the groundwater hydrochemical signature. The isotopic signature shows that both types of water have a meteoric origin. Microbial contamination of fecal origin indicates the mixing of hyper- and low- saline water related to local infiltration. The hypersaline groundwater flows in confined horizons within a sequence that is mainly of fractured clays. These horizons are probably concentrated where well-developed fracture network and dissolution openings within evaporitic rocks enhance fluid flow. In a wider context, this study determines that microbiological pollution of saline groundwater may not be detected if using nonhalophilic bacterial indicators such as fecal coliforms. Fecal enterococci are better indicators, due to their higher halotolerance.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11695/3345
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact