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ABSTRACT

The topic of this doctoral thesis is the investigation of the most effective approaches and techniques
that can be used to predict and map indicators of forest structural diversity, in a perspective of a more

comprehensive assessment, management and monitoring of biodiversity in forest environments.

The thesis is subdivided in two main sections, made up of five different but interdependent and
organically connected studies, represented by as many published peer-reviewed original research articles,

hereafter reported in Roman numerals as Studies [-V.

The first section comprises the studies I-1I-111. The contents of this section set the basis of methods and

know-how that are subsequently used to estimate and map forest structure diversity in Studies IV and V.

Several international cooperation projects has been stipulated in order to cope with the issue of the
constantly loss of biodiversity at global scale, and because of the relevant influence that forest structure has on

biodiversity, forest structure diversity needs to be to assessed and monitored on large areas.

In Study I is demonstrated how this achievement can be efficiently tackled coupling ground data, such
as those measured during forest inventory surveys, and remotely sensed data, in particular the ones derived
from airborne laser scanning (ALS), which has proved to be a reliable source to characterize forest structure.
The specific case of Study I presents how ALS data support the estimates of a common forest parameter, in
such case forest above ground biomass (AGB), using field data gathered in a novel two-phase tessellation

stratified sampling (TSS) design.

In order to be used as a valid source of information for planning conservation strategies, along with
the estimation, a detailed map showing the spatial patterns of structural diversity is of great usefulness. Study
I1 presents an extensive meta-analysis carried out during the doctoral time frame where is demonstrated that
the non-parametric k-NN is, among the others, the most used and effective technique to spatial predict and
map forest attributes, alone or combined together to form synthetic indices. This technique can be further
improved implementing an optimization step aimed to set the k-NN parameters in order to achieve the best
prediction performance possible. Study Il demonstrates that, if an optimization phase is carried out before

running the k-NN procedure, the performance in the predictions improved sensibly.

In the second and last section, the methods experimented in the first section are applied in two
different research studies. Study IV describes the use of ALS data and ground data for the areal estimate of
mean values of two forest structural diversity indices in a model-assisted framework. Along with the areal
estimates, the study proposes the calculation of the confidence intervals of such estimates and the mapping of
the investigated indices. Study V is framed as a methodological paper that takes a step further than Study IV,
showing how, using the capability of an optimized k-NN techniques in predict simultaneously different
parameters, is possible to map a more comprehensive structural diversity index (SDI) combining different

forest structural diversity indices.
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1. Background motivation

According to the United Nations Convention, biological diversity can be defined as “the variability
among living organisms from all sources including, inter alia, terrestrial, marine and other aquatic ecosystems
and the ecological complexes of which they are part; this includes diversity within species, between species and of

ecosystems.” (CBD, 1992).
Such a definition leads to extend the concept of biodiversity across different levels and thoughts.

Wilson (1987), Leveque (1994) and Gaston and Spiecer (2004) recognize three levels of assessment
ranging from genetic, specific and ecosystem biodiversity. Whittaker (1972) differentiates biodiversity from
ecosystem to landscape level, distinguishing in alpha (a), beta () and gamma (y) biodiversity. Noss (1990)
gives a more structured view of biodiversity including compositional, structural and functional aspects of

ecosystem. Others authors focused in both functional and phylogenetic aspects (Tilman et al., 1997).

As emerged from an analysis of several zones and habitats classifications (Holdridge, 1947, 1967,
Dinerstein et al. 1995), one half of the wide range of habitats classified are trees-dominated lands, thus forest

and wooded lands are the richest ecosystems from a biological and genetic point of view.

The concept of biodiversity in forestry goes beyond to “just the trees”, and it includes all others living
organisms as a fundamental pieces of ecosystem functionality (Hunter, 1990), thus the conservation of forest

habitats become crucial for many reasons (Hunter, 1999).

Forest biodiversity studies are often based on compositional and/or on 3-D structural parameters, and
the debate on which one influence the most the diversity of communities rose up since the early studies

(MacArthur and MacArthur, 1961).

For some communities, plant species composition seems to be a better predictor than structural
variables for habitat assessment. For instance, it seems to work better for arthropod communities (Schaffers
et al. 2008; Ter Braak and Schaffers, 2004), although other studies reported contrasting results and favoring
structural parameters (Halaj et al., 2000). In others communities (e.g. birds) the structure plays a relevant role
(Miller et al,, 2010), but it may be influenced by plant species composition (Rosenzweig, 1995) so that the
relative importance of structure and composition appears sensibly influenced by the habitat type of the study

area (Fleishman and MacNally 2006).

Even if composition is still an important factor, studies on others taxa such as primates, reptiles,
amphibians and arthropods (Halaj et al., 2000; McGraw, 1994; Salter et al., 1985; Shine et al., 2002; Welsh and
Lind, 1996) confirm that the habitat structure is directly or indirectly related to the presence/absence of the
investigated species. In their review, McElhinny etal. (2005), reported that the contribution of forest structure
for biodiversity assessment is more relevant than the composition factor. They come out that a diversified
stand structure is likely to have more niches, thus allowing to host more species for a better efficiency use of

the resources available (McElhinny et al.,, 2005).

Also in the Quantitative Pan-European indicators describing the Criterion 4 ‘Biological Diversity’
(MCPFE, 2011), the structural factor plays a major role when applied in a sustainable forest management

contest (Puumalainen et al., 2003). Same findings are confirmed by Kuuluvainen (2009), Lahde et al. (1999)
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and in other studies relying on structural parameters other than the ones of living and standing trees (e.g

deadwood in Rondeaux and Sanchez, 2010).

In the last two decades LiDAR (Light Detection and Ranging) technology has shown to be a reliable and
valuable remote sensing tool in gathering and assessing forest structure parameters (Lefsky et al., 2002; Lim
et al, 2003; Zimble et al., 2003; Wulder et al.,, 2008), thus providing a potential great support in forest

biodiversity studies given the important role played by forest structure in this field.

Bergen et al. (2009) exposed the importance of some remotely sensed variables and physical

requirement of spaceborne active sensors data, as well as LiDAR, in detecting vegetation 3-D structure.

Diversity and abundance of birds are the most investigated issues in forest biodiversity studies (Tews
etal, 2004). Vogeler et al. (2014), Clawges et al. (2008), Lesak et al. (2011), Goetz et al. (2007), Flashpoler et
al. (2010), Vierling et al. (2013) and Miiller et al. (2009, 2010) all report a good relationship between LiDAR-
derived structural parameters and bird communities. Although the horizontal distribution of trees in the forest
is in any case important, the vertical arrangement of canopy layers has shown to be stronger related to animal
habitat, thus to their distribution, than the horizontal stem location (Vierling et al. 2008), and the capability of
LiDAR to detect with high accuracy the vertical canopy profile pose such instrument as a key tool in supporting

forest biodiversity studies.

LiDAR data has been used also to characterize habitat for other taxa such as terrestrial birds (Graf et
al,, 2009), beetles (Miiller and Brandl, 2009), spiders (Vierling et al. 2011), and mammals like bats (Jung et al.
2012), deers (Ewald et al., 2014) and squirrels (Nelson at al., 2005).

Further, the potential availability of wall-to-wall LiDAR coverage allows also to use the geographic
layers of LIDAR metrics to map habitats across wide areas. Several studies show the efficacy of habitat mapping
using LiDAR-derived layers alone (Hyde et al,, 2005; Martinuzzi et al.,, 2009) or in combination with other
remotely sensed data (Swatantran et al. 2012; Hyde et al., 2006), among which LiDAR-derived layers are the

best single predictors.

The structural information derived from LiDAR data has been proven to be effective not only in the
prediction of animal habitat but also for the assessment of plant richness, composition and diversity (Lucas et

al,, 2010; Leutner et al,, 2012; Simonson et al. 2012).

In this field the potentiality of optical imagery has been explored deeper than the use of LiDAR data.
Hernandez-Stefanoni & Ponce-Hernandez (2004) mapped plant diversity indices (Uniformity Index ranging
from 0.62-0.89) according the relationships among o and (3 diversity indices and the vegetation classes
obtained by multi-spectral satellite image classification. Dogan & Dogan (2006) modeled and mapped
Shannon-Wiener, Simpson, and number of species (NS) indices in Turkish forest ecosystems, and they found
that Wiener and NS models could be successful to reveal the richness aspect of species diversity, while Simpson
model might be acceptable to delineate the evenness aspect indicating single dominant land cover types.
Rocchini (2007) used species richness (a-diversity) as a proxy of diversity relying on the correlation with
image heterogeneity (Quickbird: r=0.69; Aster: r=0.43; Landsat ETM+: r=0.67; resampled 60 m Landsat ETM:
r=0.69), which has been proven to be dependent on the geometrical resolution of the image. Other studies

underlined the great support of hyperspectral imagery in mapping a-diversity indices (Shannon Index)
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(Oldelan et al. 2010; Vaglio Laurin et al.,, 2014) and the scale-dependent relationship between spectral diversity

and species diversity (Rocchini et al., 2014).

Just a few studies used LiDAR data, alone or in combination with optical imagery, to study biodiversity

indices.

Leutner et al. (2012) investigated the spatial patterns of vascular plant community composition and
a-diversity in a temperate montane forest in Germany and compared the predictive power of LiDAR and
hyperspectral datasets, alone and combined together, and used the final models for spatial predictions (species
richness accuracy of R2 = 0.26 to 0.55, depending on the forest type). Others authors demonstrated the utility

of LiDAR-derived forest structure maps for studies on floristic diversity indices (Alberti et al., 2013).

As pointed out from the literature review, there is a lack of studies that link indices of forest structural
diversity to LiDAR metrics. Such a gap in the research could be driven by two main reasons: (i) when the
purpose is to predict biodiversity indices for plant communities, although the above exposed importance of
structural aspects on biodiversity, the role played by the compositional factor seems to be still predominant,
and given the fact that it is better predict through multispectral imagery, LiDAR data in this contest has been
so far underused; (ii) on the other hand, when LiDAR data were available, its capability to depict forest
structure has been linked mainly to animal habitat rather than forest structural diversity itself, referring in part

to the previous point.

If the current literature, as seen, is plenty of studies which related LiDAR products to habitat mapping
and assessment, only Leutner et al. (2012) used such a products to spatial predict biodiversity indices, and in
their attempt they focused just on plant community composition and «-diversity, leaving other interesting

indices out of the game (Neumann & Starlinger, 2001).

Maps of diversity indices would provide support to managers who need spatially-explicit information
concerning patterns of biodiversity in order to plan adequate conservation strategies. Mapping forest
structure, habitat and diversity indices over large areas allows assessing biological diversity in remote and

impervious areas that cannot be reached by the field crews.

An interesting but non exhaustive set of practical application could include e.g. (i) the description of
the status and trends of the components of biodiversity, making possible to detect changes in habitats,
ecosystems and biomes, thus in animal and plant species composition, and act as consequence, (ii) identify
trends in invasive alien species and apply protection strategies to the threatened native animal and plant
species or even (iii) locate spots of high biodiversity values that need to be preserved by ad hoc management

strategies.

A problem with the map products derived from remotely sensed data is that often their performances
are assessed by error matrices and measures such as overall accuracy, users’ and producers’ accuracies, Kappa
index correlation and coefficients of correlation (e.g. R or R2), lacking then in a scientific assessment of
inference (McRoberts, 2011). In the aforementioned studies of mapping biodiversity indices by LiDAR-derived

products, there are not attempts to assess the scientific inference of the maps produced.



From the exposed literature review can be drawn several consideration. Firstly, forest diversity should
be seen not just as an aggregate of woody species based only on plant species composition, but its structure
must be included as well. Secondly, giving strength to the first statement, forest structure has shown to have a
relevant influence for animal habitat and plant communities’ assessment. Thirdly, the proven capability of
LiDAR to depict the structural components of a forest, pose this remote sensing technique as a key tool in the
research of forest biological diversity. Fourthly and lastly, in order to base management and planning

strategies on reliable data, a scientific-based uncertainty for the maps of diversity indices must be developed.

These considerations, driven by the exposed literature review, uncover two gaps in the current
research on the topic, that are the aims to which [ progressively addressed in this PhD work: i) spatially predict
a set of biodiversity indices relying on the relationship between LiDAR-derived metrics of forest structure and
diversity indices; ii) assess the accuracy of the derived maps accounting for their uncertainty from a scientific

inference point of view.
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2. SectionI (Studies I-1I-11I)

This first section comprises three studies, namely Studies I-1I-11I, published as original research articles

(Study I and Study III) and as a review article (Study II), to which the PhD candidate has actively participated :

I. Chirici, G., McRoberts, R. E., Fattorini, L., Mura, M., & Marchetti, M. (2016). Comparing echo-based and
canopy height model-based metrics for enhancing estimation of forest aboveground biomass in a

model-assisted framework. Remote Sensing of Environment, 174, 1-9. d0i:10.1016/j.rse.2015.11.010

II. Chirici G., Mura M., McInerney D., Py N., Tomppo E. 0., Waser L. T., Travaglini D., McRoberts R. E. (2016).
A meta-analysis and review of the literature on the k-Nearest Neighbors technique for forestry

applications that use remotely sensed data. Remote Sensing of Environment.

III. McRoberts R. E., Naesset E., Gobakken T., Domke G. M., Chirici G., Mura M., Chen Q. (in review). The
benefits of optimizing nearest neighbor configurations for lidar-assisted estimation of forest volume

and biomass. Remote Sensing of Environment.
The contents of this section reflects the issues addressed by the three organically organized studies.

The aim of the studies in this section, thus its contents, is to set the basis of methods and know-how

that are subsequently used to estimate and map forest structure diversity in Studies IV and V of Section II.

Study I investigates how to efficiently coupling ground data, such as those measured during forest
inventory surveys, and remotely sensed data, in particular the ones derived from airborne laser scanning (ALS),
for forest parameter estimates and mapping. The specific case of Study I presents how ALS data support the
estimates of a common forest parameter, in such case forest above ground biomass (AGB), using field data

gathered in a novel two-phase tessellation stratified sampling (TSS) design.

Study II presents an extensive meta-analysis carried out during the doctoral time frame where is
demonstrated that the non-parametric k-NN is, among the others, the most used and effective technique to
spatial predict and map forest attributes, alone or combined together to form synthetic indices. This technique
can be further improved implementing an optimization step aimed to set the k-NN parameters in order to

achieve the best prediction performance possible.

Study Il demonstrates that, if an optimization phase is carried out before running the k-NN procedure, the

performance in the predictions improved sensibly.
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Abstract

Among the forestry-related applications for which airborne laser scanning (ALS) data have been
shown to be beneficial, forest inventory has been investigated as much if not more than other applications.
Metrics extracted from ALS data for spatial units such as plots and grid cells are typically of two forms: echo-
based metrics derived directly from the three-dimensional distribution of the point cloud data and metrics
derived from a canopy height model (CHM). For both cases, a large number of metrics can be calculated and

used to construct parametric and non-parametric models to predict forest variables.

We compared model-assisted estimates of total forest aboveground biomass (AGB) obtained using
echo-based and CHM-based height metrics with two prediction methods: (i) a parametric linear model, and
(ii) the non-parametric k-Nearest Neighbors (k-NN) technique. Model-Assisted (MA) estimators were used
with sample data obtained using a two-phase, tessellation stratified sampling (TSS) framework to estimate

population parameters. The study was conducted in Regione Molise in central Italy.

For the four combination of metrics and prediction technique, estimates of total biomass were
similar, in the range 1.96-2.1 million t, with standard error estimates that were also similar, in the range 0.20-
0.21 t. Thus, the CHM-based metrics produced AGB estimates that were similar to and as accurate as those
for the echo-based metrics, regardless of whether the parametric or the non-parametric prediction method
was used. Additionally, the proposed MA estimator was more accurate than the estimator that did not use

auxiliary data.

Keywords: airborne laser scanning metrics, forest biomass, model-assisted estimator, k-Nearest Neighbors,

tessellation stratified sampling
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2.1.1.Introduction

The utility of airborne laser scanner (ALS) data for contributing to and enhancing forestry-related
applications is nowadays both indisputable and well-documented (Corona et al., 2012; Lim et al., 2003a;
Maltamo et al., 2014; Montaghi et al., 2013; Wulder et al., 2008). Further, when estimation of aboveground
biomass (AGB) is the main goal, the predictive power of ALS data as auxiliary information has been shown to
be more effective with respect to increasing the accuracy of estimates than many other sources of remotely
sensed data (Zolkos et al., 2013). This capability can be attributed to strong correlations between forest AGB
and forest height variables derived from ALS metrics (Lefsky at al., 2014). These correlations, in turn, are due
to the nature of the ALS data itself, i.e., a cloud of geo-referenced 3-dimensional points characterized as returns
or echoes. Multiple modeling techniques are used to predict AGB using ALS metrics of which the most common
are the parametric regression (Neesset & Gobbaken, 2008; McRoberts et al., 2013) and the non-parametric k-

Nearest Neighbors (k-NN) technique (McRoberts et al., 2015).

Independently of the prediction criterion, two main approaches are used to extract metrics from ALS
data for use as covariates when constructing AGB prediction models: (i) echo-based metrics, and (ii) canopy
height model (CHM)- based metrics. Echo-based metrics are descriptive statistics directly extracted from the
ALS point cloud. This approach requires the availability of raw ALS data, often provided in the form of geo-
referenced vector points in 3-dimensional space. If the ALS data are not acquired specifically for forestry
applications, raw ALS data may not be available in which case echo-based metrics cannot be calculated
(Montaghi et al., 2013). In this case, interpolations of the raw ALS echo heights are often available in the form
of two gridded raster layers: ground height for each pixel characterized as a digital elevation model (DEM) and
absolute height of objects above ground characterized as a digital surface model (DSM). For forestry
applications, a CHM consisting of top canopy height for each pixel is constructed from the difference between

the DSM and DEM (Kraus & Pfeifer, 1998).

To construct parametric or non-parametric prediction models, AGB observations are required and are typically
obtained from field plots. Corresponding plot-level ALS metrics extracted from either the echo heights or from
the CHM are used as predictors for estimating AGB. Only a limited number of metrics such as minimum,
maximum, average and standard deviation values of height are typically extracted from a CHM grid (Barbati et
al, 2009). Many more metrics can be extracted from distributions of echo heights including the minimum,
mean, maximum, standard deviation, skewness, kurtosis, and coefficient of variation; the 0, 10, ..., 90
distribution percentiles; canopy density metrics calculated as the proportions of first echo heights above the 0,
10, .., 90 quantiles of the first echo height distributions (Neesset, 2002; Lim et al, 2003b; Naesset, 2004a;
Naesset, 2004b; Naesset & Gobbaken, 2005; Nasset & Gobbaken, 2008; Hawbaker et al, 2010; Gobbaken at al.,
2012); and canopy relief ratio (Evans et al., 2009).

Although large numbers of both echo-based and CHM-based metrics can be derived from ALS data, modeling
applications often require only a few of them. Nzesset (2002) found that only 2-4 metrics from a set of 46
metrics were required to obtain for volume models for both young and mature forests on both good and poor
sites. The selected metrics were mean and maximum echo heights, several canopy height percentiles and
metrics related to canopy density; similar metrics were selected by Nasset (2004a, 2004b). Naesset and

Gobbaken (2008) found that canopy height percentiles produced the greatest accuracies for above- and below-
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ground biomass models in boreal forests. Two ALS metrics, the 90th percentile of laser canopy height and
canopy density, plus variables representing different areas, age classes, and tree species composition, produced
. Gobbaken et al. (2012) reported that mean height, percentiles of heights from first and/or last pulses and
canopy density metrics, coupled with altitude information, produced for volume models for young/mature

and productive/non-productive forests.

Corona et al. (2008) obtained R2=0.78 when predicting plot-level forest volume using the sum of the
CHM heights raised to a power for a temperate broadleaved forest; Barbati et al. (2009) used the same
methodology for a coastal Mediterranean pine forest and obtained R2=0.88. Fusco et al. (2008) obtained
R2=0.76 for circular plots in a broadleaved forest. Finally, for Norway spruce in an alpine environment, Floris
etal. (2010) constructed regression models for predicting standing volume in sample plots using CHM metrics

and found that CHM mean height, excluding pixels with height less than 2 m, produced R2=0.94.

In recent years, an interesting debate has emerged regarding the advantages and disadvantages of the two
kinds of ALS-based metrics. Although both kinds of metrics are commonly used, no peer review reports of
direct comparisons for predicting volume in the same study area are known, other than possibly Gaulton and

Malthus (2010) who compared them for detecting canopy gaps.

Model-assisted (MA) estimation exploits auxiliary information to augment ground data for purposes
of enhancing estimation (Sarndal et al,, 1992). Although many sources of auxiliary information can be used
(e.g., Corona et al, 2009), remotely-sensed data have been found to be a particularly useful for forestry

applications.

A broad range of sampling designs have been used with MA estimators for exploiting ALS auxiliary
information. Corona and Fattorini (2008) proposed MA estimation of forest standing volume using CHM height
as auxiliary information when field plots are randomly and independently located. Ene et al. (2012) and
McRoberts et al. (2013) applied a MA estimator using a systematic sampling design. Gregoire et al. (2011) and
Gobakken et al. (2012) developed a MA regression estimator of AGB for a two-stage sampling design, and
Naessetetal. (2013) tested a MA estimator for both two-phase and two-stage sampling designs. Finally, Saarela

etal. (2015) described the use of MA estimators with a systematic cluster sampling design.

In designing schemes for sampling large areas, such as for forest inventory, limited financial resources
for ground sampling suggest that the smallest but most representative sample should be selected. Uniform
random sampling (URS), the random and independent selection of points on a continuous surface, is the
simplest scheme to locate ground plots (Fattorini, 2015). However, like its finite population analogue, simple
random sampling with replacement (SRSWR), URS may lead to uneven coverage of the study area which, in
turn, makes the sample less representative of the study area. To avoid these drawbacks, spatially stratified
schemes can be adopted (Fattorini, 2015). With tessellation stratified sampling (TSS), the study area A is
covered by a region R D A of size R constisting of N non-overlapping regular polygons R1, ..., RN of equal size
suchthatRin A# @ foralli=1, .., N. Then, for each polygon Ri, a point is randomly selected from within the
polygon (Fattorini, 2015). In a two-phase application of a TSS for forest inventory, the objective of the first
phase is to uniformly spread points throughout the study area and classify them with respect to forest/non-

forest. In the second-phase, a sub-sample of points within the forest class is selected using a finite-population
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sampling scheme and then visited by the field crews. With this sampling design, estimators that both do not
and do use auxiliary information extracted from ALS data are posssible, although the latter have not been

investigated. For this study, a MA estimator using ALS-based metrics in a two-phase TSS was investigated.

The objectives of the study were threefold: (i) to compare large area estimates of total AGB obtained
using echo-based and CHM-based metrics as predictor variables, (ii) to compare estimates obtained using
parametric linear regression and the non-parametric k-Nearest Neighbors (k-NN) technique, and (iii) to

evaluate the utility of MA estimators in a two-phase TSS framework.

We adopted the k-NN approach because it has emerged as very popular for spatial estimation of NFI
variables using remotely sensed auxiliary data (Chirici et al., 2016). Despite the large number of other reported
methods, including machine learning approaches, k-NN is the only approach that has been adopted by NFI
programs for large area operational applications: in Finland (Tomppo, 1990), in Sweden (SLU Forest Map,

2013), in Canada (Beaudoin et al. 2014) and in the USA (Wilson et al., 2013).

2.1.2.Materials and Methods
Study area

The study area is located in the southwestern part of Molise Region in central Italy and includes 36,360
ha (Figure 1). Based on a local forest map (Chirici et al., 2011), forests cover more than 20,518 ha and comprise
approximately 56% of the study area, where the COST (European Cooperation in Science and Technology)
Action E43 definition of forest was used (Vidal et al, 2008). The forested area is dominated mainly by
deciduous oaks (Quercus cerris, Quercus pubescens) covering approximately 60% of the forest area, hop
hornbeam (Ostrya carpinifolia) covering approximately 18% and beech (Fagus sylvatica) covering
approximately 9%. The oak and hop hornbeam forests are mainly privately-owned and are managed in a
coppice with standards system. Rotation ages are usually between 18 and 25 years, with most clear-cuts 1-2
ha wide and 100-200 standards/ha. Conversely, most of the beech forests are managed with the shelterwood

system or are unmanaged.

Field data

TSS was carried out in the study area. The area was tessellated into 437 hexagons, each with an area
of 1 km?2. In the first phase, a point was randomly selected in each hexagon and classified as “forest” or “non-
forest” based on interpretation of high-resolution aerial ortho-photography. Of the 437 points, 197 were
classified as “forest” (Figure 1). In the second phase, 62 points were selected from the 197 “forest” points
(sampling rate ~ 30%) by means of simple random sampling without replacement (SRSWOR) and surveyed

in the field during 2009-2011.

Plots were configured as two concentric circular plots with radii of 4 and 13 m. In the 4-m radius
plot, all trees with diameter at breast-height (DBH, 1.3 m) of at least 2.5 cm were measured, and in the 13-m
radius plot, all trees with DBH of at least 9.5 cm were measured. Heights (H) were measured for a sub-

sample of plot trees and estimated for the remaining trees using a model of the DBH-H relationship for the
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trees with measured H. In total, 4,745 trees were measured on the 62 forest plots in the second-phase

sample.

For each tree, volume was estimated using DBH and H with the double-entry tables constructed for the
first Italian National Forest Inventory (Castellani et al.,, 1984) and then scaled to plot-level and per unit area

(ha) values. AGB (t/ha) was calculated as,
AGB = GS x BEF x WBD, 1

where GS is the growing stock (m3/ha), BEF is the biomass expansion factor, and WBD is the wood basic density
(t/m3). Values of BEF and WBD were extracted from Federici et al. (2008). Although the tree- and plot-level

volumes are estimates, their uncertainties were considered negligible and ignored for this study.
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Figure 1 Sampling design and plots locations in the study area.

Airborne Laser Scanning (ALS) data

ALS data were acquired under leaf-on canopy conditions in June 2010. A fixed-wing aircraft
PartenaviaP68 was used. The LiDAR instrument was an Optech Gemini LiDAR, a two-return range detection
system that records a maximum of two echoes per laser pulse. The sensor was set with a maximum scan angle
of 15° and a pulse frequency of 70 KHz, resulting in an average density of 1.5 pulses/m2. The combination of
the 1.5 pulses/m? density and the 169-m? plots and grid cells yields approximately 250 pulses/plot which is
adequate for deriving percentiles of the echo distributions (Vauhkonen et al., 2014, Section 1.3.2.1).

Common procedures for pre-processing of ALS data included removal of outliers, ground/non-ground
classification, and computation of normalized height. Firstly, air points that were clearly higher than the

median elevation of surrounding points and isolated points with few neighbors resulting from sensor errors
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or backscatter by flying objects were removed. Subsequently, a ground surface model was constructed by
classifying ground points on the basis of the adaptive TIN model algorithm (Axelsson, 2000) and used to
calculate the relative height above ground for each backscattered echo. Subsequently, a 1-m x 1-m resolution

CHM in the form of a raster layer was constructed.

For each sample plot measured in the field, a set of 22 echo-based ALS height and density metrics, and
seven metrics derived from the CHM were extracted and used as covariates for constructing prediction models.
The echo-based metrics were canopy cover (cov) calculated as the proportion of first echoes above 1.30 m on
all first returns. Canopy density metrics calculated as the proportions of all echoes at heights greater than 1.30
m (dns), the proportion (doo) and the count (coo) of echoes between 1.30 m and 10 m. The reference height of
1.30 m was chosen because, according to the Italian national forest inventory (INFC 2005), plants taller than
this threshold are no longer considered regeneration. Canopy height metrics were the percentiles of the
canopy height distribution (p19, pz,..., po) and height summary statistics such as minimum (Hmin), maximum
(Hmax), average (Havg), standard deviation (Hst), coefficient of variability (He), skewness (Hske) and kurtosis
(Hiur). Further, canopy relief ratio (CRR), a quantitative measure of the relative shape of the canopy, describing
the proportion of all returns above the mean value of echoes heights was calculated as,

CRR = Havg =Humin

I_lmax_ Hmin

2)

CRR ranges between 0 and 1 and reflects the degree to which outer canopy surfaces are in the upper or lower

half of the height range (Parker & Russ, 2004).

The seven CHM-based metrics extracted for each sample plot were the minimum (Hmin), maximum
(Hmax), average (Havg), standard deviation (Hst), coefficient of variability (Hev), range (Hmax-Hmin) and CRR of the
1-m x 1-m pixel values that were inside or intersected by the boundary of the 13-m radius plot. The same echo-
based and CHM-based metrics were calculated for the 23-m x 23-m forest pixels that tessellated the study area.
This pixel size was chosen to mimic the field sample plot size as suggested by Magnussen and Boudewyn (1998)

and Naesset (2002).

Model predictions

Two approaches for representing the relationship between the response and predictor variables were
used: a linear regression model, and the k-NN technique. A linear model of the relationship was formulated as,

AGB, =L, + B, X+ + B, X, + &

3)
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where i indexes plots, j indexes predictor variables, x;i is the observation of the jth predictor variable, the fjs

~

are parameters to be estimated, and €; is a residual term. Once the parameter estimates B J's are obtained from
the reference set, the prediction for the ith plot is calculated as

A(EBi :,50+,Elxij +---+ [ X

p“pi

4)

Using k-NN terminology, the predictor variables are designated feature variables; the space defined by the
feature variables is designated the feature space; the set of plots selected in the second phase, for which
observations of both response and feature variables are available is designated the reference set; and the set of
plots for which predictions are desired is designated the target set. For the k-NN technique, the prediction for

the ith plot is calculated as,

~ k )
AGB; =) w, AGB
1=1

5)

{AGB!,1 =1,2,....k}

where is the set of observations for the k reference plots that are most similar or nearest

to the ith target plot in feature space with respect to a distance metric, and ! is the weight assigned to the Ith

K
2 Wi =1
nearest neighbor with = . The most common approach to weighting neighbors is to use

t e[0,-2]

t
Wy < dil

d, . . . .
where ! is the distance between the I* reference plot and the ith target plot, and . For this study,
Euclidean distance was used, and values of k and t were selected that minimized the residual sum of squares

in the reference set using the leave-one-out method (Chirici et al., 2008).

The four combinations of the two sets of predictor variables (echo-based metrics and CHM-based
metrics) and the two prediction approaches (parametric linear regression and non-parametric k-NN) led to
four different prediction models for estimating forest AGB. A stepwise selection method was used to select
predictors for inclusion in the linear model or feature variables for inclusion in the distance metric for the k-
NN procedure. Stepwise selection of predictor variables is appropriate when there is a large number of
potential predictor variables and no underlying theory on which to base selection (Efroymson, 1960). At each
stage, the procedure entails iteratively cycling through all remaining predictor variables to select the one
additional variable that optimizes a selected criterion. After selection of a new variable, all variables already
selected are checked to determine if any can be deleted without adversely affecting the criterion. The
procedure terminates when no predictor variable can be added that further optimizes the criterion or can be
deleted without adversely affecting the criterion. For this study, the criterion was the F-test statistic

formulated as,

17



_(8S,,-5s,)/df,
e SS, /df,

F(df,,df,)

6)

where SSp-1 and Sp are the sum of squared residuals when linear or k-NN predictions adopt p-1 or p feature
variables, respectively; dfi=1, and df2=n-p where n is the sample size (number of reference plots). Significance
levels of p=0.05, 0.10, and 0.15 were investigated, but all three produced the same results. Because stepwise
selection is conducted using the reference plots which, in turn, are sampling outcomes, the procedure entails a
further source of uncertainty beyond that induced by sampling (e.g., Burnham and Anderson, 1998 ). The

stepwise selection uncertainty was considered negligible and ignored for this study.

Estimation
Notation

Let T denote total forest AGB in the study area, and let N denote the number of hexagons covering the
study area where the number of hexagons equals the number of first-phase points. Let R denote the total size

of the N hexagons, and let U denote the population of the N first-phase points. Let Usr < U denote the
N; <N . , o .
first-phase points classified as forest. Both U and Uy are random being the

AGB,

subpopulation of the

results of the random selection of points within hexagons. Let a denote the size of the plots and let

=" ace

denote the total AGB for plot i. Thus, a is the Horvitz-Thompson (HT)-like estimator of T based

on plot i (Gregoire and Valentine, 2008, Section 7.4). Note that Ti would be an unbiased estimator of T if the
point i was randomly selected from the entire grid covered by the N hexagons (URS) instead of randomly
selected within the hexagon i (TSS).

AGBiS

On the basis of TSS theory, if all the N first-phase points were visited and if all the were

A

T.
recorded, the first-phase unbiased estimator of T would be the arithmetic mean of the 's, while the variance

A

T
of the 'sdivided by N would be a conservative estimator of the sampling variance. Usually, non-forest points

A

=0
are neglected, tacitly supposing ! for each of them. However, because it is usually prohibitive to visit all
the forest points, these estimators are only virtual and are considered as the theoretical basis for developing

second-phase estimators.

Second-phase, design-based estimation
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Let S denote the sample of the n second-phase points selected from the Ur by means of SRSWOR. If the

second-phase sample was obtained using SRSWOR, the HT estimator of T is given by

(2) ZT

IeS . (7)

Conditional on the population U (and hence Uy) of points selected in the first-phase, from SRSWOR the variance

A

T
of @ is,

N¢(N; —n) S?
N2 n (8)

’

Varz(f(z) |S) =

A

2 a =
where ' is the variance of the ''sin Uy. Accordingly, the variance of @ js

Var (T,) =E, {\/ar2 Ty | U)}+ Var, (T, ©

Henceforth, subscript 1 denotes expectation and variance with respect the random placement of points
within polygons (first phase), subscript 2 denotes expectation and variance with respect to the random
selection of the n points (second phase) conditional to the set of points selected in the first phase, and no

subscript denotes expectation and variance with respect to both phases.

Under SRSWOR, an unbiased estimator of the first term in Eq. (10) is,

Nf(Nf
N? n(n 1)2(T

ieS (10)

while, from Eq. (A4) in the Appendix, the second term is estimated conservatively as,

Nf r 2 Nf (Nf _1)
2 i T N2 Z i'h
NN is N(N-D) n(n-1) 5 _ (11)

A

Accordingly, the second-phase conservative estimator of the variance of @ js given by,

3 Nf(Nf Nf Ly 2 Nf(Nf ) o2
V(2) = 2 Z( N2~ ZTi N2 ZTiTh
N n(n 1) ieS N n ieS N (N _l) n(n _1) h>ieS , (12)
 SE=\N,  RSE=SE/T,
from which is the standard error estimate, is the relative standard error
, T +1.96x SE o _
estimate and is the confidence interval at a nominal level of 95%.

Second-phase model-assisted estimation
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For this study, we used parametric linear regression and the non-parametric k-NN technique to

attempt to improve the estimation in the study area. If for each ! € U, a vector of auxiliary variables has been

AGB;s

recorded in such a way that the model predictions of the , denoted AGBi s, are available for each

forest plot. To use the difference estimator, these predictions must also be calculated for the second-phase

points, le S, even if they are actually known. Thus, the empirical difference estimator adopted in Baffetta et al

A

(2009) can be adopted also in this case. Once the AGBi s are obtained for each 1 € Uy, the Ti predictions are

T-"ncs

readily obtained by means of a for each 1€ Uy.

Under SRSWOR, the second-phase model-assisted estimator of T'is,

= N | 1 ~ 1
Ty = Wf N 2T +;Zei

f ieU; ieS [13)
e=T—-T ic iy _ , . ,
where ' ! ! for each S. Conditional on the population U (and hence Uy) of points selected in the first-
N A
phase, from SRSWOR the variance of is approximated by,
= N, (N, -n)s?
Var2 (T(z) | U) = —N 2 —
n, (14)

~

2 ! e =T —E(T.
where Se is the variance of the !sin Us, and ! ] (T’) (Baffetta et al., 2009). Accordingly, the

variance of @ is.

Var,(T,,) =E, {\/ar2 (T | U)}+ Var, (T,))

: (15)
Under SRSWOR the first term in Eq. (16) is estimated by,
N,(N;—n 1
f ( fz ) Z(ei - é)z
N n(n-1) i3 ) (16)

where € is the arithmetic mean of the € s (Baffetta et al, 2009, Appendix A4) while estimation of the second

term remains unchanged as in Eq. (12). Accordingly, from Egs. (12) and (17), the second-phase conservative

~

—
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SE =V,

@ RSE = SE/T,

from which is the standard error estimate, 2) is the relative standard error

T £1.96x SE

estimate and is the confidence interval at a nominal level of 95%.

2.1.3.Results

For each combination of the two kinds of metrics and the two prediction methods, the stepwise
procedure selected only a single predictor variable. The variables selected were similar for both the linear
models and the k-NN technique, regardless of whether echo-based or CHM-based metrics were used (Table 1).
The linear regression model and the pso echo-based predictor variable produced the most accurate overall
results with R? = 0.58 (Figure 2). For the k-NN technique, p7 was selected as the single echo-based predictor
and produced R? = 0.54. For both the linear regression model and the k-NN technique, the Hayy CHM-based

metric was selected as the predictor variable and produced R? = 0.56 and R? = 0.48, respectively.

Graphs of observations versus predictions (Figures 2-5) suggest no general lack of fit of the models

(predictions) to the observations, although as expected substantial heteroskedasticity was observed.

Table 1. Model-assisted estimates.

Predictor | Prediction | Variables Total . 95% confidence interval
. . . SE(RSE) estimate
variables | technique selected estimate
N Linear p60 1,961,886 205,904 (10%) 1,558,314-2,365,458
Echoes
k-NN p70 2,029,560 209,493 (10%) 1,618,954-2,440,166
Linear Hapg 2,017,132 207,072 (10%) 1,611,271-2,422,993
CHM
k-NN Hayg 2,119,152 208,941 (10%) 1,709,628-2,528,676
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Figure 2. Observations versus predictions for the linear model with the pso echo-based predictor variable.
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Figure 3. Observations versus predictions for k-NN with the p7 echo-based predictor variable.
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Figure 5. Observations versus predictions for k-NN with the Hayg CHM-based predictor variable.
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Figure 6. Map of forest AGB predictions obtained for each hexagon using the linear regression model and the

p60 echo-based predictor variable.

A

The design-based, second-phase HT estimate of the total AGB was T(2) =2,277,061 t with standard

error estimate SE = 255,134 t and corresponding relative standard error estimate RSE=11%. The 95%

confidence interval was [1,766,793 t, 2,787,329 t]. The model-assisted, second-phase estimates for the four
combinations are reported in Table 1. All the sampling strategies were consistent among themselves, with all
the estimates within the confidence intervals of the others. Model-assisted estimates were invariably smaller
than the HT estimate, and based on the SE estimates, the model assisted estimators were consistently more

accurate than the HT estimator.

2.1.4.Discussions and Conclusions

The study had multiple objectives: to compare model-assisted estimates of total forest AGB obtained
using four approaches: (i) alinear model with echo-based metrics as predictor variables, (ii) a linear model
with CHM-based metrics as predictor variables, (iii) the k-NN technique with echo-based metrics as feature
variables, and (iv) the k-NN technique with CHM-based metrics as feature variables. Additionally, estimation

using the MA estimator in a two-phase TSS framework was to be evaluated.

Among the large number of both echo-based and CHM-based metrics available, only a single variable

was selected for each of the four approaches. Further, they were very similar for both the linear regression
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and k-NN models, namely the 60t percentile (pso), and the 70t percentile (p70) echo-based metrics,

respectively, and the Hayy CHM-based metric.

For both prediction techniques, the average height, Havg, of the CHM pixels in the plot area was
chosen as the single predictor. These results are consistent with the current literature where only a few,
albeit different, echo-based and CHM-based metrics were selected for prediction models. As previously
noted, Neaesset (2002) and Nesset and Gobbaken (2008) developed predictive models of forest volume using
only two echo-based metrics; Corona et al. (2008) and Barbati et al. (2009) used only a single CHM-based
metric; and Floris et al. (2010) used the same Hayg CHM-based metric to predict forest volume in an alpine

environment.

The similarity in estimates obtained using the echo-based and CHM-based metrics can be attributed
to the strong relationships between the Hayy CHM-based metric and the Havg, pso, p7o, and pso echo-based
metrics (Figure 7). This finding is especially relevant for users who do not have the skill or
software/hardware resources for manipulating raw LiDAR pulses, or who have access only to a raster CHM

rather than raw pulse data.
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Figure 7. The Havyg CHM-based metric versus, Havg, pso, p70, and pso echo-based metrics.

Use of the MA estimator in a TSS design-based framework produced estimates of total forest AGB for
the four combinations of metrics and prediction methods that were consistent with each other and with the
design-based HT estimate. The small reduction in the SE estimates achieved using the MA estimators with
respect to the HT design-based estimator (from 11% to 10%) was probably due to the relative weakness of
correlations between AGB and prediction variables (R? always smaller than 0.6). Greater reductions should be

expected with stronger correlations.

Multiple conclusions were drawn from the study. First, the echo-based and CHM-based metrics
produced no substantial differences in estimates of total forest AGB. For the mainly broadleaved forest types
in the study area, echo-based and CHM-based metrics can both be used to reliably estimate total forest AGB. If
both metrics are available, the user can choose either depending on experience, technical expertise and

software skills. This result is important because the raster CHM can be derived from sources other than ALS
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data such as satellite radar imagery (Sexton et al.,, 2009), satellite LiDAR (Igbal et al., 2013) or multi-angular

aerial photography (Koukal & Atzberger, 2012).

Second, the parametric linear and non-parametric k-NN prediction techniques produced similar SE
estimates for all the MA estimators which were consistently smaller than the SE estimate produced by the
design-based HT estimator. In this case, the choice of which prediction to use for assisting estimation depends

on the modeling skills of the researcher.

Comparisons of metrics and modeling approaches for this study were with respect to estimates of total forest
AGB, a variable that is relatively easy to estimate using ALS data because of its strong dependence on forest
height. We do not exclude the possibility of different results when estimating other variables; on the contrary

we encourage further testing for additional forest response variables.

Third, even when using a sampling design such as TSS that is well-suited for forest inventory purposes,
use of the MA estimator with auxiliary information, here in the form of remotely sensed data, is recommended

to improve the precision of the estimates.
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Abstract

The k-Nearest Neighbor (k-NN) technique is a popular method for producing spatially contiguous
predictions of forest attributes by combining field and remotely sensed data. In the framework of Working
Group 2 of COST Action FP1001, we reviewed the scientific literature for forestry applications of k-NN.
Information available in scientific publications on this topic was used to populate a database that was then
used as the basis for a meta-analysis. We extracted qualitative and quantitative information from 260
experimental tests described in 148 scientific papers. The papers represented a geographic range of 26
countries and a temporal range from 1981 to 2013. Firstly, we describe the literature search and the
information extracted and analyzed. Secondly, we report the results of the meta-analysis, especially with
respect to estimation accuracies reported for k-NN applications for different configurations, different forest
environments, and different input information. We also provide a summary of results that may reasonably be
expected for those planning a k-NN application using remotely sensed data from different sensors and for
different forest attributes. Finally, we identify some methodological publications that have advanced the state

of the science with respect to k-NN.

Keywords: k-Nearest Neighbors, forestry applications, review, meta-analysis
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2.2.1.Introduction

Nearest neighbors techniques can be considered a class of multivariate, non-parametric approaches
to continuous or categorical prediction. The multivariate property of these techniques has made them
particularly popular for use with remotely sensed and national forest inventory (NFI) data. With these
techniques, predictions are calculated as linear combinations of observations for population units in a sample
that are similar or nearest in a space of auxiliary variables to population units requiring predictions. Nearest
neighbors techniques are appealing because they can be used for both univariate and multivariate prediction;
they are non-parametric in the sense that no assumptions regarding the distributions of response or auxiliary
variables are necessary; they are synthetic in the sense that they can readily use information external to the
geographic area of interest; and they can be used with a wide variety of data sets. When used with remotely
sensed and spatially referenced NFI field data, nearest neighbors techniques can produce spatially continuous
predictions (maps) of forest variables rather than just large area aggregations of plot data. These finer
resolution map products add a new and useful dimension to NFIs by facilitating small area estimation,

increased precision for large area estimation, and support for forest management, planning and monitoring.

Nearest neighbors techniques were first introduced in an unpublished U.S. Air Force report by
Fix and Hodges (1951) as a non-parametric discriminant technique for classification into populations whose
distributions are unknown. Much of the early foundational work on nearest neighbors techniques for
classification purposes appears in the pattern recognition and machine learning literature. Within the natural
resources area, these techniques were developed for the Finnish NFI in seminal papers by Tomppo (1990,
1991, 2008) based on earlier proposals by Kilkki and Pdivinen (1987) and the ideas used with aerial photos by
Poso (1972). McRoberts (2012) documented the broad international extent of the technique’s use for a wide
range of forestry applications including imputation of missing values for forest inventory and monitoring
databases, mapping, small area estimation, and support for statistical inference. Commonly estimated forest
response variables include growing stock volume, forest/non-forest, forest type, and commonly used remotely
sensed feature variables include Landsat spectral bands and increasingly airborne laser scanning metrics.
Recent forestry investigations have begun to emphasize foundational work on diagnostics (McRoberts, 2009),
efficiency (e.g., Finley & McRoberts, 2008), optimization (e.g., Tomppo & Halme, 2004), and inference (e.g.,
McRoberts et al.,, 2007; Baffetta et al., 2009).

Variations of nearest neighbors techniques have been used operationally in both Europe and
North America. In Finland, the first operational implementation of k-Nearest Neighbors (k-NN) was based on
NFI, satellite and digital map data in 1990 (Tomppo, 1990, 1991). The primary initial purpose was forest
resource estimation for small administrative units. The basic technique has since been enhanced using digital
map data for stratification and genetic algorithms to weight feature variables as a means of increasing
prediction accuracy (Tomppo & Halme 2004). The resulting municipality-level estimates are included in the
official NFI statistics in Finland (Metinfo, 2007; Metla, 2013). In Sweden, the k-NN technique has been used to
map forest variables such as wood volume, age, and height using NFI, satellite and digital map data (Reese et
al, 2005). Basic end products include raster datasets for age, height, total wood volume, and volume by
common species (SLU Forest Map, 2013). Additional products include dominant tree species, stand

delineation, and base information for property taxation.
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The k-NN technique has also been used operationally in North America. In Canada, Beaudoin
etal. (2014) used the k-NN technique to produce continuous maps of 127 forest attributes to support regional
policy and management issues. Reference data consisted of standardized observations from NFI photo plots,
and feature variables were obtained from geospatial data layers that included MODIS spectral data, climatic
and topographic variables. The map products provide unique baseline information for strategic analyses of
Canadian forests (https://nfi.nfis.org). For the United States of America (USA), Wilson et al. (2012, 2013b)
used nearest neighbor techniques with NFI plot data and vegetation phenology derived from multi-temporal
MODIS imagery and other auxiliary variables to map live tree basal area for individual species across the
eastern United States and to map individual carbon stocks for all of the contiguous states of the USA (Wilson et
al,, 2013 a,c). In the Pacific Northwest region of the USA, Ohmann et al. (2002, 2014) used nearest neighbors
techniques to map and assess biodiversity, wildland fuels, and species composition and to monitor change in
older forests, biomass and carbon. The maps have been widely used for research, land management, forest
monitoring, and conservation planning applications (http://lemma.forestry.oregonstate.edu/). Thus, the
widespread popularity of nearest neighbors techniques for both research and operational purposes justifies a
review of the literature on the topic and identification of important methodological advances along with issues

regarding practical and scientific application.

COST (European Cooperation on Science and Technology) is a European framework for promoting and
facilitating scientific cooperation among scientists and researchers (COST, 2014). COST Action FP1001 focuses
on European approaches for using multi-source NFIs to improve information on the potential supply of wood
resources. Within COST Action FP1001, Working Group 1 focused on NFI sampling designs and estimation
techniques with an emphasis on harmonization; Working Group 2 focused on methods for combining remotely
sensed and NFI field data to improve estimates of wood resources; and Working Group 3 focused on the
exchange of inventory volume and consumption information with emphasis on wood markets (COST FP1001,

2014).

The popularity of k-NN for use with forest inventory and remotely sensed data motivated Working
Group 2 of COST Action FP1001 to conduct a comprehensive literature review of forestry applications. The
review was implemented as a meta-analysis of the most relevant studies published in peer-review journals,

book chapters and conference proceedings.

A meta-analysis is a quantitative analysis based on sound and reliable approaches aimed at providing
an objective summary of results that may be helpful for other researchers in support of future applications.
The usefulness of this kind of investigation, if compared to narrative or qualitative reviews, has been
demonstrated for both ecological studies (Arnqvist and Wooster, 1995) and more recently for remote sensing

applications in forestry (Garbulsky et al., 2011, Zolkos et al., 2013).

The study objectives were fourfold: (1) to document development and application of nearest
neighbors techniques with respect to multiple factors including response and feature variables, distance
metrics, algorithm characteristics, geographical regions of applications, accuracy and uncertainty measures,
and results achieved in terms of prediction accuracy; (2) to provide a range of benchmark accuracy results that
may reasonably be expected for combinations of factors such as response variable and forest type; (3) to

provide guidelines for prospective users; and (4) to identify and briefly summarize methodological papers that
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have advanced the state of the science. Thus, the paper provides more support for practical nearest neighbors
implementations and future research than Eskelson et al. (2009), McRoberts et al. (2010) or the literature

review section of McRoberts (2012).
The k-Nearest Neighbors technique

For notational purposes, Y is commonly used to denote a possibly multivariate vector of response
variables with observations for a sample of size n from a finite population of size N, and X is used to denote a
vector of auxiliary variables with observations for all population units. In the terminology of nearest neighbors
techniques, the auxiliary variables are designated feature variables and the space defined by the feature
variables is designated the feature space; the set of sample population units for which observations of both
response and feature variables are available is designated the reference set; and the set of population units for
which predictions of response variables are desired is designated the target set. All population units for both

the reference and target set are assumed to have a complete set of observations for all feature variables.
For continuous response variables such as biomass or growing stock volume, the nearest neighbors

prediction, Yi , for the ith target set unit is calculated as,

k .
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where ¥ is the set of response variable observations for the k reference set units that are

nearest or most similar to the ith target set unit in feature space with respect to a distance metric, d, and wyj is

k
wij=1
the weight assigned to the jt nearest neighbor with i . Weights for neighbors are often of the form

-t
Wi ocdii . , : , . .

1 1" with 0 < t < 2 where dj is the distance in feature space between the ith target unit and the jth nearest
neighbor. For categorical variables such as forest/non-forest or forest type, the predicted class of the ith target
set unit is the most heavily weighted class among the k nearest neighbors, a weighted median or mode in case

of ordinal scale variables, or a mode in the case of nominal variables.

Implementation of nearest neighbors techniques requires three selections: (i) the distance metric, d,
to assess similarity, (ii) the number, k, of nearest neighbors to be used when calculating predictions, and (iii) a
scheme to weight individual neighbors when calculating predictions. Multiple distance metrics have been
proposed ranging from simple unweighted Euclidean distance to more complex metrics that attempt to
optimize the selection and/or weighting of the feature variables. Many familiar metrics can be expressed in

matrix form as,

d2i=(Xi - X))’ M (Xi - X)),
(

2)
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where i denotes a target set unit for which a prediction is sought, j denotes a reference set unit, Xi and X are
vectors of observations of feature variables for the ith and jt units, respectively, and M is a square, positive
definite matrix. When M is the identity matrix, Euclidean distance results; when M is a non-identity diagonal
matrix, weighted Euclidean distance results; and when M is the inverse of the covariance matrix of the feature
variables, Mahalanobis distance results. Metrics based on canonical correlation and canonical correspondence

analyses can also be expressed in matrix form.

The value of k is often selected as an arbitrarily small number in the range 1-10, although some
approaches attempt to optimize the selection with respect to criteria such as classification accuracy or root
mean square error. Less attention has been paid to neighbor weighting schemes. The term k-Nearest Neighbors
(k-NN) is generic and refers to any nearest neighbor technique regardless of the distance metric, value of k, or

neighbor weighting scheme.

2.2.2.Materials and Methods

Bibliographic resources for this review were obtained from systematic searches of the most important
scientific databases and search engines: Scopus (http://www.scopus.com/home.url), Thomson Reuters Web
of Science, Science Direct (http://www.sciencedirect.com/), IEEE Xplore
(http://ieeexplore.ieee.org/Xplore/home.jsp), and Google Scholar (http://scholar.google.com). The search
was conducted in 2013 using English keywords that refer to the integrated use of forest inventory and remotely
sensed data for prediction using the k-NN technique. The main keywords used were: k-nearest neighbor (or
neighbor), connected using the logical “or” operator with the following keywords estimation, imputation, forest
management, forest inventory, and remote sensing. The search returned 148 peer-reviewed contributions
from scientific peer-reviewed journals, conference proceedings, and book chapters that reported 260

experimental applications and evaluations.

We then constructed a database with 24 fields and populated it with the qualitative and quantitative
information extracted from the literature review that described the 260 experiments. The resulting matrix,
after the deletion of duplicated studies, had 24 fields/columns and 260 records/rows and served as the

information source for our meta-analysis.

2.2.3.Results
General characteristics of studies

The main source of information was articles published in scientific journals (81.1%) with only 16.2%
from conference proceedings. Nearly one-third of papers (31.1%) were published in Remote Sensing of
Environment with the majority of the remainder published in Forest Ecology and Management, the Canadian
Journal of Forest Research, the Scandinavian Journal of Forest Research, and the International Journal of
Remote Sensing. Most papers (82.4%) reported applications of well-documented existing methods, but 7.4%
reported more methodological contributions which were generally supported with practical applications or

simulations.
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The first paper identified from the literature search dates back to 1981 (Short & Fukunaga, 1981). Papers

published in the 1980s often focused on the theoretical advantages of k-NN, while papers from the 90s and into

the 21st century increasingly reported applications using forest inventory and remotely sensed data. The

number of publications per year increased continuously until 2009 (Figure 1).
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Figure 1 Number of publications per year.
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The geographical coverage of published papers was mainly Europe and North America (Figure 2). The

total number of countries for which applications have been reported is 26 and includes papers from six

continents (Austria, Brazil, Canada, Chile, China, Costa Rica, Ecuador, Estonia, Finland, Germany, Ghana,

Ireland, Italy, Japan, Korea, Lithuania, Mexico, Namibia, New Zealand, Norway, Portugal, Russia, Scotland, South

Korea, Sweden, USA).
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Figure 2. Locations of the studies according to the sub-country geographic area reported in the paper (the size

of the dots are proportional to the area covered by the study). Base map from Esri ArcGIS online.

The forest environments most frequently investigated were boreal coniferous forests (36.5%) mainly
located in Europe, and temperate continental (18.8%) and temperate mountain (11.5%) forests, mainly in the
USA. Some European studies focused on temperate oceanic forests (6.9%) and Mediterranean forests (5%),
with additional contributions for boreal mountain forests in the Nordic region (5.4%) (Figure 3). A few studies
were classified as “continental” because they covered very large areas such as the entirety of Canada (Beaudoin

etal, 2014), the entire USA (Wilson et al., 2013a), and the eastern part of the USA (Wilson at al., 2012).
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Figure 3: number of publications per Global Ecological Zones (FAO 2012). NA for not available.

The most frequently investigated response variables, representing 55.4% of studies, were the closely
related growing stock volume, biomass and carbon stock variables, with other continuous response variables
such as basal area (9.2%) and tree density (3.8%) also reported. Categorical response variables such as land

use/land cover and forest type were investigated in 13.1% of studies.

Among feature variables, Landsat imagery was undoubtedly the most frequent source of remotely
sensed data, being used in 48.8% of studies. Airborne laser scanning (ALS) metrics were used in almost 7% of
the studies, digital aerial imagery in 6.5%, and SPOT imagery in 5.4%. More than 16% of the studies integrated
remotely sensed data from multiple sources, while 25% of studies used data from non-remote sensing-based
digital maps (e.g. digital elevation models) as feature variables or as auxiliary information for stratification

purposes.

All studies used field data, mostly from local inventories or NFIs. For the 235 studies that reported the
number of plots, sample sizes ranged from a minimum of 9 to a maximum of 190,888, with an average of 2,575.
For 85% of these studies, reference set (sample) sizes for the field data were less than 2,000, and for 50% of

the studies, the sizes were less than 400 (Figure 4).

39



15 20 25
|

Number of studies
10

I | T T 1
0 500 1000 1500 2000

Number of field samples

60
|

50
I

40

Number of studies
30

10

o_—»_.—l_l—._|_|ﬁi—‘| e

I T T | T 1
0.00 0.02 0.04 0.06 0.08 0.10

Plot density [plots/ha]

Figure 4: a) Number of field samples used in studies. The maximum value was limited to 2000 for display
reasons. b) Plot density (number of plots per hectares) of the studies. The maximum value was limited to a

density of 0.10 for display reasons.

k-NN configurations used
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Among the k-NN distance metrics used, the Euclidean metric was most often reported (70%), followed
by the Mahalanobis metric (3.5%), the canonical correlation analysis metric (1.9%), and Random Forest
(1.5%). Values of k generally ranged between 1 and 10 with k = 5 being used most often and k>10 used only
rarely (Figure 5). Selection of the k-value appeared to be independent of forest environment and the choice of
a distance metric, although k=1 is often selected for use with the canonical correlation analysis and canonical

correspondence metrics.
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Figure 5: distribution of numbers of k’s in the investigated studies.

Accuracy assessment

For continuous response variables, the most commonly used measures for assessing the accuracy of
k-NN predictions were root mean square error (RMSE) and the standard error (SE) of estimates, in both
absolute and relative terms (72%). Other measures included the correlation coefficient (r), coefficient of
determination (R2), and both absolute and relative mean deviation between observations and predictions
(3.3%). For categorical response variables, overall accuracy or the Kappa index of agreement were most often
used (9.2%). From a spatial scale perspective, accuracy assessments were conducted for aggregations of pixel-
level estimates (e.g., plots, compartments) for almost 65% of studies, whereas more than the 26% of accuracy
assessments were at the pixel-level. A few papers (3.4%) reported confidence intervals for estimates of

population parameters.

A subset of 110 of the 260 studies was used to assess the accuracy of k-NN predictions using RMSE%
which expresses RMSE as a percentage of the estimated mean, or occasionally the observed mean. For these

studies, RMSE% varied between 0.3% and 170.6%, with an average of approximately 33% (standard deviation
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of + 29.3%). Because average RMSE% at pixel-level scale and aggregated for larger scales areas were generally

comparable (39% and 31%, respectively), we do not distinguish between them in the following analyses.

Independently of other factors such as response variable, value of k, and distance metric, the most
accurate results were obtained when the source of feature variables was high resolution aerial imagery (15
studies with average RMSE% of 26% * 18.7%) or fused multi-sensor data (27 studies with average RMSE% of
27% * 19.6%), followed by synthetic aperture radar (SAR) and lidar-based airborne laser scanning (ALS).
Independently of other factors, the average RMSE% for estimating basal area (9 studies) was 23% (* 22.4%),
for tree density (2 studies) was almost 25% (* 12.7%), while for growing stock volume/biomass/carbon (81

studies) the average RMSE% was 37% (* 31.6%).

The choice of distance metric did not substantially influence estimation performance, even though four
studies using the canonical correlation analysis metric and nine studies using the Mahalanobis metric reported
smaller RMSE% results (18.78% * 11.4% and 21.49% * 22.9% respectively) than the average for studies using
the Euclidean metric (RMSE% of almost 35% * 31.4%). Of importance, however, studies using the Euclidean
metric are more numerous (77) and represent a much broader range of forest types, response variables and

feature variables.

To better understand the relationship between k-NN prediction accuracies, feature variables and
reference set size, we selected a homogeneous and comparable subset of 53 studies that used growing stock
volume/biomass/carbon as the response variable, a single type of feature variable, and RMSE% as the measure
of prediction accuracy. For studies that used only feature variables based only on aerial photography, the
median reference set size of 332 produced median RMSE%=48.5; for studies that used only satellite-based
spectral feature variables, reference set sizes less than 1000 (median 280) produced median RMSE%=40.0,
whereas reference set sizes of 1000 or greater (median 3117) produced median RMSE%=15.81; for studies
that used only lidar-based feature variables, the median reference set size of 124 produced median
RMSE%=31.26; and finally for studies that used only radar-based feature variables, median reference set size
of 300 produced median RMSE%=44.8. This subset of studies confirms that large reference sets are necessary
to obtain small RMSE% when using satellite spectral data. However, these results also depend to some degree
on the complexity and diversity of the forests; in particular, most of the studies using satellite spectral feature
variables were for somewhat less complex boreal and northern temperate forests. These studies also confirm
the growing popularity of lidar-based feature variables for obtaining small RMSE%, even with small reference

sets.

Over all 260 studies, transforming raw remotely sensed input feature data using dimension reduction
techniques such as principal component analysis (PCA) or band ratio indices such as the normalized difference
vegetation index (NDVI) had no effect on accuracy: the average RMSE% for the 80 studies using
transformations was 41.5% (* 32.7%) contrasted with average RMSE% of 36.8% (+ 32.8%) for the 33 studies

that used no transformations.

Although for some studies, accuracy tended to decrease with greater values of k, generally we found

any type of relationship between the final accuracy and the value of k selected as optimal.
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Summary of meta-analysis

The k-NN technique is well-affirmed for integrating forest inventory field data and remotely sensed
data. In this bibliographic meta-analysis we analyzed 260 experimental tests published in 148 papers since
1981, all dealing with application of k-NN for a variety of forest environments across the world. In the 1990s
and the 21st century most studies were from Finland and the northern parts of the USA; since then, the

technique has been successfully tested and applied in 26 countries on six continents.

The year 2009 had the largest number of published k-NN papers. Subsequently, the number of
publications decreased, perhaps because the technique had become well-known and well-documented.
Nowadays, the technique is widely adopted, but it is less frequently a direct research objective. However, other
papers not analyzed for this study because they did not provide details on methods or the k-NN configuration,
reported using the k-NN technique as a standard procedure for constructing spatially contiguous forest

information to be used separately or integrated with other information for further geographical analysis.

More than half the k-NN studies had growing stock volume, wood biomass or its carbon content as the
response variable. However, k-NN was also applied for estimating a very large number of other continuous and
categorical response variables related to functional attributes such as leaf area index or structural attributes

such as basal area or trees per unit area, or to levels of ecosystem disturbance such as defoliation.

Expected results

Because the meta-analysis did not reveal a particular k-NN configuration that could be considered
optimal for all the cases, a reasonable conclusion is that an optimization to calibrate any configuration phase
using the available data should be considered. However, some guidelines may be proposed. Firstly, the
selection of feature variables is related to the geographical resolution of the analysis (pixel size) and the
availability of remotely sensed data. Almost half the studies used Landsat imagery alone, but the majority of
the studies augmented Landsat data with data from other similar multispectral satellites such as SPOT, IRS and
ASTER. Studies with finer geometric resolution were frequently based on aerial photography while those at
coarser resolution were frequently based on MODIS images. The advent of ALS technology since 2008 has
changed this trend with the number of studies using ALS metrics alone or integrated with optical imagery

increasing rapidly.

Secondly, the simplest distance metric, Euclidean distance, was most commonly used (70%),
presumably because of its simpler coding implementation and because more complex metrics did not produce
better results. For values of k, the majority of the studies arbitrarily adopted a value of approximately 5 as a
compromise between larger values that may produce greater accuracy and smaller values that tend to retain

better the reference set variability and are computationally less intensive.

Thirdly, in terms of accuracy, the k-NN technique may be expected to produce RMSE% in the range of
20-40% for common response variables (69% of cases RMSE% < 40%). However, despite the great variety of

k-NN configurations and local environmental conditions, only 22% of studies reported successful use of k-NN
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with RMSE% less than 10%, while a small number of studies reported unsuccessful uses with RMSE% as great

as 100% or more (Figure 6).
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Figure 6: distribution of the accuracies of 110 studies where the RMSE% of the k-NN estimates was reported.

The average is 33%.

Of interest, relative to the results of experimental tests conducted in the 1990s, the scientific
community in the period 2000-2014 was able to achieve a better tuning of the k-NN method that then produced
increasingly more accurate results than in prior years (Figure 7). This result can probably be attributed to
greater visibility of k-NN studies via articles published in the scientific literature and presentations at
international conferences (e.g., the ForestSAT series conferences and the k-NN workshops). In addition, greater
prediction accuracy can also be at least partially attributed to the recent availability of remotely sensed data of
greater quality from both passive and active sensors and to improved global navigation satellite systems for

the geolocation of field inventory plots.
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Figure 7: RMSE% distribution of the accuracies for k-NN studies for the different years.

Fourthly, the vegetation characteristics of the study areas where k-NN was used did not substantially
affect estimation performance. For boreal study areas which had the greatest number of studies (59), the
average RMSE% was 35%, while the average RMSE% for other vegetation zones ranged from 6% for temperate

mountain systems (only 5 studies) to 42% for temperate oceanic forests (15 studies) (Figure 8).
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Figure 8: RMSE% distribution of the accuracies for k-NN studies in different Global Ecological Zones (FAO,
2012).SS: Subtropical steppe, TMS: Temperate mountain systems, SDF: Subtropical dry forest, TCF: Temperate
continental forests, TrMS: Tropical mountain systems, BMS: boreal mountain systems, BCF: boreal coniferous

forests, TOF: Temperate oceanic forests, GLB: global, SHF: Subtropical humid forests.
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Fifthly, the accuracy of k-NN predictions was not greatly influenced by the selection of the feature
variables. Accuracies obtained using feature variables from sensors other than Landsat were all within the
range of accuracies using Landsat-based feature variables (Figure 9). However, Landsat-based studies produce
a wide range of results, presumably because they were the earlies and consequentially the largest in number.
The recent advent of ALS feature variables may substantially alter this finding; in particular, ALS metrics, alone
or in conjunction with optical imagery, seem to be among the most promising feature variables for producing

k-NN preditions.
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Figure 9: RMSE% distribution of the accuracies for k-NN studies based on feature variables from different
remotely sensed data. IRS: Indian for Remote Sensing, DAI: digital aerial imagery, DF: data fusion from different
sensors, SAR: synthetic aperture radar, SPOT: Satellite Pour I'Observation de la Terre, LST: Landsat, QBD: Quick
Bird, ASTER: ASTER, MODIS: MODIS Terra and Aqua.

Sixthly, on the basis of the meta-analysis over all the considered 260 studies, we found that field
reference set sizes did not affect the accuracy of k-NN predictions. Thus, the k-NN technique can be successfully

used from local scales through to continental-level investigations.

Methodological advances

Citations and meta-analyses are useful for documenting the scope, range, geographic distribution, and
history of k-NN forest applications. Further, they are useful for determining the most frequently cited papers
as a measure of information sources that others have found useful and relevant. Table 1 reports the most
frequently cited papers published during or before 2013 based on the number of citations standardized to

reflect elapsed time since publication.
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As noted in previous sections, the vast majority of published papers focused on specific applications
whereas only a much smaller number focused on methodological issues. For the purposes of assessing
methodological advances, a limited e-mail survey was conducted to augment the literature review and meta-
analysis. The survey solicited opinions from k-NN users and researchers regarding methodological
publications that have advanced the state of the science for forest applications. The following summary

represents an admittedly subjective consensus of the results of the survey.

Table 1. Nearest neighbors articles ranked by number of
citations normalized by years”.

Rank | Average number Publication
of citations per
year
1 16 Ohmann et al. (2002)
2 15 Franco-Lopez et al. (2001)
3 14 Crookston et al. (2008)
4 11 McRoberts & Tomppo (2007)
5 11 McRoberts et al. (2007)
6 9 Tomppo & Halme (2004)
7 8 Katila & Tomppo (2001)
7 8 McRoberts et al. (2002)
8 7 Tomppo etal. (2002)
9 6 Tokola et al. (1996)
10 6 Trotter etal. (1997)
11 5 Pretzsch (1997)
12 5 Fazakas et al .(1999)
13 4 Maltamo & Kangas (1998)

*Ranked by Scopus citations.

Optimization

Optimization of the k-NN technique entails selecting a distance metric and values for k and t. Nearly
all optimization efforts have focused on selecting or formulating a distance metric with much less effort focused
on optimizing k and t. Although many metrics have been proposed, the unweighted Euclidean distance and the
metric based on canonical correlation analysis have been used most widely. The unweighted Euclidean
distance metric, which can be expressed using an identity matrix in Eq. (2), is the simplest, most intuitive, and
easiest to implement. The only degree of optimization for this metric pertains to the particular feature
variables to be used. Selection of feature variables can be accomplished by comparing all combinations of all
numbers of feature variables (McRoberts, 2012), stepwise selection (Chirici et al., in review), or use of genetic

algorithms (Tomppo & Halme, 2004; Tomppo et al.,, 2009).

The canonical correlation analysis metric was proposed by Moeur and Stage (1995) and has been used
fairly widely (e.g., Maltamo et al., 1998, 2003; LeMay & Temesgen, 2005). The metric is based on an optimal
relationship between a linear combination of response variables and a linear combination of feature variables.
The configuration consisting of this metric and k=1 has been characterized as the Most Similar Neighbor
approach (Moeur & Stage, 1995). The metric based on canonical correspondence analysis was proposed by

Ohmann and Gregory (2002). The configuration consisting of this metric and k=1 has been characterized as
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the Gradient Nearest Neighbor approach. However, both metrics have also been used with k>1 (e.g., Maltamo

etal, 2003; Ohmann et al., 2014).

The weighted Euclidean distance metric, which can be expressed using a diagonal matrix in Eq. (2), is
similar to the unweighted metric, albeit with possibly unequal values on the diagonal of the matrix (Tomppo &
Halme, 2004). Because optimization of this metric is computationally intensive, its use has not been reported
sufficiently frequently to appear in lists of most cited publications; nevertheless, recent technological advances
suggest it has considerable optimization potential. Optimization entails selection of the diagonal values, one
for each feature variable. For a large number of feature variables, optimization can be excessively
computationally intensive. A two-step alternative is to first select a small subset of feature variables and then
to optimally select the corresponding diagonal values of the matrix corresponding to the selected feature
variables. The first step can be accomplished using the same methods noted for the unweighted Euclidean
metric, while the second step would typically be accomplished using a genetic algorithm (Tomppo & Halme,
2004).

Little attention has been devoted to optimizing the k-NN technique with respect to selection of the k
and t values. Small values of k, typically in the range 1 < k < 10, have been common along with arbitrary
selections of t=0, t=1, and occasionally t=2. Optimization of the distance metric followed by arbitrary selections
of k and t may be self-defeating; specifically, the beneficial effects of optimizing the distance metric may be
mitigated by the adverse effects of arbitrary selections of k and t. McRoberts (2012) and McRoberts et al.

(2015) are the only known attempts to optimize the distance metric, k, and t simultaneously.

Inference

Multiple variations of nearest neighbors techniques have been shown to be useful and effective for
both prediction and mapping. However, the ultimate judgment is whether these techniques can contribute to
the construction of an inference in the form of a confidence interval for a population parameter. Two modes
of inference are common, design-based inference and model-based inference. McRoberts et al. (2002)
demonstrated the utility of nearest neighbors techniques as a key component of design-based, stratified
estimation, and Baffetta et al. (2009, 2011) demonstrated its utility for design-based, model-assisted
estimation. For model-based inference, McRoberts et al. (2007) derived parametric estimators for means and
variances and demonstrated their inferential utility. To circumvent the complexity and computational
intensity associated with parametric estimators, McRoberts et al. (2011) proposed and demonstrated a
bootstrapping approach to model-based variance estimation. Magnussen et al. (2009) noted and McRoberts
(2015) confirmed that parametric estimates may be unreliable for k<7. In the latter case, the bootstrapping

approach should be used.

Enhancements

Little attention has been devoted to developing or using comprehensive sets of k-NN diagnostics.

Common diagnostics include comparisons of RMSEs for different combinations of feature variables and graphs
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of observations versus predictions for assessing quality of fit. McRoberts (2009, 2012) and McRoberts et al.
(2015) proposed additional diagnostics for identifying influential outliers in the reference set and for assessing

the degree to which gains achieved by optimization in the reference set are realized in the target set.

Several approaches have been proposed to improve the accuracy of k-NN predictions. Katila and
Tomppo (2002) introduced constraints on the selection of neighbors as a means of increasing accuracy. The
constraints include a maximum distance in geographic space between target and reference units and
restriction of neighbors to the same land use stratum as the stratum of the target unit. Tomppo and Halme
(2004) augmented feature space with additional variables whose values were constructed as interpolations of

field plot observations over the target space.

Beyond simply reducing the dimension of feature space by deleting some auxiliary variables, selecting
optimal diagonal values for the weighted Euclidean distance matrix can be an extremely computationally
intensive task, even for small numbers of feature variables. Tomppo and Halme (2004) proposed genetic
algorithms for this purpose. Genetic algorithms are heuristic search procedures that theoretically converge to
optimal or near optimal solutions. The search mechanism mimics natural selection using techniques inspired

by natural evolution such as inheritance, mutation, selection, and crossover.

A unique feature of k-NN techniques is that no prediction can be smaller than the smallest reference
set observation nor larger than the largest reference set observation. Therefore, unlike regression models, k-
NN techniques cannot extrapolate predictions beyond the range of the response variable in the reference set,
even if ranges of feature variables in the target set may be greater than ranges in the target set. Magnussen et
al. (2010) developed an approach that uses a local linear model to extrapolate predictions beyond the range of

reference set feature variables.

2.2.4.Discussions and Conclusions

The study was motivated by the popularity of the k-NN technique for use with forest inventory and
remotely sensed data. The analyses were conducted within the framework of Working Group 2 of COST Action
FP1001 and focused on a review of the scientific literature for forestry applications. Information available in

the scientific publications was used to populate a database that served as the basis for a meta-analysis.

Multiple conclusions drawn from previous experiences are useful as background for future forest
implementations and to stimulate future research. Nowadays, k-NN can be considered a useful, well-affirmed
technique for a broad scope of international forest inventory applications using remotely sensed data. Previous
experiences have demonstrated that k-NN can be used in all vegetation zones and at spatial scales ranging from
local applications based on a limited number of field observations to large national and continental
applications. The k-NN technique is frequently used to estimate growing stock volume, tree biomass, and

carbon stock, but it can be used also with large variety of response variables.

Feature variables can be derived from the outputs of traditional multi-spectral optical sensors as well

as active radar and ALS systems. Performance of the k-NN technique is dependent on an optimization phase
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aimed at selecting the set of feature variables and their weights, the value of k, neighbor weighting, and the

multidimensional distance metric.

The meta-analysis revealed that the simplest k-NN configuration frequently produced excellent
results. For this reason we suggest a first tentative implementation of k-NN using the Euclidean distance metric,
values of k ranging between 3 and 10, and t=0 t=1, and t=2. If the pixel-level or area-level k-NN predictions
produce RMSE% less than 30%, the result should be considered in line with results reported in the literature.
Starting from this simple k-NN configuration, multiple diagnostic tests and investigations of variations of the
parameters and feature variables can be conducted to obtain more accurate results. Examples include
transformations of feature variables, more sophisticated distance metrics, and optimization of k and t. There is
no consensus regarding the order of the optimization steps that produce the greatest gains in accuracy. A
reasonable order would be first to select the feature variables that reduce the effects of the curse of
dimensionality by eliminating redundant feature variables. Then, depending on the nature of the feature
variable set, more sophisticated distance metrics such as the weighted Euclidean or canonical correspondence
analysis metrics can be tested. Finally the k value should be optimized on the basis of the leave-one-out

approach.

Integration of remotely sensed data from different sensors, particularly both passive and active
sensors, and non-remote sensing variables (such as elevation or climatic maps) can be considered to facilitate

more accurate prediction of both structural and functional forest attributes.

Finally, we strongly encourage scientists using the k-NN technique to report results obtained for all
multiple configurations considered in the optimization phase. Do so will facilitate future meta-studies and both

researchers and practitioners involved in the operational implementation of the k-NN technique.
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Abstract

The k-Nearest Neighbors (k-NN) technique is a non-parametric approach that calculates predictions
as linear combinations of observations for sample units that are nearest in a space of auxiliary variables to the
population unit for which a prediction is desired. When implementing a nearest neighbors algorithm, four
choices are necessary: a distance metric, the specific auxiliary variables to be used, the number of nearest
neighbors, and a scheme for weighting the nearest neighbors. Often the algorithm is implemented with
arbitrary choices such as the Euclidean distance metric, all auxiliary variables, k=1 or k=5, and equal weighting
of neighbors. However, as the k-NN technique has matured, methods for optimizing the four choices have
begun to emerge, although few reports of rigorous comparisons of optimization methods or the benefits of
optimization have been reported. The objective was to compare optimization methods with respect to the
accuracy of airborne laser scanning-assisted predictions of forest volume or biomass and with respect to
inferences for population mean of volume or biomass per unit area. Four study areas were used, two in
Norway, one in Italy, and one in the United States of America. The primary results were twofold: first, with
appropriate optimization, multiple methods produced similar predictions; and second, optimization produced
considerably greater precision for estimates of population means than common arbitrary choices. Therefore,
as the k-NN technique continues to mature, users are under greater obligation to justify decisions not to

optimize and to assess the consequences of those decisions.

Keywords: k-Nearest neighbors, optimization, airborne laser scanning, accuracy assessment
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2.3.1.Introduction

Nearest neighbors techniques are non-parametric, multivariate approaches to estimation. Population
unit predictions are calculated as linear combinations of sample observations for units designated neighbors
that are nearest or most similar in a space of auxiliary variables to units for which predictions are desired.
Nearest neighbors techniques have received considerable attention for mapping and areal estimation of forest
attributes, particularly when used with forest inventory and remotely sensed data. Application of a
nearest neighbors algorithm requires choices for the distance or similarity metric, the particular auxiliary

variables, the number of neighbors, and a scheme for weighting the neighbors.

Most efforts to optimize nearest neighbour algorithms focus on the distance metric, although only a
few comparisons of distance metrics have been reported. For predicting forest stand attributes using variables
obtained from aerial photography, LeMay and Temesgen (2005) reported that a metric based on canonical
correlation analysis was superior to Euclidean distance and Manhattan distance. For predicting forest
attributes from Landsat-based variables, Chirici et al (2008) reported that distance metrics giving greater
weights to reference units whose response variable observations are closer to the mean of the observations
was superior to Euclidean, Mahalanobis, and two other metrics that weight feature variables with respect to
relationships with the response variables. Latifi et al. (2010 compared Euclidean, Mahalanobis, canonical
correlation, and Random Forests distance metrics for predicting forest volume and biomass using lidar,
Landsat, and aerial image data. The results were mixed with different metrics producing more optimal results
for different response variables. The only general conclusion that can be drawn from these studies is that
metrics that are optimized using observations of the response variable tend to produce the most accurate

predictions.

The number of nearest neighbors, k, is often arbitrarily selected as k=1 or k=5 but may also be selected
to optimize a criterion such as root mean square error. Neighbors are often equally weighted although they
are also often weighted inversely to the distance or distance squared between units requiring predictions and

sample units.

No reports are known of comprehensive efforts to optimize a nearest neighbors algorithm by
comparing and simultaneously selecting distance metrics, auxiliary variables, number of neighbors, and
neighbor weighting scheme. The objective of the study was to compare combinations of levels for these four
factors with respect to the accuracy of airborne laser scanning (ALS)-based predictions of response variables
forest volume or biomass and with respect to inferences for the population mean per unit area for the response
variables. Data were used for four study areas, two in Norway, one in Italy, and one in the United States of

America (USA).

2.3.2.Materials and Methods
Study areas

Hedmark, Norway
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The 1259-km? study area was mostly in the municipalities of Amot and Stor-Elvdal in Hedmark County,
Norway (Figure 1). Dominant tree species are Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus
sylvestris L.). Field measurements were acquired for 250-m? Norwegian NFI field plots located at the
intersections of a 3-km x 3-km grid (Tomter et al., 2010). Data for only the 145 plots measured within one year
of the ALS acquisition dates were used for this study. Thus, the study area was defined as the geographic area
represented by the portion of the Latin Square sampling design used by the Norwegian NFI inventoried
between 2005 and 2007 (Figure 1). On each plot, all trees with diameters at-breast-height (dbh, 1.3 m) of at
least 5 cm were callipered. Tree heights were measured on an average of 10 sample trees per plot selected with
probability proportional to stem basal area, and heights for the remaining trees were predicted using height-
dbh models (Fitje & Vestjordet 1977; Vestjordet 1968). The volume of each sample tree was estimated using
species-specific volume models with dbh and either measured height or predicted height as independent
variables (Braastad 1966; Brantseg 1967; Vestjordet 1967). The ratio of the mean volume estimate for trees
with predicted heights and the mean volume estimate for trees with measured heights was used to adjust the
former volume estimates. Volume estimates for individual trees were added to produce plot-level totals which
were then scaled to a per unit area basis (m3/ha) and considered to be observations without error (McRoberts

& Westfall, 2014).

Wall-to-wall airborne lidar data were acquired between 15 July 2006 and 12 September 2006 with
average point density of 0.7 pulses m-2. Data for only single echoes or the first of multiple echoes were used.
For each plot and population unit, height distributions were estimated for first echoes from tree canopies, i.e.
heights greater than 2 m. Echoes with heights less than 2 m were considered to have been reflected from non-
tree objects such as shrubs, grass, or the ground. For each plot and population unit, heights corresponding to
the 10th, 20th, .., 100t percentiles of the distributions were calculated and denoted hy, hy, ..., h1o, respectively.
Canopy densities were calculated as the proportions of echoes with heights greater than 0%, 10%, ..., 90% of
the range between 2 m above ground and the 95t height percentile and were denoted do, dy, ..., ds, respectively

(Gobakken & Nzesset, 2008).
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Figure 1. Valer tleft) and Hedmark (right) study areas in Norway.

Viler, Norway

The 8.53-km? study area was located in a boreal forest region in Valer Municipality in southeastern
Norway (Figure 1). Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.) are the dominant
species, with younger stands having large proportions of deciduous species. Forests in the study area are
actively managed with clear-cutting and commercial thinning on productive sites and selective logging on poor

sites.

Measurements were obtained for 176 systematically-distributed, circular, 200-m?2 forest inventory
plots. Tree-level AGB was estimated for 1999 using statistical models based on field observations of species
and measurements of diameter at-breast-height (1.3m) and height (Marklund, 1988). Plot-level AGB was
estimated as the sum of individual tree AGB predictions, scaled to a per unit area basis (Mg/ha), and considered

to be observations without error (McRoberts & Westfall, 2014).

Wall-to-wall ALS data were acquired for the study area with pulse density of approximately 1.2 pulses per
m2. Distributions of first echo heights were constructed for the 200-m2 plots and 200-m? square cells that
tessellated the study area. A threshold of 1.3 m above the ground surface was used to remove the effects of
echoes from ground vegetation whose biomass is not included in tree-level AGB. For each plot and cell, heights
corresponding to the 10t, 20t%, .., 100t percentiles of the distributions were calculated as were canopy
densities calculated as the proportions of echoes with heights greater than 0%, 10%, .., 90% of the range
between 1.3 m above ground and the 95t height percentile (Gobakken & Naesset, 2008). Naesset et al. (2013)

provide more details for the study area and the dataset.

Molise, Italy
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The 363.6-km? study area is in the southwestern part of Molise Region in central Italy (Figure 2).
Approximately 56% of the area, or 20,518 ha is covered by forests of which approximately 60% is dominated
by deciduous oaks (Quercus cerris, Quercus pubescens), approximately 18% is dominated by hop hornbeam
(Ostrya carpinifolia), and approximately 9% is dominated by unmanaged beech (Fagus sylvatica) forests with

structures approaching natural, old-growth forest status.

The study area was tessellated into 437 hexagons, each with area of 1 km2. A point was randomly selected in
each hexagon and classified as “forest” or “non-forest” based on interpretation of high-resolution aerial ortho-
photography. From the 197 points classified as forest, 62 