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1 – INTRODUCTION 

 

1.1 Midbrain dopaminergic neurons 

Neurons producing dopamine (DA, member of catecholamine) as neurotransmitter represent a 

heterogeneous group of cells involved in the control of different behaviors and physiological 

aspects of the mammal organisms.  

In the mammalian central nervous system (CNS) dopaminergic nuclei have a broad distribution 

from the mesencephalon to the olfactory bulb described by Dahlstrom and Fuxe in 1964 

(Dahlstroem et al., 1964) (fig. 1.1). 

 They are located in the area A16 of the olfactory bulbs (Gudelsky et al. 1976), area A17 of the 

retina (Djamgoz et al. 1992), areas A11-A15 of the diencephalon [e.g. hypothalamic arcuate 

nucleus (A12; Kizer et al. 1976) and sub-parafascicular thalamic nucleus (A13; Takada 1993)]. 

The areas identified as A8, A9 and A10 nuclei are usually indicated as midbrain dopaminergic 

neurons (mDA). 

 

 

Figure 1.1 Schematic representation of anatomical localization of dopaminergic neurons in the adult 
brain of rodent. Dopaminergic neurons are distributed in 10 groups (A8 - A17) from the mesencephalon 
to the olfactory bulb described by Dahlstrom and Fuxe in 1964 (Dahlstroem et al., 1964). A8, A9 and 
A10 nuclei are usually indicated as midbrain dopaminergic neurons. Blu arrows represent nigro-striatal 
pathway; green arrows represents meso-cortico-limbic pathway. A8, Retrorubral field; A9, Substantia 
Nigra; A10, Ventral Tegmenta Area. Amyg, amygdala; DA, dopaminergic neurons; GP, globus pallidus; 
Hp, hippocampus; N Acc, nucleus accumbens; OB, olfactory bulb; O. Tub, olfactory tubercle; Pit, 
pituitary; Str, striatum; SVZ, subventricular zone; Thal, thalamus. (Rodríguez-Traver et al., 2015). 
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The mDA neurons in ventral midbrain (fig. 1.2) have been quantified, in rodents, as 20000 - 

40000 neurons, while in human 400000 - 60000 (Björklund et al., 2007). However, it has been 

shown that environmental stimuli can modify their number and distribution (Tomas et al., 

2015). 

 

Figure 1.2 Midbrain Dopaminergic Nuclei. a) Immunostaining for Tyrosine hydroxilase (TH) on adult 
mouse ventral midbrain showing Substantia nigra (SN; laterally) and ventral tegmental area (VTA; 
medially). b) SN, enlargement. It is possible to distinguish SN pars compacta (SNc), where locate DA 
somata, and SN pars reticulata (SNr) with DA dendrites (di Porzio et al., 1990). 

 

In detail the mDA neurons in ventral midbrain are located as described hereafter:  

1) Retrorubral field (RRF, A8) is involved in the modulation of orofacial movements. The 

retrorubral DA neurons project mainly to Substantia nigra and ventral tegmental area (fig. 1.1) 

and probably coordinate the action of these two nuclei (Arts et al., 1996). Others projections of 

RRF are involved in the arousal (Simmons et al., 2011). 

2) Substantia Nigra (SN, A9), the mDA fibers depart from SN pars compacta (SNc) that contains 

DA cell bodies, while the dendritic extensions are located in the pars reticulata (SNr) where they 

connect to the intrinsic GABAergic neurons and reach the striatum (corresponding to nuclei 

caudate-putamen in humans) to give rise to the Nigrostriatal pathway (NSp; fig. 1.1). NSp is 

responsible for decision and control of extrapyramidal motor functions, movement velocity and 

postural position (Kandel et al., 2000). Moreover, along with the other dopaminergic pathways, 

it is also partially involved in reward and in the memory consolidation (Wise, 2009). 

The extrapyramidal pathway shown in Figure 1.3, imply the strict collaboration between the 

nuclei of basal ganglia and the cortex. Two different pathways called direct and indirect have been 

described. Both pathways reach the thalamus and go back to the cortex.  
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In the direct pathway (fig. 1.3), neurons from the cortex projects to the striatum. Here they 

remove inhibition of internal globus pallidus (GPi) and SNr on the thalamus, promoting the 

feedback signals of thalamus to the cortex. In the indirect pathway (fig. 1.3) neurons from the 

striatum project to the thalamus via the external globus pallidus (GPe) the subthalamic nucleus 

and the globus pallidus again.  

 

 

Figure 1.3 Extrapyramidal system neural networks in normal condition (left) and Parkinsons 
Disease (right). It is shown the modulatory action of substantia nigra pars compacta (SNc) dopaminergic 
neurons on the nuclei caudate-putamen (striatum in rodents). Excitatory pathways are in blu; inhibitory 
pathways are in red. SNr, Substantia Nigra pars reticulata; GPe, external Globus pallidus; GPi, internal 
Globus pallidus; STN, Subthalamic nucleus; D1 and D2 are the different types of DA receptor in the 
striatum (image from Dorland's Illustrated Medical Dictionary). 

 

The NSp has a critic role in modulating this circuit so to determine, basing on experience, which 

are the most suitable adaptive behaviors. The loss of SN DA neurons causes Parkinson Disease 

(PD; Thomas et al., 2007), commonly a disorder with a late-onset. The degeneration of the NSp 

is responsible for an over-activation of GABAergic inhibitory neurons in the internal globus 

pallidus, with a subsequent inactivation of thalamic glutamatergic excitatory neurons direct to the 

cortex. This causes all the typical motor symptoms of PD, such as progressive loss of muscle 

control, tremor, loss of facial expressivity, rigidity and difficulties in completing simple tasks. It 
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was first described in 1817 by the famous neurologist James Parkinson in his “Essay on the 

shaking palsy” (Jenner et al., 1992). 

3) Ventral Tegmental Area (VTA, A10), gives rise to a Meso-corticolimbic pathway (MCLp; 

1.1), that is implicated in superior cognitive abilities such as reward, attention, and emotions, 

essential for social behaviors (sex, sociality, and aggression). MCLp neurons project to the nucleus 

accumbens, olfactory tubercle, cortical areas (prefrontal, cingulate and perirhinal cortex) as well as 

septum, amygdala, and hippocampus. The alteration of MCLp is the main cause of mood 

disorders (Zacharko et al., 1991, Martin-Soelch 2009), schizophrenia (Laviolette 2007), attention 

deficit hyperactivity disorder (ADHD; Ohno 2003), drug addiction and hallucinations (Morales 

et al., 2012).   

Despite SN and MCL pathways are independent their connections overlap each other to promote 

higher cognitive processes. Indeed different studies have shown that the dysfunction of one can 

alter the function of the other (Jellinger 1991, Péron et al., 2012).  

Moreover, DA neurons are also involved in the working memory formation by connecting basal 

ganglia with the prefrontal cortex. This specific kind of memory is well described in humans and 

is necessary to keep “active” in mind the acquired information for several seconds, to allow 

processes like reasoning, comprehension, problems resolution, planning and other complex 

cognitive functions (Lieberman 2009).  

 

1.2 Dopamine metabolism 

Dopamine (DA, a contraction of 3,4-dihydroxyphenethylamine) is neurotransmitter of the 

catecholamine family. Until of the 1950s, DA was considered only the intermediate for the 

synthesis of noradrenaline and adrenaline, but the studies conducted by of Von Euler and 

Lishajko first, and subsequently Bertler and Rosengren, demonstrated that DA is active by itself 

too. About ten years later, was discovered that the degeneration of DA neurons, in striatum, is a 

main cause of PD (Carlsson 1959, Ehringer and Hornykiewicz 1960) and the unique treatment 

for the symptoms of this disorder is use of DA precursor L-3,4-dihydroxyphenylalanine (L-

DOPA; Carlsson 1959, Ehringer et al., 1960). Then Carlsson and his collaborators identified in 

the ventral midbrain (Mb) the origins of the DA found in the striatum and also in the limbic 

system (Anden et al., 1964). 
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In the soma and in the presynaptic terminal of dopaminergic neurons, tyrosine is transformed 

into L-DOPA (fig. 1.4) by the action of tyrosine hydroxylase (TH), the limiting enzyme in the 

biosynthesis of catecholamines (dopamine, noradrenaline, and adrenaline). TH activity is 

modulated by its phosphorylation via the protein kinase cyclic adenosine monophosphate 

(cAMP)-dependent (PKA).  

Then, L-DOPA is subsequently transformed into DA by the action of the Aromatic L-amino acid 

decarboxylase enzyme (AADC). In turn, DA is transferred in vesicles by the vesicular monoamine 

transporter 2 (VMAT-2), a protein consisting of 12 transmembrane domain. VMAT2 is coupled 

to the vesicular H+-ATPases (V-ATPases), which functions as ATP-driven proton pump keeping 

the internal milieu in synaptic vesicles acidic since DA oxidizes rapidly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

Figure 1.4 Schematic representation of dopamine metabolism and dopaminergic synapse. DA, 
dopamine; TH, tyrosine hydroxilase; L-DOPA, L–3,4–dihydroxyphenylalanine; AADC, Aromatic L-amino 
acid decarboxylase; VMAT2, vesicular monoamine transporter; MAO, monoamine oxidase; COMT, catechol-
O-methyltransferase; DAT, dopamine active transporter; D2-like dopaminergic inhibitory autoreceptors 
(DRD2); D1-like dopaminergic postsynaptic excitatory receptors (DRD1); AC, adenyl cyclase; PNMT, 
Phenylethanolamine N-methyltransferase; DβH, Dopamine beta-hydroxylase (adapted from Sharples et 
al., 2014). 
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After exocytosis of the DA vesicles, DA binds to DA receptors on the postsynaptic membrane 

(D1-5), leading to the transduction of the signal in the postsynaptic neuron. There are two types 

of DA receptors (G-protein-coupled), constituted by 7 transmembrane domain receptors: DRD1 

(D1 and D5) and the DRD2 (D2 - D4), that act in different and opposite manner. In detail: 

both types of DRDs modulate the cAMP/PKA transduction cascade and the intracellular Ca2+ 

levels, however, the DRD1 type promotes an increase in cAMP, conversely, DRD2 determines 

cAMP decrease (fig. 1.4). These receptors have selective agonists (Vallone et al., 1999) and 

specific anatomical and cellular distribution that can be pre-synaptic or post-synaptic. The D2 

receptors are also localized on the DA neurons membranes (autoreceptors), regulating DA release 

as feedback inhibition of DA transmission (Bello et al., 2011).  

The DA released into the synaptic cleft in part is recaptured by the dopamine transporter (DAT 

or SLC6A3) a protein of 12 transmembrane domain Na+/Cl- dependent transporter that is target 

of several drugs (cocaine, amphetamine, etc.) and mice knock-out show hyperactivity and 

insensibility to treatment by these drugs (Amara et al., 1993).  

In the alternative, DA is catabolized by cathechol-O-methyltransferase (COMT) in homovanillic 

acid (HVA) or degraded to 3,4-dihydroxyphenylacetic acid (DOPAC) bys the action of the 

extracellular or mitochondrial monoamine oxidases (MAOs; fig. 1.4). 

 

1.3 Development of midbrain DA neurons  

Dopaminergic neurons in the brain are generated through the action of many transcription 

factors and endogenous molecules involved in their development in accurate spatiotemporal 

sequence. Intrinsic and extrinsic stimuli, such as environmental or soluble factors, electric activity, 

and cell-cell interactions coordinate specific developmental programs. 

 The complete generation of mDA neurons (fig. 1.5; Abeliovich et al., 2007; Perrone-Capano et 

al., 2008) is divided into four different phases: early Mb patterning, induction and specification 

of dopaminergic precursors, differentiation of post-mitotic mDA neurons, functional maturation 

of mDA neurons. 
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Figure 1.5 Schematic model of mDA neurons development. Diagram showing the main transcription or 
inductive factors involved in dopaminergic neurons development, divided into phases of the 
developmental stage in which they are involved (adapted from Perrone-Capano et al., 2008). 

 

1.3.1 Early midbrain patterning: regionalization 

During the neural tube development, many inductive factors are released from specific zones, 

named "organizers" to give rise to different early brain structures: telencephalon, diencephalon, 

mesencephalon, metencephalon, and myelencephalon. The midbrain generation is guided by 

signalling of the floor plate (FP) and the mid-hindbrain boundary (MHB or IsO, isthmic 

organizer). In this process are involved several transcription factors (FTs) such as: Otx2 and 

Gbx2, which are responsible for MHB formation and their expression is mutually exclusive 

(Hidalgo- Sánchez et al., 1999). In particular, Gbx2 is expressed more caudally and it is essential 

for the correct development of hindbrain and cerebellum. Conversely, Otx2 is crucial in the 

specification and regionalization of telencephalon and mesencephalon (Simeone et al., 2002). 

Otx2 is also involved in the regulation of some proneural genes like Ascl1 (or Mash1) and 

Neurogenin2 (Ngn2), implicated into proliferation phases of the mesencephalic progenitors 

(Vernay et al., 2005).  
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After MHB formation (E8 in mice) other factors are secreted, indeed it promotes the expression 

of engrailed transcription factors (En1/2), releases the fibroblast growth factor 8 (FGF8) and 

guides the correct regionalization along the anteroposterior axis of the developing CNS (1.6). 

Gene expression analysis and in vitro studies shown that different factors are implicated to correct 

positioning of the MHB such as the transforming growth factor β (TGFβ; Farkas et al., 2003), 

the LIM-homeodomain factor Lmx1b (Smidt et al., 2000) and the morphogenetic factor Wnt1 

(Schulte et al., 2005).  

In detail, Wnt1 is a member of Wnt protein family (19 members), a class of secreted 

glycoproteins, associated with the transmembrane G-protein-coupled receptors frizzled (Fz) 

determining the activation of the cytoplasmic protein Dishevelled (Dsh) that regulates 

transcription of Wnt target genes through its intracellular transducer β-catenin. Numerous 

members of the Wnt/β-catenin pathway seem to be involved in specification, proliferation, and 

neurogenesis in the ventral Mb (Prakash et al., 2006).   In fact, null mutations for frizzled3 (Fz3) 

and frizzled6 (Fz6) result in a reduction of mDA neurons (Sousa et al., 2010, Stuebner et al., 

2010). Importantly, the activation of Wnt pathway is stronger in the hindbrain. 

 

Figure 1.6 Morphogen signaling during neural tube development. Schematic representation of sagittal 
(left side) and coronal (right side) views of the midbrain (top) and spinal cord (bottom) with the expression 
pattern for the morphogenes SHH, Wnt1, FGF8 and Retinoic Acid (RA) at E9.5.  FP, floor plate; IsO, 
isthmic organizer; MB, midbrain; NC, notochord; OV, otic vesicle; RP, roof plate; MN, Spinal motor 
neurons; SC, spinal cord; ZLI, zona limitans intermedia; r1, rhombomer 1; r2, rhombomer 2; D, dorsal; 
V, ventral. Image from Allodi et al., 2014. 
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Moreover, Lmx1b is expressed in the MHB at the early stage (E7.5) of mouse development 

(Adams et al., 2000, Guo et al., 2007), but it is not detectable until E10.5 in mDA precursor 

(Smidt et al., 2000). Studies conducted on mutant mice for Lmx1b reveal defects in MHB 

structure, therefore mDA neurons deficiency and altered genes regulation, such as: Fgf8, 

Engrailed 1 and 2 (En1/2), Pax2, Gbx2 and Wnt1. (Guo et al., 2007). Indeed specific 

inactivation of Lmx1b in mDA progenitors and not in the MHB does not alter the differentiation 

of these neurons (Yan et al., 2011). Surprisingly, Lmx1b expression disappears around E11.5 but 

reappears again at E16 in postmitotic mDA progenitors to be maintained until the adulthood in 

co-expression with Pitx3 and TH (Dai et al., 2008). Although the loss of Lmx1b leads to a 

reduction of mDA neurons (Smidt et al., 2000), in Lmx1b null mice neural precursors express 

Nurr1 (Nuclear Receptor-Related 1 protein or Nr4a2) and TH+ dopaminergic markers but fail to 

express Pitx3. These TH+ neurons lacking Pitx3 expression are lost around birth suggesting a role 

for Lmx1b in Pitx3 regulation and in mDA neurons survival. Interestingly, a similar phenotype is 

observed for the Wnt1 null mutant. In this case, the few TH+ neurons generated lack Pitx3 

expression and are lost by E12.5 (Prakash et al., 2006). 

The similar effects caused by the loss of these two factors suggest the existence of a regulatory 

loop between Wnt1 and Lmx1b (Adams et al., 2000, Guo et al., 2007), in addition Lmx1b and 

Lmx1a cooperation contributes to Wnt1 regulation in MHB and mDA progenitors proliferation 

(Panhuysen et al., 2004).  

 

1.3.2 Induction and specification of DA precursors 

While MHB is essential to determinate the anteroposterior axis, at the same time the notochord 

and then the floor plate (FP) determinate the dorsoventral axis by releasing the morphogen sonic 

hedgehog (SHH; before E9.5 in mice). SHH binds patched 1 receptor (Ptc1) preventing its 

inhibition on Smoothened protein (Smo) and triggering the activation of the Gli family 

transcription factors (Gli-1/3; Stone et al., 1996, Taipale et al., 2002). FGF8 and SHH are 

necessary for induction and proliferation of mDA precursors, establishing the proper inductive 

signals for the correct differentiation (Hynes et al., 1999). The ectopic expression of SHH and 

FGF8 generate mDA neurons and for that reason, they are usually used for the in vitro strategies 

of mDA differentiation (Lee et al., 2000).  
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Lmx1a, as well as Lmx1b, is a LIM homeobox conserved transcription factor (TF). LIM TFs 

have two zinc finger motifs specialized in the interaction with cofactors in order to form 

transcriptional-regulator complexes (Doucet-Beaupré et al., 2015). Lmx1a is expressed early in 

mice brain (E8.5) in the dorsal midline (roof plate) of the neural tube and then in progenitor 

zone of ventral midbrain and in optic vesicles (Failli et al., 2002, Millen et al., 2004, Andersson et 

al., 2006). Loss of Lmx1a (Dreher mice) completely abolishes roof plate induction in the spinal 

cord (Millonig et al., 2000), the specification of dopaminergic neurons (Andersson et al., 2006) 

and retina formation in Drosophila (Wang et al., 2016). Thank Wnt1/SHH and FoxA1/FoxA2 

pathways are possible to express Lmx1a, the former is regulated by Lmx1a generating an 

autoregulatory loop (Chung et al., 2012). Lmx1a is co-expressed with Lmx1b also during the 

post-mitotic maturation (Zou et al., 2009). The loss of one can be compensated from the other 

one as confirmed by single KO mice (Ono et al., 2007). Both can ectopically generate mDA 

neurons (Nakatani et al., 2010) and their structures are homologs at 80%. In a recent work, it has 

been hypothesized that during the specification stage, Lmx1b is required and influences the 

differentiation of several neuronal subtypes in the Mb, including ocular motor and red nucleus 

neurons, while Lmx1a functions seem to be more restricted to the mDA fate (Deng et al., 2011). 

FoxA1 and FoxA2 are two additional TFs involved in embryonic development and in tissue 

specification of mDA by regulating Ngn2 and later Nurr1 and TH (Ferri et al., 2007, Lin et al., 

2009).  

Dmrt5 (doublesex and mab-3-related transcription factor 5) is a zinc-finger TF, identified from a 

differential expression screening within the ventral Mb cell populations, for this reason, it is 

considered crucial in mDA fate specification (Gennet et al., 2011).  

 

1.3.3 Post-mitotic maturation of mDA neurons 

In mice, during the post-mitotic stage (E9.5 - E13.5), immature neurons exit of the cell cycle and 

migrate radially from the ventricular surface (Bayer et al., 1995, Abeliovich et al., 2007). As 

previously observed, starting from E9.5 radially migrating cells express TH. The first TH+ cells 

and fibers appear close to the ventricular ependymal layer (di Porzio et al., 1990). Many TFs are 

involved in post-mitotic mDA, such as: En1/2, Nurr1, Pitx3, and Lmx1a, but none of these 

transcription factors are sufficient to induce the mDA phenotype in Embryonic Stem Cells (ESc) 
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in vitro, suggesting that a more intricate regulatory network is required for proper DA 

development (Abeliovich et al., 2007).  

Nurr1 (Nr4a2) is a member of orphan receptor subfamily of the steroid nuclear hormone 

receptors, with Nur77 (Nr4a1) and Nor-1 (Nr4a3) (Zhao et al., 2010). It is considered an 

orphan nuclear receptor since its ligands have not been identified yet (Mangelsdorf et al., 1995). 

Nurr1 is largely expressed in the SN, VTA, limbic system and olfactory bulbs (Zetterström et al., 

1997). In mice, its starts being expressed at E10.5, before TH (Volpicelli et al., 2004, Jankovic et 

al., 2005). Mice Nurr1-/- born with a normal frequency but they die within two days; they are 

deprived of TH+ cells in the Mb (SN and VTA) and are characterized by loss of striatal 

innervations and DA markers (Zetterström et al., 1997). Nurr1 overexpression is typically used to 

induce different cell type toward DA phenotype (Wagner et al., 1999, Chung et al., 2002).  

Indeed, it is involved in the regulation of several DA markers, such as: TH (Zhou et al., 1995), 

Dat (Giros et al., 1996), Vmat2 (Colebrooke et al., 2006), p57Kip2 (Joseph et al., 2003) and c-

Ret (Jain et al., 2006, Kramer et al., 2007), Bdnf (Volpicelli et al., 2007). Furthermore, genetic 

studies prove that mutations in Nurr1 are a cause of the rare familial form of PD (Le et al., 2003, 

Sleiman et al., 2009, Decressac et al., 2013). 

Pitx3 (Pituitary homeobox 3) is expressed in several tissues during embryonic development, but 

after the birth, it is detectable only in mDA (Smidt et al., 1997). Aphakia mutant mice (ak), 

harboring a spontaneous mutation in the gene coding for Pitx3, shown motor impairment due to 

specific loss of mDA neurons in SN while VTA appears unaffected (Smidt et al., 2007). Pitx3 

expression in SN precedes that of TH while in VTA it occurs simultaneously (Maxwell et al., 

2005). These data strongly suggest that specific differentiation programs must take place in the 

two DA subpopulations, thus explaining their different susceptibility to the loss of Pitx3. 

A recent study demonstrated that Nurr1, Pitx3, and Lmx1a are key of mDA generation (Hong et 

al., 2014). Both Lmx1a and Lmx1b persist during maturation of mDA. Lmx1a inhibits non-

dopaminergic destinies (Deng et al., 2011) and regulates axonal guidance promoting Slit2 

expression (Yan et al., 2011); while Lmx1b is involved in the maturation of post-mitotic cells by 

regulating Pitx3. Indeed, Lmx1b KO mice show the specific loss of mature mDA neurons 

(Simeone 2005). 
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TFs En1 and En2, like Lmx1b, are important during the first phase of MHB formation (Liu et 

al., 2001) but their expression is not detectable anymore till E11.5 when En1 and En2 start to be 

expressed again in ventral mDA differentiating neurons. This expression is maintained into and 

throughout the adulthood (Simon et al., 2001, Albéri et al., 2004). En1 and En2 are required to 

prevent apoptosis suggesting a role in maintenance and survival of ventral mDA (Albéri et al., 

2004). 

 

1.3.4 Functional maturation and survival of mDA neurons 

The last stage of mDA neurons generation takes place in the striatum (E15.5 in mice), where 

various FTs and molecules are involved in neurons maturation, maintenance, and guidance.  

EphrinB2 and its receptor EphB1, respectively express in the striatum and mDA neurons, enrich 

SN DA striatal innervation (Yue et al., 1999). In vitro EphrinB2 overexpression in mesencephalic 

primary cultures, increases Nurr1 transcript (Calò et al., 2005). mDA circuits formation are also 

regulated by the semaphorins and netrin (Torre et al., 2010, Xu et al., 2010). mDA projections 

undergo also axonal growth inhibitions by the diffusible chemorepellents. For e.g. Slit2 and its 

receptors Robo, play a major role in guiding developing axons towards their correct targets by 

preventing them from entering or steering them away from certain regions (Lin et al., 2005, 

Dugan et al., 2011).  

After correct formation of dopaminergic circuits, there are two moments around postnatal day 2 

(P2) and around P14, when mDA neurons undergo towards naturally-occurring cell-death 

(Burke 2003). In this moment, mDA need to receive growth and neurotrophic factors by post-

synaptic cells to survive. The most well-established target-derived neurotrophic factor for VM DA 

neurons is the Glial cell line-derived neurotrophic factor (GDNF; Lin et al., 1993, Beck et al., 

1995, Akerud et al., 1999).  Other neurotrophic factors identified for VM DA neurons include 

the brain-derived neurotrophic factor (BDNF; Hyman et al., 1991), and the more recently 

identified dopamine neurotrophic factor (CDNF; Krieglstein 2004, Lindholm et al., 2007). Both 

GDNF and BDNF show a protective role on mDA neurons, following a number of experimental 

lesions. They also promote neuronal survival and differentiation in vitro (Hyman et al., 1991, 

Feng et al., 1999, Consales et al., 2007). 
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Many neurodegenerative diseases depend on the absence of neurotrophic signals, for this reason, 

these molecules could be therapeutic drugs for the treatment of DA-associated neurological 

disorders. 

 

1.4 In vitro generation of mDA neurons 

In the last years, several studies have been dedicated to the identification of mechanisms 

underlying development and function of dopaminergic neurons. The final aim is being able to 

generate, in vitro, mDA neurons useful for both transplantation approaches and modeling DA-

related pathologies.   

Several studies have shown that Embryonic Stem Cell (ESC) and Neural Stem Cell (NSC) 

cultures can generate TH+ cells expressing mDA phenotypic markers and that the in vitro 

developmental program appears to recapitulate the temporal course of normal mDA development 

(Kim et al., 2002, Barberi et al., 2003, Martinat et al., 2004, Sonntag et al., 2004, Andersson et 

al., 2006). The embryonic stem cells (ESC) are pluripotency and generate every cell type. 

Conversely, multipotent and pluripotent stem cell lines can generate fewer cell types but can be 

isolated also from adult tissues and for these reasons, they are useful for the generation of cellular 

models from affected patients. 

A useful alternative for modeling DA neurons in vivo are Epiblast Stem Cells (epiSCs), 

pluripotent cells isolated from mouse post-implantation epiblasts (around E9, E10). An 

interesting feature of epiSCs is that they show patterns of gene expression and signaling responses 

more similar to human ESC (hESC) then to mouse ESC (mESC) (Chenoweth et al., 2010). 

Previous works showed mESC and hESC are distinct in their epigenetic state and in the 

signalling guiding their differentiation. Moreover, mESC and hESC use also different signalling 

pathways to maintain their pluripotent status.  

EpiSCs maintain OCT4 and SOX2 expression, but they downregulate expression of most of the 

other pluripotency factors, including NANOG, ESRRβ, KLF2 and KLF4 (Hackett et al., 2014). 

Moreover, EpiSCs have not undergone differentiation, but they upregulate lineage commitment 

factors such as homeobox protein OTX2, Brachyury and zinc-finger protein ZIC2 (Buecker et 

al., 2014). 



	 	 16	

In classical growth condition, epiSCs are able to proliferate and self-renew in presence of Activin 

and bFGF, to form teratomas following in vivo injection (Guo et al., 2009). 

The main advantages in using epiSC rather than ESC are that epiSC are more homogenous in the 

undifferentiated state and they seem to be primed to differentiate, as demonstrated they are a 

more rapid and efficient tool for the obtainment of DA neurons in vitro (Jaeger et al., 2011). 

As described following in Materials and Methods, it is possible to differentiate epiSCs toward the 

neuronal phenotype, removing Activin and bFGF. With this differentiation protocol, both 

neuroectodermal and neuronal markers appear earlier when compared to ESC. Interestingly, by a 

short treatment with the FGF/ERK pathway inhibitor PD0325901 (PD03), we could induce an 

earlier expression of Lmx1a and Foxa2, two of the main TFs implied in the early phases of mDA 

development. Addition of SHH and FGF8 is necessary to address differentiation toward the DA 

phenotype. Using this protocol, nearly 40% of TH+ neurons generated from epiSCs co-express 

Pitx3 while in the case of ESC derived neuronal populations, Pitx3+ neurons were rarely observed 

(Jaeger et al., 2011). 

Starting from epiSCs differentiated toward DA phenotype, the goal of this thesis was to discover 

microRNAs (miRNAs) expressed in mDA neuron and potentially involved in their 

differentiation.  

 

1.5 MicroRNAs  

MicroRNAs (miRNAs) are a class of small non-coding single-strand RNA (~22 nucleotides) 

evolutionary conserved and encoded within the genomes of almost all eukaryotes (Fabian et al., 

2012). Organisms express hundreds of miRNAs involved in the regulation of many biological 

processes, such as embryonic development, cell differentiation and growth, cell proliferation, 

apoptosis, and regulation of metabolic processes (He et al., 2004). For this reason, altered 

miRNAs levels might be involved in the onset of pathological conditions (Im et al., 2012, Junn et 

al., 2012). In mammals, miRNAs act as the post-transcriptional regulators of gene expression, by 

targeting partially complementary sequences in the 3' untranslated regions (UTRs) of the target 

messenger RNA (mRNAs) that are in turn directed to degradation or translational repression 

(Bartel et al., 2004). About 60% of all human transcripts contain known or predicted miRNA 

target recognition sites (Friedman et al., 2009). A single type of miRNA may have up to 
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thousands of targets and each mRNA can be targeted by several microRNAs, suggesting a really 

strong role for miRNAs in the complex landscape of gene expression but at the same time giving 

rise to a huge complexity in its understanding and characterization. Additionally, many miRNAs 

have multiple paralogs throughout the genome (McCreight et al., 2017). 

The first miRNA called lin-4, was discovered in 1993 in Caenorhabditis elegans (C. elegans), as a 

regulator of lin-14 protein expression (Lee et al., 1993). Later another miRNA, let-7, was 

identified in C. elegans (Reinhart et al., 2000) and surprisingly was found to be extremely 

conserved among a wide range of species, human included (Pasquinelli et al., 2000). One year 

later were identified other tens of them (Lagos-Quintana et al., 2001, Lau et al., 2001, Lee et al., 

2001). At that point was clear that a new class of gene expression regulators had been identified 

and so they were called microRNA, but the widespread effects of miRNAs were not fully 

recognized until the early 2000s (Berezikov 2011). 

 

1.5.1 miRNAs biogenesis 

MicroRNAs genes, transcribed from the genome result in a primary miRNA transcript that may 

include a single miRNA or a cluster of miRNAs (Berezikov 2011). Several miRNA coding genes 

are located in regions of the genome relatively distant from previously annotated protein coding 

genes. They are transcribed as independent units with their own promoter (Bartel et al., 2004). 

However, almost 40% of miRNA genes have been found to be in introns of protein coding or 

non-coding RNA and in this case they are generally found in a “sense orientation” leading to 

think they are regulated together with their host transcript (Rodriguez et al., 2004, Kim et al., 

2007). More rarely miRNAs can be found in exons of protein coding genes (Rodriguez et al., 

2004). miRNAs can be transcribed as monocistronic transcripts or polycistronic transcripts 

(miRNA cluster) originating by local duplication of an existing miRNA locus (Altuvia et al., 

2005). At the same time is not rare to find miRNA families with paralogues located in different 

genomic loci in monocistronic units or even clusters containing a wide variety of miRNA families 

(Olena et al., 2010).  

Most miRNAs have a protein coding gene-like promoter and are usually transcribed by RNA 

polymerase II (Lee et al., 2004, Zhou et al., 2007). The product of transcription is a long RNA, 
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called primary-miRNA (primiRNA), with one or more stem and loop structures, whose length 

depends on the miRNA gene type, while for the intronic miRNA it is the protein coding mRNA 

itself and the pri-miRNA origins from the splicing process (Lee et al., 2002, Cai et al., 2004). Pri-

miRNAs are generally 5’capped and 3’ poly-adenylated (Cai et al., 2004). 

In figure 1.7 is shown the canonical miRNA processing pathway, the pri-miRNA is bound by the 

Di George syndrome critical region 8 (DGCR8; Pasha in invertebrates). Regions of a primary 

miRNA form hairpin structures that are recognized by the ribonuclease type III (RNAaseIII) 

enzyme Drosha (Gregory et al., 2006), which cleaves the doubles tranded stem region of the 

hairpin to produce an approximately 83 nucleotide (nt) precursor miRNA (pre-miRNA) (Fang e 

al. 2013). The resulting pre-miRNA, because of the typical RNAaseIII cut, will have two 

nucleotide overhang at its 3’end with a 3' hydroxyl and a 5' phosphate terminal groups (Basyuk et 

al., 2003, Lee et al., 2003). After that, Pre-miRNA is exported into the cytoplasm by the 

nucleocytoplasmatic shuttle protein Exportin-5 (fig. 1.7). This protein is able to recognize and 

bind the 2nt 3’overhang of the precursor and to transport it across the nuclear membrane, in a 

RanGTP dependent manner (Bohnsack et al., 2004). After being exported to the cytoplasm, pre-

miRNA is further processed by a second endonuclease, Dicer, that acts in a complex with the 

Transactivating response RNA binding protein (TRBP) and other cofactors, to remove the 

terminal loop of the pre-miRNA (Grishok et al., 2001, Hutvágner et al., 2001). The result of this 

enzymatic cleavage is an approximately 22 nt double-stranded RNA duplex that contains the 

mature miRNA and its complement, called the star strand (*) (Hutvagner et al., 2001). The 

duplex is then separated, the strand with the less thermodynamically stable 5' end becomes the 

mature sequence, while the star sequence is degraded. The mature miRNA is loaded together 

with Argonaute (Ago 2) proteins onto RNA-induced silencing complex (RISC) (Bartel et al., 

2004; Winter et al., 2009). The Ago protein contains two RNA-binding domains: the PAZ 

domain binds the 3’end of the mature miRNA while the PIWI domain interacts with the 

5’phosphate group on the 5’end (Pratt et al., 2009). Once the miRISC is assembled, the miRNA 

drives it to silence target mRNA via mRNA cleavage, translational repression or deadenylation 

(Nilsen 2007, Winter et al., 2009).  
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1.5.2 miRNAs: Mechanism of action and bioinformatics identification 

miRNAs may have a negative or a positive regulatory effect (Ambros 2001). In animals, they 

usually bind with partial complementarity to 3’UTR regulatory elements on mRNAs called ‘seed 

sequences’, or to miRNA response elements (MREs) that causes translational repression (Ambros 

2004). A major silencing mechanism of miRNAs in animals results in target mRNA 

destabilization through a cleavage-independent process, affecting transcript level (Lim et al., 

2005; Pillai et al., 2004). A small number of miRNAs also show decoy activity by binding 

directly to proteins such as RNA-binding proteins, inhibiting interaction with their target RNAs 

(Eiring et al., 2010). In some cases, miRNAs also regulate gene expression at the transcriptional 

level (Kim et al., 2008) by binding directly to DNA regulatory elements. In certain cases and cell 

types, they can enhance translation (Vasudevan et al., 2007).  

 

Figure 1.7 miRNAs biogenesis and action. miRNA processing pathway. The main steps for miRNA 
maturation are shown: Transcription of the pri-miRNA by RNApolII or III; cleavage of the pri-miRNA 
by the microprocessor complex Drosha–DGCR8 in the nucleus; export to the cytoplasm by Exportin-5–
Ran-GTP; cleavage of the pre-miRNA by Dicer in complex with TRBP; miRNA duplex functional strand 
recruitment, together with Ago2, into the RISC complex, where it guides RISC to silence target mRNA. 
(Image from Winter et al., 2009). 
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However, there are varying degrees of complementarity between a miRNA and its mRNA target, 

binding is most highly dependent on positions 1 through 8 of the 5' end of the mature miRNA, 

known as the seed region (Berezikov 2011). While 75% of down-regulated mRNA have 

canonical seed sites in their 3' UTR, the seed region is not always sufficient for causing down-

regulation (Kim et al., 2008). The 3' end of the mature miRNA can also have an effect: positions 

13±16 are highly conserved, and their proper complementary base pairing to a mRNA target is 

associated with down-regulation (Grimson et al., 2007). 

A number of bioinformatic tools and databases have been devised to manage the growing body of 

data and at present, there are 129 miRNA tools currently used in miRNA research (Akhtar et al., 

2015). 

A well-known database for miRNAs is miRBase (http://www.mirbase.org/). It has emerged as a 

definitive repository of miRNA sequences as well as an authoritative source of miRNA 

nomenclature that is a valuable resource for miRNA profiling studies (Pritchard et al., 2012). 

Indeed miRBase was established with the aim to annotate the continue increasing number of 

miRNA being discovered and to provide a trustworthy resource for any researcher interested in 

looking after a miRNA sequence, miRNA cluster, family composition or miRNA genome 

localization (Kozomara et al., 2011). This resource provided for each miRNA a unique name in 

agreement with the scientific community (Ambros et al., 2003). miRNAs name consist of “miR-” 

preceded by a three-letter-code, identifying the species (the first one corresponding to the genus 

and the following two to the species. e.g. mmu for Mus Musculus) and followed by the numeric 

identifier for the specific miRNA. Variants of the same miRNA, present in multiple copies into 

the genome, can often be followed by an extra letter the distinguish them (e.g mmu-miR-148a) 

while paralogues miRNAs (transcribed by different promoters; often, in this case, the mature 

miRNA sequence is identical) have a dash followed by the paralogue number (e.g. mmu-mir-218-

1). The name of the mature form of the miRNA is followed by the suffix -3p or -5p depending 

on the strand of the pre-miRNA from which the mature one comes from (e.g. mmu-218-1-5p). 

To predict how miRNA-mRNA interaction occurs, several prediction tools are currently used. 

The most used are TargetScan (www.targetscan.org/) (Grimson et al., 2007, Friedman et al., 

2009) and miRanda (http://www.microRNA.org/) (Enright et al., 2003, John et al., 2004). The 

majority of algorithms at the base of these software packages use a similar set of parameters to 
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identify and classify each candidate target site. These usually analyze seed region complementarity 

between the miRNA and the target site, free energy of the RNA duplex formed, with some of the 

methods also taking into account regions surrounding the target site. To increase the prediction 

reliability, a “conservation” filter can be applied with the assumption that the biological relevant 

loci are more likely to be conserved during the evolution. It is important to underline that 

experimental procedure is necessary to support predictions and discover really the interaction 

between miRNA-mRNA targets. 

 

1.5.3 miRNAs & diseases 

Approximately 2200 miRNA genes have been reported to exist in the mammalian genome, the 

abnormal expression of miRNAs has been proven to be extensively involved in the pathogenesis 

of numerous types of diseases, such as cardiovascular, inflammatory, autoimmune, 

neurodevelopmental, skeletal and skin, liver diseases and cancers (Ardekani et al., 2010). miRNAs 

such as miR-9, miR-124a/b, miR-135, miR-153, miR-183, and miR-219, among others, have 

also been shown to play critical roles in the development and function of the brain where they 

have been found specifically expressed in differentiating neurons (Sempere et al., 2004). They are 

crucial players in several aspects of brain development such as neurogenesis, neuronal maturation, 

synapses formation, axon guidance and neuronal plasticity (Kapsimali et al., 2007; McNeill et al., 

2012). The brain enriched of miR-137 has been shown is an essential regulator in controlling the 

dynamics between neural stem cell proliferation and differentiation during neural development 

(Sun et al., 2011). Furthermore, cellular and animal models show that miR-218 is essential in 

motoneurons development and disease (Thiebes et al., 2015).  

In particular, there are many studies that underline how an alteration of a specific miRNA is 

cause of DA neuron deprivation and Parkinson’s disease (Kim et al., 2007; Miñones-Moyano et 

al., 2011; Saba et al., 2012; Tobon et al., 2012; Yang et al., 2012). Regarding more specifically 

the dopaminergic neurons, nowadays very few miRNAs have been identified as involved in their 

development or function. miR-133b is enriched in human Mb, where it is thought to regulate the 

maturation and function of mDA through a negative feedback circuit involving the transcription 

factor Pitx3 (Kim et al., 2007). miR-132 is expressed in ESC-derived TH+ cells and regulates 

Nurr1 mRNA (Yang et al., 2012). Studies on miRNA expression in neuronal diseases suggest a 
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role of these molecules in neurodegeneration (Kim et al., 2007, Hébert et al., 2009, Doxakis et 

al., 2010). miR-142-3p has been shown to suppress D1 type DA receptor expression both during 

development and in cell culture (Tobón et al., 2012). miR-181a is induced by dopamine 

signalling in primary neurons, as well as by cocaine and amphetamines, in a mouse model of 

chronic drug treatment (Saba et al., 2012). Recent works underline the importance of miR-135a2 

in determining midbrain size and the allocation of prospective mDA precursors by modulating 

the extent of the Wnt signaling (Joksimovic et al., 2014; Nouri et al., 2015).  miR-34b and miR-

34c have been found to be significantly decreased in PD patients (Miñones-Moyano et al., 2011). 

miR-218 has been found to be expressed in the ventral midbrain of E12.5 mouse embryos, and 

specifically lost in the Wnt1-Cre conditional knock out (Huang et al., 2010).  

The increasing knowledge about the role played by miRNAs in the dopaminergic system will 

provide important insights into molecular mechanisms involved its alterations and could 

eventually generate novel targets for therapeutic care. 
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1.6 Aim of PhD thesis work 

MicroRNAs, are key regulators of gene expression, can influence many biological processes and 

are biomarkers for diseases. For these reasons, miRNAs expression profiling is gaining increasing 

popularity (Pritchard et al., 2015). 

The aim of this thesis is to individuate miRNAs expressed in dopaminergic neurons and 

potentially involved in their development and function. Several studies suggest that miRNAs are 

involved in Dopaminergic neurons development, function and disease, despite details regarding 

their mechanism of action are still missing (Kim et al., 2007; Miñones-Moyano et al., 2011; Saba 

et al., 2012; Tobon et al., 2012; Yang et al., 2012).  

To identify which miRNAs are expressed in mDA neurons, I analyzed, through a bioinformatics 

approach, microarray data, obtained from EpiSCs differentiation to DA phenotype, available in 

my host Lab. Each miRNA were evaluated for their capacity to induce DA phenotype. This 

approach allowed the identification few miRNAs able to promote mDA neurons differentiation 

and which are selectively expressed in the midbrain. The most interesting candidates I identified 

are miR34b/c and miR-218. Interestingly miR-218 was known being expressed in motoneurons 

where it is essential to generate correct establishment of the neuromuscular junction (Amin et al., 

2015; Thiebes et al., 2015). However, its role in dopaminergic neurons is still not clear. To 

further understand its role in dopaminergic neurons I have generated conditional KO mice 

(cKO) for miR-218. By mating these mice with mice expressing the Cre Recombinase under the 

control of specific tissue promoter, we are currently able to evaluate the contribution of miR-218 

to the development of specific neural subpopulations. Our preliminary data show that miR-218 is 

important for proper motor function and suggest its potential role in DA neurons.  

Because is still unclear the non-coding RNAs role in the DA neurons, any additional information 

will be important to clarify and establish their function in DA system development, a 

phenomenon remained elusive till now. 

In addition, this new knowledge appears to have a major role in the practice of personalized 

medicine or the treatment of DA system-linked diseases in the near future.
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2 - MATERIALS AND METHODS 

 

2.1 Cell Cultures 

Materials for tissue culture, like multiwell plates, serological pipettes or pipette tips, were 

purchased from Corning, BD Biosciences or Nunc. All steps were carried out inside a laminar 

flow sterile hood (Jupiter) to avoid contamination. All the equipment was sprayed with Ethanol 

(70%) before use. Cells were incubated at 37°C with 5% CO2 in a humidified incubator 

(Thermo Forma). Dissections were performed with horizontal flow hood (Hermes II). All the 

factors and reagents mentioned in the below described methods are listed in Table 2.1. 

 

2.1.1 Animals and dissections 

Timed pregnant wild-type C57BL/6 (Charles-River) or C57BL-6-Tg.pTH-GFP (Dr. Hideyuki 

Okano) mice were sacrificed in accordance with Society for Neuroscience guidelines and Italian 

law. The embryonic age (E) was determined by considering the day of insemination (as 

confirmed by vaginal plug) as day E0. Embryos from day 12.5 (E12.5) or E14.5 of gestation were 

quickly removed and placed in phosphate buffered saline (PBS), without calcium and magnesium 

and supplemented with 33 mM glucose. The brain structures (midbrain, striatum, and cortex) 

were carefully dissected under a stereoscope in sterile conditions and processed for cell cultures. 

Tissues were pooled and triturated with a mechanical dissociation.  

 

2.1.2 Mesencephalic primary cultures (mE12.5-PCs) 

Single cells were obtained from embryonic midbrain as previously described (Prochiantz et al. 

1979, di Porzio et al. 1980). Briefly, the tissues were transferred into a 15 mL tube and 

mechanically dissociated with a sterile pipette in a solution containing 0,01% pancreatic DNAse. 

The cell suspension was centrifuged 5' at 100 g and resuspended in plating medium and counted. 

For the viable count, the cell suspension was diluted 1:10 with 0,1% Trypan blue and loaded into 

a Burker’s counting chamber slide. Cell concentration was determined on the basis of the total 

cell count, the dilution factor, and the trypan blue exclusion.  
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Dissociated cells were plated at a density of 4 × 104 cells/cm2 on multiwells previously coated with 

15 µg/mL poly-D-lysine for 1 h at 37°C and washed three times with sterile H2O. Cells were 

grown in NBM, supplemented with B27, 0.5 mM L-glutamine, Pen/Strep, bFGF (20 ng/mL) 

FGF8 (10 ng/mL) and SHH (50 ng/mL) to induce mDA phenotype.  After 3 days in culture, 

(days in vitro, DIV) half of the medium was replaced and inducible lentiviruses were added at 

respective dilutions. At DIV6, the proliferative medium was replaced with a differentiating 

medium, NBM supplemented with B27, 100 mM L-glutamine, Pen/Strep, Ascorbic acid (200 

µM), and 1 mM dibutyryl cyclic adenosine 3’, 5’-monophosphate (cAMP). From DIV6 the 

expression of transgenes was induced by the addition of doxycycline (4µg/mL) to the medium. At 

DIV12 cells were fixed or collected for further analyses. 

 

2.1.3 Embryonic Stem Cells (ESCs) 

R26CreER/+ mouse embryonic stem cells culture (Omodei et al. 2008) were performed in Glasgow 

Minimal Essential Medium (GMEM, SIGMA) plus 12% FBS (Hyclone) and LIF (300U/ml 

Millipore). To induce DA differentiation mES were plated at low density on the gelatin-coated 

plate in N2B27 medium (day 0). Four days after plating cells were passaged on Poly-L-lysin 

(15µg/ml in PBS)/Laminin (20µg/ml in PBS). From the day next until the day 9 SHH (200 

ng/ml) and FGF8 (100ng/ml) were added to the medium. Cells were cultured until day 14. 

 

2.1.4 Epiblast Stem Cells (EpiSCs) 

EpiSCs have been derived as described by Guo and colleagues (Guo et al. 2009). They are 

cultured in epiSC medium containing half DMEM/F12 and half Neuralbasal medium, 

supplemented with N2, retinol-free B27, 2mM L-Glutamine, 0.05 mM β-mercaptoethanol, 

10ng/mL bFGF and 20 ng/mL Activin. Cells were split every 2-3 days as epiSC by using 

mechanical dissociation with a 2mL serological pipet and plated in multiwell plates, coated with 

FCS for 30' at 37°C. For DA differentiation epiSCs were plated one day before the bFGF and 

Activin withdrawal in 12-wells plate, previously coated with a solution of 15 µg/mL Fibronectin 

for 30' at 37°C. One day later (DIV1), cells should reach 60 to 80% of confluence and at this 

point is possible to switch the medium from epiSC medium to simple N2B27 medium, that is 

epiSC medium but without bFGF and Activin. During these phases, cells were infected with 
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lentiviral particles as described in single experiments. At DIV2 cells were split and diluted on a 

new 12-wells plate previously coated with Fibronectin. From DIV5 to DIV9 cells were 

maintained in N2B27 medium supplemented with SHH (100 ng/mL or SAG 0.4 µM) and FGF8 

(100 ng/mL). Usually, at DIV9 N2B27 is supplemented with doxycycline (4 g/mL) and ascorbic 

acid (200 µM). Cells were cultured until DIV16. 

Description Manufacturer Catalogue number 

Fibronectin Millipore FC010 

Gelatine Sigma-Aldrich G1393 

Laminin Sigma-Aldrich L2020 

Poly-D-lysine Sigma-Aldrich P7405 

DMEM Invitrogen 11995065 

DMEM/F12 Invitrogen 21331-020 

F12 Invitrogen 21700-026 

GMEM Sigma-Aldrich G5154 

IMDM Invitrogen 31980-030 

Neurobasal NBM Invitrogen 21103-049 

FBS Euroclone ECS0180L 

FCS Biosera 1810-500 

B27 Invitrogen 17504-044 

B27 wo vit. A Invitrogen 12587-010 

N2 Invitrogen 17502-048 

βmercaptoethanol Invitrogen 31350-010 

HEPES Invitrogen 15630-106 

L-glutamine Euroclone ECB3000D 

Na-piruvate Invitrogen 11360-039 

Pen/Strep Sigma-Aldrich P0781 

Trypsin Sigma-Aldrich T4799 

DNase Sigma-Aldrich DN25 

Activin R&D 338-AC-025 

bFGF Sigma-Aldrich F0291 

EGF Sigma-Aldrich E9644 

cAMP analog Sigma-Aldrich D0627 

Doxycycline Clontech 631311 

FGF8 Sigma-Aldrich F6926 

L-ascorbic acid Sigma-Aldrich A4544 

LIF Millipre ESG1107 

SHH R&D 1845-SH-100 

SAG Sigma-Aldrich SML1314 

Table 2.1 Factors and reagents used for cell cultures. 
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2.1.5 HEK293T cells  

Human embryonic kidney 293T (HEK293T) cells were generated from human embryonic 

kidney cells obtained from a single apparently healthy foetus legally aborted. In the early 70s, 

these cells were genetically transformed with Adenovirus 5 DNA to obtain a stable cell line 

(Graham et al. 1977). Cells were maintained at 37°C with 5% CO2 in a humidified incubator, in 

DMEM with 10% foetal bovine serum (FBS), Pen/Strep and 25 mM Hepes.  

 

2.1.6 HeLa cells  

HeLa is an immortalized epithelial human cell line derived from cervical cancer cells (Scherer, 

Syverton et al. 1953). HeLa cells were maintained at 37°C with 5% CO2 in a humidified 

incubator, in DMEM (Invitrogen) with 10% foetal bovine serum (FBS; Euroclone) and 100 

unit/ml Streptomycin (Sigma) and 100 µg/ml Penicillin (Sigma). 

 

2.2 Lentiviral production 

 
Last generation lentiviruses have been constructed in order to contain less than 10% of the 

original viral genome. They express only the sequences needed for reverse transcription and 

integration of the gene expression cassette into the host genome. To further increase the security 

level, these genes are cloned in three different vectors to minimize the risk of the recombination 

event. To further minimize the possibility to generate functional auto-replicant viruses, the Psi 

(ψ) sequence, responsible for the viral genome packaging, is localized exclusively on the exogenous 

gene-containing transfer vector. The gene expression is under a control of a doxycycline-inducible 

promoter (Tet-ON). The used vectors for the production of the lentiviral particles were: a 

Gag/Pol containing pMDL vector, a pRev vector, a pVSV-G vector and the exogenous gene-

containing transfer vector Tet-O-FUW. Moreover, a prtTA vector, expressing the reverse 

tetracycline transactivator (rtTA) protein, in combination with pMDL, pRev and pVSV-G was 

necessary to induce gene expression in the presence of the antibiotic tetracycline or one of its 

derivatives (e.g. doxycycline; rtTA vector was supplied by Dr. Caiazzo, IGB, Naples). For all 

these vectors Gigapreps were made using the EndoFree Plasmid Gigaprep (Qiagen) following the 

manufacturer instructions.  
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2.2.1 PCR for cloning reactions and vector construction 

RNA extracted from an E14 embryonic mesencephalon was used for the cDNA preparation as 

template to perform PCR for the intended target 3’UTRs to amplify and clone into the pmiR-

Report vector. While, In the case of pre-miRNA coding regions amplicons to clone in the Tet-O-

Fuw vector, genomic DNA from E14 embryonic mesencephalon was used as template. Oligos 

were designed in a way to amplify specific gene containing specific restriction sites (Table 2.2).  

Oligos used to amplify several genes 3’UTRs were designed with an 11nt long 5’end tail 

containing the SpeI (forward oligo) and the HindIII (reverse oligo) restriction sites. Oligos used 

to amplify pre-miRNA coding regions were designed both with an 8 nt long 5’end tail containing 

the EcoRI restriction site. 

For 3’UTR amplicons, DNA band extraction from the agarose gel was performed using the 

PureLink® Quick Gel Extraction Kit (Invitrogen) according to the provided instructions. Eluted 

DNA was incubated for 4h at 37°C with the specific restriction enzymes (SpeI and HindIII for 

3’UTR amplicons). 

For pre-miRNA amplicons instead, Amplicons were directly cloned into a pCR®2.1-TOPO® TA 

(Invitrogen) vector following the TOPO® TA Cloning Kit (Invitrogen) subcloning protocol. In 

order to isolate the insert on each gene-containing TOPO TA plasmid was restricted with a 

specific enzyme (4 h at 37°C). Insert band was extracted from the agarose using the PureLink® 

Quick Gel Extraction Kit (Invitrogen) according to the provided instructions. 

For the ligation step, 50 ng of the vector were used. The amount of insert to use for the ligation 

reaction was calculated using following formula:  

 

 

A control reaction was performed without adding the insert to the reaction. The enzyme I used 

was a T4 ligase (NEB) and the reaction buffer was the one provided by the company. Ligation 

was conducted over-night at 16°C in a final volume of 10 µl with 400 units enzyme. 5 µl of this 

reaction were used to transform 50 µl of competent DH5α cells (Invitrogen) following the 

standard transformation protocol: 30' (minutes) on ice, heat shock at 42°C for 30'' (seconds), 2' 

on ice, cells suspension in 250 µl SOC medium (2% tryptone, 0.5% yeast extract, 10 mM NaCl, 

2.5 mM KCl, 10 mM MgCl2, 10 mM MgSO4, 20 mM glucose), followed by 1 h growth in 
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agitation at 37°C. Finally, the cells were seeded on Lysogeny broth (LB)-Agar plates (10 g NaCl, 

10 g Bacto-tryptone, 5 g yeast extract, 20 g Bacto-agar) containing ampicillin (50 ng/ml) and 

growth over-night at 37°C. Single colonies were screened by PCR. Positive colonies were grown 

in 5 mL LB (10 g NaCl, 10 g Bacto-tryptone, 5 g yeast extract) containing ampicillin (50 ng/ml). 

Plasmidic DNA was isolated using the PureLink Quick Plasmid Miniprep (Invitrogen) and later 

sequenced. miR-target sequence was mutated with the Quickchange II XL site-direct mutagenesis 

kit (Agilent) accordingly with manufacture instruction and later sequenced. Oligos designed in a 

way to modified seed sequences of 3’UTR of Nurr1 and Wnt1 are reported in Table 2.2.  

 

2.2.2 Transfection and lentiviral production 

For the production of the viral particles (Tiscornia et al. 2006), 8.2 million HEK293T cells were 

plated in 150 mm × 25 mm dishes in DMEM (Invitrogen) supplied with 10% FBS (Euroclone), 

25 mM Hepes (Invitrogen), 100 U/mL Streptomycin and 100 µg/mL Penicillin (Pen/Strep, 

Sigma-Aldrich). 24 h later an 80% confluence is generally obtained. The Medium was replaced 

by IMDM medium (Invitrogen), 10% FBS, Pen/Strep. 3 h later the 4 vectors were co-transfected 

following the calcium phosphate transfection protocol.  

In details, for each dish, a solution was prepared to contain 270 mM CaCl2, 6.25 µg pRev, 9 µg 

pVSVG, 14.6 µg pMDL and 32 µg of the insert containing transfer vector. After 5' of incubation 

at room temperature, drop-by-drop, in low agitation, a 2xHBS pH 7.12 (NaCl 280 mM, 

Na2HPO4 1.5 mM, HEPES 50 mM) solution was added to the vectors mix and incubated for 15' 

at room temperature. 

Amplified cDNA Oligo sequences with restriction sites Cloning  
Enzyme 

3xFlagNurr1 Fw GCGCCAATTGATGGACTACAAAGACCATGA MfeI 

3xFlagNurr1 Rev GCGCCAATTGTTAGAAAGGTAAGGTGTC MfeI 

mmu-miR-27a-3p(687 bps) Fw CCGAATTCGTGTTCAGCTATGTGAGACC EcoRI 

mmu-miR-27a-3p (687 bps) Rev CCGAATTCCCCATCTATCTGCTTTGGG EcoRI 

mmu-miR-29a-3p (336 bps) Fw CCGAATTCTAAGCCTTCTCTGGAAGTGG EcoRI 

mmu-miR-29a-3p (336 bps) Rev CCGAATTCTTAACCATGCTGTTGCTGG EcoRI 

mmu-miR-34b/c-5p (983 bps)Fw CCGAATTCGGCTTGCGGGAAGAAGGAC EcoRI 
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mmu-miR-34b/c-5p (983 bps)Rev CCGAATTCTAGCAGCTAAGGGCTAGCGG EcoRI 

mmu-miR-132-3p (562 bps) Fw CCGAATTCGCTGGGACATCTTTGACG EcoRI 

mmu-miR-132-3p (562 bps) Rev CCGAATTCCTCTTGCTCTGTATCTGCC EcoRI 

mmu-miR-148a-3p (294 bps) Fw CCGAATTCTCTTCTTTGCCTTCACTGG EcoRI 

mmu-miR-148a-3p (294 bps) Rev CCGAATTCTCAGGTTCTTCACAAAGCC EcoRI 

mmu-miR-204-5p (309 bps) Fw CCGAATTCCCGGAGAATCAAGATGAGC EcoRI 

mmu-miR-204-5p (309 bps) Rev CCGAATTCGTTATGGGCTCAATGATGG EcoRI 

mmu-miR-210-3p (306 bps) Fw CCGAATTCAGGGGGATATGGGTATTGG EcoRI 

mmu-miR-210-3p (306 bps) Rev CCGAATTCCACCCTGTCTATCTGAATCC EcoRI 

mmu-miR-218-1-5p (374 bps) Fw CCGAATTCGATCATACACAATCTGCGGGAAG EcoRI 

mmu-miR-218-1-5p (374 bps) Rev CCGAATTCGGACATTTGTTATTCTCCCCTC EcoRI 

mmu-miR-219-1-5p (358 bps) Fw CCGAATTCCATTCACTCGTGTGCTCC EcoRI 

mmu-miR-219-1-5p (358 bps) Rev CCGAATTCCCCAACTTCTCTCAAGCC EcoRI 

mmu-miR-370-3p (313 bps) Fw CCGAATTCGTGGGTGTGGCTTTGAGG EcoRI 

mmu-miR-370-3p (313 bps) Rev CCGAATTCCCCTTTCACAAATCTTTGCCC EcoRI 

mmu-miR-375-3p (346 bps) Fw CCGAATTCCGCCACTGCCGCCGACGTG EcoRI 

mmu-miR-375-3p (346 bps) Rev CCGAATTCGGCGGGGCCTGATGGGAACC EcoRI 

mmu-miR-494-3p (322 bps) Fw CCGAATTCGTCTCAGGCAATTCTGTGG EcoRI 

mmu-miR-494-3p (322 bps) Rev CCGAATTCATGCCATACTCCCATGTCC EcoRI 

Nurr1 3'UTR Fw (1326bps) TCCAAACTAGTCCAAGCACGTCAAAGAACT SpeI 

Nurr1 3'UTR Rev (1326bps) CTTAAAAGCTTATCTCTAACTGTCGTACACC HindIII 

Wnt1 3'UTR Fw (933 bps) TCCAAACTAGTCGCTCTCTTCCAGTTCTC SpeI 

Wnt1 3'UTR Rev (933 bps) CTTAAAAGCTTATAGATATTTTATTCCTCAGA
GGAAG HindIII 

Nurr1 3’UTRΔ34 Fw TCGTACACCATAGAAAAAAAACTCATCTCATG
TGCCGTAC Not used 

Nurr13’UTRΔ34 Rv GTACGGCACATGAGATGAGTTTTTTTTCTATG
GTGTACGA 

Not used 

Nurr1 3’UTRΔ204Fw GTACATTGGAAAATCCTGACACACATAGTGTT
TGTAACACCG 

Not used 

Nurr1 3’UTRΔ204Rv CGGTGTTACAAACACTATGTGTGTCAGGATTT
TCCAATGTAC 

Not used 
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Wnt1 3’UTRΔ34Fw GGCCAAATTGGGGAAAGGAGTCTCCCTCAAA
GAG 

Not used 

Wnt11 3’UTRΔ34Rv CTCTTTCAGGGAGACTCCTTTCCCCAATTTG
GCC 

Not used 

Wnt1 3’UTRΔ148Fw GGCCAAATTGGGGAAAGGAGTCTCCCTCAAA
GAG 

Not used 

Wnt1 3’UTRΔ148Rv CTCTTTCAGGGAGACTCCTTTCCCCAATTTG
GCC 

Not used 

Wnt1 3’UTRΔ27Fw GGAGCCATTGAACAGCCATGCCTCCCTCAG Not used 

Wnt1 3’UTRΔ27Rv CTGAGGGAGGCATGGCTGTTCAATGGCTCC Not used 

Table 2.2. Oligos for lentiviral and luciferase vectors construction. 

 

2.3 Dual fluorescent reporter sensor 

DFRS plasmids were kindly provided by Prof. Wieland B. Huttner. Cloning strategy was 

performed as previously described (De Pietri Tonelli et al. 2014). Annealing of synthetic 

oligonucleotides to prepare the sensor cassette for a given miRNA. In an appropriate PCR tube, 

set up a 100 µl reaction as follows: add 76.8 µl of H2O; 10 µl of 10X T4 ligase buffer (NEB); 5 µl 

of forward oligo (from 100 µM stock); 5 µl of reverse oligo (from 100 µM stock); 0.5 µl of PNK 

(NEB, stock 10 U/µl).  

Incubate the reaction in a conventional thermal cycler programmed as follows: temperature 

(Time— Reaction Step): 37 °C (1 h— oligo phosphorylation); 94 °C (5 min— PNK 

inactivation); followed by a controlled oligonucleotide annealing: 

decrease by 0.1 °C/s to 90 °C; incubate at 90 °C (3 min); 

decrease by 0.1 °C/s to 70 °C; incubate at 70 °C (3 min); 

decrease by 0.1 °C/s to 50 °C; incubate at 50 °C (3 min); 

decrease by 0.1 °C/s to 25 °C; incubate at 25 °C (3 min). 

Annealing of oligos can be controlled on a conventional 4 % agarose gel for DNA: load 2–5 µl of 

the annealing reaction on the gel; as control load 0.5–1 µl of a corresponding single- strand 

(either forward or reverse) oligo from stock 100 µM, which runs faster than the double-strand 
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annealed DNA. 

The fragment is ligated (without purification) into the pDSV3 vector cut with PacI and NdeI 

and dephosphorylated. To set up the ligation reaction add 5 µl of the annealed fragment in a 10 

µl final ligation reaction, incubate the reaction +4 °C overnight. Later plasmids were sequenced. 

Plasmids were transfected into control (basal) and differentiating mouse Embryonic Stem Cell 

(mES) by Lipofectamine. Fluorescences were monitored every day until 72 hours post-

transfection. In Table 2.3 is listed oligos used for annealing reaction. 

Oligos for annealing Oligo sequences with restriction sites 

NdeI_34bs_PacI Fw TATGACAATCAGCTAATTACACTGCCTGGCGCGCCCGCAATCA
GCTAACTACACTGCCTTTAAT 

PacI_34bs_ NdeI Rv TAAAGGCAGTGTAGTTAGCTGATTGCGGGCGCGCCAGGCAGT
GTAATTAGCTGATTGTCA 

NdeI_34MUT_PacI Fw 
TATGACAATCAGCTAATTACGGCCGGTGGCGCGCCCGCAATCA
GCTAACTACGGCCGGTTTAAT 

PacI_34MUT_ NdeI Rv 
TAAACCGGCCGTAGTTAGCTGATTGCGGGCGCGCCACCGGCC
GTAATTAGCTGATTGTCA 

Table 2.3 Oligos for annealing of synthetic oligonucleotides 

 

2.4 Molecular biology methods 

2.4.1 miRVana RNA extraction and TaqMan® MicroRNA Assays 

Usual RNA purification strategies rely on organic extraction, followed by alcohol precipitation. 

These strategies, because of the alcohol precipitation, are inefficient in recovering small RNA 

forms. The miRVana miRNA isolation (Ambion) strategy uses organic extraction followed by 

purification on a glass fiber filter (GFF) under specialized binding and washed conditions. With 

this strategy, all RNAs are recovered, from large mRNAs to ribosomal RNAs down to 10-mers 

small RNAs. 1 volume of cold sterile PBS was added to samples in RNA later. Samples were 

centrifuged, RNA later/PBS solution was removed and the cell pellet was resuspended in the 

provided lysis buffer. Later, RNA was extracted following the manufacturer instructions. As for 

the last step, RNA was eluted in 100 µl of RNAase-free water, previously warmed at 95°C and 
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then quantified by spectrophotometric analysis. For the TaqMan® MicroRNA Assays sample were 

further diluted to 2 ng/µl.  

TaqMan® MicroRNA Assays (Applied Biosystem) is the most commonly used strategy to quantify 

miRNAs. This assay is based on a two-step process. First, a reverse transcription is performed 

starting from a miRNA specific stem&loop primer. Secondly, target amplification is obtained 

using a miRNA specific forward primer and a reverse primer able to bind the opened loop. 

Amplification levels detection is based on a TaqMan® miRNA specific probe conjugated with a 

fluorescent dye (FAM™ dye) on its 5’end and a non-fluorescent quencher on its 3’end. Moreover, 

a minor groove binder (MGB) is conjugated too on the 3’end. It is a particular tripeptide that 

allows stabilizing the probe specific binding without increasing probe length. Briefly, reverse 

transcription (RT) for miR- miR-9-1-5p, miR-218-5p, miR-124a, miR-34b/c, miR-204, miR-

148a and the reference snoRNA-202 was performed using the TaqMan® microRNA Assay 

provided RT primers for each of the listed miRNAs. The RT reaction was carried out with the 

suggested TaqMan® MicroRNA Reverse Transcription Kit (Applied Biosystem Cod. 4366596) 

using reagents and enzymes provided with the kit and following the protocol provided by the 

company. qPCR was performed using primers and probe provided with the miRNA specific 

TaqMan® microRNA Assay e with the TaqMan® Universal Master Mix II, no UNG (Applied 

Biosystem Cod. 4440040). To perform qPCR I followed the protocol provided by the 

manufacturer. The instrument was the 7900 HT Fast Real-time PCR system (Applied 

Biosystems). 

 

2.4.2 High-Content imaging 

Screening of miRNAs involved in DA induction was performed plating mE12.5-PCs in an 

optical 384-wells (Thermo Scientific) as described above. The number of TH+ cells was 

automatically analyzed by cell-based High Content Screening (HCS) confocal microscope Opera® 

Phenix (Perkin Elmer). HCS is an analysis tool used to acquire, manage, and search multi-

parametric information regarding the composite phenotype of cells. In my experiments, I 

acquired at least 270 areas per condition. 
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2.5 Luciferase assay 

Usually, in biological research luciferase assays are performed in order to characterize 

transcriptional activation from a specific promoter cloned upstream to the luciferase coding 

region. In my experiments instead, I used the pmiRReport vector (Applied Biosystem) specifically 

designed to allow the characterization of the regulatory potential of specifics 3’UTRs cloned 

downstream to the luciferase coding region. In general, this assays is based on the luciferase 

capacity to catalyze a specific reaction, having luciferin as a substrate, able to release a photon of 

light as a product of the reaction. Light can be detected by a specific instrument called 

luminometer and the amount of luciferase protein inferred. The 3’UTR-containing pmiR-Report 

was co-transfected both with the TET-OFuw miRNA over-expressing vector and the rtTA 

expressing vector in HeLa cells. In addition, to quantify the transfection efficiency a pRL-SV40 

Renilla/Luciferase Reporter Vectors (Promega) was also used. For each assay, controls with the 

empty pmiR-Report vector or without over-expressing any miRNA were conducted. 24 hours 

following transfection cells were washed in PBS and lysed in passive lysis buffer (PLB; 25mM 

Tris-phosphate pH 7.8; 2mM DTT, 2mM 1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid, 

10% glycerol, 1% Triton-x-100) (Promega). The assay was made using the LuciferaseTM Reporter 

Assay System (Promega) on 10µl of cell extract and following the protocol provided with the kit. 

The Firefly luciferase luminescent signal was normalized to the Renilla luciferase signal. Data 

shown in the graphs (section Results) represent mean ± s.e.m. from triplicate cultures of a single 

experiment. 

 

2.6 In Situ Hybridization & Immunohistochemistry 

2.6.1 In Situ Hybridization on Paraffin-embedded brain sections 

Embryonic brains of mice from day 11.5 to P0 of gestation were quickly dissected and placed in 

phosphate buffered saline (PBS), later were placed in 4% paraformaldehyde (PFA) overnight 

(O.N.) at 4°C.  

The day after, the brains were washed as follows: - Ethanol 50% in PBS for 30-60 minutes 

(depends to the stage); - Ethanol 70% twice for 30-60 minutes (depends to the stage); - O.N. at 

4°C in Ethanol 70% in shaking. 
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As follow the brains were dehydrated (all washes 30-60 minutes): - Ethanol 85%; - Ethanol 95%; 

- Ethanol 100% twice; - O.N. at 4°C in Ethanol 100% in shaking. 

Finally the brain can paraffin-embedded as described: - Xylene twice (30 minutes); - Xylene: 

paraffin (1:1) at 60°C (30 minutes); - Paraffin three times at 60°C (30 minutes). In The end, the 

brains were placed and oriented in mold O.N. at 4°C. 

Paraffin-embedded brains tissue samples were cut in coronal sections by using microtome (6-8 

µm). For In Situ Hybridization special attention must be given to limiting RNase contamination 

by wearing gloves and using RNase depleted water, use autoclaved or sterile buffers and heat-

treated glassware. 

I placed sections in Xylene three times for 5 minutes to remove paraffin after the sections were 

washed with decreasing volumes of Ethanol (from 100% to 25%) and one wash with PBS. 

I performed Proteinase-K treatment 10 µg/ml in PK-buffer (5 mM Tris–HCl, pH 7.4, 1 mM 

EDTA, 1 mM NaCl, autoclaved) at 37°C for 10 min was performed. The sections were washed 

in 0.2% Glycine and twice in sterile PBS immediately. The slices were fixed in 4% PFA, washed 

again in PBS. I proceeded with Acetylation by using 0.1 M Triethanolamine pH 8.0 (10 min); 

0.1 M Triethanolamine/0.25% acetic anhydride (10 min) and PBS twice. 

After for Hybridization, the stock probe was diluted (1:1000) in Hybridization Buffer (5X SSC, 

50% Formamide 5X Denhardt’s solution, 500 µg/ml salmon sperm DNA; 250 µg/ml tRNA) was 

then denatured by heating to 65°C for 5 min and placed on ice. Then 100 µl of the probe was 

applied on a slide at a temperature 21-26 °C below LNA’s Temperature melting (for miRCURY™ 

LNA Detection Exiquon probes miR-218 was 45°C). Post-Hybridization washes were performed 

as described: 5X SSC wash at RT 5 min., 50% Formamide/2X SSC wash at 45°C 30 min., 2X 

SSC wash at RT 5 min., TBS-T wash (0.1% Tween-20 in TBS) 5 min. 

After the sections were blocked in 100 µl of 10% sheep serum/TBST 30 min. and finally were 

applied 100 µl of anti-DIG-AP at 1:500 dilution in Blocking buffer, then coverslip and incubate 

in a humidified (water) chamber at 4°C for 2-3 hour.  

At last, I have performed Staining by use NBT/BCIP ready to use solution (SIGMA) by 

incubating slices from 5h to O.N. at Room Temperature (RT). 
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Staining buffer is alkaline (pH 9.5) for DIG coupled Alkaline Phosphatase (AP) to be functional, 

BCIP is the AP-substrate which reacts further after the dephosphorylation to give a dark-blue dye 

as an oxidation product. NBT serves as the oxidant and gives also a dark-blue dye. It intensifies 

the color further. When staining was completed I washed sections in TBS-T and mounted using 

20% Mowiol. 

2.6.2 Immunohistochemistry on Paraffin-embedded brain sections 

Adjacent sections were then processed either for RNA hybridization and for 

immunohistochemistry. For immunostaining, the initial passages are same to in situ hybridization 

but after washes with decreasing volumes of Ethanol, the sections were brought to a boil in 100 

mM sodium citrate and 100 mM citric acid buffer (pH 6.0) and then maintain at a sub-boiling 

temperature for 8-10 minutes. I have washed the sections by immersing them in water and PBS 

for 5 minutes. The slices were incubated in PBS and 0.1% Triton three times for 5 min. and after 

in blocking solution (2% BSA, 5% NGS) for 2h at RT. I have added primary antibody (Table 

2.4) diluted in blocking solution and incubated at RT for 1-2 hours. In particular, Pitx3 primary 

antibody (used 1:500) was kindly provided by Prof. Marten Smidt. Then stored overnight at 4°C 

in humidified chamber. The day after, the sections were washed with PBS and 0.1% Triton 3-4 

times to remove primary antibody and were incubated with secondary antibody (Alexa Fluor-

Invitrogen) diluted in blocking solution for 1-2h at RT in dark site. Finally, the sections were 

washed same previously and mounted using 20% Mowiol. 

2.6.3 Microscopy 

Images for in situ hybridization (in the bright field) and immunohistochemistry (in fluorescence) 

were acquired using a Leica DMI6000 inverted microscope at 10× and 20×. In order to compare 

pictures from the same set of experiments, images were taken keeping the same settings on the 

acquisition software (Leica Application Suite AF). For cell counting, the number of positive cells 

was quantified using a custom macro disposable in the ImageJ software. 

Epitopes 
Host 
species 

Applications 
Working 
dilution 

Manufacturer 
Catalogue 
number 

TH Rabbit IF 1:500 Millipore AB152 

Lmx1a Rabbit IF 1:500 Millipore AB10533 

Isl1 Mouse IF 1:100 Millipore MABD131 

Table 2.4 List of antibodies. 
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2.7 FACS Analysis 

Pitx3-GFP+ cells were trypsinized, centrifuged, and resuspended in ESC medium containing 2% 

FBS and 2 mM EDTA. The positive cells fraction was sorted using a BD FACSAria III (Becton 

Dickinson) into a 6-well plate. The data were analyzed using the BD FACSDiva software. 

 

2.8 Generation of miR-218-2 conditional knock-out mouse model 

The conditional knock-out mouse model was generated starting from generation of targeting 

vector containing miR-218-2 sequence flanked by LoxP sites. 

Briefly, the Slit3 genomic sequence was obtained from Ensembl database, repetitive elements 

were mapped by using repeat masked software and the restriction map was obtained with the ape 

tool. Three pairs of oligonucleotides with selected restriction enzyme sites (Table 2.5) were 

designed to amplify three consecutive genomic regions: Long arm (6274 bps), Floxed arm (978 

bps) containing miR-218-2 sequence and Short arm (1467 bps). The PCR products were 

obtained from bacterial artificial chromosomes (BACs A19) and purified. All products were 

sequentially cloned in the pFlrt3W vector (5115 bps) as shown in figure 2.1, the Long arm was 

cloned upstream to LoxP site, the Floxed arm between LoxP sites, the short arm downstream to 

Neo cassette (a selectable marker through intermediate steps of cloning and sequencing).  

The sequence was verified to exclude the presence of undesired mutations. The construct was 

linearized with NotI restriction enzyme and after was introduced in the E14Tg2a4 ESC line by 

electroporation. The screening of homologous recombinant ESC clones was performed by PCR 

with a specific couple of oligos (Table 2.5), followed by Southern blot with three different 

designed probes: 3' Probe, 5'Probe and Neo Probe to confirm the identification of positive ES 

cell clones (see in Results). 

 

Figure 2.1 Schematic representation of targeting vector 
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I have obtained Neo probe by restriction with NcoI and BglII on the pGND vector. The 3’ and 

5’ probes were obtained by PCR with specific oligos (table 2.5) Purified products were cloned in 

StrataClone cells by using standard protocols of StrataClone PCR Cloning Kit (Agilent). 

Plasmidic DNA was isolated using the PureLink Quick Plasmid Miniprep (Invitrogen) and later I 

have verified positive cloning cells by cutting with EcoRI enzyme. DNA band extraction from the 

agarose gel was performed using the PureLink® Quick Gel Extraction Kit (Invitrogen) according 

to the provided instructions. Eluted DNA was ligated O.N. on themselves to generate probe. 

Southern Blotting was performed as described in the literature (Southern 2006), to detect signal I 

have used Deoxycytidine triphosphate, labeled on the alpha phosphate group with 32P 

(NEG513H; PerkinElmer). 

The ES cells containing a mutated allele (miR-218-2flox ) were injected into the blastocyst and 

implanted into the foster mouse (pseudopregnant mouse) by standard procedures (Acampora et 

al. 1995). We have mated Chimeric mice with wild-type mice, and their mutated allele was 

checked for germline transmission to gain heterozygous mice in F1. The Neo-cassette was 

removed by mating heterozygous mice with Flippase mice, the screening was performed by PCR 

analysis, by using listed oligos in table 2.5. 

To inhibit miR-218-2 expression only in the dopaminergic field, we have mated conditional 

miR-218-2 mice with specific Cre-lines: CreEn1, that have Cre recombinase expression directed by 

the En1 to obtain miR-218-2fl/fl; En1Cre/+ mice. 

 

Oligos for cloning target vector Oligo sequences with restriction sites 

Long NotI Fw TTTGCGGCCGCGCTCCAGGGAGTTCTCTGAATC 

Long EcoRI Rv TTTGAATTCCACAACTCGAGAGGCTCCTGGGGACCTT 

Floxed BamHI Fw TTTAGATCTTGTTGAAGGGAGGATTTGCCTGG 

Floxed BamHI Rv TTTAGATCTCTCACCCTCTGCATTAGCTACC 

Short XhoI Fw TTTCTCGAGGTCGCTCTTGACTTTCACCACTCTTG 

Short KpnI Rv TTTGGTACCGATAGGGTGGCTGCTGATGTTG 

Oligos for PCR screening Oligo sequences 

Wal_FL Fw GGTCTCTGCAGTGTCGTCGATCGA 
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S3RV1Est Rv TGGATGGTCTAGGATCAGAAGTAG 

Oligos Probes Southern Blot Oligo sequences 

3’Probe Fw CAGGTGACATCAGATCCTCTGAGG 

3’Probe Rv CCTCTGCAGTGGAACCGCGAC 

5’ Probe Fw TGGCAGCAGTGCCCATTACTATCTG 

5’Probe Rv TGGAGTGACCTGTGGTACCTCG 

Oligos for Neo-cassette screening Oligo sequences 

FwflpF GAGTAGCAGCTAGGTTCCAACTTC 

RVflpS ACCCATGTCTGTTCTACCCATTC 

PgK1A ACTTGTGTAGCGCCAAGTGCCAGC 

FlpF CACCTAAGGTCCTGGTTCGTCAGT 

FlpR CCAGATGCTTTCACCCTCACTTAG 

 

Table 2.5 Oligos to generate target vectors and to screen homologous recombination 

 

The project for generation of a miR-218 cKO mouse model was approved by Italian Health 

Ministry, Department of Veterinary, Public Health Nutrition, and Food Safety, Directorate-

General for animal health and veterinary medicinal products 

 

2.9 Statistical analysis 

For all experiments, analysis of variance was carried out, followed by post hoc comparison 

(ANOVA, Dunnett’s or Newmann-Keuls test). A value of p ≤ 0.05 was considered significant. 

Data were expressed as mean ± SEM and show p values with special symbols. At least three 

independent replicates were used for RT-PCR, Luciferase Assay and for cell counts. 

Analysis of High-Content data was performed on R software with one-way analysis of variance 

and Benjamini-Hochberg’s post hoc test, after standardization of value. 
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3 - RESULTS 

 

3.1 miRNAs upregulated in dopaminergic cells in vitro  

Midbrain DA neurons development is a complex and still not fully understood phenomenon. In 

the last years, it becomes clear that also miRNAs play important roles in promoting mDA 

differentiation and survival (Kim et al., 2007; Miñones-Moyano et al., 2011; Saba et al., 2012; 

Tobon et al., 2012; Yang et al., 2012).  

Previous studies performed in my host laboratory have identified miRNAs expressed during in 

vitro dopaminergic differentiation (De Gregorio et al., unpublished data).  

This goal has been achieved by using EpiSCs, isolated from Pitx3-GFP mice expressing the GFP 

in the Pitx3 locus. EpiSCs were maintained in culture for 15 or 19 days in the N2B27 medium 

after Activin and bFGF withdrawal and differentiation as a monolayer.  The FGF/ERK inhibitor 

PD0325901 (PD03) was added to the medium from day 0 to day2 and the inductive factors 

SHH and FGF8 were added from day5 to day9. 

Terminal differentiation was promoted by the addition of GDNF, BDNF and Ascorbic Acid 

from day9 to the end of the in vitro differentiation protocol (optimized from Jaeger et al., 

2011)(Fig. 3.1). 

 

 

Figure 3.1 Schematic representation of the protocol used to profile miRNAs expression during DA 
differentiation of mouse epiSCs. 

 

day0
I

day2
I

day9
I

day14
I

+	PD03	1μM

day5
I

day19
I

+Shh 200	ng/mL
+	Fgf8	100ng/mL
+	Bdnf 10ng/mL,	Gdnf 10ng/mL,	Ascorbic	Acid	200μM

Basalmedium	N2B27



	 	 41	

Samples were collected at the end of the differentiation protocols and processed for mRNA and 

microRNAs on an Agilent microarray platform.  

A bioinformatic approach allowed the identification of two groups of microRNAs that behave 

with opposite trends: the first group was represented by those miRNAs which expression 

increased during the entire process of differentiation while the second contains those that were 

progressively down-regulated (De Gregorio et al., unpublished) (Table 3.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.1 Lists of selected miRNAs. The two lists distinguish between miRNAs found to be upregulated 
or downregulated in the DA protocol. miRNAs were selected on the base of their fold change compared to 
the generic neuronal protocol and on their predicted target genes. 

 

miRNAs up-regulated 

in DA differentiation 

miRNAs down-regulated 

in DA differentiation 

mmu-miR-370-3p mmu-miR-128-3p 

mmu-miR-494-3p mmu-miR-153-3p 

mmu-miR-375-3p mmu-miR-129-1-3p 

mmu-miR-218-1-5p mmu-miR-137-3p 

mmu-miR-219-1-5p mmu-miR-326-3p 

mmu-miR-34b-5p mmu-miR-129-5p 

mmu-miR-34c-5p mmu-miR-138-5p 

mmu-miR-212-3p mmu-miR-181a-5p 

mmu-miR-132-3p mmu-miR-709 

mmu-miR-148a-3p mmu-miR-383-5p 

mmu-miR-152-3p mmu-miR-671-5p 

mmu-miR-210-3p mmu-miR-3285p 

mmu-miR-27a-3p mmu-miR-331-3p 

mmu-miR-29a-3p 

mmu-miR-204-5p 

mmu-miR-211 
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To identify which miRNAs can promote dopaminergic differentiation, each candidate (table 

3.1) was screened for its ability to promote the expression of the tyrosine hydroxylase. To this 

purpose, I cloned the cDNA for eleven microRNAs into an inducible lentiviral vector (TET-O-

Fuw; see in Materials and methods for details).  

In particular lentiviral particles for the following microRNAs have been generated: miR-34b and 

34c cluster, miR-218-1, miR-148a, miR-210, miR-27a, miR-29a, miR-132, miR-204, miR-

219, miR-370, miR-375, and miR-494. 

Mesencephalic primary cultures, isolated from TH-GFP mice at stage E12.5 have been infected 

with lentiviral particles expressing each microRNAs in combination with Nurr1, a transcription 

factor essential to promote tyrosine hydroxylase expression. 

The ability of each microRNA to promote DA phenotype was investigated by following the 

GFP expression and represent as the ratio of Nurr1+/TH+ cells. The results are shown in Figure 

3.2.  

Only miR-34b/c and miR-218-1, when combined with Nurr1, were able to increase the 

number of GFP positive cells, compared to Nurr1 alone. 

Taking advantage of this data, I have further investigated the importance of miR-34b, miR-34c 

and miR-218 in the dopaminergic differentiation. 

MiR-34b-5p and miR-34c-5p (called hereafter miR-34b/c) are two microRNAs expressed in a 

unique gene cluster. The mature forms are almost identical since they differ for only one 

nucleotide. Both belong to a large family of miRNAs that include miR-34a-5p and the miR-449 

cluster (449a-5p, 449b-5p and 449c-5p), and it has been hypothesized their possible role in the 

etiopathogenesis of Parkinson Disease (Miñones-Moyano et al., 2011).  

Also, miR-218 is present in two copies in mammalian genome named miR-218-1 and miR-

218-2. It has been mainly associated with motor neurons but recent data also suggest a possible 

role in dopaminergic differentiation (Baek et al., 2014; Rivetti et al., 2017).  

None of the others candidates miRNAs were indeed able to promote DA differentiation, despite 

we cannot exclude theirs contribute to dopaminergic neurons development, function, and 

survival. 
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Figure 3.2 miRNAs 34b/c and miRNA-218-1 promote DA phenotype. High-content screening of 
miRNA’s activity on the number of TH+ cells after over-expression of Nurr1 in mE12.5-PCs derived 
from TH-GFP mice. GFP+ cells were counted at automated confocal microscope Opera and 
normalized on 3xFlag+ cells. Means ± SEM, n = 270 ± 80. * p ≤ 0.05  of the samples respect to the 
control.  

 

3.2 Functional evaluation of miRNAs  

miRNAs regulate the expression of target genes by binding to specific sequences located at 

the 3' untranslated regions (3'UTRs) of the target mRNA. The binding sequences can be 

unique or repeated, in such case, a strong enhancement of the downregulation may be 

expected. Similarly, different microRNAs may cooperate to regulate the same transcript by 

binding specific adjacent sequences. 

Thus by using available miRNA target prediction tool (targetscan.org/mmu_71/) (Agarwal et 

al., 2015), I screened the selected miRNAs, previously identified, for their ability to target 

mRNAs involved in DA differentiation.  

In particular, I searched for mRNAs containing 2 or more binding sites for the short group of 

microRNAs we previously identified. Following this scheme, I focused on Nurr1 and Wnt1 

since both were targeted by at least two different microRNAs.  

 

* 

* 



	 	 44	

3.2.1 miR-34b/c suppresses Wnt1 expression via targeting at the 3′UTR 

Wnt1 3’UTR is 933 bps long and hundreds of miRNAs are predicted to potentially bind and 

regulate it. Three microRNAs identified previously were potentially able to target it. These are 

miR-34b/34c, miR-148a, miR-27a. To verify their ability to downregulate Wnt1 I performed 

Luciferase assays. 

This approach, associated with miRNAs over-expression, allows detecting possible miRNA 

effect on the chosen 3’UTR simply by looking at the luminescence levels. Indeed if a miRNA 

regulates the cloned 3’UTR, the luciferase mRNA will be repressed or degraded, and a lower 

luminescent signal will be detected.  

Luciferase assay has been performed by transfecting miRNA over-expressing vectors and Wnt1-

3’UTR-pmiR-Report in HeLa cells.  

Almost the entire sequence corresponding to the Wnt1 3’UTR was cloned into a pmiR-Report 

luciferase reporter vector (Ambion) downstream to the luciferase coding sequence (see in 

Materials and Methods) and then transfected in combination with a plasmid expressing the 

microRNA.  

3’UTR Wnt1position /miRNA 
Predicted consequential pairing of target region (top) 

and miRNA (bottom) 

Position 241-247 of Wnt1 3' UTR 

mmu-miR-34b/c-5p 

5'  ...GGGAGACUCCUUUUGCACUGCCC... 
                                                    |  |  |  |  |  |  |    
3'     CGUUAGUCGAUUGAUGUGACGGA  

Position 239-245 of Wnt1 3' UTR 

 mmu-miR-148-3p 

5' ...GAGGGAGACUCCUUUUGCACUGC... 
                                                   |  |  |  |  |  |  |  
3'        UGUUUCAAGACAUCACGUGACU 

Position 572-578 of Wnt1 3' UTR 

mmu-miR-27a-3p 

5' ...GGAGCCAUUGAACAGCUGUGAAC... 
                                                 |  |  |  |  |  |    
3'     CGCCUUGAAUCGGUGACACUU 

 

Table 3.2 Consequential pairing shows miRNA-3’UTR of Wnt1 complementarity, whether inside or 
outside the seed region, that is predicted to influence the efficacy of targeting (Grimson et al., 2007). 
(Adapted from Targetscan). 

 

In all wells were added also Tetracycline-controlled transcriptional activation vector (rtTA), this 

transfection was necessary in order to trans-activate expression from the TET-O-Fuw inducible 

promoter, following doxycycline addition to the medium. 
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All candidate miRNAs were able to reduce Luciferase activity, miR-27a of 53%, miR-34b/c of 

35% and miR-148a of 23%.  

To further confirm this data I mutated the binding site for each microRNA I examined (3'UTR 

Wnt1Δ34, 3'UTR Wnt1Δ148, 3'UTR Wnt1Δ27 in Table 3.2). 

Interestingly, the negative regulation of miRNAs was abolished after mutation of the predicted 

binding site for miR-34b/c but not for miR-148a-3p and miR-27a on Wnt1 3’UTR sequence 

(fig. 3.3).  

Thus suggesting that only miR- 34b/c effectively binds to its predicted site at the Wnt1-3’UTR. 

The empty pmiR-Report vector was used as an additional control. All luciferase data have been 

normalized to the Renilla (RL-SV40) activity. 

 

Figure 3.3 Luciferase Assay on Wnt1-3’UTR in HeLa cells. pmiR-Reports containing the wild-type 
(3’UTR Wnt1) or mutated (3’UTR Wnt1 Δ ) 3’untranslated sequence for Wnt1 were co-transfected with 
Tet-O-FUW-miR-34b/c plus rtTA (miR-34b/c), Tet-O-FUW-miR-148a-3p plus rtTA (miR-148a) Tet-
O-FUW-miR-27a plus rtTA (miR-27a). The empty pmiR-Report vector was used as a additional control. 
All luciferase data have been normalized to the Renilla (RL-SV40) activity. Data represent mean± s.e.m. 
from three independent experiments. *, P<0.01, **, P<0.5 (Student’s t-test). 
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3.2.2 miR-204-5p and miR-34b/c-5p inhibit Nurr1 expression by targeting 3’UTR 

The same approach was used to identify candidate miRNAs able to bind Nurr1-3’UTR and 

regulate its expression. The entire 3'UTR for Nurr1 mRNAs corresponding to 1326 bps, was 

cloned downstream the pmiR-Report luciferase reporter vector. 

The experimental procedure that I used was identical to previously described for Wnt1 3’UTR. 

Two microRNAs we previously identified were potentially able to bind Nurr1-3’UTR. These are 

miR-34b/c and miR-204, the predicted binding sites are reported in Table 3.3. 

HeLa cells were transfected with Nurr1-3’UTR-pmiR-Report luciferase vector in presence of 

expressing plasmids for 34b/c and miR-204-5p miRNA. 

I was able to detect a significant reduction of the luciferase signal as a result of the inhibitory 

action of the both miR-204 and 34b/c on Nurr1 3’UTR, corresponding to 33% for miR-34b/c 

and 36% for miR-204 compared to control vector (Fig. 3.4).  

3’UTR Nurr1position /miRNA 
Predicted consequential pairing of target region 

(top) and miRNA (bottom) 

Position 870-876 of Nurr1 3' UTR long 

mmu-miR-204-5p 

5' ...UGGAAAAUCCUGACAAAAGGGAC... 
                                                 |  |  |  |  |  |  |  
3'     UCCGUAUCCUACUGUUUCCCUU 

Position 1205-1211 of Nurr1 3' UTR long 

mmu-miR-34b/c-5p 

 5'  ...GCACAUGAGAUGAGUCACUGCCU... 
                                                   |  |  |  |  |  |  |  
3'     UGUUAGUCGAUUAAUGUGACGGA 

 

Table 3.3 Consequential pairing shows miRNA-3’UTR of Nurr1 complementarity, whether inside or 
outside the seed region, that is predicted to influence the efficacy of targeting (Grimson et al., 2007). 
(Adapted from Targetscan) 

  

Mutation of the predicted binding sites (3'UTR Nurr1Δ34, 3'UTR Nurr1Δ204) abolishes the 

effect of both miRNAs suggesting that the binding was specific and that both microRNAs were, 

indeed, able to modulate Nurr1 expression (fig. 3.4). 

The empty pmiR-Report vector was used as an additional control. All luciferase data have been 

normalized to the Renilla (RL-SV40) activity. 
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Figure 3.4 Luciferase Assay on Nurr1-3’UTR in HeLa cells. pmiR-Reports containing the wild type 
(3’UTR Nurr1) or mutated (3’UTR Nurr1 Δ ) 3’Untranslated sequence for Nurr1 were co-transfected 
with Tet-O-FUW-miR-34b/c plus rtTA (miR-34b/c), Tet-O-FUW-miR-204-5p plus rtTA. The empty 
pmiR-Report vector was used as a additional control. All luciferase data have been normalized to the 
Renilla (RL-SV40) activity. Data represent mean± s.e.m. from three independent experiments. *, P<0.01, 
**, P<0.5 (Student’s t-test). 

 

3.3 Wnt1 is a target of miR-34b/c and is expressed during DA neurons differentiation  

In this context, I choose to further investigate the role of miR-34b/c cluster on Wnt1 expression. 

The final aim was to better understand their implication in dopaminergic fate. To this purpose, I 

used a dual-fluorescent plasmid (DFSP): green fluorescent protein (GFP)-reporter/monomeric 

red fluorescent protein (mRFP)-sensor (De Pietri Tonelli et al., 2006), which allows the detection 

of miRNAs at single cell resolution. I cloned a tandem cassette complementary to miR-34b/c in 

the 3’UTR of the mRFP sensor (pDSV3-34) or mutated in the region corresponding to the “seed 

sequence” of miR-34b/c (pDSV3-34mut).  

In DFRS plasmids, both GFP and mRFP are under the control of identical constitutive 

promoters (SV40), the GFP-reporter was used to identify the cells actually expressing the 

plasmid, given that the sensor-based strategy relies on the silencing of a transcript. The mRFP-

sensor contained 3’UTR with a tandem cassette complementary to the miRNA of interest (see 
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detail in Materials and Methods). Mouse Embryonic Stem Cell (mESc) were transfected with 

pDSV3-34 and fluorescence was monitored during differentiation.  

This approach has been described as very efficient for monitoring the endogenous expression of 

miRNAs both in vitro and in vivo and allows monitoring miRNA expression in defined cell 

lineages during development. In differentiating mESc transfected with the pDSV3-34 the 

expression of the mRFP-sensor was strongly reduced 72 hours after transfection (fig. 3.5). This 

effect was abolished with pDSV3-34mut (Figure 3.5), thus suggesting that miR-34b/c is 

expressed in vitro during the dopaminergic differentiation of mES (unpublished data).  

 

 

Figure 3.5 miR-34b/c Dual fluorescence reporter assay. mES cells transfected with a plasmid 
containing a complementary sequence to the miR-34b/c downstream the CDS for the mRFP sensor 
(pDSV3-34) or with a plasmid containing a sequence mutated in the region corresponding to the “seed” 
for miR-34b/c (pDSV3-34mut). Images were acquired 72 hours after transfection. Scale bar is 50 µm. 
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3.4 miRNAs enriched in Midbrain during development 

We performed quantitative expression analysis of miRNAs in Midbrain, Striatum, and Cortex 

to compare the expression of selected miRNAs in the different brain regions. 

I focused this analysis on the three microRNAs described above. These are miR-34b/c, miR-

204, miR-218. All these microRNAs resulted enriched in the midbrain at E14 but not in tissues 

obtained from adult mice (fig. 3.6 A). Interestingly miR-34b/c, miR-204, and miR-218 were 

also enriched in FACS sorted GFP+ cells obtained from E13.5 Pitx3-GFP mice embryos when 

compared to the negative sorted cells (CTRL) (fig. 3.6 B). At the opposite miR-124a and miR9, 

two well known microRNAs expressed in the brain but not enriched in our dopaminergic 

protocols indeed were not expressed in E14 midbrain tissues (fig. 3.6 A, B).  

All these data confirm support our hypothesis concerning their involvement in dopaminergic 
development. 

 

Figure 3.6 qPCR analysis A) Expression of mature miR-204, miR-34c-5p, miR-218-5p, miR-124a-5p 
and miR-9-5p on specific microdissected developing (E14.5) and adult brain areas (midbrain; striatum; 
cortex). B) Expression of mature miR-204, miR-34c-5p, miR-218-5p, miR-124a-5p and miR-9-5p on 
E13.5 Pitx3-GFP+ sorted cells (Pitx3-GFP+) compared with negative sorted control cells (Ctrl). All 
qPCR data have been normalized to the average of the reference sno-202. Data represent mean± s.e.m. 
from triplicate of dissected samples from different animals.*, P<0.05 relative to the other brain areas or 
to ctrl (Student’s t-test). 
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3.5 miR-218 is expressed in the Midbrain 

Despite we didn’t find any target gene among those important for dopaminergic differentiations 

miR-218 was among the most upregulated genes in Pitx3-GFP positive cells FACS purified at 

E14. For this reasons we further analyzed its expression by in situ hybridization. 

To this purpose, I analyzed its expression the midbrain of mice, starting from E11.5 until 

Postnatal 0 (P0). As shown in figure 3.7 miR-218 was detectable in Mb of mice starting from 

E12.5. 

 

Figure 3.7 In situ hybridization to detect expression of miR-218 in paraffin embedded slides of midbrain 
mice from E11.5 to P0. Scale bar= 100um. 
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To understand if the expression profile of miR-218 was similar to that observed for typical 

dopaminergic markers, I performed immunohistochemistry (IHC) on adjacent slices of Mb at 

both E12.5 and E14.5. To this purpose, I used the dopaminergic markers Lmx1a, TH, Pitx3. 

Moreover, since the Mb is enriched also of mesencephalic motor neurons, I also used Isl1 as a 

specific marker of mesencephalic motor neurons (Liang et al. 2011). 

As shown in figure 3.8 the expression of miR-218 co-localizes partially with that of dopaminergic 

and motoneuron markers such as Lmx1a/ TH/Pitx3 and Isl1 respectively. 

 

Figure 3.8 miR-218 is expressed in E12.5 midbrain. Panel of miR-218 in situ hybridization and IHC 
for dopaminergic markers: Lmx1a, Th, Pitx3 and motor neuron marker: Isl1. Scale bar= 100um 
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This data is very clear at E14.5 (fig. 3.9) where miR-218 overlaps with Isl1 in rostral slices, while 
with dopaminergic markers more caudally. 

These data are in line with our hypothesis that miR-218 is required in dopaminergic neurons 

generation and with data shown in the literature of miR-218 implication in motor neuron 

(Thiebes et al. 2014; Amin et al. 2015). 

 

 

Figure 3.9 miR-218 is expressed in E14.5 midbrain. Panel of miR-218 in situ hybridization and IHC 
for dopaminergic markers: Lmx1a, Th, Pitx3 and motor neuron marker: Isl1. Scale bar= 100um 
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3.6 miR-218-2 conditional KO mouse model  

To deeply understand the role of miR-218 in midbrain development I generated a conditional 

knock-Out (cKO) mouse model for miR-218. miR-218 is present in two identical copies in the 

genome: miR-218-1 and miR218-2, encoded by the intronic region Slit2 and Slit3 genes, 

respectively.  

Since it has been shown that miR-218-1 KO mice are viable and not present any phenotype 

(Amin et al. 2015), I have generated cKO mice only for miR-218-2.  

The targeting vector I have generated hosted the miR-218-2 sequence flanked by LoxP sites and 

Neomycin (Neo)-cassette (figure 3.10 A). The vector was then electroporated in ESCs and the 

clones screened for its integration by PCR analysis (data not shown) and Southern Blot.  

To identify those clones where the homologous recombination occurs in the desired locus I 

performed Southern Blot Analysis by using three independent probes. The 3' Probe (scheme in 

figure 3.10 A) allowed for identifying positive clones where homologous recombination 

effectively occurred from negative ones (previously positive by PCR) where vector integration 

occurs unspecifically into the genome. Six clones on eight were positive showing two different 

bands corresponding to the targeted allele of 7Kb, and the wild type of 5.5Kb (figure 3.10 B). 

The 5’ and the Neomycin probes further confirm proper integration. 

 

Figure 3.10 Homologous Recombination of miR-218-2. A) Schematic representation of targeting 
vector cKO miR-218-2 within design probes to discriminate positive clones. B) Southern Blot analysis 
that shown six positive clones on eight. 
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The ES cells containing the knockout mutation were injected into the blastocyst and implanted 

into the foster pseudopregnant female mouse. Chimeras mice were obtained at the F1 and 

germline transmission tested in the F2. At this stage, I obtained the first heterozygous mouse. 

Female mice were then mated with a Flippase male in order to remove the Neomycin cassette and 

obtain a clean conditional allele (miR-218-2fl/fl).  

In order to inhibit miR-218-2 expression only in dopaminergic field, we have mated conditional 

miR-218-2 with specific Cre-lines: CreEn1, that have Cre Recombinase expression directed by the 

En1, this is an essential TF express in ventral Mb from E11.5 and persist also in adult brain 

(Simon et al. 2001, Albéri et al. 2004). 

Preliminary data obtained on miR-218-2fl/fl; En1Cre/+ mice show motor impairment phenotype, 

but to confirm this data I’m currently performing behavior tests and in vivo analysis. 
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4 - DISCUSSION 

 

Rita Levi Montalcini, speaking about the brain said: “It is imperfection - not perfection - that is 

the end result of the program written into that formidably complex engine that is the human 

brain, and of the influences exerted upon us by the environment and whoever takes care of us 

during the long years of our physical, psychological and intellectual development.” 

 

In recent decades, the scientific community has focused its attention on the direct and indirect 

involvement of Non-coding RNA in the development and function of neurons. Non-coding 

RNAs are emerging as important regulators of gene function and it has been shown that the vast 

majority of transcribed RNA corresponds to noncoding RNA (Consortium, 2004). 

MicroRNAs constitute a class of small non-coding single-strand RNA (~22nucleotides) that act as 

post-transcriptional regulators of gene expression via the recognition of complementary sequences 

in the 3' untranslated regions (UTRs) in target messenger (m)RNAs that are thus directed to 

degradation or translational repression (Bartel, 2004).  

Current knowledge suggests that miRNAs are fine-tuning regulators of gene expression acting in 

a wide range of biological processes, from development to cancer. Moreover, they are involved in 

embryonic development, cell differentiation and growth, cell proliferation, apoptosis and 

regulation of metabolic processes (He et al., 2004) 

In neurons, the function of individual miRNAs are just beginning to emerge, and recent studies 

have elucidated roles for neural miRNAs at various stages of neuronal development and 

maturation, including neurite outgrowth, dendritogenesis, and spine formation (Olde Loohuis et 

al., 2012). 

These findings emphasize that gene regulatory networks based on miRNA activities may be 

particularly important to brain function, and that perturbation of these networks may result in 

abnormal brain function (Wang et al., 2012). The enigma is that each microRNA targets 

numerous messenger RNAs (mRNAs) and each mRNA is targeted by many microRNAs. It has 

been estimated that a single microRNA may target up to hundreds of mRNAs. 
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In this context, I have performed a miRNAs profiling in order to understand which one is 

expressed in DA neurons and is potentially required in their development. 

DA neurons development is intricate network and consists of four different spatial-temporal 

stages: induction, specification, differentiation, and maturation. Each phase is regulated by 

various transcription factors, morphogens, and other molecules. 

In the literature, many studies propose the role of miRNAs in mDA neuron differentiation and 

related diseases such as Parkinson’s. miR-133b was found to be downregulated in post-mortem 

Parkinson disease (PD) patient brains supporting its role in the pathogenesis of the disease (Kim 

et al., 2007); miR-34b/c cluster is significantly decreased in PD patient brains, even in the 

premotor stage of the disease. Moreover, its downregulation was associated to decrease expression 

of DJ1 and Parkin (Miñones-Moyano, Porta et al., 2011). Similarly miR-142-3p inhibit D1 type 

DA receptor expression both during development and in-vitro in cell culture (Tobón et al., 2012) 

while miR-181a is expressed upon dopamine signalling in primary neurons, as well as by cocaine 

and amphetamines, in a mouse model of chronic drug treatment (Saba et al., 2012). Many other 

microRNAs regulate the expression of several key factors for dopaminergic differentiation. miR-

132 regulates the expression of Nurr1 (Yang et al., 2012) and miR-135a2 plays a crucial role in 

determining midbrain size and the allocation of prospective mDA precursors through the 

modulation of the Wnt signaling (Joksimovic et al., 2014, Nouri et al., 2015).  

In line with the literature, we hypothesized that Dopaminergic System development and function 

are also regulated by the action of microRNAs that are potentially relevant for diagnostic purpose. 

To address this topic, we have analyzed, through a microarray platform which miRNAs are 

upregulated during mDA differentiation. Indeed, we found few miRNAs involved in this process. 

The data I obtained are further confirmed by in vitro and in vivo approaches. To summarise I 

show that: 

- Overexpressing of miR-34b/c cluster and miR-218, in combination with Nurr1, enhances the 

number of TH+ cells derived from mE12.5-PCs. 

- miR-34b/c cluster and miR-148a bind Wnt1-3’UTR as predicted in TargetScan, but only miR-

34b/c targets Wnt1-3'UTR and represses luciferase activity.  
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This finding differs from a previous report (Shi et al., 2015) and could be explained either by the 

different cellular context or the cloning strategy we used. Indeed instead of the 8bp corresponding 

to the precise miRNA’s seed complementary region, we cloned almost the entire Wnt1 3’UTR 

sequence (~900 bp) downstream the luciferase reporter coding sequence. Therefore, our result 

could reflect a more in vivo like situation representing the real difference in targeting efficiency 

for both miR-34b/c and miR-148a-3p. 

-The expression of miR-34b/c during mDA differentiation was further confirmed by using the 

dual fluorescence reporter assay. miR-34b/c here controls also the expression of the transcription 

factor Wnt1 through the binding to its 3'UTR-sequence. 

- miR-34b/c cluster and miR-204 bind 3’UTR-Nurr1 and inhibit its expression in the 

Luciferase assay in HeLa cells. 

The role of miR-204 is still nor clear in mDA neurons, for this reason, in future I would like to 

examine its implication in Dopaminergic System. 

- In addition, miR-204, miR-218, and miR-34b/c, are also expressed in the midbrain of E14 

mice embryos and in Pitx3-GFP positive cells, but not in the adult stage.  

Altogether these results confirm the involvement of microRNAs in dopaminergic neurons 

development. 

- Interesting the in situ hybridization analysis confirmed that miR-218 is mainly expressed at 

E12.5 and E14.5 in the midbrain where it partially colocalizes with motorneuron and 

dopaminergic markers.  

These data fit with the previous reports indicating that miR-218 is motor neurons related 

microRNA (Amin et al. 2015, Thiebes et al. 2015). In these cells, it represses alternative fate, 

mainly GABAergic facilitating terminal differentiation of motor neurons. Similarly, it was also 

shown that miR-218 is important to reprogram astrocytes into dopamine neurons (iDANs) 

(Rivetti et al., 2017). 

KO animals for miR-34b/c and miR-204 are already available but they show the limited 

phenotypic effect at the level of the midbrain. The lack of phenotypical anomalies in KO mouse 

model for microRNAs is a “typical” feature often reported. Several possible explanations have 
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been proposed. The most accepted are related either to the redundancy of miRNAs that 

compensate from a functional point of view the absence of a single member of the family either 

by the idea that miRNAs regulate target genes expression in cooperation with others molecules 

(miRNAs). Thus removing a single player might be inefficient in term of alteration of a 

biological process.  

Surprisingly, this is not the case for miR-218. Here constitutive KO mice are perinatal lethal 

while conditional deletion in the midbrain results in important behavioral anomalies. For this 

reason, these animals represent an extremely valuable tool to study the role of miR-218 and will 

help to understand how miRNAs participate in neuronal function and development.  

I believe we just begin to understand how non-coding RNAs participate in the generation and 

degeneration of the Central Nervous System. In future miRNA profiling will represent useful 

molecular diagnostic tools to early identify neuronal disorders. There are significant obstacles for 

a complete understanding the biological variability related to the phenotype of interest. Once we 

will have a complete picture of how miRNAs work, we will be able to use our knowledge for 

possible diagnostic and prevention approaches in translational medicine. 
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5- APPENDIX 

 

During my PhD I have focused my attention also on a small project about “A meta-analytic 

approach to genes that are associated with impaired and elevated spatial memory performance” (under 

revision in Psychiatric Research).  

Spatial memory deficits are a common hallmark of psychiatric and neurodegenerative conditions 

(for e.g. PD disease), possibly due to a genetic predisposition. Thus, unravelling the relationship 

between genes and memory might suggest novel therapeutic targets and pathogenetic pathways. 

Genetic deletions are known to lead to memory deficits (post-deletion “forgetfulness” genes, 

PDF), or, in few instances to improve spatial memory post-deletion “hypermnesic” genes, PDH). 

To assess this topic, I performed a meta-analytic approach on spatial memory behavior in knock-

out mice. I screened 300 studies from PubMed and retrieved 87 genes tested for possible effects 

on spatial memory. This database was crossed with the Allen Brain Atlas (brain distribution) and 

the Enrichr (gene function) databases. The results show that PDF genes have higher expression 

level in several ventral brain structures, particularly the encephalic trunk and in the 

hypothalamus. Moreover, part of these genes is implicated in synaptic function. Conversely, the 

PDH genes are associated with G-protein coupled receptors downstream signalling. Some 

candidate drugs were also found to interfere with some of the PDH genes, further suggesting that 

this approach might help in identifying drugs to improve spatial memory performance in neuro 

disorders. 
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7 - LIST OF ABBREVIATIONS 

 

A 

A(n)   Catecholaminergic nuclei 

AADC                 Aromatic L-amino acid decarboxylase 

ADHD               Attention deficit hyperactivity disorder 

Ahd2                    Aldehydedehydrogenase2 

AK                       Aphakia mice 

Ascl1   Achaete-scute homolog 1 

 

B 

BDNF   Brain deriven neurotrophic factor 

bFGF   Basic fibroblast growth factor (FGF2) 

 

C 

cAMP   Cyclic Adenosine Mono-phosphate 

CDNF   Cerebral dopamine neurotrophic factor 

cKO                               conditional Knock-out 

CNS   Central nervoussystem 

COMT   Catechol-O-methyltransferase 

c-Ret   GDNF receptor 

 

    

 

D 

∆               Deletion/mutation  

DA    Dopamine / Dopaminergic 
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DBH   Dopamine ß-hydroxylase 

DRD   DA receptor 

DAT                    Dopamine active transporter (Slc6a3) 

DIV or d  Days in vitro 

Dmrt5            Doublesex and mab-3related transcription factor 5 

DOPAC               3,4-dihydroxyphenylacetic acid 

Dox   doxycyxline 

Dsh                       Dishevelled 

 

E 

E   Embryonic day  

En1/2   Engrailed 1 and 2 

epiSC   Epiblast stem cells 

Eph   Ephrines 

ERK                               Extracellular signal–regulated kinase 

ESRRβ                           Estrogen-related receptor beta 

ESC   Embryonic stem cells 

 

F 

FBS   Foetal bovine serum 

FCS   Foetal calf serum 

FGF                               Fibroblast growth factor 

FGF8   Fibroblast growth factor 8 

FP                      Floor plate 

FoxA1/2  Forkhead box protein A1/A2 

Fz    Frizzled 

Fz3   Frizzled 3 
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Fz6             Frizzled 6 

 

G 

GABA   γ-Aminobutyric acid 

Gbx2   Gastrulation Brain Homeobox 2 

GDNF   Glial cell-derived neurotrophic factor 

GFAP   Glial fibrillary acidic protein 

GFP   Green fluorescent protein 

GPe   external Globus pallidus 

GPi   internal Globus pallidus 

 

H 

HEK293T  Human embryonic kidney cell line 293T 

hESC   Human embryonic stem cells 

HVA   Homovanillic acid 

 

I 

IF   Immunofluorescence analysis 

IGB-ABT  Institute of genetics and biophysics Adriano Buzzati Traverso 

iPSC   Induced pluripotent stem cells 

ISH                                In situ hybridization 

IsO   Isthmic organizer 

 

K 

KFL2                              Krüppel-like Factor 2 

KFL4                              Krüppel-like Factor 4 

KO   Knock-out 
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L 

L-DOPA  L–3,4–dihydroxyphenylalanine (levodopa) 

LIF   Leukemia inhibitory factor 

Lmx1a   LIM-homeodomain factor1a 

Lmx1b   LIM-homeodomain factor1b 

LV   Lentiviral particles 

 

M 

MAO   Monoamine oxidase 

mDA   Midbrain dopaminergic neurons 

MHB                    Mid-hindbrain boundary 

Mb   Midbrain 

MCLp   Mesocorticolimbic pathway 

mESc                           Mouse Embryonic Stem Cell 

mE12.5-PCs  Mouse embryonic primary cultures from E12.5 midbrains 

miRNA   microRNA 

mRNA   messanger RNA 

Msx1   Msh homeobox 1 

 

N 

NC   Notocord 

NEAA   Non-essential aminoacids 

Ngn2   Neurogenin 2 

Nkx2.2   NK2 Homeobox 2 

Nkx6.1   NK6 Homeobox 1 

Nr4a1   Alias for Nurr77 
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Nr4a2   Alias for Nurr1 

Nr4a3   Alias for Nor-1 

NSC   Neural stem cells 

NSp   Nigrostriatalpathway 

Nurr1         Nuclear Receptor Related 1 protein 

 

 

O 

OB   Olfactory bulbs 

Otx2   Orthodenticle Homeobox 2 

Otx4                              Orthodenticle Homeobox 4 

OV                Otic vescicle 

 

P 

p57Kip2   Cyclin-dependent kinase inhibitor 1C 

PD   Parkinson’s disease 

PDH                               Post-deletion “Hypermnesic” genes 

PDF                                Post-deletion “Forgetfulness” genes 

PD03 (PD0325901)      Selective inhibitor of mitogen-activated protein kinase kinase  

Pen/Strep  Streptomycin and Penicillin 

PhD   Doctor of Philosophy 

Pitx3   Pituitary homeobox 3 

PNMT   Phenylethanolamine N-methyltransferase 

pre-miRNA  Precursor-miRNA 

pri-miRNA  Primary-miRNA 

PSF   Splicing factor PTB-associated 

PTB              Polypirimidine–tract-binding-protein 
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Ptc1                     Patched 1 

PKA                 Protein Kinase A 

 

R 

RA   Retinoic acid 

RP   Roof plate 

RRF   Retrorubral field 

RT-PCR  real time PCR 

 

S 

SAG   Smoothened Agonist 

SC   Spinal cord 

SEM   Standard error of the mean 

SHH                     Sonic Hedgehog 

Slit2   Slit Guidance Ligand 2 

Smo   Smoothened 

SN   Substantia Nigra 

SNc   Substantia Nigra pars compacta 

SNr   Substantia Nigra pars reticulata 

Sox2   SRY (sex determining region Y)-box 2 

STN                  Subthalamic nucleus 

 

T 

TF   Transcription factors 

TGFβ   Transforming growth factor β 

TH   Tyrosine Hydroxylase 

TIGEM              Telethon Institute of Genetics and Medicine 
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TPH2   Tryptophan hydroxylase 2 

 

U 

UTR   Untranslated regions 

 

V 

Vmat2     Vesicular monoamine transporter 

VTA             Ventral Tegmental Area 

 

W 

Wnt   Wingless-Type MMTV Integration Site Family 

wt   Wilde type 

 

Z 

Zic2                                Zic Family Member 2 
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