The spotted-wing Drosophila (SWD), Drosophila suzukii Matsumura (Diptera: Drosophilidae), native to Eastern Asia, is one of the main emerging pests of valuable crops in Europe and the Americas. In 2008, rapid invasion of this soft fruit pest species occurred across Europe and the Americas. Consequentially, D. suzukii is currently one of the most relevant pest of valued horticultural crops, attacking soft fruit and wine grapes, and causing millions of dollars of damage annually. In contrast with other Drosophilae, SWD is capable of penetrating the skin of ripening fruit and laying eggs inside, where larval instars feed, develop and cause damage. This small fruit fly, a closely-related species of D. melanogaster and D. simulans, has developed a sophisticated olfactory system that can detect fruit odour and other odours coming from a potentially suitable habitat. Volatile cues are long-range mediators of its behaviour. Investigation of the olfactory system of D. suzukii will thus develops our understanding of the behaviour and physiology of these insects and allows us to develop effective pest control solutions. Current control strategies rely on the heavy use of insecticides, which have a negative ecological impact, and in the long run are neither effective nor sustainable. The tools that chemical ecology provides fit perfectly into D. suzukii integrated pest management (IPM) programmes, and could offer an alternative, more sustainable approach to limit its spread and damage. In this PhD thesis, we used microbiological, chemical, electrophysiological and laboratory bioassays and open field studies in our investigations. The overall aim of this PhD study was to investigate the potential of a tailored wine-apple cider-sugar cane mixture together with microbial volatiles in an innovative trap designed to improve the attractiveness of D. suzukii in the open field. Sustainable approaches to limit the spread of D. suzukii and the damage it causes always require effective lures and traps. We, therefore, intended to develop an innovative and effective lure to be implemented in a selective trapping system for controlling SWD as part of integrated pest management (IPM) programmes in open fields. While most research investigating D. suzukii has focused on volatile cues derived from host fruit or yeast, there is little evidence about how other microorganisms emitting volatile compounds could play a role in this fly’s behaviour. Moreover, little is known about how bacterial microbial volatiles affects the behaviour of SWD and whether they can be applied to improve integrated pest management control of this invasive species. We used Droskidrink®, a commercial product for catching D. suzukii, as a basic lure for improvement and further investigations. We demonstrated that adding lactic acid bacteria to Droskidrink® in the first week after fermentation improves attractiveness for SWD. We investigated key odourant cues for SWD, emitted by the wine-vinegar-lactic acid bacteria fermentation process. Furthermore, we found a connection between the same volatile cues capable of mediating the behaviour of Drosophila suzukii and other organisms on different trophic levels. For investigation across different trophic levels, we used Saccharomyces cerevisiae metabolic products and the well-known D. suzukii endoparasitoid Trichopria drosophilae Perkins (Hymenoptera; Diapriidae). Volatiles extracted from different sources are used to develop simple attractants with the use of a small number of compounds in a special ratio and concentration. Currently, the most prominent lures contain volatiles isolated from Merlot wine, rice vinegar, wine vinegar, apple cider vinegar, apple juice, fermented apple juice, the surface of raspberries or crushed berry fruits, including blueberries, cherries and strawberries. Some volatile compounds are isolated from acetic acid bacteria grown in different liquid media, and volatiles from different yeast fermentations. In the first part of the PhD study (Chapter 2), we investigated the use of bacteria as a bio-catalyser of metabolic processes occurring during malolactic fermentation of a wine-apple cider-sugar cane mixture attractive to Drosophila suzukii. We first evaluated the attractiveness of Droskidrink® food bait supplemented with different lactic acid bacteria strains. This experiment was conducted in open field studies in a commercial vineyard. We used Droso-Trap® Biobest, and Droskidrink® supplemented with Oenococcus oeni, Pediococcus spp and Lactobacillus spp. Moreover, the performance of attractive bacterial strains was investigated under laboratory conditions. Next, we studied the electroantennography response of SWD flies to the most attractive O. oeni strains, supplemented with Droskidrink®. The results showed that of the different lactic acid bacteria studied in laboratory and field experiments, three strains of O. oeni were most active to Drosophila suzukii. In Chapter 3, we performed volatile extraction of the mixtures, with different O. oeni strains added to Droskidrink® to assess how the volatile compounds emitted by bacteria affected the chemical composition of Droskidrink®. We tested the influence of lactic acid bacteria (two strains of O oeni previously selected as the most attractive strains in the field trials) and subsequent malolactic fermentation in wine-vinegar-sugarcane mixtures, over a period of three weeks. For volatile extraction, two different extraction methodologies were used, namely Direct Headspace Collection and the Closed-Loop-Stripping-Analysis (CLSA) method. Fermentation was set up in such a way that volatiles were extracted one, two and three weeks after the beginning of malolactic fermentation. For chemical identification of highly volatile compounds, we used direct head-space analysis connected to a Gas-Chromatograph with a Mass Selective Detector. Volatile extracts in the solvent were analysed in a standard GC-MS system on two different types of column to increase the number of identified compounds. Moreover, synthetic chemical standards were used for co-injection and chemical confirmation. Next, we studied the electroantennographical response of the collected volatiles, dissolved in a solvent, on female SWD flies. The behavioural multi-choice experiment was performed under laboratory conditions and to support our hypothesis was also tested in open field studies with the use of an innovative trapping system. The results revealed that malolactic fermentation with specific LAB strains tuned VOC composition in a way that made our tested mixture more attractive to D. suzukii. Our results revealed the chemical composition of various volatiles emitted by Droskidrink® after bacterial fermentation. These volatiles included some newly electrophysiologically-active compounds for SWD, such as eugenol and triacetin. Additionally, the results showed a wide range of diverse volatile organic compounds that strongly mediated the behaviour of SWD. Interestingly, the field innovative trap designed using just 15 mL of a mixture of wine–vinegar-sugar cane with an attractive beta strain of O. oeni increased trap catch two-fold when tested compared to a different commercially available attractant, namely Scentry® (proprietary blend, Scentry Biologicals Inc., Billings, MT, USA). The results further confirmed the commonly accepted theory of the importance of ubiquitous plant volatiles in attracting insects. Despite an increased understanding of the role of volatile emission as insect semiochemicals, and their use to manipulate SWD behaviour, at present semiochemically-based techniques in the open field are not well-established for this invasive species. Furthermore, non-selectivity and spillover in the catching of D. suzukii decreases the effectiveness of the trap systems developed. Therefore, in Chapter 4, we aimed to identify specific compounds that may repel other drosophila species and help in building more selective trapping systems. Using gas chromatography-mass spectrometry GC-MS, a combination of gas chromatography-electroantennography GC-EAD, and multi-choice cage bioassays with synthetic volatile compounds, we tried to find a repellent compound for untargeted Drosophilae caught using the current trap system. We conducted our research on the Drosophila suzukii sister species Drosophila simulans Sturtevant. Next, the most promising mixture of putatively repellent compounds was selected. The results revealed several compound mixtures were significantly not attractive because of repellent compound presence. Overall, these results indicate that compounds: benzaldehyde, eugenol, ethanol, ethyl isovalerate, phenylethyl acetate, isoamyl lactate, 1-octen-3-ol, ethyl caprolete, limonene, p-cymene, valeric acid were significantly repellent. Finally, the use of toxic pesticides to fight invasive species must be reduced. Environmentally unfriendly chemicals severely damage the environment. Insecticides that are harmful and toxic, not just for human health but also for all organisms in the habitat, have been used. Toxic chemicals impede naturally occurring enemies of pest insects, parasitoids and parasites. Integrated pest management (IPM) aims to balance the use of good agricultural practices with strategic planning, early monitoring, biological control and many different agricultural practices with minimal use of chemical compounds that have been proven to be dangerous for bio-diversity. Biological control using natural enemies is an important part of IPM, not just one aspect and strategy, as good monitoring and mass trapping could lead to a decline in the numbers of SWD in agricultural fields. Applying many different strategies at the same time could lead to achievement of the goal. Supplying the agro-environment with biological pest control (BPC) by boosting the natural population of parasitoids and predators is significant. In biological control (BC), naturally present beneficial organisms are supported with commercially reared natural enemies. One of the challenges in biological control is to maintain and attract beneficial insects to orchards (agricultural fields). Understanding the behaviour of natural enemies and their choice of host insects is one of the key steps in improvement of BC. The behaviour of natural enemies is determined by chemical cues released in the environment by host insects, plants, and the food source of the host insect. Chemical cues originating from the host plant have been widely studied. Recently, attention has been focused on chemical cues that are produced as products of the microorganism’s metabolism. These chemical cues are called microbial volatile organic compounds, mVOCs. mVOCs can mediate insect behaviour and lead to the choice of the mating, oviposition and feeding sites. Little is known about how mVOCs influence the behaviour of natural enemies, and their application in IPM. Therefore, in Chapter 5 we aimed to investigate one of main Drosophila suzukii endoparasitoids, Trichopria drosophilae and its behaviour in the context of host searching. In this chapter, we investigated host searching behaviour and utilisation of the same volatile cues in Drosophila and its parasitoid, emitted by one of the primary drosophila protein-rich diet sources, Saccharomyces cerevisiae. Overall, this PhD study has provided a better understanding of volatile mediated interaction between microorganisms and fermentative effects on a worldwide homemade attractant for Drosophila suzukii, a mixture of wine-vinegar-sugar cane. From fundamental neurophysiological, microbiological and chemical studies, through laboratory insect behavioural studies applied to open field studies, we have obtained important findings. This knowledge, combined with applied studies in the open field, may be exploited to develop a novel tool that detects D. suzukii at the beginning of its movement to agricultural fields from winter shelter areas, and also for mass trapping during the peak infestation period, when farmers have not intervened during the bottleneck period of arrival of SWD in the field. Moreover, the results of our study potentially lead to improved integrated management control of SWD and consequently to more sustainable practices in dealing with invasive insect species. We utilised microbe host-specific semiochemicals for attraction and as a basis for innovative trap design.

Il moscerino asiatico (SWD), Drosophila suzukii Matsumura (Diptera: Drosophilidae), originario dell'Asia orientale, è uno dei principali parassiti emergenti di colture pregiate in Europa e nelle Americhe. Nel 2008, si è verificata una rapida invasione di questa specie di fitofago dei frutti rossi in Europa e nelle Americhe. Di conseguenza, D. suzukii è attualmente uno degli insetti dannosi più rilevanti di colture pregiate, attaccando i frutti rossi e l'uva da vino, e causando milioni di dollari di danni ogni anno. A differenza delle altre Drosophilae, la SWD è in grado di penetrare la buccia della frutta in maturazione e di deporre le uova al suo interno, dove gli stadi larvali si nutrono, si sviluppano e causano danni. Questo piccolo moscerino della frutta, una specie strettamente imparentata con D. melanogaster e D. simulans, ha sviluppato un sofisticato sistema olfattivo che può rilevare l'odore della frutta e altri odori provenienti da un habitat potenzialmente adatto. Tali composti volatili sono mediatori a lungo raggio del suo comportamento. Lo studio del sistema olfattivo di D. suzukii può contribuire quindi a migliorare la nostra comprensione del comportamento e della fisiologia di questi insetti e ci permetterà di sviluppare soluzioni efficaci di controllo dei parassiti. Le attuali strategie di controllo si basano sull'uso massiccio di insetticidi, che hanno un impatto ecologico negativo e a lungo termine non sono né efficaci né sostenibili. Gli strumenti che l'ecologia chimica fornisce si adattano perfettamente ai programmi di gestione integrata (IPM) di D. suzukii e potrebbero offrire un approccio alternativo e più sostenibile per limitarne la diffusione e i danni. In questa tesi di dottorato, abbiamo usato nelle nostre indagini saggi microbiologici, chimici, elettrofisiologici di laboratorio e studi in campo aperto. L'obiettivo generale di questo studio di dottorato è stato quello di indagare il potenziale di una miscela di vino, aceto di mele e canna da zucchero insieme a composti volatili microbici in una trappola innovativa progettata per migliorare l'azione attrattiva nei confronti di D. suzukii in campo aperto. Approcci sostenibili per limitare la diffusione di D. suzukii e i danni che causa richiedono sempre esche e trappole efficaci. Il nostro obiettivo quindi è stato quello di sviluppare un'esca innovativa ed efficace da implementare in un sistema di trappole selettive per il controllo di SWD come parte dei programmi di gestione integrata dei parassiti (IPM) in campo aperto. Mentre la maggior parte delle ricerche su D. suzukii si è concentrata su composti volatili emessi dalla frutta o dai lieviti presenti sui frutti ospiti, c’erano poche prove su come altri microrganismi che emettono composti volatili possano giocare un ruolo nel comportamento di questo insetto. Inoltre, era poco conosciuto il ruolo di composti volatili batterici nel comportamento di ricerca degli ospiti di SWD e se quindi essi possano essere applicati per migliorare il controllo ed il monitoraggio di questa specie invasiva. Abbiamo usato Droskidrink®, un prodotto commerciale per la cattura di D. suzukii, come esca di base per il miglioramento e ulteriori indagini. Abbiamo dimostrato che l'aggiunta di batteri lattici al Droskidrink® nella prima settimana dopo la fermentazione migliora l'attrattività verso SWD. Abbiamo studiato i composti volatili chiave per SWD, emessi durante il processo di fermentazione del vino e dell'aceto mediato da batteri lattici. Inoltre, abbiamo trovato una relazione tra gli stessi composti volatili in grado di mediare il comportamento di D. suzukii e altri organismi a diversi livelli trofici. In particolare, abbiamo usato prodotti metabolici di Saccharomyces cerevisiae e il noto endoparassitoide di SWD Trichopria drosophilae Perkins (Hymenoptera; Diapriidae). Nella prima parte di questa tesi di dottorato (Capitolo 2), abbiamo studiato l'uso dei batteri come bio-catalizzatori dei processi metabolici che avvengono durante la fermentazione malolattica di una miscela di vino-aceto di mele-canna da zucchero attrattivo per D. suzukii. Abbiamo prima valutato l'attrattività dell'esca alimentare Droskidrink® integrata con diversi ceppi di batteri lattici. Questo esperimento è stato condotto in pieno campo in un vigneto commerciale. Abbiamo usato Droso-Trap® Biobest, e Droskidrink® integrato con Oenococcus oeni, Pediococcus spp e Lactobacillus spp. Inoltre, il rendimento dei ceppi batterici attrattivi è stato studiato in condizioni di laboratorio. Successivamente, abbiamo studiato la risposta elettroantennografica di SWD ai ceppi di O. oeni più attrattivi, integrati con Droskidrink®. I risultati hanno mostrato che dei diversi batteri lattici studiati negli esperimenti di laboratorio e sul campo, tre ceppi di O. oeni erano i più attivi nei confronti di D. suzukii. Nel capitolo 3, abbiamo eseguito l'estrazione dei composti volatili da miscele ottenute con diversi ceppi di O. oeni aggiunti al Droskidrink® per valutare come i composti volatili emessi dai batteri influenzassero la composizione chimica del Droskidrink®. Abbiamo testato l'influenza dei batteri lattici (due ceppi di O. oeni precedentemente selezionati come i ceppi più interessanti nelle prove sul campo) e la successiva fermentazione malolattica nelle miscele vino-aceto-zucchero, per un periodo di tre settimane. Per l'estrazione dei composti volatili, sono state utilizzate due diverse metodologie di estrazione, ovvero la raccolta diretta dallo spazio di testa e il metodo Closed-Loop-Stripping-Analysis (CLSA). La fermentazione è stata impostata in modo tale che i metaboliti sono stati estratti una, due e tre settimane dopo l'inizio della fermentazione malolattica. Per l'identificazione chimica dei composti altamente volatili, abbiamo utilizzato l'analisi diretta dello spazio di testa collegata a un gascromatografo con un rivelatore selettivo di massa. I composti volatili estratti nel solvente sono stati analizzati in un sistema GC-MS standard su due diversi tipi di colonna per aumentare il numero di composti identificati. Inoltre, sono stati utilizzati standard chimici sintetici per la co-iniezione e la conferma chimica. Successivamente, abbiamo studiato la risposta elettroantennografica dei composti volatili raccolti, dissolti in un solvente, su SWD femmina. L'esperimento comportamentale a scelta multipla è stato eseguito in condizioni di laboratorio e per sostenere la nostra ipotesi è stato anche testato in studi in campo aperto con l'uso di un innovativo sistema di cattura. I risultati hanno rivelato che la fermentazione malolattica con specifici ceppi di batteri lattici ha prodotto con una composizione specifica di composti volatili che ha reso la nostra miscela più attrattiva per D. suzukii. I nostri risultati hanno descritto la composizione chimica delle miscele emesse dal Droskidrink® dopo la fermentazione batterica. Questi composti volatili includevano alcuni nuovi composti elettrofisiologicamente attivi per SWD, come l'eugenolo e la triacetina. Inoltre, i risultati hanno mostrato una vasta gamma di composti organici volatili diversi che hanno fortemente influenzato il comportamento di SWD. È interessante notare che l'innovativa trappola progettata utilizzando solo 15 mL di una miscela di vino-aceto-zucchero di canna con un ceppo beta attrattivo di O. oeni ha aumentato di due volte la cattura della trappola quando è stata saggiata rispetto a un diverso attrattivo disponibile in commercio, ovvero Scentry® (miscela brevettata, Scentry Biologicals Inc., Billings, MT, USA). I risultati hanno ulteriormente confermato la teoria comunemente accettata dell'importanza dei composti volatili ubiquitari delle piante nell'attrarre gli insetti fitofagi. Nonostante una maggiore comprensione del ruolo dei semiochimici per manipolare il comportamento di SWD, attualmente le tecniche basate su tali composti in campo aperto non sono ben consolidate per questa specie invasiva. Inoltre, la non selettività nella cattura di D. suzukii diminuisce l'efficacia dei sistemi di trappole sviluppati. Pertanto, nel Capitolo 4, abbiamo mirato a identificare composti specifici che possono repellere altre specie di drosofila e aiutare nella costruzione di sistemi di cattura più selettivi. Usando la gascromatografia-spettrometria di massa GC-MS, una combinazione di gascromatografia-elettroantennografia GC-EAD, e biosaggi in gabbia a scelta multipla con composti volatili sintetici, abbiamo cercato di trovare un composto repellente per le Drosophile catturate usando l'attuale sistema di trappola. Abbiamo condotto la nostra ricerca sulla specie sorella di D. suzukii, Drosophila simulans Sturtevant. Successivamente, è stata selezionata la miscela più promettente di composti putativamente repellenti. I risultati hanno rivelato che diverse miscele di composti erano significativamente non attrattivi a causa della presenza di composti repellenti. Nel complesso, questi risultati indicano che i composti: benzaldeide, eugenolo, etanolo, etile isovalerato, feniletil acetato, isoamil lattato, 1-octen-3-olo, etile caprolete, limonene, p-cimene, acido valerico erano significativamente repellenti. Infine, l'uso di pesticidi tossici per combattere le specie invasive deve essere ridotto. I prodotti chimici non ecologici danneggiano gravemente l'ambiente. Sono stati usati insetticidi dannosi e tossici, non solo per la salute umana ma anche per tutti gli organismi nell'habitat. Le sostanze chimiche tossiche ostacolano i nemici naturali degli insetti nocivi, i parassitoidi e i predatori. La gestione integrata dei parassiti (IPM) mira a bilanciare l'uso di buone pratiche agricole con la pianificazione strategica, il monitoraggio precoce, il controllo biologico e molte pratiche agricole diverse con un uso minimo di composti chimici che hanno dimostrato di essere pericolosi per la biodiversità. Il controllo biologico con l'uso di nemici naturali è una parte importante dell'IPM, in combinazione con altri metodi, ad esempio un buon monitoraggio e la cattura massale. Applicare molte strategie diverse allo stesso tempo potrebbe portare al raggiungimento dell'obiettivo. Proteggere e promuovere gli agenti di biocontrollo naturalmente presenti in un agroecosistema è quindi fondamentale (lotta biologica conservativa) insieme al rilascio razionale di quelli commercialmente disponibili (lotta biologica aumentativa). Comprendere il comportamento dei nemici naturali e la loro scelta degli insetti ospiti è quindi uno dei passi chiave nel miglioramento della lotta biologica. Il comportamento dei nemici naturali è determinato da composti chimici rilasciati nell'ambiente dagli insetti ospiti, dalle piante e dalla fonte di cibo dell'insetto ospite. I composti chimici provenienti dalla pianta ospite sono stati ampiamente studiati. Recentemente, l'attenzione si è concentrata sulle sostanze che sono prodotte durante il metabolismo dei microrganismi. Questi composti chimici sono chiamati composti organici volatili microbici, mVOCs. I mVOCs possono mediare il comportamento degli insetti e portare alla scelta dei siti di accoppiamento, ovodeposizione e alimentazione. Si sa poco su come i mVOCs influenzino il comportamento dei nemici naturali e sulla loro applicazione nell'IPM. Pertanto, nel capitolo 5 abbiamo cercato di studiare uno dei principali endoparassitoidi di D. suzukii, Trichopria drosophilae e il suo comportamento nel contesto della ricerca dell'ospite. In questo capitolo, abbiamo studiato il comportamento di ricerca dell'ospite e l'utilizzo degli stessi segnali volatili nella Drosophila e nel suo parassitoide, emessi da una delle fonti primarie della dieta ricca di proteine della drosofila, Saccharomyces cerevisiae. Nel complesso, questa tesi di dottorato ha fornito una migliore comprensione dell'interazione mediata da composti volatili tra i microrganismi responsabili della fermentazione di un attrattivo comune per D. suzukii, una miscela di vino-aceto-zucchero di canna. Dagli studi neurofisiologici, microbiologici e chimici, e attraverso studi comportamentali di laboratorio e di campo, abbiamo ottenuto importanti risultati innovativi. Queste conoscenze possono essere sfruttate per sviluppare un nuovo strumento per il monitoraggio di D. suzukii all'inizio del suo movimento nei campi agricoli dalle aree di rifugio invernali, e anche per la cattura massale durante il periodo di massima infestazione in estate. Inoltre, i risultati del nostro studio possono portare all’ottimizzazione dell’attuale gestione integrata di SWD e di conseguenza a pratiche più sostenibili per la gestione di le specie di insetti invasive. Abbiamo utilizzato i semiochimici specifici emessi da microrganismi legati alle piante ospiti dell’insetto per aumentare l'attrazione e come base per la progettazione di trappole innovative.

The exploitation of microbial volatiles for integrated pest management of spotted wing drosophila Drosophila suzukii Matsumura (Diptera: Drosophilidae)

DUROVIC, Gordana
2021-06-30

Abstract

The spotted-wing Drosophila (SWD), Drosophila suzukii Matsumura (Diptera: Drosophilidae), native to Eastern Asia, is one of the main emerging pests of valuable crops in Europe and the Americas. In 2008, rapid invasion of this soft fruit pest species occurred across Europe and the Americas. Consequentially, D. suzukii is currently one of the most relevant pest of valued horticultural crops, attacking soft fruit and wine grapes, and causing millions of dollars of damage annually. In contrast with other Drosophilae, SWD is capable of penetrating the skin of ripening fruit and laying eggs inside, where larval instars feed, develop and cause damage. This small fruit fly, a closely-related species of D. melanogaster and D. simulans, has developed a sophisticated olfactory system that can detect fruit odour and other odours coming from a potentially suitable habitat. Volatile cues are long-range mediators of its behaviour. Investigation of the olfactory system of D. suzukii will thus develops our understanding of the behaviour and physiology of these insects and allows us to develop effective pest control solutions. Current control strategies rely on the heavy use of insecticides, which have a negative ecological impact, and in the long run are neither effective nor sustainable. The tools that chemical ecology provides fit perfectly into D. suzukii integrated pest management (IPM) programmes, and could offer an alternative, more sustainable approach to limit its spread and damage. In this PhD thesis, we used microbiological, chemical, electrophysiological and laboratory bioassays and open field studies in our investigations. The overall aim of this PhD study was to investigate the potential of a tailored wine-apple cider-sugar cane mixture together with microbial volatiles in an innovative trap designed to improve the attractiveness of D. suzukii in the open field. Sustainable approaches to limit the spread of D. suzukii and the damage it causes always require effective lures and traps. We, therefore, intended to develop an innovative and effective lure to be implemented in a selective trapping system for controlling SWD as part of integrated pest management (IPM) programmes in open fields. While most research investigating D. suzukii has focused on volatile cues derived from host fruit or yeast, there is little evidence about how other microorganisms emitting volatile compounds could play a role in this fly’s behaviour. Moreover, little is known about how bacterial microbial volatiles affects the behaviour of SWD and whether they can be applied to improve integrated pest management control of this invasive species. We used Droskidrink®, a commercial product for catching D. suzukii, as a basic lure for improvement and further investigations. We demonstrated that adding lactic acid bacteria to Droskidrink® in the first week after fermentation improves attractiveness for SWD. We investigated key odourant cues for SWD, emitted by the wine-vinegar-lactic acid bacteria fermentation process. Furthermore, we found a connection between the same volatile cues capable of mediating the behaviour of Drosophila suzukii and other organisms on different trophic levels. For investigation across different trophic levels, we used Saccharomyces cerevisiae metabolic products and the well-known D. suzukii endoparasitoid Trichopria drosophilae Perkins (Hymenoptera; Diapriidae). Volatiles extracted from different sources are used to develop simple attractants with the use of a small number of compounds in a special ratio and concentration. Currently, the most prominent lures contain volatiles isolated from Merlot wine, rice vinegar, wine vinegar, apple cider vinegar, apple juice, fermented apple juice, the surface of raspberries or crushed berry fruits, including blueberries, cherries and strawberries. Some volatile compounds are isolated from acetic acid bacteria grown in different liquid media, and volatiles from different yeast fermentations. In the first part of the PhD study (Chapter 2), we investigated the use of bacteria as a bio-catalyser of metabolic processes occurring during malolactic fermentation of a wine-apple cider-sugar cane mixture attractive to Drosophila suzukii. We first evaluated the attractiveness of Droskidrink® food bait supplemented with different lactic acid bacteria strains. This experiment was conducted in open field studies in a commercial vineyard. We used Droso-Trap® Biobest, and Droskidrink® supplemented with Oenococcus oeni, Pediococcus spp and Lactobacillus spp. Moreover, the performance of attractive bacterial strains was investigated under laboratory conditions. Next, we studied the electroantennography response of SWD flies to the most attractive O. oeni strains, supplemented with Droskidrink®. The results showed that of the different lactic acid bacteria studied in laboratory and field experiments, three strains of O. oeni were most active to Drosophila suzukii. In Chapter 3, we performed volatile extraction of the mixtures, with different O. oeni strains added to Droskidrink® to assess how the volatile compounds emitted by bacteria affected the chemical composition of Droskidrink®. We tested the influence of lactic acid bacteria (two strains of O oeni previously selected as the most attractive strains in the field trials) and subsequent malolactic fermentation in wine-vinegar-sugarcane mixtures, over a period of three weeks. For volatile extraction, two different extraction methodologies were used, namely Direct Headspace Collection and the Closed-Loop-Stripping-Analysis (CLSA) method. Fermentation was set up in such a way that volatiles were extracted one, two and three weeks after the beginning of malolactic fermentation. For chemical identification of highly volatile compounds, we used direct head-space analysis connected to a Gas-Chromatograph with a Mass Selective Detector. Volatile extracts in the solvent were analysed in a standard GC-MS system on two different types of column to increase the number of identified compounds. Moreover, synthetic chemical standards were used for co-injection and chemical confirmation. Next, we studied the electroantennographical response of the collected volatiles, dissolved in a solvent, on female SWD flies. The behavioural multi-choice experiment was performed under laboratory conditions and to support our hypothesis was also tested in open field studies with the use of an innovative trapping system. The results revealed that malolactic fermentation with specific LAB strains tuned VOC composition in a way that made our tested mixture more attractive to D. suzukii. Our results revealed the chemical composition of various volatiles emitted by Droskidrink® after bacterial fermentation. These volatiles included some newly electrophysiologically-active compounds for SWD, such as eugenol and triacetin. Additionally, the results showed a wide range of diverse volatile organic compounds that strongly mediated the behaviour of SWD. Interestingly, the field innovative trap designed using just 15 mL of a mixture of wine–vinegar-sugar cane with an attractive beta strain of O. oeni increased trap catch two-fold when tested compared to a different commercially available attractant, namely Scentry® (proprietary blend, Scentry Biologicals Inc., Billings, MT, USA). The results further confirmed the commonly accepted theory of the importance of ubiquitous plant volatiles in attracting insects. Despite an increased understanding of the role of volatile emission as insect semiochemicals, and their use to manipulate SWD behaviour, at present semiochemically-based techniques in the open field are not well-established for this invasive species. Furthermore, non-selectivity and spillover in the catching of D. suzukii decreases the effectiveness of the trap systems developed. Therefore, in Chapter 4, we aimed to identify specific compounds that may repel other drosophila species and help in building more selective trapping systems. Using gas chromatography-mass spectrometry GC-MS, a combination of gas chromatography-electroantennography GC-EAD, and multi-choice cage bioassays with synthetic volatile compounds, we tried to find a repellent compound for untargeted Drosophilae caught using the current trap system. We conducted our research on the Drosophila suzukii sister species Drosophila simulans Sturtevant. Next, the most promising mixture of putatively repellent compounds was selected. The results revealed several compound mixtures were significantly not attractive because of repellent compound presence. Overall, these results indicate that compounds: benzaldehyde, eugenol, ethanol, ethyl isovalerate, phenylethyl acetate, isoamyl lactate, 1-octen-3-ol, ethyl caprolete, limonene, p-cymene, valeric acid were significantly repellent. Finally, the use of toxic pesticides to fight invasive species must be reduced. Environmentally unfriendly chemicals severely damage the environment. Insecticides that are harmful and toxic, not just for human health but also for all organisms in the habitat, have been used. Toxic chemicals impede naturally occurring enemies of pest insects, parasitoids and parasites. Integrated pest management (IPM) aims to balance the use of good agricultural practices with strategic planning, early monitoring, biological control and many different agricultural practices with minimal use of chemical compounds that have been proven to be dangerous for bio-diversity. Biological control using natural enemies is an important part of IPM, not just one aspect and strategy, as good monitoring and mass trapping could lead to a decline in the numbers of SWD in agricultural fields. Applying many different strategies at the same time could lead to achievement of the goal. Supplying the agro-environment with biological pest control (BPC) by boosting the natural population of parasitoids and predators is significant. In biological control (BC), naturally present beneficial organisms are supported with commercially reared natural enemies. One of the challenges in biological control is to maintain and attract beneficial insects to orchards (agricultural fields). Understanding the behaviour of natural enemies and their choice of host insects is one of the key steps in improvement of BC. The behaviour of natural enemies is determined by chemical cues released in the environment by host insects, plants, and the food source of the host insect. Chemical cues originating from the host plant have been widely studied. Recently, attention has been focused on chemical cues that are produced as products of the microorganism’s metabolism. These chemical cues are called microbial volatile organic compounds, mVOCs. mVOCs can mediate insect behaviour and lead to the choice of the mating, oviposition and feeding sites. Little is known about how mVOCs influence the behaviour of natural enemies, and their application in IPM. Therefore, in Chapter 5 we aimed to investigate one of main Drosophila suzukii endoparasitoids, Trichopria drosophilae and its behaviour in the context of host searching. In this chapter, we investigated host searching behaviour and utilisation of the same volatile cues in Drosophila and its parasitoid, emitted by one of the primary drosophila protein-rich diet sources, Saccharomyces cerevisiae. Overall, this PhD study has provided a better understanding of volatile mediated interaction between microorganisms and fermentative effects on a worldwide homemade attractant for Drosophila suzukii, a mixture of wine-vinegar-sugar cane. From fundamental neurophysiological, microbiological and chemical studies, through laboratory insect behavioural studies applied to open field studies, we have obtained important findings. This knowledge, combined with applied studies in the open field, may be exploited to develop a novel tool that detects D. suzukii at the beginning of its movement to agricultural fields from winter shelter areas, and also for mass trapping during the peak infestation period, when farmers have not intervened during the bottleneck period of arrival of SWD in the field. Moreover, the results of our study potentially lead to improved integrated management control of SWD and consequently to more sustainable practices in dealing with invasive insect species. We utilised microbe host-specific semiochemicals for attraction and as a basis for innovative trap design.
30-giu-2021
Il moscerino asiatico (SWD), Drosophila suzukii Matsumura (Diptera: Drosophilidae), originario dell'Asia orientale, è uno dei principali parassiti emergenti di colture pregiate in Europa e nelle Americhe. Nel 2008, si è verificata una rapida invasione di questa specie di fitofago dei frutti rossi in Europa e nelle Americhe. Di conseguenza, D. suzukii è attualmente uno degli insetti dannosi più rilevanti di colture pregiate, attaccando i frutti rossi e l'uva da vino, e causando milioni di dollari di danni ogni anno. A differenza delle altre Drosophilae, la SWD è in grado di penetrare la buccia della frutta in maturazione e di deporre le uova al suo interno, dove gli stadi larvali si nutrono, si sviluppano e causano danni. Questo piccolo moscerino della frutta, una specie strettamente imparentata con D. melanogaster e D. simulans, ha sviluppato un sofisticato sistema olfattivo che può rilevare l'odore della frutta e altri odori provenienti da un habitat potenzialmente adatto. Tali composti volatili sono mediatori a lungo raggio del suo comportamento. Lo studio del sistema olfattivo di D. suzukii può contribuire quindi a migliorare la nostra comprensione del comportamento e della fisiologia di questi insetti e ci permetterà di sviluppare soluzioni efficaci di controllo dei parassiti. Le attuali strategie di controllo si basano sull'uso massiccio di insetticidi, che hanno un impatto ecologico negativo e a lungo termine non sono né efficaci né sostenibili. Gli strumenti che l'ecologia chimica fornisce si adattano perfettamente ai programmi di gestione integrata (IPM) di D. suzukii e potrebbero offrire un approccio alternativo e più sostenibile per limitarne la diffusione e i danni. In questa tesi di dottorato, abbiamo usato nelle nostre indagini saggi microbiologici, chimici, elettrofisiologici di laboratorio e studi in campo aperto. L'obiettivo generale di questo studio di dottorato è stato quello di indagare il potenziale di una miscela di vino, aceto di mele e canna da zucchero insieme a composti volatili microbici in una trappola innovativa progettata per migliorare l'azione attrattiva nei confronti di D. suzukii in campo aperto. Approcci sostenibili per limitare la diffusione di D. suzukii e i danni che causa richiedono sempre esche e trappole efficaci. Il nostro obiettivo quindi è stato quello di sviluppare un'esca innovativa ed efficace da implementare in un sistema di trappole selettive per il controllo di SWD come parte dei programmi di gestione integrata dei parassiti (IPM) in campo aperto. Mentre la maggior parte delle ricerche su D. suzukii si è concentrata su composti volatili emessi dalla frutta o dai lieviti presenti sui frutti ospiti, c’erano poche prove su come altri microrganismi che emettono composti volatili possano giocare un ruolo nel comportamento di questo insetto. Inoltre, era poco conosciuto il ruolo di composti volatili batterici nel comportamento di ricerca degli ospiti di SWD e se quindi essi possano essere applicati per migliorare il controllo ed il monitoraggio di questa specie invasiva. Abbiamo usato Droskidrink®, un prodotto commerciale per la cattura di D. suzukii, come esca di base per il miglioramento e ulteriori indagini. Abbiamo dimostrato che l'aggiunta di batteri lattici al Droskidrink® nella prima settimana dopo la fermentazione migliora l'attrattività verso SWD. Abbiamo studiato i composti volatili chiave per SWD, emessi durante il processo di fermentazione del vino e dell'aceto mediato da batteri lattici. Inoltre, abbiamo trovato una relazione tra gli stessi composti volatili in grado di mediare il comportamento di D. suzukii e altri organismi a diversi livelli trofici. In particolare, abbiamo usato prodotti metabolici di Saccharomyces cerevisiae e il noto endoparassitoide di SWD Trichopria drosophilae Perkins (Hymenoptera; Diapriidae). Nella prima parte di questa tesi di dottorato (Capitolo 2), abbiamo studiato l'uso dei batteri come bio-catalizzatori dei processi metabolici che avvengono durante la fermentazione malolattica di una miscela di vino-aceto di mele-canna da zucchero attrattivo per D. suzukii. Abbiamo prima valutato l'attrattività dell'esca alimentare Droskidrink® integrata con diversi ceppi di batteri lattici. Questo esperimento è stato condotto in pieno campo in un vigneto commerciale. Abbiamo usato Droso-Trap® Biobest, e Droskidrink® integrato con Oenococcus oeni, Pediococcus spp e Lactobacillus spp. Inoltre, il rendimento dei ceppi batterici attrattivi è stato studiato in condizioni di laboratorio. Successivamente, abbiamo studiato la risposta elettroantennografica di SWD ai ceppi di O. oeni più attrattivi, integrati con Droskidrink®. I risultati hanno mostrato che dei diversi batteri lattici studiati negli esperimenti di laboratorio e sul campo, tre ceppi di O. oeni erano i più attivi nei confronti di D. suzukii. Nel capitolo 3, abbiamo eseguito l'estrazione dei composti volatili da miscele ottenute con diversi ceppi di O. oeni aggiunti al Droskidrink® per valutare come i composti volatili emessi dai batteri influenzassero la composizione chimica del Droskidrink®. Abbiamo testato l'influenza dei batteri lattici (due ceppi di O. oeni precedentemente selezionati come i ceppi più interessanti nelle prove sul campo) e la successiva fermentazione malolattica nelle miscele vino-aceto-zucchero, per un periodo di tre settimane. Per l'estrazione dei composti volatili, sono state utilizzate due diverse metodologie di estrazione, ovvero la raccolta diretta dallo spazio di testa e il metodo Closed-Loop-Stripping-Analysis (CLSA). La fermentazione è stata impostata in modo tale che i metaboliti sono stati estratti una, due e tre settimane dopo l'inizio della fermentazione malolattica. Per l'identificazione chimica dei composti altamente volatili, abbiamo utilizzato l'analisi diretta dello spazio di testa collegata a un gascromatografo con un rivelatore selettivo di massa. I composti volatili estratti nel solvente sono stati analizzati in un sistema GC-MS standard su due diversi tipi di colonna per aumentare il numero di composti identificati. Inoltre, sono stati utilizzati standard chimici sintetici per la co-iniezione e la conferma chimica. Successivamente, abbiamo studiato la risposta elettroantennografica dei composti volatili raccolti, dissolti in un solvente, su SWD femmina. L'esperimento comportamentale a scelta multipla è stato eseguito in condizioni di laboratorio e per sostenere la nostra ipotesi è stato anche testato in studi in campo aperto con l'uso di un innovativo sistema di cattura. I risultati hanno rivelato che la fermentazione malolattica con specifici ceppi di batteri lattici ha prodotto con una composizione specifica di composti volatili che ha reso la nostra miscela più attrattiva per D. suzukii. I nostri risultati hanno descritto la composizione chimica delle miscele emesse dal Droskidrink® dopo la fermentazione batterica. Questi composti volatili includevano alcuni nuovi composti elettrofisiologicamente attivi per SWD, come l'eugenolo e la triacetina. Inoltre, i risultati hanno mostrato una vasta gamma di composti organici volatili diversi che hanno fortemente influenzato il comportamento di SWD. È interessante notare che l'innovativa trappola progettata utilizzando solo 15 mL di una miscela di vino-aceto-zucchero di canna con un ceppo beta attrattivo di O. oeni ha aumentato di due volte la cattura della trappola quando è stata saggiata rispetto a un diverso attrattivo disponibile in commercio, ovvero Scentry® (miscela brevettata, Scentry Biologicals Inc., Billings, MT, USA). I risultati hanno ulteriormente confermato la teoria comunemente accettata dell'importanza dei composti volatili ubiquitari delle piante nell'attrarre gli insetti fitofagi. Nonostante una maggiore comprensione del ruolo dei semiochimici per manipolare il comportamento di SWD, attualmente le tecniche basate su tali composti in campo aperto non sono ben consolidate per questa specie invasiva. Inoltre, la non selettività nella cattura di D. suzukii diminuisce l'efficacia dei sistemi di trappole sviluppati. Pertanto, nel Capitolo 4, abbiamo mirato a identificare composti specifici che possono repellere altre specie di drosofila e aiutare nella costruzione di sistemi di cattura più selettivi. Usando la gascromatografia-spettrometria di massa GC-MS, una combinazione di gascromatografia-elettroantennografia GC-EAD, e biosaggi in gabbia a scelta multipla con composti volatili sintetici, abbiamo cercato di trovare un composto repellente per le Drosophile catturate usando l'attuale sistema di trappola. Abbiamo condotto la nostra ricerca sulla specie sorella di D. suzukii, Drosophila simulans Sturtevant. Successivamente, è stata selezionata la miscela più promettente di composti putativamente repellenti. I risultati hanno rivelato che diverse miscele di composti erano significativamente non attrattivi a causa della presenza di composti repellenti. Nel complesso, questi risultati indicano che i composti: benzaldeide, eugenolo, etanolo, etile isovalerato, feniletil acetato, isoamil lattato, 1-octen-3-olo, etile caprolete, limonene, p-cimene, acido valerico erano significativamente repellenti. Infine, l'uso di pesticidi tossici per combattere le specie invasive deve essere ridotto. I prodotti chimici non ecologici danneggiano gravemente l'ambiente. Sono stati usati insetticidi dannosi e tossici, non solo per la salute umana ma anche per tutti gli organismi nell'habitat. Le sostanze chimiche tossiche ostacolano i nemici naturali degli insetti nocivi, i parassitoidi e i predatori. La gestione integrata dei parassiti (IPM) mira a bilanciare l'uso di buone pratiche agricole con la pianificazione strategica, il monitoraggio precoce, il controllo biologico e molte pratiche agricole diverse con un uso minimo di composti chimici che hanno dimostrato di essere pericolosi per la biodiversità. Il controllo biologico con l'uso di nemici naturali è una parte importante dell'IPM, in combinazione con altri metodi, ad esempio un buon monitoraggio e la cattura massale. Applicare molte strategie diverse allo stesso tempo potrebbe portare al raggiungimento dell'obiettivo. Proteggere e promuovere gli agenti di biocontrollo naturalmente presenti in un agroecosistema è quindi fondamentale (lotta biologica conservativa) insieme al rilascio razionale di quelli commercialmente disponibili (lotta biologica aumentativa). Comprendere il comportamento dei nemici naturali e la loro scelta degli insetti ospiti è quindi uno dei passi chiave nel miglioramento della lotta biologica. Il comportamento dei nemici naturali è determinato da composti chimici rilasciati nell'ambiente dagli insetti ospiti, dalle piante e dalla fonte di cibo dell'insetto ospite. I composti chimici provenienti dalla pianta ospite sono stati ampiamente studiati. Recentemente, l'attenzione si è concentrata sulle sostanze che sono prodotte durante il metabolismo dei microrganismi. Questi composti chimici sono chiamati composti organici volatili microbici, mVOCs. I mVOCs possono mediare il comportamento degli insetti e portare alla scelta dei siti di accoppiamento, ovodeposizione e alimentazione. Si sa poco su come i mVOCs influenzino il comportamento dei nemici naturali e sulla loro applicazione nell'IPM. Pertanto, nel capitolo 5 abbiamo cercato di studiare uno dei principali endoparassitoidi di D. suzukii, Trichopria drosophilae e il suo comportamento nel contesto della ricerca dell'ospite. In questo capitolo, abbiamo studiato il comportamento di ricerca dell'ospite e l'utilizzo degli stessi segnali volatili nella Drosophila e nel suo parassitoide, emessi da una delle fonti primarie della dieta ricca di proteine della drosofila, Saccharomyces cerevisiae. Nel complesso, questa tesi di dottorato ha fornito una migliore comprensione dell'interazione mediata da composti volatili tra i microrganismi responsabili della fermentazione di un attrattivo comune per D. suzukii, una miscela di vino-aceto-zucchero di canna. Dagli studi neurofisiologici, microbiologici e chimici, e attraverso studi comportamentali di laboratorio e di campo, abbiamo ottenuto importanti risultati innovativi. Queste conoscenze possono essere sfruttate per sviluppare un nuovo strumento per il monitoraggio di D. suzukii all'inizio del suo movimento nei campi agricoli dalle aree di rifugio invernali, e anche per la cattura massale durante il periodo di massima infestazione in estate. Inoltre, i risultati del nostro studio possono portare all’ottimizzazione dell’attuale gestione integrata di SWD e di conseguenza a pratiche più sostenibili per la gestione di le specie di insetti invasive. Abbiamo utilizzato i semiochimici specifici emessi da microrganismi legati alle piante ospiti dell’insetto per aumentare l'attrazione e come base per la progettazione di trappole innovative.
Microbial volatile organic compounds behavioral response; Drosophila suzukii; Trichopria drosophilae; Pupal parasitoids; Tritrophic interaction
File in questo prodotto:
File Dimensione Formato  
Tesi_G_Durovic.pdf

Open Access dal 31/12/2022

Descrizione: Tesi di Dottorato
Dimensione 4.16 MB
Formato Adobe PDF
4.16 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11695/100490
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact