This article presents poroelastic laws accounting for a retention behavior dependent also on porosity, as suggested by experimental evidence. Motivated by the numerical formulation of the corresponding boundary-value problem presented in a companion article, these constitutive equations employ displacements and fluid pressures as primary variables. The thermodynamic admissibility of the proposed rate laws for stress and fluid contents is assessed by means of symmetry and Maxwell conditions obtained from the Biot theory. In the case of strain-dependent saturation, the two elasticity tensors describing the drained response in saturated and unsaturated conditions, respectively, are proven to be in general not coincident, with their difference depending on capillary pressure and porosity. Furthermore, it is shown that besides the stress decomposition proposed by Coussy, also the stress split proposed by Lewis and Schrefler is consistent with the Biot framework. The former decomposition is obtained for retention laws depending only on capillary pressure, as expected. The Lewis–Schrefler split is proven to be consistent with retention models depending also on porosity. In these developments, the compressibility of all the phases is taken into account, in order to assess the thermodynamic consistency of an extension of the Biot’s coefficient to partially saturated anisotropic porous media.

Hyperelastic multiphase porous media with strain-dependent retention laws

CALLARI, Carlo
Primo
;
2011-01-01

Abstract

This article presents poroelastic laws accounting for a retention behavior dependent also on porosity, as suggested by experimental evidence. Motivated by the numerical formulation of the corresponding boundary-value problem presented in a companion article, these constitutive equations employ displacements and fluid pressures as primary variables. The thermodynamic admissibility of the proposed rate laws for stress and fluid contents is assessed by means of symmetry and Maxwell conditions obtained from the Biot theory. In the case of strain-dependent saturation, the two elasticity tensors describing the drained response in saturated and unsaturated conditions, respectively, are proven to be in general not coincident, with their difference depending on capillary pressure and porosity. Furthermore, it is shown that besides the stress decomposition proposed by Coussy, also the stress split proposed by Lewis and Schrefler is consistent with the Biot framework. The former decomposition is obtained for retention laws depending only on capillary pressure, as expected. The Lewis–Schrefler split is proven to be consistent with retention models depending also on porosity. In these developments, the compressibility of all the phases is taken into account, in order to assess the thermodynamic consistency of an extension of the Biot’s coefficient to partially saturated anisotropic porous media.
http://www.springerlink.com/content/mj51450734304042/
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11695/1313
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact