Mutations in the cardiac potassium channel HERG (KCNH2) cause chromosome 7-linked long QT syndrome (LQT2) characterized by a prolonged QT interval, recurrent syncope and sudden cardiac death. Most mutations in HERG exhibit "loss of function" phenotypes with defective channels either inserted into the plasma membrane or retained in the endoplasmic reticulum. "Loss of function" mutations reduce I-Kr, the cardiac delayed rectifier current encoded by HERG, due to haploinsufficiency or suppression of wild-type function by a dominant-negative mechanism. One explanation for dominant-negative current suppression is that mutant subunits render tetrameric channel complexes non-conducting on co-assembly. In the present paper we describe an alternative mechanism for this phenomenon. We show (1) that the dominant-negative HERG mutation A561V is retained in the endoplasmic reticulum and (2) that wild-type channels are tagged for retention in the ER by co-assembly with trafficking deficient A561V subunits. Thus, in HERG A561V dominant-negative suppression of wild-type function is the result of an acquired trafficking defect. (C) 2000 Academic Press.

Retention in the endoplasmic reticulum as a mechanism of dominant-negative current suppression in human long QT syndrome

TAGLIALATELA, Maurizio;
2000-01-01

Abstract

Mutations in the cardiac potassium channel HERG (KCNH2) cause chromosome 7-linked long QT syndrome (LQT2) characterized by a prolonged QT interval, recurrent syncope and sudden cardiac death. Most mutations in HERG exhibit "loss of function" phenotypes with defective channels either inserted into the plasma membrane or retained in the endoplasmic reticulum. "Loss of function" mutations reduce I-Kr, the cardiac delayed rectifier current encoded by HERG, due to haploinsufficiency or suppression of wild-type function by a dominant-negative mechanism. One explanation for dominant-negative current suppression is that mutant subunits render tetrameric channel complexes non-conducting on co-assembly. In the present paper we describe an alternative mechanism for this phenomenon. We show (1) that the dominant-negative HERG mutation A561V is retained in the endoplasmic reticulum and (2) that wild-type channels are tagged for retention in the ER by co-assembly with trafficking deficient A561V subunits. Thus, in HERG A561V dominant-negative suppression of wild-type function is the result of an acquired trafficking defect. (C) 2000 Academic Press.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11695/2646
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 90
social impact